
WPI-CS-TR-03-23b Dec 2003

Updating XQuery Views Published over Relational Data

by

Ling Wang and Elke A. Rundesnteiner

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Abstract

XML data management using relational database systems has been intensively studied in the last few years. However, in
order for such systems to be viable, they must support not only queries, but also updates over virtual XML views that wrap the
relational base. While view updating is a long-standing difficult issue in the relational context, the recent invention of the flexible
XML data model and nested XML query language poses new challenges for view updating.

In this paper, we first formally model the XQuery View Update Problem. Then the clean extended-source theory for determining
the existence of a relational update translation for a given XQuery view update is proposed. We identify new update translation
issues, in particular view construction consistency, update granularity and view duplication, which are caused by the distinct
features of XML, most notably, the XML hierarchical data structure and nested XQuery expressions. We propose a graph-based
algorithm for detecting the occurence of these issues by view definition analysis. The connection between the algorithm with the
clean extended-source theory is also established. Finally, the XML view updatability for various update granularity is presented
according to different update types.

1

1 Introduction

XML has become the standard for interchanging data be-
tween web applications. Recent XML management systems
[6, 10, 19] combine the strengths of the XML data model
with the maturity of relational database technology to provide
both reliable persistent storage as well as flexible query pro-
cessing and publishing. To bridge the gap between relational
databases and XML applications, such systems typically sup-
port creating XML views that wrap the relational base and
querying against it. Update operations against such wrapper
views, however, are not yet well supported.

The problem of updating XQuery views published over re-
lational data comes with new challenges beyond those of rela-
tional [8, 2, 9, 11, 12, 1] or even object-oriented [4] views. We
have to address the mismatch between the two distinct data
models (the XML flexible hierarchical view model and the flat
relational base model). That is the nested structure imposed
by an XML view may be in conflict with the constraints of the
underlying relational schema. Also the mismatch between the
two query and update languages (XQuery nested FLWU up-
dates on the view versus SQL update queries on the base) has
to be emphasied. Recent work [15] presents an XQuery update
grammar and studies the execution performance of translated
updates, assuming that the given view update is indeed al-
ways translatable. System specific XML view management
solutions are also provided by SQL-Server2000 [13], Oracle [3]
and DB2 [7]. Our earlier work [17] discusses the updatability
in the context of a particular XML view subproblem, namely,
the “round-trip” case. This case is characterized by a pair
of inversable loading and extraction queries used for mapping
XML to and from the relational database. We show that such
views are always updatable by any valid update operation.

However, there is no result yet in the literature focus on
a general method to assess the updatability of arbitrary XML
view. That is, given an XML view and an update pair, we
need a method to decide whether a translation of the view up-
dates expressed in XQuery into relational updates expressed
in SQL exists that satisfies the well-established update cor-
rectness properties.

The view updatability decision issue has been a long stand-
ing difficulty even in the relational database context. Using
the concept of clean source, [9] characterizes the conditions
under which a relational view over a relational base is up-
datable. Our work in this paper first adopt the concepts of
a “clean source” into the XML context by defining a view-
element with various granularity. We then propose a “clean
extended-source” concept adjusted to also account for the ref-
erential integrity maintenance. Due to the flexibility of XML
hierarchical data model and the nested FLWR expressions of
the XQuery language, the XQuery views exhibit several dis-
tinct features affecting the view update translatability, most
notably, including view construction consistency, update gran-
ularity and view duplication. That is, the flexible update
granularity in XML causes more situations to become un-
translatable, especially when the view can be shown to have an
inconsistent construction or a duplication. We illustrate the
effects of these features on the view updatability by motivat-
ing examples in Section 2. Then a graph-based algorithm for
detecting the occurrence of these problem features in the view
is proposed. Its connection with the clean extended-source ba-
sis is also proven. The translatability of different update types
on these views with various granularity is finally identified.

A system framework skeleton solving the XML view update
problem is provided serving as proof of the viability of our
proposed method. We have implemented the system within
the XML data management system Rainbow [19] and have
conducted several experiments to assess various performance
characteristics of our update solution [17].

Contributions.

• We characterize the XQuery view update problem and
identify the new challenges imposed by the XML hierar-
chical data model and the nested XQuery syntax.

• We propose and prove the clean extended-source theory
for determining whether a correct view update transla-
tion exists.

• We propose a graph-based algorithm for detecting the in-
consistency and duplication in views, and prove its con-
nection with the clean extended-source theory.

• We analyze the XML view updatability for various up-
date granularity by different update types.

• We propose a system framework solving the XML view
update problem and implement it in the Rainbow System
[19].

Outline. This paper is structured as follows. Section 2 pro-
vides several motivating examples to illustrate the challenges
of the XQuery view update problem which then is formally
modeled by Section 3. In Section 4 we propose the “clean
extended-source” theory as our theoretical foundation. Sec-
tion 5 describes our graph-based algorithm for detecting the
consistency and duplication properties of view. The trans-
latability of updates on these views with various granularity
is then identified in Section 6. The update system framework
for solving the XML view update problem is given in Section
7. Section 8 reviews related work while Section 9 provides the
conclusion.

2 Motivating Examples

Basics of update policy. Now we will introduce several
examples to illustrate what features of XML cause new view
update translation issues. Fig.1 is the example XML docu-
ment which contains a list of book titles and their option-
ally prices. Fig.2 describes one possible relational schema
and database capturing this XML document. Recent XML
systems (XPERANTO [6], SilkRoute [10] and Rainbow [19])
use a basic XML view, called default XML view, to define the
one-to-one XML-to-relational mapping (Fig.3). On top of this
default XML view, a virtual view is introduced to define the
user-specific views. Such a virtual view can be specified by an
XQuery expression [16] called a view query (Fig.4). Although
W3C is adding update capabilities to the XQuery standard
[16], to date there is no one standard update XQuery syntax.
For our work, we thus adopt the update XQuery syntax intro-
duced in [15]. Fig.5 shows several examples of view updates.

Note that the update translation policy is essential to this
view updatability since a given update may translatable under
one policy, while not under another. In the examples below,
when not stated otherwise, we say an update is translatable
under the policy that: (i) translated updates have the same
type as the view update and (ii) delete cascading is applied

2

<bib>
<book>

<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<price>

<amount>63.70</amount>
<website>www.amazon.com</website>

</price>
</book>
<book>

<bookid>98002</bookid>
<title>Programming in Unix</title>

</book>
<book>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price>

<amount>56.00</amount>
<website>www.amazon.com</website>

</price>
<price>

<amount>45.60</amount>
<website>www.bookpool.com</website>

</price>
</book>

</bib>

Fig. 1. Example XML document

98003

98003

98001

bookid

www.bookpool.com45.60

www.amazon.com56.00

63.70

amount

www.amazon.com

website

Programming in Unix98002

Data on the Web98003

TCP/IP Illustrated98001

titlebookid

price

book

Primary Key

Non Key

Legend:

CREATE TABLE book(
bookid VARCHAR2(20),
title VARCHAR2(100),
CONSTRAINTS BookPK PRIMARYKEY (bookid))

CREATE TABLE price(
bookid VARCHAR2(20),
amount DOUBLE,
website VARCHAR2(100),
CONSTRAINTS PricePK PRIMARYKEY (bookid, website),
FOREIGNKEY (bookid) REFERENCES book (bookid))

Fig. 2. Relational database capturing
the XML data from Fig. 1

<DB>
<book>

...
<row>

<bookid>98003</bookid>
<title>Data on the Web</title>

</row>
</book>
<price>

...
<row>

<bookid>98003</bookid>
<amount>56.00</amount>
<website>www.amazon.com</website>

</row>
<row>

<bookid>98003</bookid>
<amount>45.60</amount>
<website>www.bookpool.com</website>

</row>
</price>

<DB>

Fig. 3. Default XML view of database
shown in Figure 2

in maintaining referential integrity of the relational database.
For the detail of update policy selection see Section 5.2. Also,
we do not indicate the order of the translated relational up-
dates in our description. Using different execution strategy,
the correct order will be easily decided.

Example 1 : View construction consistency.
Given the two XQuery views V 1 and V 2 in Fig.4, which both
represent books from the website “www.amazon.com”, but with
different XML view hierarchies. Two view updates uV

1 on V 1
and uV

2 on V 2 are listed in Fig.5 respectively.
(i) uV

1 is translatable as shown by Fig.6. The translated
relational update sequence UR in Fig.6(b) will delete the first
book from the “book” relation by uR

1 , and its price information
from the “price” relation through uR

2 . By re-applying the view
query Q1 on the updated database D′ in Fig.6(c), the user
would get the updated XML view in Fig.6(d). This view is
equal to the expected updated view V 1′ in Fig.6(a). Hence UR

in Fig.6(b) is a correct translation of uV
1 .

(ii) uV
2 is not translatable as shown by Fig.7. First of all,

the relational update uR
1 in Fig.7(b) is generated to delete the

book named “TCP/IP Illustrated” from the “book” relation.
Then after the existing foreign key from the “price” relation
to the “book” relation as shown by relational database schema
(Fig.2) is identified, according to our selected update propaga-
tion policy, the second update operation uR

2 will be generated
by the update translator to keep the relational database consis-
tent. That is, the corresponding price of the deleted book will
be deleted as well. By reapplying Q2 on this updated database
in Fig.7(c), we will produce the updated view in Fig.7(d). This
is different than the expected updated view V 2′ in Fig.7(a). V 2
is thus said to be not updatable for uV

2 .

This difference in the existence of a correct translation is
caused by the mismatch between the XML hierarchical view
model and the underlying flat relational base model. This view
construction consistency property, namely, whether the XML
view hierarchy agrees with the hierarchical structure implied
in the base relational schema, is one of the key factors for
XQuery view updating.

Example 2 : Update granularity.
Compared with the failure of translating uV

2 in Example
1, Fig.8 shows another update operation uV

3 in Fig.5 over

the same view V 2 that is translatable. uV
3 deletes the

whole “price info” element instead of just the subelement
“book info” from V 2. The translated relational update se-
quence UR in Fig.8(b) will delete the first book from the “book”
relation by uR

1 , and its prices from the “price” relation through
uR

2 . Re-applying the view query Q2 on the updated database
in Fig.8(c) will generate the XML view in Fig.8(d), which is
indeed identical to the expected updated view V 2′′ in Fig.8(a).
Hence UR is a correct translation of uV

3 .

Here the difference in translation existence is not just
caused by the shape of the view structure as in Example 1,
but also the granularity of the update operation. That is the
effects of updates on the view. uV

3 has a larger granularity
than uV

2 , covering the “top” element of the XML view. It
thus “resolves” the inconsistency between the two hierarchies
respectively from the view and the relational schema men-
tioned by Example 1. The XML hierarchical structure offers
an opportunity for different update granularity, an issue that
never arises for relational views. This flexibility affects update
translatability, as will be discussed in Section 6.

Example 3 : View duplication.
Content duplication. Compare the two XQuery views V 3
and V 4 in Fig.4. The book named “Data on the Web” with
two prices is exposed twice in V 4, while only once in V 3. The
update uV

5 in Fig.5 will delete the first book element, which is
from the website “www.amazon.com”, while keeping the second
book element from “www.bookpool.com”. Translating update
uV

5 is ambiguous since without further communication with
the user it is not decidable whether the user desires to delete
the book from the “book” table as well. However, update uV

4

in Fig.5 defined on V 3 is translatable without any ambiguity.

Note that by further communication with the user, update
uV

5 may become translatable. For example, assuming user’s
desire is to keep the corresponding “book” in the book rela-
tion. An extra translation rule: No tuple is deleted if it is still
referenced by any other part of the view, would now make the
update uV

5 translatable.
Structural duplication. Given the XQuery view V 5 in

Fig.4, the bookid element is exposed twice by the view query
Q5. Hence each price within the book will also have a “bookid”
element. The update uV

8 in Fig.5, which deletes the first

3

<bib>
FOR $book IN

document("default.xml")/book/row,
$price IN

document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
AND $price/website = " www.amazon.com "
RETURN {

<book_info>
$book/bookid,
$book/title,
<price_info>

$price/amount,
$price/website

</price_info>
</book_info>

</bib>}

Q1

V1
<bib>

<book_info>
<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<price_info>

<amount>63.70</amount>
<website>

www.amazon.com
</website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website>

www.amazon.com
</website>

</price_info>
</book_info>

</bib>

<bib>
FOR $book IN

document("default.xml")/book/row,
$price IN

document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
AND $price/website = " www.amazon.com "
RETURN {

<price_info>
$price/amount,
$price/website,
<book_info>

$book/bookid,
$book/title

</book_info>
</price_info>

</bib> }

Q2

<bib>
<price_info>

<amount>63.70</amount>
<website>

www.amazon.com
</website>
<book_info>

<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>

</book_info>
</price_info>
<price_info>

<amount>56.00</amount>
<website>

www.amazon.com
</website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>

</bib>

V2

(a) View V1 defined by Q1

<bib>
FOR $book IN

document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid,
$book/title,
FOR $price IN

document("default.xml")/price/row
WHERE

$book/bookid = $price/bookid
RETURN {
<price_info>

$price/amount,
$price/website

</price_info>
}

</book_info>
</bib> }

Q3

<bib>
...
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website>

www.amazon.com
</website>

</price_info>
<price_info>

<amount>45.60</amount>
<website>

www.bookpool.com
</website>

</price_info>
</book_info>

</bib>

V3

(b) View V2 defined by Q2 (c) View V3 defined by Q3

<bib>
FOR $book IN

document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid,
$book/title,
FOR $price IN

document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {
<price_info>

$book/bookid,
$price/amount,
$price/website

</price_info>
}

</book_info>
</bib> }

Q5

<bib>
FOR $book IN

document("default.xml")/book/row,
$price IN

document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<book_info>
$book/bookid,
$book/title,
<price_info>

$price/amount,
$price/website

</price_info>
</book_info>

</bib>}

Q4

<bib>
...
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website>

www.amazon.com
</website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>45.60</amount>
<website>

www.bookpool.com
</website>

</price_info>
</book_info>

</bib>

V4

<bib>
...
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<bookid>98003</bookid>
<amount>56.00</amount>
<website>

www.amazon.com
</website>

</price_info>
<price_info>

<bookid>98003</bookid>
<amount>45.60</amount>
<website>

www.bookpool.com
</website>

</price_info>
</book_info>

</bib>

V5

(d) View V4 defined by Q4 (e) View V5 defined by Q5

Fig. 4. View V1 to V5 defined by XQuery Q1 to Q5 respectively

price of the specified book, will be ambiguous in translation.
“bookid” is the key of the “book” relation. Thus we cannot
decide whether to delete the book.

In the first case, the “duplication” causing this ambiguity
is introduced by the XQuery “FOR” expressions. We call it
content duplication. This is not unique to XML although it
is generated by the nested XQuery expression. It may appear
in the relational view context, for example in Join views.

However, the structural duplication, as illustrated by the
second case, is special to XQuery view updating. While it
also exists in the relational context, it would not cause any
ambiguity in relational update translation. The reason is that
in the flat relational data model we always have corresponding
tuple-based updates. This means that the update operation
touches all the duplication parts within a given view tuple
instead of just some of them. Thus, it would never generate
any inconsistent situation. However, the flexible hierarchical
structure of XML allows such a “partial” update instead of
enforcing a full update of the XML view. This provides the
possibility of some inconsistency between the duplicated parts
to arise. See Section 5.4 for details.

3 The XQuery View Update Problem

The XQuery view update problem can be described as fol-
lows. Given a relational database and an XQuery view defini-
tion over it, can we decide whether an update against the view
is translatable into corresponding updates against the under-
lying relational database without violating any consistency?
Intuitively, by consistency, we mean that (1) the requested
updates agree with the XML view schema, (2) the translated
updates against the relational database comply with the rela-
tional schema, and (3) the XML view reconstructed on the up-

dated relational database using the view definition is exactly
the same as the result of directly updating the materialized
view, that is without view side-effects. And, if it translatable,
how would this translation be done.

In this section, we will formally model the XQuery view
update problem and introduce the notations used for studying
its updatability (Table 1).

3.1 Framework of XML View on Relational Database.

The structure of a relation is described by a relation
schema R(N ,A,F), where N is the name of the relation,
A = {a1, a2, ..., am} is its attribute set, and F is a set of con-
straints. An instance of a relation schema or a relation for
short, denoted by R , is a finite subset of dom(A), a product of
all the attribute domains. A relational database schema
SCHR is a combination of a set of relation schemes S and in-
tegrity constraints C, where S = {Ri(Ni,Ai,Fi)|i = 1, ..., n}.
An instance of a database schema, or a relational database,
denoted as D, is a finite set of relations R1, ..., Rn where Ri is
a relation instance of relation schema Ri. A relational up-
date operation uR ∈ 0

R, is a deletion, insertion or replace-
ment on a database D. An sequence of relational update
operations, denoted by UR = {uR

1 , uR
2 , ..., uR

p }, is modeled as

a function UR(D) = uR
p (uR

p−1(..., u
R
2 (uR

1 (D)))).
An XML view instance V , or XML view for short,

over a given relational database D is defined by a view
definition DEF V . The domain of the view is de-
noted by dom(V). DEF V is an XQuery expression in
our case. Let rel be a function to extract the rela-
tions referenced by DEF V in D, then rel(DEFV) =
{Ri1 , Ri2 , ..., Rip

} ⊆ D. Let nest be a function to nest a set
of FLWR expressions, then DEV V = nest(Exp0, ..., Expm) =
Exp0(nest(Exp1, ..., Expm)), where Exp0 is the “outer-most”

4

FOR $root�IN document("V1.xml"),
$book�IN $root/book_info

WHERE $book/title/text()�=�"TCP/IP�Illustrated"�
UPDATE $root�{

DELETE $book�}

uV
1

FOR $root�IN document("V2.xml"),
$book�IN $root/price_info/book_info

WHERE $book/title/text()�=�"TCP/IP�Illustrated"�
UPDATE $root�{

DELETE $book�}

uV
2

FOR $root�IN document("V2.xml"),
$price�IN $root/price_info

WHERE $price/book_info/title/text()�=�"TCP/IP�Illustrated"�
UPDATE $root�{

DELETE $price�}

uV
3

FOR $root�IN document("V3.xml"),
$book�IN $root/book_info

WHERE $book/title/text()�=�"�Data�on�the�Web"�
AND�$book/price_info/website�=�"�www.amazon.com�"
UPDATE $root�{

DELETE $book�}

uV
4

FOR $root�IN document("V4.xml"),
$book�IN $root/book_info

WHERE $book/title/text()�=�"�Data�on�the�Web"�
AND�$book/price_info/website�=�"�www.amazon.com�"
UPDATE $root�{

DELETE $book�}

uV
5

FOR $root�IN document("V4.xml"),
$book�IN $root/book_info

WHERE $book/title/text()�=�"�Data�on�the�Web“
AND�$book/price_info/website�=�"�www.amazon.com�"
UPDATE $root�{

DELETE $book/title�}

uV
6

FOR $root�IN document("V5.xml"),
$book�IN $root/book_info

WHERE $book/title/text()�=�"Data�on�the�Web"�
AND�$book/price_info/website�=�"�www.amazon.com�"
UPDATE $root�{

DELETE $book�}

uV
7

FOR $root�IN document("V5.xml"),
$book�IN $root/book_info

WHERE $book/title/text()�=�"Data�on�the�Web"�
AND�$book/price_info/website�=�"�www.amazon.com�"
UPDATE $root�{

DELETE $book/price_info}

uV
8

FOR $root IN document("V4.xml")
UPDATE $root {

INSERT
<book_info>

<bookid>"98003"<bookid>
<title>" Data on the Web "</title>
<price_info>

<amount>56.00</amount>
<website>www.ebay.com</website>

</price_info>
</book_info> }

uV
9

FOR $root IN document("V5.xml")
LET $book := $root/book_info
WHERE $book/title/text() = " Data on the Web"
UPDATE $book {

INSERT
<price_info>

<bookid>"98003"<bookid>
<amount>56.00</amount>
<website>www.ebay.com</website>

</price_info> }

uV
10

FOR $root IN document("V5.xml")
UPDATE $root {

INSERT
<book_info>

<bookid>"98004"<bookid>
<title>" Database System "</title>
<price_info>

<bookid>"98003"<bookid>
<amount>56.00</amount>
<website>www.amazon.com</website>

</price_info>
</book_info> }

uV
12

FOR $root IN document("V5.xml")
LET $book := $root/book_info
WHERE $book/title/text() = " Data on the Web"
UPDATE $book {

INSERT
<price_info>

<bookid>"98004"<bookid>
<amount>56.00</amount>
<website>www.ebay.com</website>

</price_info> }

uV
11

Fig. 5. Update operations on XML views defined in Fig.4

R(N ,A,F) the schema of a relation
R a relation

SCHR the schema of a relational database
D a relational database

uR a relational update operation

UR a sequence of relational update operations

0R the domain of relational update operations

SCHV the view schema
V the view instance

DEF V the view definition

uV a view update

0V the domain of view update operations

vC a complete view element

vP a partial view-element

Table 1. Notations for XML view update problem

expression. Let Expfor
k , Explet

k , Expwhere
k , Expreturn

k denote
the FOR, WHERE, LET, RETURN clauses in the kth ex-
pression Expk(0 ≤ k ≤ m) respectively. The element struc-
ture defined by Expreturn

0 is named the complete view-
element, denoted as vC . Any element or attribute de-
fined inside Expreturn

0 is called a partial view-element, de-
noted as vP . For example, Q3 in Fig.4 can be described as
DEF V = Exp0(Exp1), where Exp0 = “FOR $book ...” and
Exp1 = “FOR $price ...”. The complete view-element here
is <book> ... < /book>. All other elements or attributes in-
side the “book” element, such as bookid and price, are partial
view-elements. A complete view-element is actually a special
partial view-element.

Let ⊕ be the operator used to compose view-element into
a hierarchy, while 	 is the operator used to decompose view-
elements from a hierarchy. Then two view-elements can con-
struct a “bigger” view-element by the ⊕ operator, while a
“bigger” view-element can be decomposed into “small” parts
using operator 	. For example, let vP

1 and vP
2 be amount and

website view-elements in V 3 of Fig.4. Then vP = vP
1 ⊕ vP

2 is
the price view-element. While vP 	 vP

1 = vP
2 . A view thus

can be viewed as a construction of complete view-elements,
denoted as V = vC

1 ⊕ ...⊕ vC
m.

An XML view schema SCHV is extracted from both the
view definition DEF V and the underlying relational database
schema SCHR. It is a combination of a filtered XML view
schema (FSchema) and an extracted XML view schema
(ESchema). An FSchema, modeling the constraints ex-

tracted from the schema of any relation referenced by DEFV ,
is inferred by analyzing the underlying relational database
schema and projecting it using the view definition. These
constraints may include domain constraints, cardinality con-
straints, Null constraints and hierarchical constraints. An ES-
chema consisting of constraints that can be inferred from the
XML view query specification syntax is extracted by analyz-
ing the view query expression. It includes cardinality con-
straints, hierarchical constraints and duplication constraints.
Figure 9 is the the comparison of the constraints between the
original XML schema, XML view schema SCHV and the base
relational schema SCHR.

Some constraints in the view schema (domain, etc.) can be
used to check if the given view updates are valid. Figure 10 is
examples of valid update checking using Null constraints and
domain constraints. As shown in Figure 10(a), assuming we
have constraints for relational database in Figure 2, then u13

in Figure 10(b) is not a valid update because it againsts the
NOT NULL constraints for “title” in “book” relation. u13 in
Figure 10(c) is not a valid update either because it againsts
the domain constraints of “price” in “price” relation.

Some constraints may affect the update translatability of
the view, in particular, when the constraints extracted from
DEF V and SCHR do not match each other. The effect of
these constraints in XML view schema on the update transla-
tion has been featured by motivation examples in Section 2,
and will be discussed in detail in Section ??.

3.2 XML View Update Operations

Let uV be an update operation on the view with 0
V as

its domain. Let type be a function to identify the type of an
update operation to be delete, insert or replace.

Definition 1 A complete update uV on a given view V =
vC
1 ⊕ ... ⊕ vC

n } is either a complete insertion, deletion or re-
placement, defined as below.

Let type(uV) = insert, and vC be the complete view-element
inserted by uV . Then uV (V) = vC

1 ⊕ ...⊕ vC
n ⊕ vC is called a

complete insertion.

Let type(uV) = delete, and let vC
k (1 ≤ k ≤ n) be a complete

view-element deleted by uV . Then uV (V) = vC
1 ⊕ ...⊕ vC

k−1 ⊕

vC
k+1 ⊕ ...⊕ vC

n is called a complete deletion.

5

<bib>
<book>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price>

<amount>56.00</amount>
<website>www.amazon.com</website>

</price>
</book>

</bib>

(a) V 1′

u1
R:� DELETE�FROM book�

WHERE book.ROWID�IN (�
SELECT�DISTINCT book.ROWID�FROM book
WHERE (book.title�=�'TCP/IP�Illustrated')�)

u2
R:� DELETE�FROM price�

WHERE price.ROWID�IN (�
SELECT�DISTINCT price.ROWID�FROM book,price��
WHERE (book.title�=�'TCP/IP�Illustrated')�AND

(book.bookid =�price.bookid))

(b) UR

98003

98003

bookid

www.bookpool.com45.60

www.amazon.com56.00

amount website

Programming in Unix98002

Data on the Web98003

titlebookid

price

book

Legend:

Primary Key

Non Key

(c) D′

(d) Q1(D′). Same with (a).

Fig. 6. Translation for uV
1

(a) V 1′: The expected XML view after

update uV
1

(V 1) (b) UR: The translated update (c) D′: The up-
dated relational database and (d) Q1(D′): The regenerated view.

<bib>
<price>

<amount>63.70</amount>
<website>www.amazon.com</website>

</price>
<price>

<amount>56.00</amount>
<website>www.amazon.com</website>
<book>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book>
</price>

</bib>

(a) V 2′

(b) UR. Same with Fig.6(b).

(c) D′. Same with Fig.6(c).

<bib>
<price>

<amount>56.00</amount>
<website>www.amazon.com</website>
<book>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book>
</price>

</bib>

(d) Q2(D′)

Fig. 7. Translation for uV
2

(a) V 2′: The expected XML view after

update uV
2

(V 2) (b) UR: The translated update (c) D′: The up-
dated relational database and (d) Q2(D′): The regenerated view.

<bib>
<price>

<amount>56.00</amount>
<website>www.amazon.com</website>
<book>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book>
</price>

</bib>

(a) V 2′′

(b) UR. Same with Fig.6(b).

(c) D′. Same with Fig.6(c).

(d) Q3(D′). Same with (a).

Fig. 8. Translation for uV
3

(a) V 2′′: The expected XML view after update uV
3

(V 2) (b) UR: The translated update (c) D′: The updated
relational database and (d) Q2(D′): The regenerated view.

Let type(uV) = replace, and let vC
k (1 ≤ k ≤ n) be a com-

plete view-element to be replaced, and vC be the complete view-
element used as replacement. Then uV (V) = vC

1 ⊕ ...⊕vC
k−1⊕

vC
k+1 ⊕ ...⊕ vC

n ⊕ vC is called a complete replacement.

Definition 2 A partial update uV on a given view V =
vC
1 ⊕ ...⊕ vC

n is either a partial insertion, a partial deletion or
a partial replacement, defined as below.

Let type(uV) = insert, and let vP
k be the partial view-element

inserted into vC
k by uV . Let vC′

k = vC
k ⊕ vP

k . Then uV (V) =

vC
1 ⊕ ...⊕ vC′

k ⊕ ...⊕ vC
n is called a partial insertion.

Let type(uV) = delete, and let vP
k (1 ≤ k ≤ n) be a partial

view-element deleted from vC
k by uV . Let vC′

k = vC
k 	 vP

k .

Then uV (V) = vC
1 ⊕ ... ⊕ vC′

k ⊕ ... ⊕ vC
n } is called a partial

deletion.

Let type(uV) = replace, and let vP
kj

(1 ≤ k ≤ n, 1 ≤ j ≤ m)

be a partial view-element to be replaced within vC
k = vP

k1
⊕

...⊕ vP
km

, and vP be the replacement partial view element. Let

vC′

k = vP
k1
⊕ ...⊕ vP

kj−1
⊕ vP , vP

kj+1
⊕ ...⊕ vP

km
. Then uV (V) =

vC
1 ⊕ ...⊕ vC′

k ⊕ ...⊕ vC
n is called a partial replacement.

A complete insertion adds to while a complete deletion re-
moves from the XML view a complete view-element. A com-
plete replacement replaces a complete view-element with a re-
placing complete view-element. A partial insertion adds to
while a partial deletion removes a partial view-element from
an XML view. A partial replacement replaces a partial view-
element with a replacing view-element. A valid view update
uV is a partial or a complete view update that uV (V) satisfies
all the constraints in the view schema SCHV . For instance,
uV

2 in Fig.5 is a complete update while uV
3 is a partial one.

Both of them are valid updates since both uV
3 (V) and uV

2 (V)
agree with all the constraints of the view schema.

6

Hierarchy from view
query

Cardinality

Duplication

Constraints in
Extracted XML

View Schema

Cardinality
Constrains

Referential Integrity
Constraints (Foreign

Key)

Sequence

Inclusion
Dependency
(ID/IDREF)

Choice

Hierarchy

Nillable Attributes

Optional Element

Key Constraints

Domain of
Element/Attributes

Constraints in
XML Schema/DTD

Global Constraints

Table Definition

Attributes is Null /
Not null

Foreign Key
between Tables

Primary key /
Unique Key of

Table

Domain Constraints
of Attribute in

Relation

Constraints in
Relational

Database schema

Hierarchy

Cardinality

Element/attributes
Null/Not null

Element/Attribute
Domain

Constraints in
Filtered XML View

Schema

?

?

XML View Schema

Fig. 9. Comparison of constraints of XML schema, relational database schema and XML view schema

FOR $root IN document("V1.xml"),
$book IN $root/book

UPDATE $root {
DELETE $book/title

}

uV
13

FOR $root IN document("V1.xml")
UPDATE $root {

INSERT
<book>

<bookid>"98004"<bookid>
<title>" Data on the Web "</title>
<price>

<amount> -100.00 </amount>
<website>www.ebay.com</website>

</price>
</book>

}

uV
14

Constraints for Book relation:
title VARCHAR2(100) NOT NULL

Constraints for price relation:
amount DOUBLE CHECK (amount > 0.00)

(a)

(b) (c)

Fig. 10. Example of valid update checking using constraints in the view schema

3.3 The XQuery View Update Problem

Similar with [2], the correctness criteria of a XML view
update translation is defined below.

Definition 3 Given a relational database D and a view V de-
fined by DEF V . A relational update sequence UR is a correct
translation of uV iff (a) uV (DEF V (D)) = DEF V (UR(D))
and (b) if uV (DEF V (D)) = DEF V (D) ⇒ UR(D) = D.
Then uV is said to be translatable for V , and V is said to
be updatable by uV .

First, a correct translation means the “rectangle” rules
shown in Fig.11 hold. Intuitively, it implies the translated
relational updates “exactly” perform the view update, that
is, without view side effects. Second, an update operation
does not affect the view, then it should not affect the rela-
tional base either. This will guarantee that any modification
of the relational base is indeed done for the sake of the view.

V

S

uV(V)

DEFv DEFv

(2) uV

(3) UR
UR(S)

(1) (4)

Fig. 11. Correct translation of view update to relational update

The XML view update problem is to determine
whether both of the following claims hold: (a) ∀uV ∈ 0

V ,
((a) ∃UR ⊂ 0

R such that UR is a correct translation of uV

by Definition 3) and ((b) ∀UR′

⊂ 0
R, UR′

is not a correct
translation of uV). That is whether an update on the view is
unambiguously translatable. In our case, the view is defined
by XQuery, thus named XQuery view update problem.

4 Theoretical Foundation for XQuery View

Updatability

In order to bridge the hierarchical feature of XML and flat
structure of relational schema in BCNF, the integrity con-
straints, such as foreign keys, have to be considered. The
integrity constraints introduce additional update operations
into the translated update sequence besides the “original” up-
date operations. Those additional ones are called propagated
updates. For example, the second update operation uR

2 in
UR

2 (Fig.7(c)) is a propagated update operation. Considering
integrity constraints makes the view update problem harder
because such generated updates may cause view side effects.

Much work has been done on the existence of a correct
translation for various classes of view specifications [2, 9]. [9]
shows that a correct translation exists in the case of a “clean
source” when only functional dependencies inside a single re-
lation are considered. We now adopt and extend this work

7

in the context of XML views. That is, when functional de-
pendencies exist not only inside a relation, but also between
relations, how to decide whether a correct relational transla-
tion of a given XQuery view update exists.

Definition 4 Given a relational database D. Let V = vC
0 ⊕

... ⊕ vC
m be an XML view defined by DEF V over several re-

lations rel(DEF V) ⊆ D. If g = {tix
| tix

∈ Rx for each
Rx ∈ rel(DEF V)} generates a complete view-element vC

k by
applying the view definition DEF V , then g is called a gener-
ator of vC

k (1 ≤ k ≤ m). tix
∈ g is called a source tuple in

D of vC
k .

Further, let vP
k be a partial view-element inside vC

k , we
have: (1) Let gP ⊆ g denote the “portion” of g that is the
source-tuple of vP

k . Then gP is called the generator of the
partial view-element vP

k . (2) tiy
∈ g − gP is an extended

source tuple in D of vP
k iff ∃tix

∈ gP , tix
.aj is a foreign

key of tiy
.al, where aj ∈ Rx(A) and al ∈ Ry(A). (3) Let

Te = {tiy
|tiy
∈ g − gP is an extended source tuple of vP

k } de-
note the set of all the extended source tuples of vP

k . Then
gP

e = gP ∪ Te is called the extended generator of vP
k . The

extended generator of a complete view-element is always the
same as its generator.

A source tuple corresponds to a tuple that is used to
compute a single complete or partial view-element. For in-
stance, in V 1 of Figure 4, the first complete view-element vC

1

is book with “bookid=98001”. Let R1 and R2 be the book
and price relations respectively, then the generator g of vC

1 is
g = (t01

, t02
) where t01

∈ R1 is the book tuple (98001,TCP/IP
Illustrated) and t02

∈ R2 is the price tuple (98001, 63.70,
www.amazon.com). Let the partial view-element vP

1 be the
title of this book. Then the source tuple of vP

1 is t01
, while t02

is an extended source tuple of vP
1 . gP = (t01

) is the generator
of vP

1 , while g = (t01
, t02

) is the extended generator of vP
1 .

Definition 5 Let V P be part of a given XML view V . Let
G(V P) be the set of generators of V P defined by G(V P) = {g |
g is a generator of v ∈ V P , where v is a complete or a partial
view-element of V P }. For each g = (ti1 , ..., tip

) ∈ G(V P),
let H(g) be some nonempty subset of {(tik

; Rk) | tik
∈ Rk for

each tik
∈ g}, then any superset of ∪g∈G(V P)H(g) is a source

in D of V P . If G(V P) = ∅, then V P has no source in D.
Similarly, let Ge(V

P) be the set of extended generators of
V P , any superset of ∪g∈Ge(V P)H(g) is an extended source

in D of V P , denoted by Se.

A source includes the underlying relational part of a view
“portion” V P which consists of multiple view-elements. For
example, let V P = V 1 (Fig.4), G(V P) = {g0, g1}, where
g0 = {(98001,
TCP/IP Illustrated),(98001, 63.70,www.amazon.com)},g1 =
{(98003,Data on the Web),(98003,56.00,www.amazon.com)}.
That is, G(V P) includes all the generators for view elements
in V P . Let H(g0) = {((98001, TCP/IP Illustrated);book)}
and H(g1) = {((98003, 56.00, www.amazon.com);price)}.
Then {((98001, TCP/IP Illustrated);book),((98003, 56.00,
www.amazon.com);price)} is a source of V P . The extended
source is same as its source for V P here.

Definition 6 Let relational database D = {R1, ..., Rn}. Let
V P be part of a given XML view V and Se be an extended
source in D of V P . Se is a clean extended source in D
of V P iff (∀v ∈ V 	 V P), (∃S′

e) such that S′
e is an extended

source in (R1 − Se1, ..., Rn − Sen) of v). Or, equivalently, Se

is a clean extended source in D of V P iff (∀v ∈ V 	 V P)(Se

is not an extended source in D of v).

A clean source of a given view element defines a source
that is not referenced by any other view part besides the
given view element itself. For instance, given the partial view-
element vP

1 in V 1 (Fig.4) representing the title of book with
bookid “98001”, the extended source {(98001, TCP/IP Illus-
trated),(98001, 63.70,www.amazon.com)} is not a clean ex-
tended source since it is also an extended source of the “price”
element. Note that for a complete view-element, the extended
source tuple is equal to its source tuple, while the source is the
same as its extended source.

As proven in [9], the concepts of source and clean source
are essential for the relational view updating problem. In the
XML context, the connection between clean extended source
and update translatability also exists as illustrated by the fol-
lowing theorems. Although somewhat similar to [9], these
theorems actually differ in several ways, most notably the op-
eration on an XML view element with various granularity in-
stead of just a flat relational view tuple. Proofs are available
in the appendix. Here we assume view update uV is a valid
view update and the relational update sequence UR keeps the
relational database schema valid. In addition we also choose
to map view updates of one type (insertions, deletions) to
relational updates of the same type.

Lemma 1, 2 and 3 proved below are used to prove Theorem
1 and Teorem 2.

Lemma 1

(a) Se is an extended source in D of V P iff DEF V (R1 −
Se1

, ..., Rn − Sen
) ⊆ V 	 V P .

(b) Se is a clean extend source in D of V P iff DEF V (R1 −
Se1

, ..., Rn − Sen
) = V 	 V P .

Proof.
(a) If. Suppose DEF V (R1 − Se1

, ..., Rn − Sen
) ⊆ V 	 V P

but Se is not an extended source in D of V P .
Let G(V P) be the set of generators of V P . From

definition 5, (∃(ti1 , ..., tiq
) ∈ G(V P) be a generator of v ∈

V P)(∀Rk ∈ rel(DEF V))[(tik
; Rik

) /∈ Se]. That is, ∀Rk ∈
rel(DEF V), tik

∈ Ri − Sei
. Thus v ∈ DEF V (R1 −

Se1
, ..., Rn − Sen

).
But, (ti1 , ..., tip

) is a generator of v ∈ V P . That is v /∈ V 	V P .
Hence, v ∈ DEF V (R1 − Se1

, ..., Rn − Sen
) and v /∈ V 	 V P .

A contradiction with the hypothesis that DEF V (R1 −
Se1

, ..., Rn − Sen
) ⊆ V 	 V P .

Only if. Suppose Se is an extended source in D of V P but
DEF V (R1 − Se1

, ..., Rn − Sen
) 6⊆ V 	 V P .

Then, ∃v such that (v ∈ DEF V (R1 −Se1
, ..., Rn − Sen

)) ∧
(v ∈ V P).
This implies that there is a generator (ti1 , ..., tip

) of v ∈ V P

such that {(ti; Ri) | Ri ∈ rel(DEF V)}∩Se = ∅, contradicting
the hypothesis that Se is an extended source in D of V P .

(b) If. Suppose DEF V (R1 − Se1
, ..., Rn − Sen

) = V 	 V P

but Se is not a clean extended source in D of V P .
From (a), Se is an extended source in D of V P . By Def-

inition 6, (∃v ∈ V 	 V P) such that there is no source in
(R1−Se1

, ..., Rn−Sen
) of v. By definition 5, this implies that

8

there is no generator g ∈
∏

Ri∈rel(DEF V)(Ri − Sei
of v, and

hence v /∈ DEF V (R1 − Se1
, ..., Rn − Sen

), a contradiction.

Only If. Assume that Se is a clean source in D of V P .
By (a), DEF V (R1−Se1

, ..., Rn−Sen
) ⊆ V 	V P . Assuming

V 	 V P 6⊆ DEF V (R1 −Se1
, ..., Rn −Sen

), that is, (∃v ∈ V 	
V P)suchthat(v /∈ DEF V (R1 −Se1

, ..., Rn−Sen
) ⊆ V − V P).

Then there is no generator g ∈
∏

Ri∈rel(DEF V)(Ri−Sei
) of v.

Hence, by Definition 5, there is no source in source in
(R1 − Se1

, ..., Rn − Sen
) of v} and therefor no source in

(R1 − Se1
, ..., Rn − Sen

) of V 	 V P , which contradicts the
gypothesis that Se is a clean source in D of V P . 2

Lemma 2 Given a view V defined by DEF V over D. Let
uV and UR be updates on V and D (respectively). Let v ∈ V .
Then (UR deletes an extended source of v and UR does not
insert an extended source-tuple of v) iff v /∈ DEF V (UR(D)).

Proof. Let R′
i = UR(Ri) be the updated relation

Ri ∈ rel(DEF V). Let T = D − UR(D).

UR deletes an extended source of v ∈ V
⇐⇒ T is an extended source in D of v
⇐⇒ DEF V (R1 − T1, ..., Rn − Tn) ⊆ V 	 v by lemma 1
⇐⇒ v /∈ DEF V (R1 − T1, ..., Rn − Tn)
(1)
⇐⇒ 6∃ extended − generator ∈

∏
Ri∈rel(DEF V)(Ri ∩ Ti) of v

since Ri − Ti = Ri ∩R′
i.

UR does not insert an extended source-tuple of v ∈ V
(2)
⇐⇒ ∀Rj ∈ rel(DEF V) ∀tij

∈ R′
j −Rj

6∃ tik
∈ R′

k −Rk, Rk ∈ rel(DEF V), k 6= j,
such that (ti1 , ..., tip

) is an extended-generator of v.

(1) and (2) hold iff there is no extended-generator in D of
v. The proposition then follows. 2

Lemma 3 Let uV , UR, V, D be as in Lemma 2. Let v ∈
dom(V) − V , where dom(V) be all the possible valid view
elements of V . Then UR inserts a source-tuple of v iff
v ∈ DEF V (UR(D)).

Proof.
U inserts an source-tuple of v

(1)
⇐⇒ (∃Ri ∈ rel(DEF V))(∃t ∈ R′

i − Ri)(t is a source tuple in
UR(D) of V)
(2)
⇐⇒ (∃g = (ti1 , ..., tip

) ∈
∏

Ri∈rel(DEF V) R′
i)(g is a generator

of v).
(3)
⇐⇒ v ∈ DEF V (R′

1, ..., R
′
n) = DEF V (UR(D)).

(3) is proved as below:
If. Follow directly from Definition 5.
Only If. Assume that g = (ti1 , ..., tip

) is a generator
of v, but that ∀Rk ∈ rel(DEF V), tik

∈ Ri. Then
g ∈

∏
Ri∈rel(DEF V) R′

i and so v ∈ DEF V (R1, ..., Rn) =

DEF V (UR(D)), a contradiction. 2

Theorem 1 Let uV be the deletion of a set of view elements
V d ⊆ V . Let τ be a translation procedure, τ(uV , D) = UR.
(a) τ translates uV to D iff UR deletes a source of V d;
(b) τ correctly translates uV to D iff UR deletes a clean
extended source of V d.

Proof.
(a) Since type(UR)=delete, ∀Ri ∈ rel(DEF V), we have

R′
i ⊆ Ri. So, R′

i − Ri = Ti or R′
i − Ri = ∅. Hence, (∀v ∈

V d)(UR does not insert a source-tuple of v). The proposition
then follows from lemma 2.

(b) By lemma 1(b), UR deletes a clean source of V d

⇐⇒ DEF V (R1 − T1, ..., Rn − Tn) = V 	 V d = uV (V)
⇐⇒ DEF V (UR(D)) = uV (V)
⇐⇒ DEF V (UR(D)) = uV (V), since Ri − Ti = R′

i

⇐⇒ τ exactly translates uV to UR. 2

Theorem 1 illustrates that a correct delete translation is
the one without any view side effect. This is exactly what a
clean extended-source deletion achieves by Definition 6.

Theorem 2 Let uV be the insertion of a set of view elements
V i into V . Let V ∩ = V ∩ V i, V − = V i − V . Let τ be a
translation procedure, τ(uV , D) = UR. Then,
(a) τ translates uV to D iff (∀v ∈ V −)(UR inserts a source
tuple of v);
(b) τ correctly translates uV to D iff (i) τ translates uV

and (ii) (∀v ∈ dom(V) − (V ∩ ∪ V −))(UR does not insert a
source tuple of v).

Proof.
(a) (∀v ∈ V −)(UR inserts a source-tuple of v)

(1)
⇐⇒ V − ⊆ DEF V (UR(D)), by lemma 3.

Also, since type(UR) = insert; so, DEF V (UR(D)) ⊇ V .
Hence, we have:

(1) ⇐⇒ DEF V (UR(D)) ⊇ V ∪ V − ⊇ V i

⇐⇒ τ translate uV to UR.

(b) By Lemma 3, condition (i) iff V − ⊆ DEF V (UR(D)).
Also, since type(uV) = insert and type(UR) = type(uV),
DEF V (UR(D)) ⊇ V ⊇ V ∩.
Hence, V ∩ ∪ V − ⊆ DEF V (UR(D)).

By Lemma 3, condition (ii) iff (dom(V) − (V − ∪ V ∩)) ∩
(DEF V (UR(D))) = ∅.
Hence, DEF V (UR(D)) ⊆ V − ∪ V ∩.

Thus, condition (i) and condition (ii) iff DEF V (UR(D)) =
V − ∪ V ∩ = uV (V), that is τ correctly translates uV to UR.
2

Theorem 2 indicates a correct insert translation is a trans-
lation without duplicate insertion and extra insertion. Du-
plicate insertion (insert a source of V −) is not allowed by
BCNF, while extra insertion (insert source of dom(V)−(V ∩∪
V −)) will cause a view side effect. For example, for uV

9

in Fig.5, the translated update UR
9 = {Insert (98003,Data

on the Web) into book, Insert (98003,56.00,www.ebay.com)
into price} is not a correct translation since it inserts a
duplicate source tuple into book. While UR′

9 = {insert
(98003,56.00,www.ebay.com) into price} is a correct one.

5 Graph-based Algorithm for Deciding View

Updatability

As illustrated in Example 1 of Section 2, the new update
translation issues arise due to the distinct features of XML
views. In this section, we will identify these characteristics
of XML view by using a graph-based algorithm. The connec-
tion between these features and the concept of clean extended
source introduced in Section 4 are also illustrated.

9

We assume the relational database is in the BCNF form
without any cyclic dependency. This is because we are us-
ing functional dependencies and integrity constraints of the
relational database (such as keys, foreign keys, etc.) to de-
termine the update propagation strategy. We consider a view
update uV being an insert or a delete operation touching a
single complete or partial view-element but not a set of view
elements at this time.

For the view query DEF V , we do not consider any
aggregation and recursion. These operations make views
non-updatable, as enunciated in [11]. Also, the expression
Expwhere in DEF V is a conjunction of non-correlation or
correlation predicates defined as below. Let $b be a vari-
able binding defined in DEF V =nest(Exp0, ..., Expn) or an
XPath which we associate with a default variable binding.
Let aj ∈ Rk(A) be the corresponding relational attribute of
$b. A non-correlation predicate has the form $b θ c, where
θ ∈ {=, 6=, <,≤, >,≥} and c ∈ dom(Ri.aj) is a constant value.
A correlation predicate has the form $b1 θ $b2. For exam-
ple, $price/website = “www.amazon.com” is a non-correlation
predicate while $book/bookid = $price/bookid is a correlation
predicate.

5.1 The Graphic Representation of XQuery Views

Given an XQuery view V defined by DEF V , we define
a View Trace Graph GT (V) and a View Relationship Graph
GR(V) to represent the hierarchical constraints in the view
schema and the underlying relational schema respectively.

First, we say an attribute aj ∈ Ri(A) is said to be exposed
in DEF V = nest(Exp0, ..., Expm) by variable $b if and only
if ∃Expreturn

k such that $b ∈ Expreturn
l (0 ≤ k ≤ m). That is,

$b appears in at least one of the RETURN clauses of the view
definition query.

The view relationship graph GR(V) of given XML view V
is a directed graph with nodes NGR

and edges EGR
as follows.

For each attribute aj ∈ Ri(A), if aj is exposed in the DEF V

by some variable $b, then there is a leaf node in NGR
labeled

by both the attribute name Ri.aj and the XPath of $b. Every
tagger structure in the view definition is represented by an
internal node annotated by its tagger name. A leaf node is
shown by a small circle ◦ while an internal node by a triangle
4. Given two nodes n1, n2 ∈ NGR

, each edge e(n1, n2) ∈ EGR

with the direction from n1 to n2 means n1 is a parent of
n2 in the view hierarchy. Figures 12 and 13 depict the view
relationship graphs for V 1 and V 2 in Figure 4.

Definition 7 We define the hierarchy implied in the re-
lational model as follows:

(1) Table vs. attributes. Given a relation schema R(N ,A,F),
with A = {ai|1 ≤ i ≤ m}, then N is called the parent of the
attribute ai (1 ≤ i ≤ m).

(2) Key vs. foreign key. Given two relation schemas
Ri(Ni,Ai,Fi) and Rj(Nj ,Aj ,Fj), with foreign key constraints
defined as PK(Ri)← FK(Rj), then Ni is the parent of Nj .

The view trace graph GT (V) of a given XML view V is a
directed graph with nodes NGT

and edges EGT
generated as

follows. The leaf nodes of GT are: (i) the union of all leaves
of GR and (ii) additional leaf nodes representing $b1 and $b2 if
there is a correlation predicate $b1 θ $b2 in DEF V . Specially,
a leaf node labeled by the primary key attribute of a relation
is called a key node. A key node is depicted by a black circle

• in GT . An internal node, shown by a triangle 4, represents
a relation. Each edge e(n1, n2) ∈ EGT

with the direction from
n1 to n2 means n1 is a parent of n2 by the hierarchy definition
in the underlying relational database (Definition 7). An edge
is labeled by its foreign key condition if it is generated by rule
(2) in Definition 7. The view trace graphs of Q1 and Q2 are
identical as shown in Fig.14, since both of them from same
relation source.

5.2 Update Translation Policy

Based on the view relationship graph GR and view trace
graph GT defined in Section 5.1, we now use the closure defi-
nitions in GR and GT to indicate the effect of an update on the
view and relational database respectively. We notice that the
update translation policy is essential to the view updatability
since a given update may be translatable under one policy,
while not under another. Hence the closure definition below
is closely related with the selected update policy.

Policy for update type selection. (1) Same type. The
translated update always has the same update type as the
given view update. (2) Mixed type. Translated updates with
different types are allowed.

Policy for deletions in maintaining referential in-
tegrity of relational database. (1) Cascade. The directly
translated relational update cascades to update the referenced
relation also. (2) Restrict. The relational update is restricted
to the case where there are no referenced relations, otherwise,
reject the view update. (3) No action. The relational update
is performed as required, even if referential violation appears.

Policy for deletions in duplication. (1) Restrict. Re-
ject view update if only part of duplications is deleted. (2)
Zero reference deletion. No tuple is deleted if it is still refer-
enced by any other part of the view.

Of course, the policy we listed above is not the only possible
choice, they are merely the ones that are commonly required
in practice. In our discussion below, when not stated other-
wise, we will pick the most common used policy, that is, same
update type, delete cascading and restrict duplication handle.
If a different translation policy is used, such as a restrict pol-
icy in maintaining referential integrity, then the definition can
be adjusted accordingly.

The closure of a node n ∈ NGR
, denoted by n+

GR
, is defined

as all the leaf nodes which have a directed path starting from
n. Two leaf nodes ni, nj ∈ NGR

, 1 ≤ i, j ≤| GR |, i 6= j are
equal, denoted as ni = nj if and only if the relation attribute
labels in their respective node annotations are the same. The
closure of a node n ∈ NGT

is defined in the same manner as
in GR, except for a key node. Each key node has the same
closure as its parent node. The closure of a set of nodes N ,
denoted by N+, is defined as N+ =

⋃
(ni∈N) n+

i .

5.3 View Construction Consistency

As illustrated in Example 1 of Section 2, the construction
consistency is caused by the fact that the hierarchical con-
straints existing in the XML view schema and the underlying
relational schema may conflict. As a result, GT (V) and GR(V)
of a view V , which capture these two hierarchies respectively,
can be distinct from one another. We distinguish between
consistent and inconsistent nodes to describe if an update in
GR(V) will have the same effect in GT (V).

10

book_info

book/row/bookid
book.bookid

book/row/title
book.title

price_info

bib

price/row/website
price.website

price/row/amount
price.amount

Fig. 12. View relationship graph for Q1

price_info

book/row/title
book.title

book_info
price/row/amount

price.amount

book/row/bookid
book.bookid

bib

price/row/website
price.website

Fig. 13. View relationship graph for Q2

book

book/row/bookid
book.bookid

book/row/title
book.title

price

price/row/amount
price.amount

price/row/website
price.website

price/row/bookid
price.bookid

book.bookid = price.bookid

Fig. 14. View trace graphs for both Q1
and Q2

Definition 8 Let n ∈ VGR
be an internal node, with its clo-

sure in GR denoted by n+
GR

. (∀ni ∈ n+
GR

), let (ni)
+
GT

be the
closure of ni in GT . We say n is a consistent node iff
n+
GR

=
⋃

(ni∈n
+

GR
)(ni)

+
GT

. Further, a view definition DEF V is

called a consistent construction if and only if all the in-
ternal nodes in GR are consistent nodes, otherwise DEF V is
called an inconsistent construction.

For a node to be inconsistent means that the effect
of an update on the view side (node closure in GR) is
different from the effect on the relational side (node clo-
sure in GT) based on the selected update policy (closure
definition in GT). For instance, V 1 in Fig.4 is a consistent
construction, while V 2 is an inconsistent construction.
Because in the view relationship graph GT (V 2) in Fig.13,
(book)+ = {(book/row/bookid), (book/row/title)}, while in
GT (V 2) shown in Fig.14, {(book/row/bookid)+ ∪ (book/row
/title)+} = {(book/row/bookid), (book/row/title), (price/
row/bookid), (price/row/amount), (price/row/website)}.
They are not equal. Hence “book” is not a consistent node.
This is the reason why uV

2 is not translatable in Example 1.
The closure comparison between the view relationship

graph GR and the view trace graph GT is important because
it indicates the presence of clean extended sources defined by
Definition 6. This connection between the concept of node
consistency and clean extended source is formalized below.

Theorem 3 Given V be a view defined on a relational
database D with view relationship graph GR(NGR

, EGR
) and

view trace graph GT (NGT
, EGT

). Let Y ⊆ NGR
, and X ⊆ NGT

.
(∀ generators g, g′ ∈ ΠRi∈rel(DEF V)Ri of view elements v and

v′ respectively, g[X] = g′[X]⇒ v[Y] = v′[Y]) iff X+
GT

= Y +
GR

.

Proof.
(1) If. Suppose X+

GT
= Y +

GR
. We shall prove the proposition

by induction on the distance d from X to the root of the view
trace graph. Assuming the depth of view trace graph is m.

Basis Step. For d = m, X includes the deepest leave
nodes in view trace graph. ∀y ∈ Y , there are two cases:
(i) y is a leaf node. According to the node generation rules of
view relationship graph and view trace graph, let x ∈ X be
the node in GT corresponding to y. Then since g[x] = g′[x],
v[y] = v′[y] follows trivially.
(ii) y is an internal node if all its children already in Y . Let
Ly ⊆ Y be all the leaf node rooted in y. Then according to
(i), is true. ∀n ∈ Y − Ly, z is an internal node, which is
a tag structure. Thus v[z] = v′[z] is true. Hence we have
v[y] = v′[y] holds.
This complete the basis step.

Induction Hypothesis. Assume the proposition is true
for all d < k. That is, if Y +

GR
= X+

GT
, then ∀g, g′, if g[X] =

g′[X], then v[Y] = v′[Y] is true.
Induction Step. We shall demonstrate the proposition is

true for d = k. ∀x ∈ X , there are two cases:

(i) x is a leaf node. According to the node generation rules
of view relationship graph and view trace graph, let y ∈ Y be
the node in GR corresponding to x. Then since g[x] = g′[x],
v[y] = v′[y] follows trivially.

(ii) x is an internal node. Let Cx = {xi1 , ..., xip
} be the set

including x’s children. Then x+ = C+
x . Because of the induc-

tion hypothesis, the proposition is true for all the children of
x. Then the proposition is true for x.

Hence, the proposition follows for all nodes with d = k.
(2) Only If. Suppose X+

GT
6= Y +

GR
. According to the

definition of view relationship graph and view trace graph,
∃Y ′ ⊆ NGR

such that Y ′+
GR

= X+
GT

. By (1), ∀g, g′, g[X] =
g′[X] ⇒ v[Y ′] = v′[Y ′]. Let Y ∩ = Y ∩ Y ′, then there is two
cases:

(i) Y ∩ 6= ∅. Let Y − = Y − Y ′, then Y − ∩ Y ′ = ∅. This
becomes same with case (ii).

(ii) Y ∩ = ∅. We make a ”richness assumption”. That
is, the domain of the relational attributes are ”rich” enough,
so that their cardinalities do not impose any additional con-
straints on the view instance. By this assumption, we can
find two generators g, g′, g[X] = g′[X] but v[Y] 6= v′[Y]. A
contradiction with the proposition. 2

Theorem 3 indicates that two equal generators always pro-
duce the identical view elements if and only if the respective
closures of these two view element nodes in GR and GT are
equal. Theorem 3 thus now enables us to produce an algo-
rithm for detecting the clean extended sources Se of a view
element as stated below.

Theorem 4 Let D, V,GR,GT , Y be defined as in Theorem 3.
Given a view element v ∈ V (Y), there is a clean extended
source Se of v in D iff (∃X ⊆ NGT

) such that X+
GT

= Y +
GR

.

Proof.
(1) If. Suppose X+

GT
= Y +

GR
. Let g[X] be an extended

generator of v. By theorem 3, if ∃v′ ∈ V (g[X] is an extended
generator of v′), then v′[Y] = v[Y]. Hence, by Definition 6,
g[X] is a clean extended source of v.

(2) Only if. Suppose there is a clean extend source Se of v
in D, but (∀X ⊆ NGT

)(X+
GT
6= Y +

GR
).

Then by theorem 3, there exist extended generators g =
{ti1 , ..., tip

}, g′ = {t′i1 , ..., t
′
ip
} of view tuples v, v′ such that

g[X] = g′[X] but v[Y] 6= v′[Y].
Let Rk be one of the relations referenced by X+ − Y +.
Consider the database instance D′ = {R′

i1
, ..., R′

ip
} where

R′
ij

defined as: (i) R′
ij

= {tij
} if Rij

(A) ∩ X 6= ∅ when

Rij
∈ rel(DEF V). That is some of attributes of Rij

is in
X . (ii) R′

ij
= {tij

, t′ij
} otherwise when Rij

∈ rel(DEF V).

Clearly, Se = {(ti; R′
i) | R

′
i ∈ D′} is an extended source in D′

of v.
But Se is not a clean extended source, because: when R′

k is

11

generated by case (i), R′
k −Sek

= ∅, and so there is no source
in {R′

i1
, ..., R′

k−1, R
′
k−Sek

, R′
k+1, ..., R

′
ip
} of v′. Further, since

R′
k = {tk}, there is no other source to consider.

Hence, there is no clean extended source Se of v. A con-
tradiction with the proposition. 2

Theorem 4 indicates that a given view element has a clean
extended source if and only if the corresponding portion in
the view relationship is a consistent construction.

5.4 View Duplication

As illustrated by Example 3 in Section 1, duplication is an-
other important factor influencing view updatability. There
are two kinds of duplications that affect the updatability of a
view, called content duplication and structural duplica-
tion. Example 3 illustrates both cases.

Definition 9 A view definition DEF V with view relationship
graph GR(NGR

, EGR
) is free of structural duplication iff

any two leaf nodes ni, nj ∈ NGR
are not equal.

Definition 10 Given a structural duplication free view V , we
say V is free of content duplication iff (∀v, v′ ∈ V, v 6= v′,
and their source tuples ti, t

′
i ∈ Ri)(ti 6= t′i).

As discussed in Example 3, The structural duplication is
not restricted to XML views only, but will not cause any ambi-
guity in relational context. The checking for structural dupli-
cation in an XML view can be comprehensive using the view
relationship graph. A structural duplication arises as long as
two nodes in the view relationship graph are equal (Fig. 15).

book

book/row/bookid
book.bookid

book/row/title
book.title

price

bib

price/row/website
price.website

price/row/amount
price.amount

book/row/bookid
book.bookid

Fig. 15. VRG for Q5

Content duplication is not unique to the XQuery view up-
date problem, although in the XML context it is generated by
the nested XQuery syntax of a view definition. The same du-
plication may appear in the relational context for Join views.
The correlation predicate in a view definition, however, does
not necessarily generate content duplication. The generation
of content duplication depends on filter conditions as well. Q4
in Example 3 is an example of content duplication. However,
as noticed, Q1 and Q2 in Fig.4 do not generate any content
duplication, although they also have nested FOR clauses. The
reason is that we are using the schema knowledge of the rela-
tional database, that is “bookid” and “website” together serve
as a primary key of relation Price. Hence the non-correlation
predicate “$price/website = www.amazon.com” in both Q1
and Q2 will filter the duplication.

By Definition 6, it is straightforward that a view element
involved in any duplication does not have a clean extended
source in the relational base. Updates on these view elements
may cause problems as illustrated in the next section.

6 Translate View Updates with Various

Granularity

Given the above connection we have established between
the concepts of a clean extended source and the features of
XQuery view definitions in Section 5, we now consider trans-
latability for valid updates with various granularity.

6.1 Translatability of Deletions

The translatability of deletions in different XQuery views
is described by the following observation. The cases are di-
vided by using our graph-approach introduced in Section 5.
The updatability of each case is now analyzed by using the
extended clean-source deletion theorem (Theorem 1). The
intuition behind is still the “clean extended-source” concept.

Observation 1 Given a XQuery view definition DEF V .
Case 1: If DEF V is an inconsistent construction by Defi-
nition 8, then (a) A complete deletion is always translatable.
(b) A partial deletion applied on any sub-tree rooted in an in-
consistent node of VRG is not translatable.
Case 2: If DEF V is a view with content duplication by Def-
inition 10, then (a) A complete deletion is not translatable.
(b) A partial deletion is not translatable if it touches only part
of the duplications instead of all.
Case 3: If DEF V is a view with structural duplication by
Definition 9, then (a) A complete deletion is always translat-
able. (b) A partial deletion is not translatable if it touches any
of the duplication.
Case 4: Otherwise, the set of translatable deletions is equal
to the intersection of considering the above cases one by one.

Example 4 For case 1 in Observation 1. Given Q2 in Fig.4
defining a view with an inconsistent construction, then the
complete deletion uV

3 in Fig.5 is translatable, while the par-
tial deletion uV

2 , which is applied on the sub-tree rooted in an
inconsistent node “book info”, is not translatable.

Example 5 For case 2 in Observation 1. Given Q4 in Fig.4
defining a view with a content duplication. The complete dele-
tion uV

5 in Fig.5 is not translatable. The partial deletion uV
6

in Fig.5 is not translatable either since it touches duplication
“$book/title”. However, if the delete operation is changed to
delete “$book/price” (no longer a duplicate part), then this
partial update operation is translatable.

Example 6 For case 3 in Observation 1. Given Q5 in Fig.4
defining a view with a structural duplication of “bookid”, the
complete deletion uV

7 (Fig.5) is translatable, while the partial
deletion uV

8 in Fig.5 is not translatable since it only touches
one but not all parts of the duplication.

6.2 Translatability of Insertions

The translatability of insertions is affected by an additional
feature of XQuery views, namely, the exposition complete-
ness. Similar to the relational view update problem [11], an
updatable XML view requires the exposition of primary key,
non-correlation and correlation predicates as explained below.

(1) Key exposition. The primary keys of the relations
referenced by the view have to be exposed. This is because,
for a partial insertion, the inserting partial view-element often

12

includes just part of the attributes required by a relational tu-
ple when mapping to the base relation. It has to be extended
to become a “complete” tuple in order to be insertable into a
relation. The primary key attributes have to be specified ex-
plicitly by the insert operation instead of taking the respective
default values. Thus they have to be exposed.

(2) Predicate exposition. Attributes involved in a non-
correlation or in a correlation predicate have to be exposed.
Without predicates exposition, the validity of the insertion
cannot be examined. We refer to these requirements as com-
plete exposition as stated below.

Definition 11 An XML view definition DEF V is called a
complete exposition iff the following hold: (i) ∀Ri ∈
rel(DEF V), let PK(Ri) denote the set of primary key at-
tributes of relation Ri, then this key PK(R〉) is exposed in
DEF V . (ii) All attributes involved in any non-correlation or
correlation predicate are exposed in DEF V .

Based on Theorem 2, we have following observations.

Observation 2 An XQuery view defined by a query with an
incomplete exposition is not insertable.

Observation 3 Given an XQuery view definition DEF V

with a complete exposition, we have:
Case 1: If DEF V is a view with content duplication by Defi-
nition 10, then (a) A complete insertion is always translatable.
(b) A partial insertion is not translatable if it touches any part
of the duplication instead of all.
Case 2: If DEF V is a view with structural duplication by
Definition 9, then (a) Given a complete insertion with consis-
tent values for the duplications, it is translatable. (b) Given a
partial insertion, if it touches the duplication and has consis-
tent values for all the duplications, then it is translatable.
Case 3: Otherwise, the set of translatable deletions is equal
to the intersection of considering the above cases one by one.

Example 7 For case 1 in Observation 3. Given Q4 in Fig.4
defining a view with content duplication, the complete inser-
tion uV

9 in Fig.5 is translatable. Partial insertion of only price
element will be translatable, otherwise, not translatable.

Example 8 For case 2 in Observation 3. Given Q5 in Fig.4
defining a view with structural duplication on “bookid”, the
complete insertion uV

10 in Fig.5 is translatable since it has the
same value for “bookid” within each “book info” element. The
partial insertion uV

11 is translatable since it also provides a con-
sistent value for the duplicated “bookid” in all the “book info”
elements. The partial insertion uV

12, however, is not translat-
able since it provides bookid=“98004”, which is inconsistent
with existing bookid=“98003” within the “book info” element.

7 An XQuery View Update System Frame-

work

In general, the procedure of translating an update opera-
tion through an XML view can be divided into three separate
but consecutive processes:

• Information Preparation. This process analyzes the
XQuery view definition to provide us with prior knowl-
edge about the relationship of the view with the relational
database, that is, extracting the view schema. It also per-
forms pre-checking of updates issued on the view to reject

XAT Rewriter

View Composer

DB2

View Query

Parsed Tree

Multiple SQL
updates

SQL Generator

User Query

SQL

XAT Executor

XAT

XAT

XAT Generator

XQuery Parser

View
Query

Oracle

XQuery View
Manager

SQL-ServerSybase

RDBMS

XAT XAT

Information
Collecter

View
Analyzer

Valid Update
Checker

Update
Decomposer

Update
Translator

Update
Propagator

Meta -Data

XAT

XAT
View Query XAT

Materialized
data

Process Step

Process Flow

Data Flow

RDBMS

Legend

Rainfall

Rainbow
Query
Engine

Result XML

Fig. 16. Architecture of Rainbow query engine with update ex-
tension.

invalid or un-translatable updates using the graph-based
algorithm for deciding view updatability proposed in Sec-
tion 5.

• Update Decomposition. This is the key process of the
XML update translation to bridge the XQuery model and
the relational query model. The given XML update re-
quest is decomposed into a set of valid database opera-
tions, with each being applied to a single relation.

• Global Integrity Maintenance. Because of the structural
model of the relational database with its integrity con-
straints, the database operations resulting from the de-
composition process may need to be propagated globally
throughout the base relations to assure the consistency
of the relational database.

We hence call it a decomposition-based update strategy. The
result of this paper is used in the pre-checking within the in-
formation preparation step. We have built an XQuery view
update system named Rainfall, which is an extension of the
base XML query engine Rainbow [19]. Rainbow is an XML
data management system designed to support XQuery pro-
cessing and optimization based on an XML algebra with the
underlying data store being relational. Figure 16 depicts the
architecture of the Rainbow Query Engine with our now pro-
posed update extension named Rainfall. We have also finished
several experiment on this system to address the performance
in different scenarios, as presented in [17].

8 Related Work

[9] is the first work for studying the view updatability prob-
lem in the relational context. Based on the notion of clean
source, it presents an approach to determine the existence of
update translations by performing a careful semantic analysis
of the view definition. The XQuery update problem discussed
in this paper is more complex than that of a pure relational
view update. Not only do all the problems in the relational
context still exist in the XML semantics, but we also have to
address the new update issues introduced the XML hierarchi-
cal data model and the nested XQuery syntax as described in
Section 2.

[11, 12, 1] study the view update translation mechanism
for SPJ queries on relations that are in Boyce-Codd Normal
Form. These works have been further extended for object-
based views in [4]. However, the XQuery FLWU expressions
are different from SQL expressions used in these works. As

13

an algebraic approach, the update translation strategy used
by our system [18] bridges the gap between distinct query
languages, and thus provide us with a clear solution for the
view update translation task.

[15] presents an XQuery update grammar. It also studies
the performance of executing a given update translation, as-
suming that the view is indeed translatable and has in fact
already been translated using a fixed inlining shredding tech-
nique [14]. Instead of assuming the update is always trans-
latable, our work addresses how the updatability is affected
by the XML nested structure. And our solution is also not
limited to any specific loading strategy.

[13] introduces the XML view update in SQL-Server2000,
based on a specific annotated schema and update language
called updategrams. Our update system thoroughly explores
the characteristics of XML view update problem instead of
focusing on a system-specific solution, although we have also
implemented our ideas in the context of the Rainbow system
[19] to check their feasibility.

The most recent work [5] studies the updatability of XML
views using a nested relational algebra. By assuming the al-
gebraic representation of view does not include any Unnest
operators, while the Nest operator occurs only as last oper-
ator and would never affect the view updatability. However,
the use of Unnest operator is unavoidable in an XQuery view
definition over the default XML view mechanism. In addition,
the order inside Nest operators will affect the view updatabil-
ity since it decides the view hierarchy. In our paper, this issue
is identified by the “view construction consistency”. Its ef-
fects on view updatability are illustrated using the view trace
graph and view relationship graph in Section 5.3.

9 Conclusion

In this paper, we have characterized the XQuery View Up-
date in the context of XML views being published over re-
lational databases. The theoretical foundation for transla-
tion existence is proposed by using the extended clean-source
concept. The new update translation issues, caused by the
characteristics of the XML hierarchical structure as well as
nested XQuery syntax, have been identified. A graph-based
algorithms for detecting the occurence of these issues in view
definition have also been proposed. Its connection with the
clean extended-source basis is also proven. The updatability
of XQuery view on various update granularity is concluded
according to different update types. As proof of viability, a
system framework solving the XQuery view update problem
has also been proposed and implemented within the XML
data management system Rainbow [19]. Several experiments
are also been conducted to assess various performance char-
acteristics of our update solution [17].

Future extensions to our work could include considering el-
ement order in XML view updates, and studying index tech-
niques for optimizing the efficiency in locating the updated
nodes in the view, or locating the related tuples in the under-
lying database.

References

[1] A. M. Keller. The Role of Semantics in Translating View Updates.
IEEE Transactions on Computers, 19(1):63–73, 1986.

[2] F. Bancilhon and N. Spyratos. Update Semantics of Relational
Views. In ACM Transactions on Database Systems, pages 557–575,
Dec 1981.

[3] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and R. Murthy.
Oracle8i - The XML Enabled Data Management System. In ICDE,
pages 561–568, 2000.

[4] T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold. Up-
dating Relational Databases through Object-Based Views. In 10th
ACM SIGACT-SIGMOD, pages 248–257, 1991.

[5] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. On the Up-
datability of XML Views over Relational Databases. In WEBDB,
2003.

[6] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita,
and S. N. Subramanian. XPERANTO: Middleware for Publish-
ing Object-Relational Data as XML Documents. In The VLDB
Journal, pages 646–648, 2000.

[7] J. M. Cheng and J. Xu. XML and DB2. In ICDE, pages 569–573,
2000.

[8] S. S. Cosmadakis and C. H. Papadimitriou. Updates of Relational
Views. Journal of the Association for Computing Machinery, pages
742–760, Oct 1984.

[9] U. Dayal and P. A. Bernstein. On the Correct Translation of Update
Operations on Relational Views. In ACM Transactions on Database
Systems, volume 7(3), pages 381–416, Sept 1982.

[10] M. F. Fernandez, A. Morishima, D. Suciu, and W. C. Tan. Publish-
ing Relational Data in XML: the SilkRoute Approach. IEEE Data
Engineering Bulletin, 24(2):12–19, 2001.

[11] A. M. Keller. Algorithms for Translating View Updates to Database
Updates for View Involving Selections, Projections and Joins.
In Fourth ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, pages 154–163, 1985.

[12] A. M. Keller. Choosing a View Update Translator by Dialog at
View Definition Time. In VLDB, pages 467–474, 1986.

[13] M. Rys. Bringing the Internet to Your Database: Using SQL Server
2000 and XML to Build Loosely-Coupled Systems. In VLDB, pages
465–472, 2001.

[14] J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. DeWitt, and
J. Naughton. Relational Databases for Querying XML Documents:
Limitations and Opportunities. In VLDB, pages 302–314, Septem-
ber 1999.

[15] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating
XML. In Proceedings of the ACM SIGMOD International Confer-
ence, pages 413–424, May 2001.

[16] W3C. XQuery: A Query Language for XML.
http://www.w3.org/TR/xquery/, February 2001.

[17] L. Wang, M. Mulchandani, and E. A. Rundensteiner. Updating
XQuery Views Published over Relational Data: A Round-trip case
study. In XML Database Symposium(VLDB Workshop), pages 223–
237, 2003.

[18] L. Wang, M. Mulchandani, and E. A. Rundensteiner. Updating
XQuery Views Published over Relational Data. Technical Report
WPI-CS-TR-03-23b, Computer Science Department, WPI, 2003.

[19] X. Zhang, K. Dimitrova, L. Wang, M. EL-Sayed, B. Murphy,
L. Ding, and E. A. Rundensteiner. RainbowII: Multi-XQuery Op-
timization Using Materialized XML Views. In Demo Session Pro-
ceedings of SIGMOD, 2003.

14

