
WPI-CS-TR-02-23 June 2003

MASS: A Multi-Axis Storage Structure for Large XML Documents

by

Kurt Deschler

Elke A. Rundensteiner

Computer Science
Technical Report
Series

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

WORCESTER POLYTECHNIC INSTITUTE

1 Introduction
XML provides an attractive alternative to relational

databases due to its expressive modeling power and
versatility for representing data with diverse data structure.
Achieving high performance for both queries and updates
of XML data will be critical for the adoption of XML into
many real-world applications.

The key to providing scalable performance for XML
databases is robust and efficient storage and indexing.
Lightweight applications, such as would be encountered on
portable devices for example, require efficient indexing to
process queries with little system memory. Likewise, data-
intensive applications such as data warehouses require
efficient indexing to reduce I/O for complex queries.

As we will demonstrate in this paper, the complex
expressions that are possible in the XPath language [12]
require a novel index structure for efficient evaluation.
Furthermore, the orthogonal problem of facilitating index
updates must be addressed before we can claim that a given
index is a viable solution for real-world applications.

1.1 Indexing XPath Expressions
The XPath specification [12] defines 13 axes for

navigation of XML document trees. There is no single
index organization that can provide optimal performance
for all XPath axes. Fortunately, the navigational patterns for
some of the XPath axes are similar enough so that one
single index can effectively support several axes. As an
example, thefollowing-siblingsaxis for a given node is a
subset of its parent node's child axis.

In order to guarantee performance for ad-hoc queries on
large documents, an indexing strategy must consider the
many possible combinations of axis, node test, and
predicates possible in each XPath location step. The
importance of location step selectivity is illustrated by
Figure 1. The first expression“/at_bat/*” must perform an
efficient scan since it selects all children of theat_batnode,
while the second expression“/at_bat/ball[2]” is very
selective and returns only the secondball child of the
at_batnode. We strive to develop indexing to support both
classes of access patterns.

1.2 XPath Indexing Solutions
Many index structures have been proposed recently

[12,16,18,19,20] to speed evaluation of path expressions.

Figure 1: XPath Node Test and Predicate Selectivity

<game>
 <inning id="i1">
 <at_bat>
 <ball/>
 <strike/>
 <out/>
 </at_bat>
 <at_bat>
 <strike/>
 <hit bases="1"/>
 </at_bat>
 <at_bat>
 <ball/>
 <hit bases="2"/>
 </at_bat>
 </inning>
</game>

ball ballballstrike

at_bat

/at_bat/*

/at_bat/ball[2]

Abstract
Effective indexing for XML must consider both

the query requirements of the XPath language and
the dynamic nature of XML's semistructured data
model. This is particularly true for large documents,
where query and update performance is governed by
index efficiency.

We introduce MASS, a Multiple Axis Storage
Structure, to provide scalable indexing for XPath
expressions with guaranteed update performance.
We describe the building blocks of MASS, namely,
FLEX Keys, node clustering, and Cluster
Compression. FLEX keys can be used to determine
all node relationships while never requiring re-
numbering. Node clustering guarantees scalable I/O
performance for XPath node tests, positional
predicates, and node-set aggregates, even with a
small cache. Cluster Compression dynamically
compresses both document data and FLEX keys to
control data explosion while still supporting fast
retrieval and incremental update of individual nodes.

We have implemented MASS in C++ and
measured the performance of index materialization,
query, and update operations. Our experimental
evaluation illustrates that MASS scales well for a
wide variety of query types as well as updates. When
compared to other state-of-the-art XML indexing
solutions, MASS can evaluate XPath expressions up
to 7x faster, even with constrained system resources.

MASS: A Multi-Axis Storage Structure for Large XML Documents

Kurt Deschler Elke Rundensteiner
Dept. of Computer Science

Worcester Polytechnic Institute
{desch,rundenst}@cs.wpi.edu

These structures mainly use traditional B-tree or hash
indexing to accelerate path traversal, with many of them
relying on large main-memory caches for performance.
Large performance improvements have been demonstrated
using these structures, but only for expressions involving
the child and descendants axes. More robust and general
indexing will be needed to efficiently support XPath.

Only recently have two structures been proposed, namely
the XPath Accelerator [12] and XISS [20], for supporting
evaluation of all axes in XPath expressions. However, we
find that these structures do not provide equal performance
for all XPath axes, mainly due to their use of a single
encoding. The efficiency of the XPath Accelerator depends
on the structure's ability to narrow its multi-dimensional
query window, which is not possible for all expressions.
XISS is optimized for querying the descendant and child
axes when the node test is not “*”, and does not appear to
efficiently support the remaining axes.

The solution presented here provides equal and scalable
I/O performance for all XPath axes. Furthermore, unlike the
prior work, our solution also provides integrated indexing
support for XPath Node tests, position predicates, and count
aggregates. Furthermore, as required by the XPath
specification [15], nodes are always returned in document
order, independent of which axis was queried and the
presence of selective predicates. This minimizes the need
for time-consuming sorting in query processing. That is,
even for both example queries in Figure 1 we will
guarantee efficient ordered retrieval despite the difference
in selectivity and in access patterns for the two expressions.

1.3 Update Performance
Update performance is another challenging problem for

XML databases. Since XML documents are ordered,
indexes must facilitate efficient updates to the ordering.
Indexes must also be tolerant to structural variations and
deep nesting inherent in XML data.

Existing proposals for XML indexing [12,16,18,19,20]
have failed to demonstrate deterministic update
performance, potentially requiring significant portions of
the index to be re-labeled upon insertion of a single
document node. The root of this problem lies in the use of
fixed length numerical quantities for encoding document
order [6]. Fixed length encodings work well when a
document is initially labeled since nodes can be assigned
increasing numeric values. However, incremental insertions
will quickly run out of possible values since a numeric
quantity can only be divided a finite number of times.

As we will demonstrate, the index structure presented
here provides a novel solution for guaranteeing document
update performance without ever requiring node relabeling
and while readily facilitating irregularly structured data.

1.4 Index Size
A side effect of extensively indexing XML is that the

indexed data can be substantially larger than the original

document. This presents a problem both in terms of disk
space and the overall percentage of document data that can
remain in the database cache. Compression can be used to
help reduce the size of indexes [17], hence reducing I/O.
However, the CPU-related costs of decompression during
queries can easily outweigh the savings due to reduced I/O
while compression costs can reduce update performance.

We propose an organization for index pages that supports
efficient compression and decompression of individual
nodes and significantly reduces index size. Most
importantly, our scheme allows for index pages to remain
compressed when read into memory, increasing the amount
of data in the cache and making decompression costs
proportional to the amount of data actually accessed.

1.5 The MASS Approach
In this paper, we propose a new structure called MASS

(Multi-Axis Storage Structure) that provides an efficient
means of evaluating all types of XPath expressions
involving document structure, while also facilitating
efficient updates. MASS introduces the following features
to address the aforementioned query, update, and index size
issues.
� FLEX Keys – A flexible scheme for encoding

document structure and order that always allows
insertion and deletion of nodes without renumbering
and evaluation of all document relationships.

� Node Clustering - Facilitates efficient document
ordered access and evaluation of proximity position
predicates and count aggregates for all 13 XPath axes
with both selective and non-selective location steps.
This functionality is extended to large documents by
exploiting B+ Tree ranking extensions to operate on
node sets that span multiple disk pages.

� Cluster Compression - Exploits redundancy in MASS'
clustered organization to facilitate high performance
compression that is localized to individual disk pages to
avoid the I/O costs of external lookups. This scheme
allows compression and decompression of individual
nodes and is shown to reduce the size of MASS indexes
by 75%.

We have implemented MASS in C++ and evaluated
performance using data from the XMark Benchmark [14]
and Shakespeare's plays [21]. Our experimental results
demonstrate the efficiency of MASS' clustered organization
and compression, outperforming both the XPath
Accelerator [12] and XISS [20] using identical queries. We
also provide promising performance results for document
loading and incremental update.

The remainder of this paper is structured as follows.
Section 2 describes the various building blocks of MASS.
Sections 3 and 4 explain query and update processing in
MASS, respectively. Section 5 provides our performance
measurements. Section 6 covers related work in XML
indexing and Section 7 provides conclusions.

2 The MASS Indexing Structure
MASS is a highly integrated solution for indexing XML

documents. Although each component of MASS, namely
FLEX keys, Node Clustering, and Cluster Compression can
be applied separately to other indexing techniques, they
have been designed as complementary pieces that integrate
particularly well into one complete indexing solution.

2.1 FLEX Keys
We now propose a versatile organization for encoding

document order called FLEX Keys (Fast Lexicographical
Keys). FLEX Keys can be compared more efficiently than
Dewey keys [11] and avoid the cost of re-labeling during
incremental updates. FLEX keys also allow the application
to determine node ordering, making them useful for
establishing multiple document orderings. This is indeed
the foundation for our clustering scheme as can be seen in
Section 2.2.

A FLEX key has a stepped organization where each step
corresponds to nodes in the document tree along the path
from the root to that node. While similar to the Dewey
encoding in spirit, we now propose to use variable length
byte strings for each key step rather than numbers. FLEX
keys can be compared efficiently using the memcmp()
routine, which is optimized for specific hardware in most
operating systems. Each byte string is generated such that it
implies the correct ordering among siblings. A new FLEX
key is constructed by appending this generated string to the
vector of strings from the parent node's FLEX key.

FLEX keys can be assigned with a single pass over the
document by maintaining a single flex keys as the context.
Steps are added or removed from the FLEX key at the start
and end of each element, respectively. This is depicted in
Algorithm 1. FLEX key assignment for the data from
Figure 1 is demonstrated in Figure 2.

FLEX keys are a practical solution for labeling order in
XML document trees that overcomes the problems inherent
to numeric encodings. Fixed-length numeric encodings [11]

can be compared efficiently, but fail to provide adequate
support for incremental insertions, quickly running out of
possible keys and requiring re-labeling. Variable length
numeric encodings allow for incremental insertions, but
cannot be compared efficiently (i.e. “10.1” is less than
“2.1” when compared byte-by-byte). FLEX keys overcome
these problems using generated character keys that can
grow as required to facilitate insertions. This scheme
guarantees that keys can be compared efficiently using
memcmp() and that both insertions and deletions can be
performed without re-labeling.

FLEX keys play a critical role in facilitating evaluation
of the parent, ancestor, and ancestor-of-self axes. These
axes cannot be efficiently indexed for all context nodes
since the results between context nodes overlap in non-
deterministic patterns. Numeric encodings can only be used
to determine the parent and ancestor relationships between
node pairs, requiring comparison of all document node
pairs. Conversely, FLEX keys can be used to identify the
ancestor or parent nodes directly by computing the prefixes
of the FLEX key.

FLEX keys can be used to establish orderings other than
document order by changing the order in which key steps of
are compared. The order in which steps are compared
depends on the desired sort order for nodes. For document
ordering, steps are compared lexicographically, left to right.
Other useful orderings are demonstrated later in this paper
(as clusterings). Alternative orderings can be facilitated
without copying by comparing individual steps of the
FLEX key using multiple memcmp() comparisons.
Alternately, steps can be copied to a new key that is byte-
comparable if extra delimiters are inserted where the
comparison order changes. The delimiter can be any
character that is lexicographically smaller value than all
keys in the key's alphabet. Byte-comparable keys can be
compared using memcmp() and sorted using radix sort
algorithms [4]. The example in Figure 3 demonstrates an
encoding that groups keys with the same parent (prefix).

Original Key Reordered Key Byte-Sorted Keys

b.b b..b b..b

b.b.c b.b..c b..c

b.c b..c b.b..c

Figure 3: Alternate Node Ordering

New FLEX keys can always be generated and inserted
into an ordered set without requiring modification of
existing keys. The alphabet for byte strings can either be the
character range (a-z) for more human readable keys or the
full byte range (0-255) to minimize key length. In order to
always allow insertions, we propose that FLEX keys
disallow byte strings that terminate in the highest or lowest
characters of their alphabet ('a' and 'z'). Once all keys of a
given length have been exhausted, the length must increase
for newly generated keys. Since two values are reserved for
each byte, is possible to generate at most 253n unique keys
for a byte string of lengthn bytes. This behavior is similar

Figure 2: FLEX Key Assignment

FLEX Keys

 b
 b.b
 b.b.b
 b.b.b.b
 b.b.b.c
 b.b.c
 b.b.c.b

Algorithm 1: Labeling Algoritm

StartElement:
Get next sibling key.
Append sibling to FLEX key
Copy FLEX Key to element

EndElement:
Remove last FLEX key step

inning

at_bat

ball hit hit

at_bat

b.b

b.b.b

b.b.b.b b.b.b.c

b.b.c

b.b.c.b

game
b

to the Extended Prefix scheme given in [6] for binary trees.
An example of incrementally inserted FLEX keys is

shown in Figure 4. The new nodes (shown in bold) are
assigned the keys "b.b.b.ab" and "b.b.b.bb" rather than the
more intuitive keys "b.b.b.a" and "b.b.b.ba", respectively. If
the latter keys had been inserted, no further insertions
immediately preceding the new nodes would be possible
without relabeling. Note that future incremental inserts will
not produce longer strings since legal keys of the same
length such as “b.b.b.ac” and “b.b.b.bc” are possible.

FLEX keys can be compared to determine all
relationships between nodes. The comparison properties of
FLEX keys are useful for both filtering during node
selection and during intermediate query processing. The
rules for comparing FLEX keys are as follows:
1. If the FLEX key for nodeX is a prefix of the FLEX key

for node Y, then X is an ancestor of Y.
2. If two nodes have identical FLEX key ancestor

components, then the nodes are siblings.
3. If the longest prefix of the FLEX key of nodeX is equal

to the FLEX of node Y, then Y is the parent of X
4. If components of FLEX keys are compared

lexicographically, the lesser key is preceding in
document order.

We present a simple algorithm for generating FLEX key
byte strings in Algorithm 2. This algorithm uses a median
approach to generate new keys (i.e. inputting “a” and “c”
yields “b”). If a key must grow in length to be unique, the
middle key from the alphabet is appended (i.e. inputting
“b” and ”c” yields ��”bm”).

The median algorithm from Algorithm 2 is effective
when the number of sibling nodes is small and for small
incremental inserts. However, if a node has many siblings,
the length of generated byte string can grow rapidly. The
worst case growth of Algorithm 2 is given as:

To prevent generating excessively long byte strings for
bulk inserts, Algorithm 2 can be modified so that the
length of new keys is doubled whenever all keys of shorter
length have been exhausted. This modification bounds the
length of strings for sequentially inserted nodes to:

2.2 Clustered Organization
We now propose a set of four clustered encodings that

can be used to efficiently evaluate location steps for all
XPath axes. Each clustering will be used to encode an index
that services a subset of the XPath axes. The clusterings
guarantee minimal I/O for location path evaluation by
ensuring that all nodes produced by a given context node
are grouped together in adjacent index entries and returned
in document order. Furthermore, they facilitate efficient
evaluation of XPath node tests, position predicates and
count aggregates.

Our first proposed clustering (CL1) is document ordered.
With this clustering, it is possible to efficiently traverse the
axes which partition the document, namely thedescendant,
descendant-or-self, preceding, andfollowingaxes. Attribute
nodes are excluded from the CL1 clustering since they are
excluded from each of these axes. The exact steps for
navigating the clustered organization will be described
later. An example of a CL1 clustering is shown in Figure 5.

Our second proposed clustering (CL2) places sibling
nodes in adjacent locations by comparing the parent
ordering for each node first followed by the relative
ordering among siblings. This clustering, demonstrated in

FLEX Key Node Type

d
d.d
d.d.a
d.d.d
d.d.e
d.d.f
d.d.d.d
d.d.d.e
d.d.d.f
d.d.e.d
d.d.e.e
d.d.e.e.a
d.d.f.d
d.d.f.e
d.d.f.e.a

game
inning
id
at_bat
at_bat
at_bat
ball
strike
out
strike
hit
bases
ball
hit
bases

Figure 6: CL2 Clustering

FLEX Key Node Type

d
d.d
d.d.d
d.d.d.d
d.d.d.e
d.d.d.f
d.d.e
d.d.e.d
d.d.e.e
d.d.f
d.d.f.d
d.d.f.e

game
inning
at_bat
ball
strike
out
at_bat
strike
hit
at_bat
ball
hit

Figure 5: CL1 Clustering

Figure 4: Incrementally Inserted FLEX Keys

Algorithm 2: Lexicographical Sequence Generator

Inputs:
S1, S2: strings S1 < S2

UpperBound, LowerBound: lowest/highest byte values
Output: S3, L3: string S3 of length L3. S1 < S2 < S3

set S3 ← CommonPrefix(S1, S2)
set mchar ← Average(UpperBound, LowerBound)
while((Length(S1) < Length(S2))
 Append(S1, LowerBound)
while((Length(S2) < Length(S1))
 Append(S2, UpperBound)
set MidByte ← Average (LastByte (S1), LastByte (S2))
if (MidByte != LastByte (S1) && MidByte != LastByte (S2))

set LastByte (S3) ← MidByte
else

Append(S3, mchar)

inning

at_bat

ball hit hit

at_bat

b.b

b.b.b

b.b.b.b b.b.b.c

b.b.c

b.b.c.b

strike strike
b.b.b.bbb.b.b.ab

game
b

KeysPerByte= log 2 256=8

Length= NKeys
KeysPerByte

= NKeys
8

NKeys=254
Length� 1

2

log 254 NKeys=
Length�1

2
Length=2� log 254 NKeys�1

Figure 6, addresses traversal of the axes that traverse nodes
with the same parent, namely thechild, following-sibling,
preceding-sibling, attribute, andnamespaceaxes. Here we
exploit the FLEX key property that sibling nodes have
identical prefixes to identify the extent of each axis. Note
that we cleverly use the reserved string “a” in the FLEX
key for an attribute so that it is ordered before their
containing node's children, as specified by XPath.

Our final clusterings, shown in Figures 7 and 8, cluster
first by node type and then by the orderings defined for
CL1 and CL2, respectively. These clusterings allow for
efficient traversal of each axis while only visiting nodes of
a given type. They address location steps where the node
test is not "*", that is, the node type is specified as a
constraint.

The mapping shown in Table 1 summarizes the rules
used to select the appropriate clustering depending on the
axis and node test of the location step being evaluated.

Axis / Node Test “*” not
“*”

descendant, descendant-or-self,
preceding, following

CL1 CL3

child, following-sibling, preceding-
sibling, attribute, namespace

CL2 CL4

Table 1: Mapping of Axis to Node Clusterings

MASS' clustered organization also facilitates efficient
evaluation of position predicates and count aggregates. This
is possible since nodes for each axis are stored in physically
adjacent locations. Position predicates can be evaluated by
locating the first node in the axis, then advancing forward
the desired number of nodes. Likewise, node counts can be
determined by locating the first and last nodes in the axis,
then calculating the number of entries between these two
nodes. Inexpensive evaluation of count aggregates is not
only useful for aggregation queries, but also in optimizing
queries, where accurate statistics can be vital to effective
query planning. Without clustering, these operations would
require costly fetching and aggregation of entire axes.

It would be possible to generate a subset of the MASS
clusterings to support a subset of the XPath axes. However,

query processing is greatly simplified using the full set of
clusterings since indexing is available regardless of which
axis is queried or presence of a node test. Indexes that are
not accessed will simply be paged out to disk and will not
affect query performance.

2.3 Extending MASS Query Operations to
Large Documents
The clustered organizations proposed for MASS

facilitate efficient ordered retrieval and calculation of
position predicatesand count aggregateswhen data is in
contiguous memory. However, for large documents, where
we expect data to be dynamically paged to disk, additional
support is required at the index level to support node sets
that span across index pages.

Clearly, a B+ Tree would provide for efficient point and
range access needed for locating context nodes and iterating
over node sets. However, the traditional B+ Tree does not
support random access to index entries and distance
calculation between index entries, which are required for
evaluating positional predicates and count aggregates
respectively without scanning.

To facilitate the desired operations we propose the use of
ranking extensions [4] to extend the capabilities of the B+
tree, which we will now refer to as theranked B+ Tree.
Since clustering is inherently ordered, an ordinal positionn
can be evaluated by finding thenth largest key in the
clustering. The ranked B+ Tree allows thenth largest key to
be determined with a logarithmic number of I/Os. The
ranked B+ Tree also facilitates calculation of the distance
between any two index entries with a logarithmic number
of I/O operations. The ranked B+ Tree facilitates random
positional access by maintaining subtree item counts in its
interior pages. Each interior B+ Tree page has a counter for
each individual subtree and a counter for the total number
of items in all subtrees. Figure 9 provides an example of a
ranked B+ tree that is ordered using the CL1 Clustering.

The query in Figure 10 demonstrates the effectiveness of
the ranked B+ tree. Without random access to nodes, this
query must scan allat_batnodes to determine the 30th node.
However, using the ranked B+ tree, it is possible to locate
the correct data page and index entry with a logarithmic
number of I/Os and key comparisons. The 30th at_batnode
is located by searching for the firstat_batnode in the CL4
clustering, then seeking forward 29 nodes using the ranked
B+ Tree subtree counts. If the nodes span index pages, then

Node Type FLEX Key

at_bat
at_bat
at_bat
ball
ball
bases
bases
game
hit
hit
id
inning
out
strike
strike

d.d.d
d.d.e
d.d.f
d.d.d.d
d.d.f.d
d.d.e.e.a
d.d.f.e.a
d
d.d.e.e
d.d.f.e
d.d.a
d.d
d.d.d.f
d.d.d.e
d.d.e.d

Figure 8: CL4 Clustering

Node Type FLEX Key

at_bat
at_bat
at_bat
ball
ball
game
hit
hit
inning
out
strike
strike

d.d.d
d.d.e
d.d.f
d.d.d.d
d.d.f.d
d
d.d.e.e
d.d.f.e
d.d
d.d.d.f
d.d.d.e
d.d.e.d

Figure 7: CL3 Clustering

Figure 9: Ranked B+ Tree Organization

2226

2 2 2

Subtree Counts

Total Subtree Count

d
.d

 /g
a
m

e
/in

n
in

g
d
 /g

a
m

e

d
.d

.d
 /g

a
m

e
/in

n
in

g
/a

t_
b

a
t

d
.d

.a
 /g

a
m

e
/in

n
in

g
/id

d
.d

.f /g
a
m

e
/in

n
in

g
/a

t_
b
a
t

d
.d

.e
 /g

a
m

e
/in

n
in

g
/a

t_
b
a
t

only the pages containing the first and last nodes will be
read.

2.4 Cluster Compression
We propose a simple yet effective scheme for

compressing MASS' clustered indexes calledCluster
Compression. One novelty of our Cluster Compression is
that it exploits not only the redundancy between nodes in
adjacent node entries that is inherent in clustered data, but
also the high probability that any given node will have
FLEX key components in common with its adjacent nodes.
Cluster Compression allows for compression and
decompression of individual nodes to facilitate efficient
queries and incremental updates.

Cluster Compression shares both redundant FLEX key
and path components with adjacent index entries on the
same index page while storing non-redundant components
locally. Figure 11 demonstrates cluster compression
between two highly redundant adjacent entries. Each step of
the FLEX key and path is compared with those of another
node from the same page called thecompression candidate.
If the step does not match, both its depth and values are
stored locally. Otherwise, its values are not stored and will
instead be read from the compression candidate during
decompression. For this example, the entry is compressed
by a factor of five. Since offsets are only stored for the path
components that are actually stored, entries for compressed
entries are very small.

Cluster compression can provide compression ratios
superior to both dictionary and prefix compressors for
clustered data. Dictionary based compressors [9] require
additional overhead to store dictionary offsets and control
information that can be expensive for deep paths. As stated
earlier, Cluster Compression does not need to store offsets
for compressed data. Prefix compressors generally do not
compress redundant data after the first mismatch and
therefore provide limited compression opportunities.
Cluster Compression can compress not only prefixes, but
any redundant steps, making it much more effective than

simple prefix compression.
To compress a node, an index entry from the same index

page that shares common key components must first be
located. We define thematch sizeas the sum of the lengths
of strings that are redundant between acompression
candidate and the new node being inserted. The entry
adjacent to the insert location with the largest match size is
selected as the firstcompression candidate. In order to keep
the maximum depth of the compression graph bounded, any
link from thecompression candidateto another entry must
be followed until an entry having a smallermatch sizeis
found. If another entry having a largermatch sizeis found,
then it becomes the newcompression candidate. Note that
this search will not result in additional I/O since
compression chains never span index pages. Once the ideal
compression candidateis found, each component that is not
redundant with the adjacent entry must be stored in the new
entry along with its depth in the document tree.

The example in Figure 12 demonstrates selection of a
compression candidate for a newly inserted node. Node
b.b.b is chosen as the compression candidate since its match
size is bigger than b.c.

Decompression is facilitated by following the
compression chain, copying missing components from the
current entry until all components for the path have been
retrieved. Since each entry read will contain at least one
path or order key component, and likely more, the worst
case number of entries read is equal to the total number of
key components. However, this worst case can only occur
for a very limited number of entries since these
combinations of entries will not be chosen once other
entries are present that produce better compression. Recall
that I/O will not be performed since compression chains do
not span disk pages.

The potential for compression is excellent for all four
MASS clusterings. Consider the clustering examples in
Figures 5-8. The outer keys of each clustering key sequence
determine which data is redundant in adjacent index entries.
Adjacent CL1 and CL2 entries will have common FLEX
key prefixes since these clusterings are primarily document
ordered. AdjacentCL3 andCL4 entries will have common
prefixes whenever there are several instances of a given
node type, which is quite common in XML data.

2.5 Balanced Architecture
The combination of FLEX keys, Clustering, and Cluster

Compression strike a perfect balance. FLEX keys readily
facilitate MASS' clusterings. Clusterings groups together

Figure 11: Physical Compression Representation

Logical Index Entries
Entry# FLEX KEY PATH

1
2

d.d.e
d.d.f

/game/inning/at_bat
/game/inning/at_bat

Physical Index Entries
Ent
#

Compression
Candidate

Local
Paths

Local
Order

Size
(bytes)

1

- [1]d
[2]d
[3]e

[1]game
[2]inning
[3]at_bat 19

2 1 [3]f 1

FLEX
Key

Path Match
Size

Compression
Candidate�

b.b.b /game/at_bat/ball
12

New Node� b.b.bn /game/at_bat/strike

b.c /game/at_bat 11

Figure 12: Compression Candidate Selection

Figure 10: Query Accelerated by Ranked B+ Tree

//at_bat[30]

redundant FLEX keys, maximizing the effectiveness of
Cluster Compression. In turn, Cluster Compression allows
us to facilitate all four clusterings with reasonable disk
requirements.

3 XPath Expression Evaluation
MASS facilitates efficient evaluation of location paths

through iterative top-down evaluation [5] of location steps.
Iterative evaluation is very efficient since our clusterings
guarantee that indexes are read sequentially for all XPath
axes. Since MASS produces node sets at each location step,
it could also be used in conjunction with structural joins
[22] to facilitate efficient bottom-up and hybrid [5]
evaluation strategies.

To evaluate a location step, a context node, axis name
and node test must be provided. Once these three pieces of
information are provided, MASS can locate the node set in
one of the clustered indexes. The following steps are
performed internally by MASS to locate the node set
corresponding to the supplied location step.
1. Select the appropriate index clustering (CL1-CL4) from

Table 1 using the axis and node test as selection criteria.
2. Compose the search keys used to locate the first and last

node in the requested axis.
3. Locate the first and last nodes of the node set using the

generated keys. The remaining nodes will not be
materialized unless they need to be fetched.

To demonstrate querying an axis using MASS, we will
now consider the location step on line 1 of Figure 13, which
selects allhit children. MASS first selects a clustering using
the information in Table 1.CL4 is selected since the axis is
child and the node test is not “*”. The search key for the
first node in the axis, depicted on line 3 of Figure 13, is
constructed by appending the node type to the absolute path
of the context node and appending the lower bound key ('a')
to the FLEX key of the context node. The search key for the
last node, line 4, is constructed in a similar manner, except
that the reserved upper bound key ('z') is appended to the
FLEX key. MASS locates the first result node by searching
the index corresponding to theCL4 clustering for the first
entry greater than the first child key. The last node is
located by searching the same index for the first entry less
than the last child key. The child relationship and node test
are then checked using the node type and FLEX key for the
first node to determine if any children of that type exist. For
this example, d.d.e is the longest prefix of d.d.e.e and the
child type is hit, so the node returned is in fact the first
child of typehit. Since the first and last child are the same
entry, there is exactly one node in the node set.

Location Step child:hit

Context Node /game/inning/at_bat [d.d.e]

First Child
Search Key

/game/inning/at_bat/hit [d.d.e.a]

Last Child
Search Key

/game/inning/at_bat/hit [d.d.e.z]

First Child
Found

/game/inning/at_bat/hit [d.d.e.e]

Last Child
Found

/game/inning/at_bat/hit [d.d.e.e]

Figure 13: Child Axis Location Step Example

Query operations are very efficient in MASS. Once the
two endpoints of a node set are located, no further
searching is required. MASS can sequentially retrieve the
remainder of the node set without additional key
comparisons. MASS can also retrieve arbitrary ranges from
the node set (to support position predicates) and calculate
the node set size (for count aggregates) without performing
additional key comparisons. Another key feature of our
solution is that clusterings ensure that node sets will be
returned in document order.

Figure 14 demonstrates the evaluation of a complete
XPath expression. MASS is optimized to keep the current
index page in memory and to compare adjacent keys before
performing a full binary search. With these optimizations,
iterative processing is as efficient as the merge style
processing in [20], as confirmed by our experimental study.

4 Facilitating Document Updates
Without Relabeling
MASS is inherently designed to allow for efficient

incremental document updates since nodes can easily be
individually inserted or removed. Unlike previous proposals
[20,12], an insert will never require relabeling other nodes.
Likewise, individual nodes can always be removed without
relabeling other nodes.

4.1 Node Insertion
To insert a new node, the FLEX key must be determined

for the new node. Nodes are always inserted after their
parent node has been inserted, which is the pattern we
expect when scanning an XML document. If the new node
has existing siblings, the immediate sibling nodes must be
retrieved so that their relative ordering keys are available as
inputs to Algorithm 2. Otherwise, the upper bound or lower
bound characters ('a' and 'z') are substituted as inputs to the

Figure 14: Expression Evaluation

/game//at_bat/strike

game d at_bat d.d.d

CL4

at_bat d.d.e

striked.d.d.e

striked.d.e.d

CL4 CL3

at_bat d.d.f

algorithm. The FLEX key for the new node is formed by
appending the relative order key for the new node obtained
by Algorithm 2 to the FLEX key of the parent node. The
node is then ready for insertion into the MASS indexes.

Insertion into the Ranked B+ tree is much like the
traditional B+ tree [4], with the exception that subtree
counts on interior index pages are updated. The cost of
updating the subtree counts is negligible for large updates
since the interior pages will generally remain in memory.

To achieve maximum page fill with our proposed per-
node compression scheme, we have modified the traditional
B+ tree insert algorithm to compress new nodes in
temporary space, then only insert the node if there is indeed
room on the page. If the entry does not fit, then the page is
split and the new entry is re-created since any entries that it
referenced for compression purposes may have moved.
When an index page splits, all nodes from the split page
must of course be re-inserted into the new pages. However,
splits occur infrequently in B+ trees, especially with large
data pages. This insert algorithm is shown in Figure 15.

4.2 Node Deletion
FLEX keys allow nodes to be deleted without relabeling

other nodes. Before a node can be removed, all descendants
must be removed to avoid violating XML document
semantics by creating orphaned nodes. This can be
performed easily by using MASS to query the descendants
axis. FLEX keys from deleted nodes can be re-used by
subsequent inserts to the same locations to avoid creating
longer keys with the same lexicographical ordering.

Space used by deleted nodes may not be reused
immediately since it may be shared by many compressed
nodes. Instead, the nodes can be logically deletes such that
they do not appear in searches. Space used by these
logically deleted entries can be recovered during inserts by
re-creating pages that contain deleted items when these
pages become full instead of splitting. Re-creating pages
also has the benefits of defragmenting free space and
optimizing compression for the remaining nodes.

5 Experimental Results
We have implemented MASS in C++ and extensively

tuned the implementation for optimal query performance.
With the exception of the Xerces SAX Parser [10] used to
parse XML input files, the entire implementation of MASS
was done from scratch, since all structures are proprietary
except the ranked B+ Tree. We have implemented our own
ranked B+ tree mainly to include the enhancements

discussed in Section 3 for reducing I/O and key
comparisons for sequential fetching.

5.1 Experimental Setup
All tests were performed on a 333MHz Sun Ultra 10

with 256MB Ram. To control the amount of memory used
for caching, we implemented a custom storage manager that
has its own configurable buffer cache. We fixed the size of
our buffer cache to 32kb for all queries. To avoid OS file
caching, we ran all experiments (except where noted
otherwise) on a raw disk partition

The page size for MASS indexes was fixed at 8k as this
was found to be the smallest page size that could facilitate
the large text nodes present in XMark data. This small page
size allowed us to keep our cache size small and emphasize
our I/O efficiency.

The majority of our experiments use data generated with
the XML generator from the XMark benchmark [14]. We
use this data set to demonstrate performance scalability of
load, update, and several query operations. For each of
these experiments, we increased the document size
exponentially from 0.1MB to 100MB. We also use the
Xmark data to compare performance with the XPath
Accelerator. Our final experiment uses the XML version of
Shakespeare's plays [21] to compare performance with
XISS.

5.2 Load Performance
To evaluate Load performance, we loaded documents of

increasing size and measured the elapsed time to load each
document. We then repeated these experiments with
compression turned off.

These measurements include parsing the document,
sorting the document nodes for each clustering, load the
four MASS indexes and flushing the indexes to disk. To
help improve sort performance, the cache size for loads was
set at 8MB for all loads. To facilitate efficient bulk loading,
we have implemented a multi-phase paged radix sort that
allows all indexes to be loaded sequentially.

Figure 16 illustrates MASS' load performance both with
and without Cluster Compression enabled. Load

Figure 15: Modified B+ Tree Insert Algorithm

Figure 16: Load Performance

1

10

100

1000

10000

0.1 1 10 100

Ti
m

e
(s

ec
)

Size (MB)

Compression ON
Compression OFF

Locate insert
point

Compress

node

Split B+ Tree
page

Entry
fits?

Done
Yes

No

Deleted
entries?

No

Reconstruct

 page

Create
FLEX key

Yes

performance scales linearly with respect to document size
even with a small cache. Due to the efficiency of our
algorithm, load times improved by 20% with Cluster
Compression turned on. This is especially apparent for the
larger document sizes, where the size of the indexes
impacts cache performance.

To evaluate the effectiveness of cluster compression, we
compared the size of MASS indexes compressed using
cluster compression with the size of indexes compressed
using LZW compression [9]. Cluster compression was
performed incrementally while each document was loaded.
LZW compression was evaluated by disabling cluster
compression and using the UNIXcompressprogram to
compress each index file after loading.

The plot in Figure 17 shows the combined size of all four
MASS indexes with cluster compression, LZW
compression, and without compression. With Cluster
Compression, the index size is consistently 70% smaller
than with no compression for all document sizes.
Furthermore, the cluster compression is nearly as effective
as the LZW compression for large documents. These results
demonstrate the effectiveness of our Cluster Compression
scheme.

5.3 XMark Queries
To evaluate performance of position predicates, count

aggregates, and document reconstruction, we measured
performance of five queries from the XMark [14]
benchmark that test these operations with varying document
sizes. While XMark queries only utilize thechild and
descendantsaxis, they demonstrate the scalability and
performance of various MASS operations.

XMark Queries 2 and 3, shown in Figure 18, test position
predicates. MASS can efficiently evaluate position
predicates due to its axis-specific clustering and Ranked B+
Tree. Unfortunately, Queries 2 and 3 do not use a large
enough ordinal position to emphasize MASS' performance
for these expressions, especially since the number of
bidders for each auction is small. The plot in Figure 19
demonstrates the linear scale-up for these queries, which is
expected due to the linear increase in result size.

Queries 6 and 7 of XMark stress the cost of counting
node sets, which MASS can perform in logarithmic time.
The logarithmic scale-up for queries 6 and 7 is
demonstrated in Figure 21. These sub-second response
times make the count aggregates practical for lightweight
applications such as gathering statistics in the query
planning phase.

Query 2
FOR $b IN document("auction.xml")/site/open_auctions/open_auction
RETURN <increase> $b/bidder[1]/increase/text() </increase>

Query 3
FOR $b IN document("auction.xml")/site/open_auctions/open_auction
WHERE $b/bidder[0]/increase/text() * 2 <=
$b/bidder[last()]/increase/text()
RETURN <increase first=$b/bidder[0]/increase/text()
last=$b/bidder[last()]/increase/text()>

Figure 18: XMark Queries 2 and 3 Figure 21: XMark Q6, Q7

0.01

0.1

1

0.1 1 10 100

Ti
m

e
(s

ec
)

Size (MB)

Q6
Q7

Query 6
FOR $b IN document("auction.xml")/site/regions
RETURN COUNT ($b//item)

Query 7
FOR $p IN document("auction.xml")/site
LET $c1 := count($p//description), $c2 := count($p//mail)
 , $c3 := count($p//email), $sum := $c1 + $c2 + $c3
RETURN $sum;

Figure 20: XMark Queries 6 and 7

Figure 19: XMark Q2, Q3

0.01

0.1

1

10

100

0.1 1 10 100

Ti
m

e
(s

ec
)

Size (MB)

Q2
Q3

Figure 17: Index Size

0.1

1

10

100

1000

10000

0.1 1 10 100

To
ta

l I
nd

ex
 S

iz
e

(M
B)

XML File Size (MB)

No Compression
Cluster Compression

LZW Compression

5.4 Update Performance
To demonstrate MASS' efficient update performance, we

have measured the performance of adding 100 bidders to an
auction in the XMark data. Each bidder adds approximately
ten new nodes to the document. Like the bulk load, nodes
are sorted using a radix sort before being incrementally
inserted.

The plot in Figure 22 demonstrates that performance of
this fixed-sized incremental update scales logarithmically
with document size. These times include the cost of sorting,
inserting, and writing the updated indexes to disk.

5.5 Comparison with XPath Accelerator
and XISS
To compare MASS against results of the XPath

Accelerator reported in [12], we measured the time to
evaluate the expression “//open_auction/description” on the
XMark. Although our machine was 3x slower (333MHz vs
1GHz), MASS was able to evaluate the expression 3-4x
faster for the larger 10 and 100MB documents using raw
disks. We also ran this query with MASS installed on an
operating system file and recorded times 15-17x faster than
the XPath Accelerator for the 10 and 100MB documents,
respectively. Results for the XPath Accelerator were taken
from [12]. These results, which are shown in Figure 23,
demonstrate the superior I/O performance of the clustered
MASS indexes in comparison to the XPath Accelerator.

To compare MASS against both XISS [20] and the
XPath Accelerator [12], we loaded the XML version of
Shakespeare's plays [21] into MASS and measured
performance of the expression“//act//speech”. We
performed this experiment on a Sun Ultra 2 using the
directio() routine to bypass the Solaris buffer cache as in
[20]. We then repeated the experiment without directio() to
quantify the results of file caching.

System Time (sec)

MASS with directio() 0.58

MASS w/o directio() 0.28

XISS 0.7

XPath Accelerator 1.15

Table 2: Comparison of MASS, XISS, and XPath Accelerator.
Query: //act//speech

The results in Table 2 demonstrate that MASS
outperforms both XISS and the XPath accelerator for
queries on the descendants axis. This is particularly
interesting since XISS and the XPath Accelerator are both
optimized for queries of the descendants axis, whereas
MASS does not favor any particular axis.

6 Related Work

6.1 Path Indexes
Many structures have been proposed for indexing regular

path expressions. Earlier structures [2,3,5,13] were
developed in the context of semistructured data. More
recent proposals [12,16,19,20] discuss the problem in the
context of XML. Until recently, research has focused
almost exclusively on regular path expressions. However,
regular path expressions are only a subset of the XPath
language, representing the descendants and child axes.
Many of the proposed path indexing structures [16,18,19]
do not even address the issue of document ordering.

Several structures exist for facilitating fast traversal of
document trees. The strong dataguide [18] stores full node
paths to allow fast evaluation of prefix and fully qualified
regular path expressions. The Index Fabric [19] also stores
full paths, but in a more compact trie structure rather than a
B-tree. A strong dataguide could be added to MASS simply
by defining a clustering that is ordered by the full path of
each node.

Manual and automatic tuning has also been proposed for
further accelerating path traversals. The Index Fabric [19]
allows manually refined paths to be inserted into its trie
structure to accelerate specific queries. The system
proposed in APEX [16] places frequently accessed paths in
a large hash table to reduce edge lookups for such
frequently traversed paths. However, paths not found in the
hash table must be evaluated recursively by joining
individual extents as before, which is inefficient for long
paths.

Figure 22: Incremental Update Performance

0.1

1

10

0.1 1 10 100

Ti
m

e
(s

ec
)

Size (MB)

Add 100 bidders

Figure 23: Comparison of MASS and Xpath Accelerator. Query:
//open_auction//description)

0.001

0.01

0.1

1

10

0.1 1 10 100

Ti
m

e
(s

ec
)

Size (MB)

MASS - Raw Disk
MASS - OS File

XPath Accelerator - OS File

To our knowledge, XISS [20] and the XPath Accelerator
[12] are the only proposals thus far that provide extensive
support for XPath expressions. XISS utilizes three indexing
components to allow name-based lookups and structural
joins to evaluate node relationships. The XPath Accelerator
maps all node relationships to a single multi-dimensional
structure, relying on structural constraints to narrow the
query windows for different search dimensions. Since these
systems do not focus on issues such as clustering data, they
are vulnerable to thrashing when data sets do not fit in the
cache and poor performance with a cold cache. We
challenge future systems to evaluate performance under
these stringent conditions.

Physical clustering has previously been considered, but
not with regard to the XPath language as is done in MASS.
A prior study of XML query optimization [5] noted that
clustering would be useful for optimizing queries since I/O
costs could be estimated accurately. The I/O patterns
produced by MASS are very deterministic due to the
extensive use of clustering. Another study [7] suggests that
application-specific clustering would benefit query
performance. MASS defines clusterings that are directly
correlated to the XPath language, allowing efficient query
evaluation without application-specific knowledge.

6.2 Labeling Schemes
Several labeling schemes have been proposed for

encoding document ordering and structure in XML data. In
[11], these schemes are described generically as either
having global, local, or Dewey encoding. [11] suggests that
Dewey encodings, such as used by MASS, are the best for a
mixture of queries and updates since updates only require
re-numbering nodes in the sibling axis, while global
encodings such as that used in the XPath accelerator [12]
require re-numbering all nodes in the following axis. Our
proposal of FLEX keys now overcomes the shortcomings
of the Dewey encoding. Namely, FLEX keys use generated
character strings to avoiding re-numbering sibling nodes.
The labeling scheme employed by XISS [20] can defer re-
numbering of nodes by pre-allocating number ranges to
allow for incremental insertions. The generated sequences
used in FLEX keys could also be be deployed in place of
the integer keys of the global ordering scheme to eliminate
the need for re-numbering after incremental insertions.

6.3 Statistics and Query Processing
Another problem that has been largely ignored in the

literature is index statistics for path expressions. Early
research from the Lore database [13] demonstrates the need
for accurate statistics in query processing. However, if we
look at three recent proposals for XML indexing [16,19,20],
none of them provide a cost model or meaningful statistics
for a query processor. MASS is able to quickly provide the
exact size of node sets so that the query processor can
aggressively optimize complex expression queries.

6.4 Compression
Most XML data contains a limited number of node types

that is constrained by either the DTD or the number of real
world entities represented by the data. The limited number
of node types guarantees some degree of redundancy and
hence the possibility for compression.

Compression of XML data is covered extensively by
XMILL [17]. XMILL compresses entire documents in
batch, therefore provide near-ideal compression.
Conversely, MASS compresses nodes as they are inserted,
allowing for efficient incremental maintenance. While
MASS follows on the concept of compressing redundant
structural data from XMILL, it also applies compression to
FLEX keys, thus alleviating the perceived space problem
with the Dewey encoding [11].

Compared to the dictionary-based LZ compressors [8],
Cluster Compression has several key advantages that make
is more practical for the dynamic XML environment.
Whereas LZ compression stores dictionary offsets for all
entries that reference shared data, Cluster Compression
only stores offsets for the shared data itself. Furthermore,
the dictionary for the LZ encoder is difficult to maintain on
fixed size data pages which must already manage variable
sized data. LZW encoders are impractical for updates since
new data cannot be compressed without re-building the
compression dictionary.

7 Conclusions
In this paper, we proposed MASS, a Multiple Axis

Storage Structure. MASS supports efficient evaluation of
both selective and non-selective XPath expressions on all
XPath axes using a set of four clustered indexes. MASS'
clustered organization also allows for efficient evaluation of
positional predicates and count aggregates. Nodes are
guaranteed to be returned in document order, eliminating
the need for sorting to order results.

MASS requires little system resources due to its
clustering organization and use of B+ Tree ranking
extensions. MASS exhibits excellent I/O performance with
small caches and scales well with document size. Our
experimental results demonstrate that MASS can
outperform other path indexing structures even with
constrained system resources.

MASS provides for efficient document update while
preserving document order using FLEX keys. FLEX keys
allow nodes to be incrementally added to or deleted from a
document without requiring update of other nodes. FLEX
keys can be used to determine all node relationships and
uniquely identify nodes for query processing.

Path expressions cannot all be evaluated with a single
index organization. MASS has taken the approach of
supporting XPath more thoroughly, using a set of robust
and efficient indexes.
In the future, we plan to integrate MASS into an XPath
engine and study query optimizations such as using
structural joins to facilitate alternate evaluation strategies.

References
1. D. Suciu. Semistructured Data and XML. AT&T

Labs, Technical Report 1997.
2. J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A.

Rajaraman. Indexing Semistructured Data. Stanford
University Technical Report, 1998.

3. T. Milo and D. Suciu: Index Structures for Path
Expressions. ICDT 1999: 277-295

4. D. Knuth: The Art of Computer Programming:
Volume 3, Sorting And Searching. Addison-Wesley,
1973

5. J. McHugh and J. Widom: Query Optimization for
XML. VLDB 1999: 315-326

6. E. Cohen, H. Kaplan, and T. Milo: Labeling Dynamic
XML Trees. PODS 2002: 271-281

7. D. Florescu and D. Kossmann: Storing and Querying
XML Data using an RDMBS. IEEE Data Engineering
Bulletin 22(3): 27-34 (1999)

8. J. Ziv and A. Lempel: A Universal Algorithm for
Sequential Data Compression. IEEE Transactions on
Information Theory 23(3): 337-343 (1977)

9. T. Welch: A Technique for High-Performance Data
Compression. IEEE Computer 17(6): 8-19 (1984)

10. Xerces C++ parser. The Apache XML Project.
http://xml.apache.org/xerces-c/index.html

11. I. Tatarinov, S. Viglas, K. Beyer, J.
Shanmugasundaram, E. Shekita, and C. Zhang:
Storing and querying ordered XML using a relational
database system. SIGMOD Conference 2002: 204-215

12. T. Grust: Accelerating XPath location steps. SIGMOD
Conference 2002: 109-120

13. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Data. Stanford University Technical
Report, 1998.

14. Xmark-The XML-Benchmark Project.
http://monetdb.cwi.nl/xml/index.html

15. J. Clark and S. DeRose. XML Path Language (XPath),
Version 1.0W3C Recommendation November 1999.
http://www.w3.org/TR/xpath.html

16. C. Chung, J. Min, and K. Shim: APEX: an adaptive
path index for XML data. SIGMOD Conference 2002:
121-132

17. H. Liefke and D. Suciu. XMILL: An Efficient
Compressor for XML Data. SIGMOD Conference
2000: 153-164.

18. R. Goldman and J. Widom: DataGuides: Enabling
Query Formulation and Optimization in
Semistructured Databases. VLDB 1997: 436-445

19. B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and
M. Shadmon: A Fast Index for Semistructured Data.
VLDB 2001: 341-350.

20. Q. Li and B. Moon: Indexing and Querying XML
Data for Regular Path Expressions. VLDB 2001: 361-
370

21. John Bosak. XML markup of Shakespeare's plays.
January 1998.

http://www.ibiblio.org/pub/suninfo/ standards/xml/eg/.
22. D. Srivastava, S. Al-Khalifa, H. Jagadish, N. Koudas,

J. Patel, and Y. Wu: Structural Joins: A Primitive for
Efficient XML Query Pattern Matching. ICDE 2002

