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0 Introdu
tionMonads are a kind of mathemati
al stru
ture that arises in 
ategory theory. Originallyidenti�ed in that setting, sin
e around 1990 they have been studied in the 
ontext ofprogramming languages, on three su

essively narrower s
ales.1. Eugenio Moggi applied monads to 
omputation on a universal s
ale; e.g., [Mo89℄.He was looking for a 
ategori
al tool to des
ribe the shape of impure 
omputa-tion (state, imperative 
ontrol, et
.), and settled on monads.2. Others subsequently used monads on a merely large s
ale, to en
apsulate thehandling of impure language features by an interpreter; e.g., [Wa92
℄.3. Monads have sin
e been used on a �ner-grained s
ale, to en
apsulate individualimpure phenomena o

urring within arbitrary programs; e.g., [SeSa99℄.The \universal" s
ale overar
hes one universe of dis
ourse |whi
h is to say, oneprogramming language| at a time. Commensurate with the basi
 prin
iple thatall software engineering artifa
ts are languages1, anything that applies to languagesapplies to arbitrarily small entities within a program. Thus the subsequent narrowingof s
ale was a natural development.There is no universally appli
able te
hnique for \
omposing" monads, i.e., 
om-bining monads that represent arbitrary impure phenomena to produ
e a single monadthat represents both phenomena at on
e. This la
k doesn't seem parti
ularly prob-lemati
 at the universal s
ale, be
ause there are only so many universes one expe
tsto live in. However, as the s
ale of appli
ation narrows, la
k of monadi
 
ompositionbe
omes in
reasingly worrisome. At a suÆ
iently narrow s
ale, it be
omes appar-ent that the problem of 
ombining monads is a mathemati
al manifestation of theproblem of 
ombining software 
omponents.Another lingering question 
on
erning monads is whether they are really the righttool for the job. They seem to have suggested themselves to Moggi originally be
ausehe was looking for something with ni
e mathemati
al properties, and monads werea known form with ni
e mathemati
al properties. Borrowing stru
tures from one�eld to another like this 
an be hazardous; just be
ause monads have propertiesthat are helpful in mathemati
s doesn't mean they're ne
essarily right for modelinggeneral 
omputation (just as the suitability of traditional OO inheritan
e for 
oding1960s-style simulation software doesn't ne
essarily make it ideal for general-purposesoftware engineering).The following se
tions relate the mathemati
al 
on
ept of monads to their ap-pli
ation to programming languages. Although te
hni
al details are present whenne
essary (as in the initial explanation of the mathemati
al 
on
ept), the emphasis1This prin
iple is 
entral to the RAG model [Sh98℄. Here I've deliberately phrased it to 
ompareand 
ontrast with the prin
iple from [Kr01℄ that programming languages are software engineeringartifa
ts. 1



throughout is on the big pi
ture: what monads are (x1.1); why and (to some extent)how they were �rst applied to 
omputation (x1.2); and why and how their appli
ationhas diverged from its mathemati
al roots (x2).1 The 
on
ept of monadIn his original appli
ation of monads to 
omputation, Moggi seems [Mo89℄ to havebeen motivated by an interest in handling impure forms of 
omputation in the frame-work of the �-
al
ulus. Work in the late 1980s had dire
tly 
onstru
ted variants of�-
al
ulus to handle various parti
ular impure fa
ilities (e.g., [FeFr89℄). Moggi, how-ever, followed the prin
iple that 
ategory theory is prior to �-
al
ulus (be
ause 
ate-gory theory is a generalization of the set-based fun
tion theory on whi
h �-
al
ulusis founded); therefore, he reasoned, natural generalizations of the foundations of �-
al
ulus ought to be 
leanly expressible in 
ategori
al form. He 
hose monads asa 
ategori
al stru
ture that would serve his purpose for a variety of 
omputationalimpurities.Below, x1.1 dis
usses the mathemati
al and 
on
eptual underpinnings of monads;while x1.2 des
ribes how Moggi's approa
h applies monads to some parti
ular formsof 
omputational impurity.1.1 Origins of the mathThis subse
tion is about the big pi
ture of the mathemati
al 
on
ept of monad. Thematerial is approa
hed in parallel on three mutually supporting levels: the big pi
tureitself, formal de�nitions, and simple examples.Mathemati
s is (in one view of the beast) the systemati
 study of things thatare, in some sense or other, well-behaved. If there isn't some kind of ni
e behaviorthere, it isn't possible to 
ondu
t a study that is (intrinsi
ally) systemati
. On theother hand, anything that does exhibit some kind of well-behavedness is subje
t tomathemati
al study; and it happens that well-behavedness is itself, unsurprisingly,rather well-behaved, so it should be possible to study it mathemati
ally. In essen
e,the mathemati
al study of well-behavedness is 
ategory theory.The major 
on
epts of 
ategory theory build one on another. In order (and asthey will be de�ned below), they are: 
ategories, fun
tors, natural transformations,and adjun
tions. The �rst three were manifest in 
ategory theory from the start;but the last and highest-level, adjun
tions, didn't emerge expli
itly for about �fteenyears after the others [Ma71, xIV endnotes℄. Adjun
tions are a
tually just one wayof des
ribing a high-level phenomenon that also manifests itself in a number of otherrelated forms | one of whi
h, in parti
ular, is monads.2



CategoriesThe starting point for 
ategory theory is the notion of a well-behaved family of mor-phisms |or arrows| ea
h from an obje
t of type X to another obje
t of type X.This is a generalization of the family of all fun
tions between sets. A 
ategory 
onsistsof � a dire
ted graph; the verti
es are 
alled obje
ts, the dire
ted edges are 
alledarrows or morphisms, the sour
e of an arrow is its domain, the destination isits 
odomain.� an asso
iative binary partial operation on arrows 
alled 
omposition, that isde�ned just when the 
odomain of one edge is the domain of another.� an identity arrow for ea
h obje
t, whose domain and 
odomain are both thatobje
t, and that is an identity under 
omposition both on the right and on theleft.Here is the de�nition expressed formally.De�nition 1.1 A graph G 
onsists of the following 
olle
tions and operations.� A 
olle
tion of obje
ts, ObjG. a 2 ObjG may be written as \a2G".� A 
olle
tion of arrows, ArrG. f 2 ArrG may be written as \f in G ".� Operations dom and 
od mapping ea
h arrow f to an obje
t dom f 
alledits domain and 
od f its 
odomain. \a = dom f and b = 
od f " may bewritten as \f : a! b ", or diagramati
ally asqa qbfA 
ategory C is a graph with the following additional operations and properties.� A partial binary operation Æ on arrows, mapping ea
h of 
ertain pairs of arrowsf; g to an arrow g Æ f 
alled their 
omposition.{ For any f; g in C, g Æf is de�ned i� 
od f = dom g, and if it is de�ned,dom g Æf = dom f and 
od g Æf = 
od g. Diagramati
ally,q q q���f ���gg Æ f{ Composition is asso
iative; that is, h Æ (g Æ f) = (h Æ g) Æ f = h Æ g Æ fwhenever the relevant 
ompositions are de�ned.� An operation id mapping ea
h obje
t x to an arrow idx su
h that{ for every arrow f : a! b, f Æ ida = idb Æf = f .3



2The 
anoni
al example of a 
ategory is the 
ategory Set, whose obje
ts are sets2and whose arrows are total fun
tions from set to set. Very many of the interestingexamples of 
ategories 
onsist of all sets with a 
ertain kind of additional stru
ture,together with all fun
tions from set to set that preserve that stru
ture; for example,
ategory Grp has as obje
ts, groups, and as morphisms, group homomorphisms;Mon has as obje
ts monoids, and as arrows monoid homomorphisms; and so on.Note, in passing, that the 
ore of a 
ategory is its 
omposition operation; all theother parts of the 
ategory are impli
it in that. Although, given the obje
ts of a
ategory, there is often a single most obvious 
hoi
e of arrows, it is not un
ommonfor two 
ategories to have the same obje
ts but di�erent arrows; for example, the
ategory Pfn has as obje
ts all sets, but as arrows all partial fun
tions from set toset. Usually, on
e the set of arrows has been de�ned there is one really obvious andnatural way to de�ne 
omposition; but o

asionally, two 
ategories of interest willhave the same obje
ts and the same arrows, but di�erent rules for 
omposition3.Fun
torsA 
ategory may itself be viewed as \a set with a 
ertain kind of additional stru
ture";so that, given a suitable de�nition of 
ategory-stru
ture-preserving morphisms, one
ould form a 
ategory of 
ategories. The natural de�nition of a (homo)morphism of
ategories, 
alled a fun
tor, is a mapping of obje
ts to obje
ts and arrows to arrowsthat preserves all the operations | domain, 
odomain, 
omposition, and identity.That is,2I'm ignoring some obfus
ating 
ompli
ations that a very 
areful treatment would have to address,involving the foundations of mathemati
s and avoiding Russell's Paradox (whether the set of all setsthat don't 
ontain themselves 
ontains itself). See [Ma71, xI℄3For example [MaAr86℄, 
ategoryMfn has sets for obje
ts, and multivalued fun
tions for arrows|that is, an arrow f :A ! B maps ea
h value a 2 A to a set of values f(a) 2 P(B)| with
omposition de�ned by(g Æf)(x) = [y2f(x) g(y)while ANMfn, the 
ategory of \multivalued fun
tions with all-or-nothing 
omposition" has thesame obje
ts and arrows, but 
omposition is de�ned by(g Æf)(x) = 8><>: ; if 9y 2 f(x) su
h that g(y) = ;[y2f(x) g(y) otherwise 4



De�nition 1.2 Given 
ategories C;D, a fun
tor T :C ! D 
onsists of an obje
tfun
tion T : ObjC ! ObjD and an arrow fun
tion T : ArrC ! ArrD, su
h thatdomTf = T dom f
odTf = T 
od f(Tf) Æ (Tg) = T (f Æ g)idTa = T ida2The 
ategory whose obje
ts are all 
ategories and whose arrows are all fun
tors is
alled Cat, the 
ategory of all 
ategories.4For example, for any set A, the monoid freely generated over A 
onsists of the setA� of all strings over alphabet A, together with 
on
atenation as the binary operationof the monoid, and the empty string � as the identity element (sin
e 8 strings w 2 A�,�w = w� = w). Let's 
all this monoid MA; so M maps ea
h obje
t of 
ategory Setto an obje
t of 
ategory Mon. Further, for any fun
tion on sets f :A ! B, there isan obvious monoid homomorphsim Mf :MA ! MB that takes any string over A,and uses f to map ea
h element a 2 A of the string to the 
orresponding elementfa 2 B. (This is the operation that is provided in S
heme by pro
edure map .) So Mis a fun
tor from Set to Mon; in symboli
 notation, M :Set!Mon.On the other hand, we 
an also de�ne a fun
tor U :Mon ! Set that maps ea
hmonoid N to its underlying set of elements UN , and maps ea
h monoid homomor-phism h:N1 ! N2 to its underlying fun
tion Uh from elements of N1 to elements ofN2. This fun
tor U is 
alled the forgetful fun
tor from Mon to Set.5Note that the 
omposed fun
tor U ÆM :Set! Set maps ea
h set A to the set A�of strings over alphabet A.Natural transformationsGiven two fun
tors S; T :B ! C (i.e., parallel fun
tors), a natural transformation �from S to T is a family of morphisms in C that relate the image of S to the imageof T (in, of 
ourse, a very well-behaved way | this being 
ategory theory, after all).Formally,De�nition 1.3 Given any two fun
tors S; T :B ! C, a natural transformation� from S to T , denoted �:S :! T , is a mapping �: ObjB ! ArrC su
h that forall arrows f : x ! y in B, (�y) Æ (Sf) = (Tf) Æ (�x). This equation may also beexpressed by saying that the following diagram 
ommutes, meaning that for any4A
tually Cat only 
ontains all small 
ategories, whi
h means among other things that it doesn't
ontain itself.5Any fun
tor su
h as this, whose a
tion is essentially to \forget about some of the stru
ture" ofan obje
t (typi
ally, a set with some additional stru
ture), is 
alled a forgetful fun
tor. Forgetfulfun
tors are usually 
alled U . 5



two points shown on the diagram, the 
omposition of arrows on every path fromone point to the other are equal6. qSx
qSy

qTx
qTySf Tf�x

�y2While the above 
ommutative diagram shows how the intera
tion of f and �manifests itself in 
ategory C, the overall intera
tion spans 
ategories B and C andis only impli
it in the diagram. To provide a more 
omplete visualization of thesituation in a single pi
ture (of a 3D �gure, spe
i�
ally a triangular prism), we'lladopt the further notational 
onvention of depi
ting the a
tion of a fun
tor on anobje
t by a double-shafted arrow. qSx
qSy

qTx
qTySf Tf������x

������y
qx
qyf
HHHHHHHHHHHHHHHHTo avoid 
luttering the pi
ture, only the obje
ts and arrows are labeled. The frontleft fa
e of the prism is swept out by S a
ting on f . The ba
k fa
e of the prismis swept out by T a
ting on f . The front right fa
e is the 
ommutative diagram in
ategory C. � sweeps out the angle from the plane of S to the plane of T .Now, here is a simple example of a natural transformation. Consider the identityfun
tor on 
ategory Set, IdSet:Set ! Set, whi
h maps ea
h obje
t and arrow ofSet to itself. There is an obvious natural transformation � from this fun
tor IdSet to6This use of the word 
ommute may seem less idiosyn
rati
 if one 
onsiders that, given any twofun
tions f; g:X ! X on a set X , the following diagram 
ommutes i� f and g 
ommute in the usualsense; that is, i� f Æ g = g Æ f . qX qX q Xq Xf fgg6



the fun
tor U ÆM :Set! Set des
ribed earlier, whi
h maps ea
h set X to the set ofstrings over alphabet X. That is to say, �: IdSet :! U ÆM . For ea
h set X, arrow �Xmaps ea
h letter in the alphabet X to the string of length one 
onsisting of that letter;that is, (�X)x = x. For any fun
tion on sets f :X ! Y , fun
tion (U ÆM)f = UMfmaps strings over alphabet X to strings over alphabet Y by applying f to ea
h letterof the string. Then � is a natural transformation be
ause the following diagram
ommutes. qX
qY

qUMX
qUMYf UMf�X

�YIt should be 
lear that this diagram does 
ommute: if you apply f to a letter x 2 Xand then make a string of length one out of the result, you get the same thing as ifyou'd �rst 
onverted x to a string of length one and then applied f to ea
h letter ofthe string.Adjun
tionsRe
all that we �rst 
hara
terized a 
ategory as a well-behaved family of morphismsea
h from an obje
t of type X to another obje
t of type X. Category theory alsoprovides a more general notion of a well-behaved family of morphisms ea
h from anobje
t of type X to an obje
t of type Y ; a family of morphisms (or perhaps a lessloaded term would be dire
ted relationships) of this more general kind is 
alled anadjun
tion.Rather than attempt to motivate ea
h 
omponent of an adjun
tion in terms of thishigh-level view of the 
onstru
tion, with the spe
ter of the unknown formal de�nitionhanging over the dis
ussion, we'll present the full-blown formal de�nition �rst, se
ureit with a 
on
rete example, and only then address the roles of its various parts in thehigh-level view.De�nition 1.4 Given two 
ategories C and D, an adjun
tion from C to D is afour-tuple hF;G; �; �i, denoted hF;G; �; �i:C * D, where� F is a fun
tor F :C ! D, 
alled the left adjoint.� G is a fun
tor G:D ! C, 
alled the right adjoint.� � is a natural transformation �: IdC :! G ÆF , 
alled the unit.� � is a natural transformation �:F ÆG :! IdD, 
alled the 
ounit.7



� For every arrow f : x ! Gy, there is a unique arrow f#:Fx ! y su
h that(Gf#) Æ (�x) = f .� For every arrow f#:Fx ! y, there is a unique arrow f : x ! Gy su
h that(�y) Æ (Ff) = f#.2The situation is summed up by the following pi
ture (again of a solid �gure).C qx qGy qGFx�x �����Gf#HHHHHf
D qy qFx qFGy�y HHHHH Ff�����f#

BBBBBBBBBBBBB
BBBBBBBBBBBBB
F BBBBBBBBBBBB

BBBBBBBBBBBBF�������
������

�������
������G �������

������
�������

������G

The top surfa
e of the �gure is a 
ommutative diagram in 
ategory C, expressing the
onstraint that (Gf#) Æ (�x) = f ; the bottom surfa
e is a 
ommutative diagram in
ategory D, expressing (�y) Æ (Ff) = f#. The two are 
onne
ted by two parallelo-grams: one swept out by F a
ting on f (from f to Ff), and the other swept out byG a
ting on f# (from f# to Gf#).In assembling a spe
i�
 example of an adjun
tion, we already have most of thepie
es from our running example. Let C = Set, D = Mon, F = M (that freelygenerates monoids over sets), and G = U (forgetful from Mon to Set).To �ll out the rest of the labels in the diagram, we 
an rely heavily on 
ommonsense; with adjun
tions, the obvious guess is usually right (as one might expe
t in asystemati
 study of well-behaved well-behavedness). The unit is a natural transfor-mation from IdSet to G ÆF = U ÆM ; we've already seen it, mapping ea
h letter inalphabet x to itself as a string of length one in x�. To reason out the 
ounit, 
onsiderthe parti
ular 
ase that monoid y = hN;+; 0i, the additive monoid of nonnegative in-tegers. Gy = UhN ;+; 0i = N is the set of nonnegative integers, so an arrow f : x! Gymaps ea
h letter of alphabet x to a nonnegative integer. FGy = MN = hN� ; �;�iis the monoid of strings of nonnegative integers, and Ff = Mf is the monoid ho-momorphism that applies f to ea
h letter of a string over x, produ
ing a string ofnonnegative integers. The 
ounit has to map a string of integers to a single integer;8



it's not mu
h of a stret
h to think of adding up the elements of the string. Returningto the general 
ase of arbitrary monoid y, MUy is the monoid of strings over theunderlying set of y, and �y:MUy ! y 
ombines the elements of ea
h su
h stringusing the asso
iative binary operation provided by monoid y (using the identity of yfor the empty string)7.Monoid homomorphism f#:Mx ! y takes a string over alphabet x, applies fto ea
h letter of the string, and 
ombines the results using the asso
iative binaryoperation of monoid y.Re
all the initial 
hara
terization of an adjun
tion as a well-behaved family ofdire
ted relationships from obje
ts of one type to obje
ts of another. Sin
e the ad-jun
tion establishes a bije
tion between arrows f : x ! Gy and f#:Fx ! y, we 
anview both arrows as manifestations, in C and D, of a dire
ted relationship from set xto monoid y that does not belong stri
tly to either 
ategory. The adjoint fun
tors Fand G allow ea
h of obje
ts x; y to manifest in the other 
ategory so that the relationfrom x to y 
an appear in both pla
es. The unit and 
ounit are simply the form ofthe family's well-behavedness.MonadsA monad is, intuitively, the shadow 
ast by an adjun
tion in its domain 
ategory(whi
h we've been 
alling C).Sin
e the 
odomain 
ategory D will never o

ur expli
itly in the monad, we onlyneed one fun
tor, the 
omposite of the right and left adjoints. Call this 
ompositeT = G ÆF :C ! C. The unit � of the adjun
tion 
an now be des
ribed as a naturaltransformation �: IdC :! T . The 
ounit 
asts its shadow in C by means of the adjointfun
tors: Starting with an obje
t x2C, the left adjoint F maps it to an obje
tFx2D, whi
h � maps to an arrow �Fx:FGFx! Fx in D, whi
h the right adjointG maps to an arrow G�Fx:GFGFx! GFx in C. Call this natural transformation8� = G�F :T ÆT :! T .Here is the formal de�nition of a monad, using the 
onvenient notation T 0 = IdCand T n+1 = T ÆT n.De�nition 1.5 Given a 
ategory C, a monad in C is a triple hT; �; �i where� T is a fun
tor T :C ! C.� � is a natural transformation �:T 0 :! T , 
alled the unit.7S
heme programmers familiar with the Wizard Book [AbSuSu96℄ may re
ognize this homomor-phism as pro
edure a

umulate .8Of 
ourse the result of all this manipulation is still a natural transformation, be
ause in 
ategorytheory everything has an un
anny way of 
oming out right | a 
orollary of the fa
t that 
ategorytheory is positively dripping with well-behavedness.9



� � is a natural transformation �:T 2 :! T , sometimes 
alled the multipli
ation9.� For every obje
t x2C,�x ÆT�x = �x Æ�Tx :T 3x! Tx�x ÆT�x = �x Æ �Tx = idTx :Tx! Tx2The monad equations follow from the properties of an adjun
tion10. On the otherhand, sin
e a monad evidently forgets some of the details of the adjun
tion, itshouldn't 
ome as a surprise that many adjun
tions may de�ne the same monad. Inparti
ular, an adjun
tion 
onsiders all obje
ts y 2D, but the 
orresponding monadin C ignores all obje
ts in D that aren't of the form Fx for some x2C.Even though 
ategory D is no longer expli
itly present in monad hT; �; �i, itsidentity and 
omposition operations are still visible. Given any two arrows f : a! Tband g: b! T
 in C, they 
an be \
omposed" through the monad to produ
e an arrow(f ; g): a ! T
, as follows. (Here, notation f ; g follows the 
ommon programmingidiom for sequen
ing. Note 
arefully that this notation uses the opposite orderingfrom 
ategori
al g Æ f .)The adjun
tion mat
hes arrow f : a! GFb in C with f#:Fa! Fb in D, andg: b! GF
 in C with g#:Fb! F
 in D; obviously these two arrows 
ompose in D,giving g# Æf#:Fa! F
, whi
h the adjun
tion mat
hes with an arrow a! GF
 in C.A moment's thought (and perhaps sket
hing a 
ommutative diagram or two) will af-�rm that the appropriate \
omposed" arrow is (f ; g) = �
 ÆTg Æ f .The identity operation of D is also e�e
tively visible, in the form of naturaltransformation �. For every arrow f : a! b in C, (�a; f) = (f ; �b) = f . (Thishappens be
ause the adjun
tion mat
hes ea
h arrow �x: x! GFx in C with arrowidFx:Fx! Fx in D.)1.2 Notions of 
omputationMoggi uses a monad hT; �; �i to des
ribe what he 
alls a notion of 
omputation11.Obje
ts in his 
ategory of dis
ourse C are types; a type t may be thought of as a pairt = hd; Si of a type designation d and a set of values S. C is thus somewhat distin
tfrom Set in that, depending on the type system 
hosen, types may have all the same9This terminology alludes to the formal analogy between monads and monoids, in whi
h � and� 
orrespond respe
tively to the identity element and binary operation of a monoid. Observe thatthe term unit makes far more sense in the 
ontext of this analogy, than it did when it was appliedto the same natural transformation in the underlying adjun
tion of the monad.10The �rst equation is derived ultimately from the fa
t that � is a natural transformation in D,while the other two equations 
ome from setting f = �x in the adjun
tion's 
ommutative diagramin D, and f# = �y in the adjun
tion's 
ommutative diagram in C.11In [Mo89℄, he �rst de�nes a 
omputational monad to be a monad hT; �; �i su
h that for all obje
tsx2C, �x is mono (the 
ategori
al generalization of a one-to-one fun
tion), but then immediatelyadmits that the mono requirement may not hold for all interesting 
ases.10



possible values but still be distin
t be
ause they have di�erent designations. Arrowsin C are arbitrary fun
tions between the sets of values. The fun
tor T of the monad isa type 
onstru
tor, sin
e it maps any given type a to a type Ta; he 
hara
terizes T asmapping a type a of values to the type Ta of \
omputations of type a". A program isa fun
tion mapping values to 
omputations, thus an arrow in C of the form a! Tb.Moggi's use of the word \
omputation" to des
ribe elements of Ta must be in-terpreted 
arefully. In the realm of automata (and therefore operational semanti
s),
omputation is typi
ally a fun
tion on some kind of 
on�guration spa
e. For exam-ple, a 
on�guration of a stateful 
omputation might be a pair hv; si 2 V � S of avalue v 2 V with a ma
hine state s 2 S; 
omputation would then be a fun
tionV � S ! V � S mapping one 
on�guration to another. However, in the s
enerioMoggi envisions, a program p: a ! Tb maps ea
h input value v 2 a to an element
 2 Ta; so, in our stateful 
omputation, element 
 already knows what the input valueis. Thus, instead of a general fun
tion V � S ! V � S, 
 is a fun
tion S ! V � S.So Tb = (S ! b� S), and p: a! (S ! b� S).In general, an element of type Ta is a 
omputation whose output value is of typea and whose input value is �xed.For another typi
al example, 
onsider nondeterminism. In the usual sense, anondeterministi
 
omputation with input type a and output type b would be simplya fun
tion a! Pb; but on
e the input value is known, the remaining \
omputation"is simply a subset of b; so Tb = Pb, and program p: a! Pb.Where there is a monad, there is an underlying adjun
tion. Its domain 
ate-gory C is the 
ategory of data types, while the impli
it 
odomain 
ategory D isthe 
ategory of 
omputation types. Programs are arrows from 
omputation type to
omputation type; so, assuming that every obje
t in D belongs to the image of theleft adjoint fun
tor F , the adjun
tion mat
hes ea
h program Fa! Fb in D with anarrow a! GFb in C.For any data type a, program �a: a ! Ta is the identity under program 
ompo-sition (sin
e it 
orresponds to an identity arrow in the impli
it 
ategory D). Con-
eptually, program �a takes an input value v 2 a and returns a 
omputation that\does nothing" and produ
es output value v. For nondeterministi
 
omputation,(�a)v = fvg, the singleton set 
ontaining the input value; while for stateful 
ompu-tation, (�a)v = �s:hv; si, the fun
tion mapping a ma
hine state s to the pair of theinput value and the same ma
hine state s.The program 
omposition operation � ; � supported by � de�nes the semanti
s ofdire
ting the output of one program to the input of another. (This is the 
ompositionoperation of 
ategory D.) In the nondeterminism example,(p1; p2)x = [y2p1x p2ymeaning that the output of p1; p2 on x 
ould be anything output by p2 on any output11



of p1 on x; while for stateful 
omputation,(p1; p2)x = �s:p2(p1hx; si)whi
h is to say that, to run 
omputation (p1; p2)x with initial state s, �rst run 
ompu-tation p1x with initial state s to produ
e a 
on�guration hx0; s0i, then run 
omputationp2x0 with initial state s0.Building on his use of monads as notions of 
omputation, Moggi de�nes semanti
rules for a generi
 programming language using �-
al
ulus-style syntax [Mo89℄, whi
hhe 
alls 
omputational lambda 
al
ulus, or �
. His semanti
 rules are parameterized bythe monad hT; �; �i, so that results dedu
ed from his rules will automati
ally applyto all variant 
al
uli that �t his monadi
 framework; a parti
ular variant 
al
ulusis 
onstru
ted by �xing the monad, and adding appropriate language primitives fora

essing whatever form of impurity the monad supports.The two 
ore assumptions underlying Moggi's monadi
 strategy (embodied by �
)are that1. every pure fun
tion 
an be understood as an impure fun
tion (via �), and2. all impure fun
tion 
omposition 
an be done through the monad (via � ; �).In applied \monadi
" programming style, the mathemati
al stru
ture used will almostnever be a monad; but these two assumptions will linger (
f. x2.2).2 Monadi
 programmingIn e�e
t, Moggi used monads in his mathemati
s as an en
apsulation devi
e, to isolatedi�erent mathemati
al 
on
erns from ea
h other, making them more independentlytra
table12. Advo
ates of \pure fun
tional" programming languages had been lookingfor a way to 
orre
t the obvious de�
it between their desire to use pure fun
tions, andthe need for impure behavior |su
h as input and output| in real-world programs;they qui
kly lat
hed onto monads as a way of in
orporating impurities into a \pure"fun
tional language in a 
ontrolled manner, isolable from the pure portions of thelanguage. (See [PJWa93℄.)Wadler also took the natural step13 of s
aling down Moggi's parameterization ofprogramming language semanti
s by a monad, to parameterization of an interpreterfor a language ([Wa92
℄). In this 
ontext, the monad is more expli
itly an en
apsula-tion devi
e: the interpreter is 
onstru
ted with a \monad-shaped hole" in it, and thesemanti
s of the interpreted language 
an be varied by plugging in an appropriate12The division of orthogonal 
on
erns isn't usually 
alled en
apsulation when it o

urs in math-emati
s per se; instead it is referred to, if at all, by various other names su
h as \independen
e",\orthogonality", or even (in a spe
ialized but prominent 
ase) \separation of variables".13Of 
ourse the natural step isn't ne
essarily obvious, and when it is obvious it generally takeseven longer for someone to think of it. 12



monad. The en
apsulation of impurities isn't 
omplete be
ause, as [St94℄ points out,one must also tweak the 
ode for the interpreter to add appropriate syntax to exploitwhatever semanti
 features have been provided by the monad; so the variations inthe interpreter are not quite entirely restri
ted to the monad itself14.2.1 Composing monadsBe
ause Moggi had originally been looking at the problem of de�ning the semanti
sof impure forms of 
omputation, he'd had what seemed to be a quite �nite numberof targets; so hand-fashioning a monad (and, as already noted, a spe
ialized syntax)for ea
h targeted 
ombination of impurities would not have seemed unreasonable.Wadler, however, had promoted monads to the status of software 
omponents, andthus engaged the programmer's re
ex to play around with them, build lots of di�erentones, and �nd ways to parameterize and 
ombine them to build new ones with ever-greater fa
ility.Unfortunately, at this point the monad's mathemati
al underpinnings 
ome ba
kto haunt it. The monad is a manifestation of an adjun
tion, whi
h is a dire
tedrelation from the expli
it 
ategory C to the impli
it 
ategory D. There is in fa
ta very natural way to 
ompose an adjun
tion �:C * D with another adjun
tion�:D * E to produ
e an adjun
tion (� Æ�):C * E; and this 
omposition15 has theappropriate properties for a 
ategory | it's asso
iative, and every 
ategory has anidentity adjun
tion. The 
ategory whose obje
ts are 
ategories and whose arrows areadjun
tions is 
alled Adj.For a monad to be a \notion of 
omputation", though, it has to be in the 
ategoryC of data types; and that means that the underlying adjun
tion must have domainC. The 
odomain 
ategory D almost 
ertainly isn't C, sin
e that would mean thatthe 
ategory of 
omputations (D) has no more stru
ture than the 
ategory of puretyped fun
tions (C). So if � and � are the underlying adjun
tions of two (nontrivial)notions of 
omputation, they almost 
ertainly aren't 
omposable |at least, not viaordinary 
omposition of adjun
tions| be
ause they both have domain C and neitherhas 
odomain C.One straightforward way of working around the non-
omposability problem is tode�ne, not monads dire
tly, but higher-level fun
tions that take a monad in C asa parameter and return another monad in C as a result | a \monad parameter-ized by another monad". Steele advo
ated this approa
h in [St94℄, under the name14Customizing syntax is really a problem only at the large-but-not-universal s
ale that Wadler wasworking at. Moggi had had no diÆ
ulty when working at a universal s
ale be
ause he was perfe
tlywilling to 
ustomize the syntax for ea
h variant; and the smaller-s
ale phenomena to whi
h monadshave sin
e been applied already had synta
ti
 strategies asso
iated with them before monads wereever brought into the pi
ture.15The reader 
an readily work out this 
omposition operation by playing around with the fun
torsand natural transformations of � and � | be
ause, on
e again, 
ategory theory is so steeped inwell-behavedness that everything tends to work out right.13



\pseudomonads".Another approa
h was suggested by Jones and Dupon
heel in [JoDu93℄. WhereasSteele had added fa
ility to ea
h individual monad, in order to parameterize it, Jonesand Dupon
heel added fa
ility to a parti
ular pair of monads. In parti
ular, givenmonads hM; �M ; �Mi and hN; �N ; �Ni, they assumed that a \
omposition" monadwould have fun
tor T = M ÆN and unit � = �M Æ �N , and identi�ed several di�erentsuÆ
ient 
onditions for the 
onstru
tion of a natural transformation �:T 2 :! T su
hthat hT; �; �i is a monad16. They also admitted mathemati
al stru
tures that do nothave all the properties of a monad, a fa
t that they were quite open and pragmati
about, noting that a monad-like entity may still usefully serve as an en
apsulatingstru
ture even though it la
ks some of the mathemati
al well-behavedness of a monad.2.2 Abandoning monadsPapers on monadi
 programming tend to use the notation of one or another ex-tant fun
tional language (typi
ally Haskell or ML, ex
ept for Moggi's early workwhi
h was about the expression of language semanti
s through means other thana
tual program 
ode). Fun
tional languages, however, 
annot express any of thewell-behavedness properties17 that are essential to the appli
ability of the underlying
on
epts of monads | essential be
ause without those properties there is no un-derlying adjun
tion, just a type 
onstru
tor and a 
ouple of polymorphi
 fun
tions.Consequently, as work on monads in programming has be
ome in
reasingly applied,the well-behavedness properties have tended to fade from view, leaving only a tem-plate for me
hani
al stru
ture of program modules. For example, [Pr97℄ des
ribesa pra
ti
al programming devi
e in whi
h \features" are de�ned using me
hani
allymonadi
 stru
ture, and then pairwise 
ompositions of features are de�ned using \lift-ing" stru
tures me
hani
ally similar to the monad transformers of [JoDu93℄. Hisfeatures are essentially OO abstra
tion 
lasses, and lifting is a generalization of OOinheritan
e | neatly exemplifying the nature of the pra
ti
al intera
tion between
omposition and en
apsulation.The properties of monads have also been gradually weakened in theoreti
al workon programming languages, as theory is devised to des
ribe appli
ations that them-selves favor pra
ti
al en
apsulation over theoreti
al well-behavedness. A typi
al (alsotopi
al) example is [Wa99℄, whi
h re
asts an e�e
t system in monadi
 style.E�e
ts are a devi
e for en
apsulating 
omputational impurities that has emergedfrom the (
omparatively) applied tradition of type systems (whereas monadi
 styleemerged for the same purpose out of the theoreti
al tradition of 
ategory theory). As16They expressed their 
onditions entirely as equations in polymorphi
 fun
tions on 
ategory C.Whether the 
onditions 
an be re
ast elegantly in terms of underlying adjun
tions is beyond thes
ope of this paper. I do suspe
t |based mostly on general prin
iples| that su
h a re
asting on
eidenti�ed would be extremely simple and, 
onsequently, explaining it would not be at all diÆ
ult.17The notion of a programming language that in
orporates 
orre
tness proofs in the program 
ode,while not within 
urrent te
hnology, is dis
ernible in 
urrent resear
h trends.14



a 
onventional type 
onstrains the range of permissible values of a datum, an e�e
t
onstrains the range of permissible side-e�e
ts of an impure fun
tion. Fun
tion typenotation is amended by writing the e�e
t above the arrow; thus fun
tion f : � �! � 0takes input of type � , has e�e
t �, and produ
es output of type � 0. E�e
ts havean asso
iative binary operation [ (union) and an identity ; (the null e�e
t); purefun
tions have e�e
t ;, and the e�e
t of a 
omposition of fun
tions is the union oftheir e�e
ts, so that f : � �! � 0 and g: � 0 �0! � 00 imply g Æ f : � �[�0�! � 00.Wadler de�nes a \monad" stru
ture in whi
h the fun
tor is parameterized by ane�e
t, thus T �. Obje
t T �a is the type of 
omputations with e�e
t � and outputtype a. For ea
h e�e
t � there is a naturally asso
iated monad �� = hT �; ��; ��i, butWadler has no interest in these monads individually. Instead he views the entire familyof them as a single monad-like entity. Binary operation � ; � (representing the thirdelement of a monadi
 form) maps f : a ! T �b and g: b ! T �0
 to (f ; g): a ! T �[�0
.Note that this 
annot 
orrespond to 
ategori
al 
omposition in the impli
it 
odomainof an adjun
tion, be
ause in general the 
odomain of g isn't the 
odomain of (f ; g);but in 
ase �0 = � it 
ollapses to program 
omposition in monad ��, while in generalit 
onne
ts monads �� and ��0 to a monad ��[�0 that is therefore, in a sense, their
omposite (though in not at all the sense of Jones and Dupon
heel). The \unit"of Wadler's stru
ture is � = �;, whi
h is the natural 
hoi
e for the entire family ofmonads be
ause ��0a is a left and right identity under � ; � with programs in monad�� i� �0 � �, hen
e �;a is a left and right identity under � ; � with programs in allmonads ��.3 The basis of monadi
 styleThe essen
e of the mathemati
al 
on
ept of monad is the existen
e of an impli
itunderlying adjun
tion; in e�e
t (whatever his intent), Moggi's �
 presumes that the
ategory of pure fun
tions is adjun
tively related to the 
ategory of programs. How-ever, the subsequent departure of \monadi
 style" from the mathemati
al 
on
eptdemonstrates that, if monadi
 style has a 
on
eptual basis, that basis isn't monads.So it's worthwhile to ask what su
h a basis might be18.A parti
ularly ri
h sour
e of insight into what monadi
 style is, and is not, isWadler's paper [Wa93℄ on 
omposable 
ontinuations. Wadler 
hara
terizes monadi
style as a generalization of 
ontinuation-passing style. The idea behind 
ontinuationsis that a 
on�guration (i.e., intermediate state of 
omputation) 
an be partitionedinto a value, representing the 
ulmination of past 
omputation, and a 
ontinuation,representing all future 
omputation. The usual monadi
 treatment of 
ontinuationsuses fun
tor Ta = ((a! O) ! O); sin
e Moggi's \
omputations of type a" alreadyknow what their input value is, what remains to be spe
i�ed is the 
ontinuation a!18This question has an inherent subje
tivity, in 
onsequen
e of whi
h this se
tion will ne
essarilyhave a distin
t thread of editorial 
ontent | subdued as feasible, but nonetheless present.15



O. The fully expli
ated type of a program p: a! Tb is thus p: a! ((b! O)! O).The generalization for \monadi
 style" is that a program p 
urries 
omputation|whi
h is a mapping from initial 
on�gurations to �nal 
on�gurations| so that pinputs only a data value of type a, leaving the rest of the initial 
on�guration (ifany) unspe
i�ed, so that a \
omputation" (in Moggi's sense) of type Tb maps all ofan initial 
on�guration ex
ept the input data value to a 
omplete �nal 
on�guration.However, stating the prin
iple thus baldly, it be
omes evident that two assumptionshave to have been stipulated before monadi
 style 
an be applied:1. Computation is a mapping from initial 
on�gurations to �nal 
on�gurations.2. Ea
h 
on�guration has a distinguishable part that may be regarded as an \inputvalue".At �rst glan
e, both of these assumptions sound reasonable19; however, there is a 
on-
eptual problem here, originating in assumption (1) and visible in the 
ontinuation-monad fun
tor Ta = ((a!O)!O). Type O is the data type of the �nal result of
omputation. But as observed earlier, a 
ontinuation represents all future 
ompu-tation; as S
heme �rst-
lass 
ontinuations (for example) are a
tually experien
ed bya programmer, a 
ontinuation doesn't return: it has an input type (whi
h would beonly impli
it in S
heme, of 
ourse), but it shouldn't have an output type. O is anartifa
t of the pure fun
tional programmer's (or mathemati
ian's) determination toexpress 
omputation entirely in terms of pure fun
tions.(I don't 
laim to have an alternative approa
h ready to hand; I merely suggestthat our approa
h to des
ribing 
omputation should be driven by the nature of 
om-putation, but at present seems to be driving our per
eption of 
omputation instead.As to whether the solution is a drasti
 
hange of strategy or a subtle modulation ofta
ti
s, I pro�er no opinion.)Wadler's treatment of 
omposable 
ontinuations further suggests the existen
e ofsome kind of impli
it 
on
eptual stru
ture that the mathemati
s is failing to exploit.An ordinary 
ontinuation is 
aptured by (in the syntax adopted by Wadler) anexpression (es
ape f:e), whi
h evaluates e with variable f bound to the 
ontinuationsurrounding the es
ape expression. Continuation f is a \fun
tion that never returns".A 
omposable 
ontinuation is 
aptured by an expression (shift f:e), whi
h snips o�a pre�x of the 
ontinuation surrounding the shift expression and evaluates e with fbound to that pre�x. The pre�x stops at the nearest dynami
ally en
losing resetexpression, (reset e). Be
ause the pre�x has a stopping point as well as a startingpoint, it's a fun
tion, hen
e 
omposable. Here's a very simple example (from [Wa93℄):1 + (reset (10 + (shift f:(f(f 100)))))The 
onstru
t (reset(10 + (shift f:|))) binds variable f in the body of the shift ex-pression to (�x:(10+x)). The expression in the body, (f(f 100)), therefore evaluates19Choi
e examples of mixed metaphors are quoted under \mixed metaphor" in most (printed)di
tionaries of the English language. 16



to 120, whi
h is returned dire
tly to the 
ontext en
losing the reset expression be-
ause the intervening (10 + |) was removed when it was bound to f . The result ofevaluating the entire expression20 is 121.A general type system for 
omputations involving 
omposable 
ontinuations has ingeneral to keep tra
k of three 
onstituent data types: a type for the 
urrent expression,a type for the nearest en
losed shift, and a type for the nearest en
losing reset.The fun
tor in Wadler's monad-like stru
ture is therefore parametri
 in two types.Program 
omposition � ; � maps f : a ! (Txy)b and g: b ! (Tyz)
 to (f ; g): a !(Txz)
.As with his (
hronologi
ally mu
h more re
ent) treatment of e�e
ts, this 
om-position operation isn't 
ategori
al in general be
ause the 
odomain of g is not the
odomain of f ; g. The only time they are the same is when x = y, and 
onsequentlyhis general mathemati
al stru
ture only redu
es to a monad when the two parametersof T are both �xed at some parti
ular type x. This means that obje
ts (Txy)a forx 6= y are not in the 
odomain of any monad, and Wadler is moved to observe thathis treatment is \quite satisfa
tory. . . [but℄ not a monad."There is also something suspi
iously 
ategori
al in the typing of this `
omposition'operation that usually doesn't redu
e to a monad. The parameters of T in the generaltype ((a! (Txy)b)� (b! (Tyz)
)) ! (a! (Txz)
) follow the pattern xy � yz !xz; and that is the pattern of domains and 
odomains in the 
omposition of arrowsin a 
ategory.(On
e again, I have no suggestions to o�er as to just what is a
tually going on;only an unsettled feeling that the treatment is missing something dreadfully importantbe
ause its 
on
eptual foundations are insuÆ
iently solid.)4 Con
luding noteThe original obje
tive of this work was to relate the abstra
t mathemati
al 
on
eptof monads to the applied area of programming languages. My overall assessment isthat the me
hani
al form of monads has inspired extensive (more-or-less ad ho
) workin programming languages, while thus far no strong relation has been demonstratedbetween the mathemati
al 
on
ept itself and the applied area.
20In 
ase this example isn't 
onfusing enough, Wadler also presents the following expression thatreverses the list [1,2,3℄.letre
 perverse = (�l:if (null l)then [ ℄else (shift f:((head l) : (f (perverse (tail l)))))in (reset (perverse [1; 2; 3℄)) 17
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