WPI-CS-TR-03-21 June 2003
emended, 18 September 2003

Monads for Programming Languages

by
John N. Shutt

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

i

Monads for Programming Languages

John N. Shutt
jshutt@cs.wpi.edu
http://www.cs.wpi.edu/” jshutt/
Computer Science Department

Worcester Polytechnic Institute
Worcester, MA 01609

June 2003

emended, 18 September 2003

Abstract

This paper assesses the relationship between the abstract mathematical con-
cept of monads, and the applied area of programming languages.

Contents

3

4

Introduction

The concept of monad
1.1 Origins of the math
1.2 Notions of computation

Monadic programming
2.1 Composing monads
2.2 Abandoning monads

The basis of monadic style

Concluding note

Acknowledgments

Bibliography

il

12
13
14

15

17

18

18

v

0 Introduction

Monads are a kind of mathematical structure that arises in category theory. Originally
identified in that setting, since around 1990 they have been studied in the context of
programming languages, on three successively narrower scales.

1. Eugenio Moggi applied monads to computation on a universal scale; e.g., [Mo89].
He was looking for a categorical tool to describe the shape of impure computa-
tion (state, imperative control, etc.), and settled on monads.

2. Others subsequently used monads on a merely large scale, to encapsulate the
handling of impure language features by an interpreter; e.g., [Wa92c].

3. Monads have since been used on a finer-grained scale, to encapsulate individual
impure phenomena occurring within arbitrary programs; e.g., [SeSa99].

The “universal” scale overarches one universe of discourse —which is to say, one
programming language at a time. Commensurate with the basic principle that
all software engineering artifacts are languages', anything that applies to languages
applies to arbitrarily small entities within a program. Thus the subsequent narrowing
of scale was a natural development.

There is no universally applicable technique for “composing” monads, i.e., com-
bining monads that represent arbitrary impure phenomena to produce a single monad
that represents both phenomena at once. This lack doesn’t seem particularly prob-
lematic at the universal scale, because there are only so many universes one expects
to live in. However, as the scale of application narrows, lack of monadic composition
becomes increasingly worrisome. At a sufficiently narrow scale, it becomes appar-
ent that the problem of combining monads is a mathematical manifestation of the
problem of combining software components.

Another lingering question concerning monads is whether they are really the right
tool for the job. They seem to have suggested themselves to Moggi originally because
he was looking for something with nice mathematical properties, and monads were
a known form with nice mathematical properties. Borrowing structures from one
field to another like this can be hazardous; just because monads have properties
that are helpful in mathematics doesn’t mean they're necessarily right for modeling
general computation (just as the suitability of traditional OO inheritance for coding
1960s-style simulation software doesn’t necessarily make it ideal for general-purpose
software engineering).

The following sections relate the mathematical concept of monads to their ap-
plication to programming languages. Although technical details are present when
necessary (as in the initial explanation of the mathematical concept), the emphasis

'This principle is central to the RAG model [Sh98]. Here I've deliberately phrased it to compare
and contrast with the principle from [Kr(01] that programming languages are software engineering
artifacts.

throughout is on the big picture: what monads are (§1.1); why and (to some extent)
how they were first applied to computation (§1.2); and why and how their application
has diverged from its mathematical roots (§2).

1 The concept of monad

In his original application of monads to computation, Moggi seems [Mo89] to have
been motivated by an interest in handling impure forms of computation in the frame-
work of the A-calculus. Work in the late 1980s had directly constructed variants of
A-calculus to handle various particular impure facilities (e.g., [FeFr89]). Moggi, how-
ever, followed the principle that category theory is prior to A-calculus (because cate-
gory theory is a generalization of the set-based function theory on which A-calculus
is founded); therefore, he reasoned, natural generalizations of the foundations of A-
calculus ought to be cleanly expressible in categorical form. He chose monads as
a categorical structure that would serve his purpose for a variety of computational
impurities.

Below, §1.1 discusses the mathematical and conceptual underpinnings of monads;
while §1.2 describes how Moggi’s approach applies monads to some particular forms
of computational impurity.

1.1 Origins of the math

This subsection is about the big picture of the mathematical concept of monad. The
material is approached in parallel on three mutually supporting levels: the big picture
itself, formal definitions, and simple examples.

Mathematics is (in one view of the beast) the systematic study of things that
are, in some sense or other, well-behaved. If there isn’t some kind of nice behavior
there, it isn’t possible to conduct a study that is (intrinsically) systematic. On the
other hand, anything that does exhibit some kind of well-behavedness is subject to
mathematical study; and it happens that well-behavedness is itself, unsurprisingly,
rather well-behaved, so it should be possible to study it mathematically. In essence,
the mathematical study of well-behavedness is category theory.

The major concepts of category theory build one on another. In order (and as
they will be defined below), they are: categories, functors, natural transformations,
and adjunctions. The first three were manifest in category theory from the start;
but the last and highest-level, adjunctions, didn’t emerge explicitly for about fifteen
years after the others [Ma71, §IV endnotes]. Adjunctions are actually just one way
of describing a high-level phenomenon that also manifests itself in a number of other
related forms — one of which, in particular, is monads.

Categories

The starting point for category theory is the notion of a well-behaved family of mor-
phisms or arrows each from an object of type X to another object of type X.
This is a generalization of the family of all functions between sets. A category consists
of

e a directed graph; the vertices are called objects, the directed edges are called
arrows or morphisms, the source of an arrow is its domain, the destination is
its codomain.

e an associative binary partial operation on arrows called composition, that is
defined just when the codomain of one edge is the domain of another.

e an identity arrow for each object, whose domain and codomain are both that
object, and that is an identity under composition both on the right and on the
left.

Here is the definition expressed formally.

Definition 1.1 A graph G consists of the following collections and operations.
e A collection of objects, ObjG. a € ObjG may be written as “a € G”.
e A collection of arrows, ArrG. f € Arr G may be written as “f in G”.

e Operations dom and cod mapping each arrow f to an object dom f called
its domain and cod f its codomain. “a = dom f and b = cod f” may be
written as “f:a — b”, or diagramatically as

a f b

- 5.

A category C'is a graph with the following additional operations and properties.

e A partial binary operation © on arrows, mapping each of certain pairs of arrows
f,g to an arrow go f called their composition.

— For any f,gin C, gof is defined iff cod f = dom ¢, and if it is defined,
domgof =dom f and cod gof = cod g. Diagramatically,

N

— Composition is associative; that is, ho(gof) = (hog)of = hogof
whenever the relevant compositions are defined.

e An operation id mapping each object x to an arrow id, such that

— for every arrow f:a — b, foid, =idyof = f.

O

The canonical example of a category is the category Set, whose objects are sets?
and whose arrows are total functions from set to set. Very many of the interesting
examples of categories consist of all sets with a certain kind of additional structure,
together with all functions from set to set that preserve that structure; for example,
category Grp has as objects, groups, and as morphisms, group homomorphisms;
Mon has as objects monoids, and as arrows monoid homomorphisms; and so on.

Note, in passing, that the core of a category is its composition operation; all the
other parts of the category are implicit in that. Although, given the objects of a
category, there is often a single most obvious choice of arrows, it is not uncommon
for two categories to have the same objects but different arrows; for example, the
category Pfn has as objects all sets, but as arrows all partial functions from set to
set. Usually, once the set of arrows has been defined there is one really obvious and
natural way to define composition; but occasionally, two categories of interest will
have the same objects and the same arrows, but different rules for composition?.

Functors

A category may itself be viewed as “a set with a certain kind of additional structure”;
so that, given a suitable definition of category-structure-preserving morphisms, one
could form a category of categories. The natural definition of a (homo)morphism of
categories, called a functor, is a mapping of objects to objects and arrows to arrows
that preserves all the operations domain, codomain, composition, and identity.
That is,

2I’'m ignoring some obfuscating complications that a very careful treatment would have to address,
involving the foundations of mathematics and avoiding Russell’s Paradox (whether the set of all sets
that don’t contain themselves contains itself). See [Ma71, §I]

3For example [MaAr86], category Mfn has sets for objects, and multivalued functions for arrows

that is, an arrow f: A — B maps each value a € A to a set of values f(a) € P(B) with
composition defined by

(o)) = |J 9

yef(z)

while ANMfn, the category of “multivalued functions with all-or-nothing composition” has the
same objects and arrows, but composition is defined by

0 if 3y € f(x) such that g(y) =0

(gof)(z) = U g(y) otherwise
yef(z)

Definition 1.2 Given categories C, D, a functor T: C' — D consists of an object
function 7: ObjC' — Obj D and an arrow function 7": Arr C' — Arr D, such that

domTf = Tdomf
codTf = Tcodf

(Tf)o(Tg) = T(fog)
id,, = Tid,

O

The category whose objects are all categories and whose arrows are all functors is
called Cat, the category of all categories.*

For example, for any set A, the monoid freely generated over A consists of the set
A* of all strings over alphabet A, together with concatenation as the binary operation
of the monoid, and the empty string A as the identity element (since V strings w € A*,
Aw = wA = w). Let’s call this monoid M A; so M maps each object of category Set
to an object of category Mon. Further, for any function on sets f: A — B, there is
an obvious monoid homomorphsim M f: MA — MB that takes any string over A,
and uses f to map each element a € A of the string to the corresponding element
fa € B. (This is the operation that is provided in Scheme by procedure map.) So M
is a functor from Set to Mon; in symbolic notation, M:Set — Mon.

On the other hand, we can also define a functor U: Mon — Set that maps each
monoid N to its underlying set of elements UN, and maps each monoid homomor-
phism h: Ny — N, to its underlying function Uh from elements of N; to elements of
N,. This functor U is called the forgetful functor from Mon to Set.’

Note that the composed functor U o M: Set — Set maps each set A to the set A*
of strings over alphabet A.

Natural transformations

Given two functors S,T: B — C (i.e., parallel functors), a natural transformation 7
from S to T is a family of morphisms in C that relate the image of S to the image
of T' (in, of course, a very well-behaved way this being category theory, after all).
Formally,

Definition 1.3 Given any two functors S,T7: B — (', a natural transformation
n from S to T, denoted n: S = T, is a mapping 177: Obj B — Arr C such that for
all arrows f:x — y in B, (ny)o(Sf) = (T'f)o(nx). This equation may also be
expressed by saying that the following diagram commutes, meaning that for any

4 Actually Cat only contains all small categories, which means among other things that it doesn’t
contain itself.

5 Any functor such as this, whose action is essentially to “forget about some of the structure” of
an object (typically, a set with some additional structure), is called a forgetful functor. Forgetful
functors are usually called U.

two points shown on the diagram, the composition of arrows on every path from
one point to the other are equal®.

S.’I; -77%. TT
Sf Tf

Syl——— Ty

ny
O

While the above commutative diagram shows how the interaction of f and n
manifests itself in category C', the overall interaction spans categories B and C' and
is only implicit in the diagram. To provide a more complete visualization of the
situation in a single picture (of a 3D figure, specifically a triangular prism), we'll
adopt the further notational convention of depicting the action of a functor on an
object by a double-shafted arrow.

€T >0 T
|2 |,

St
Y- > 1y

To avoid cluttering the picture, only the objects and arrows are labeled. The front
left face of the prism is swept out by S acting on f. The back face of the prism
is swept out by 7" acting on f. The front right face is the commutative diagram in
category C'. n sweeps out the angle from the plane of S to the plane of 7'

Now, here is a simple example of a natural transformation. Consider the identity
functor on category Set, Idset: Set — Set, which maps each object and arrow of
Set to itself. There is an obvious natural transformation 7 from this functor Idge¢ to

6This use of the word commute may seem less idiosyncratic if one considers that, given any two
functions f,g: X — X on a set X, the following diagram commutes iff f and g commute in the usual
sense; that is, iff fog = go f.

g
Xe——>eX

f f

Xy X

the functor U o M: Set — Set described earlier, which maps each set X to the set of
strings over alphabet X. That is to say, 7: Idget — U © M. For each set X, arrow nX
maps each letter in the alphabet X to the string of length one consisting of that letter;
that is, (nX)z = x. For any function on sets f: X — Y, function (UoM)f =UMf
maps strings over alphabet X to strings over alphabet Y by applying f to each letter
of the string. Then n is a natural transformation because the following diagram
commutes.

nX
Xo————-UMX

f UM f

Yo ——————-UMY
nY

It should be clear that this diagram does commute: if you apply f to a letter v € X
and then make a string of length one out of the result, you get the same thing as if
you'd first converted x to a string of length one and then applied f to each letter of
the string.

Adjunctions

Recall that we first characterized a category as a well-behaved family of morphisms
each from an object of type X to another object of type X. Category theory also
provides a more general notion of a well-behaved family of morphisms each from an
object of type X to an object of type Y a family of morphisms (or perhaps a less
loaded term would be directed relationships) of this more general kind is called an
adjunction.

Rather than attempt to motivate each component of an adjunction in terms of this
high-level view of the construction, with the specter of the unknown formal definition
hanging over the discussion, we’ll present the full-blown formal definition first, secure
it with a concrete example, and only then address the roles of its various parts in the
high-level view.

Definition 1.4 Given two categories C' and D, an adjunction from C' to D is a
four-tuple (F, G, n,¢€), denoted (F,G,n,€): C'— D, where

e F'is a functor F:C — D, called the left adjoint.
e (7 is a functor G: D — (', called the right adjoint.
e 7 is a natural transformation 7: Idc = G o F', called the unit.

e ¢ is a natural transformation e: F'o G = Idp, called the counit.

e For every arrow f:x — Gy, there is a unique arrow f#:Fx — y such that
(Gf#)onx) =f.

e For every arrow f#:Fax — y, there is a unique arrow f:a2 — Gy such that
(ey) o (Ff) = f*.

O

The situation is summed up by the following picture (again of a solid figure).

GFx
C

S|
\
D
Ny
Q\
&h
FH
D

@
B!

D

- FGy

£

The top surface of the figure is a commutative diagram in category C', expressing the
constraint that (G f#)o (nx) = f; the bottom surface is a commutative diagram in
category D, expressing (ey)o (Ff) = f#. The two are connected by two parallelo-
grams: one swept out by F' acting on f (from f to F'f), and the other swept out by
G acting on f# (from f# to Gf#).

In assembling a specific example of an adjunction, we already have most of the
pieces from our running example. Let C' = Set, D = Mon, F = M (that freely
generates monoids over sets), and G = U (forgetful from Mon to Set).

To fill out the rest of the labels in the diagram, we can rely heavily on common
sense; with adjunctions, the obvious guess is usually right (as one might expect in a
systematic study of well-behaved well-behavedness). The unit is a natural transfor-
mation from Idgey to Go F' = U o M; we've already seen it, mapping each letter in
alphabet x to itself as a string of length one in 2*. To reason out the counit, consider
the particular case that monoid y = (N, 4, 0), the additive monoid of nonnegative in-
tegers. Gy = U(N, +,0) = N is the set of nonnegative integers, so an arrow f:x — Gy
maps each letter of alphabet x to a nonnegative integer. FGy = MN = (N* - A)
is the monoid of strings of nonnegative integers, and F'f = M f is the monoid ho-
momorphism that applies f to each letter of a string over x, producing a string of
nonnegative integers. The counit has to map a string of integers to a single integer;

it’s not much of a stretch to think of adding up the elements of the string. Returning
to the general case of arbitrary monoid y, MUy is the monoid of strings over the
underlying set of y, and ey: MUy — y combines the elements of each such string
using the associative binary operation provided by monoid y (using the identity of y
for the empty string)”.

Monoid homomorphism f#: Ma — y takes a string over alphabet x, applies f
to each letter of the string, and combines the results using the associative binary
operation of monoid y.

Recall the initial characterization of an adjunction as a well-behaved family of
directed relationships from objects of one type to objects of another. Since the ad-
junction establishes a bijection between arrows f:2 — Gy and f#: Fax — y, we can
view both arrows as manifestations, in C' and D, of a directed relationship from set x
to monoid y that does not belong strictly to either category. The adjoint functors F
and G allow each of objects x, y to manifest in the other category so that the relation
from = to y can appear in both places. The unit and counit are simply the form of
the family’s well-behavedness.

Monads

A monad is, intuitively, the shadow cast by an adjunction in its domain category
(which we’ve been calling C').

Since the codomain category D will never occur explicitly in the monad, we only
need one functor, the composite of the right and left adjoints. Call this composite
T =GoF:C — C. The unit n of the adjunction can now be described as a natural
transformation n: Id¢c — T'. The counit casts its shadow in C' by means of the adjoint
functors: Starting with an object x € C, the left adjoint F' maps it to an object
Fax e D, which € maps to an arrow eFx: FGFx — Fx in D, which the right adjoint
G maps to an arrow GeFa: GFGFx — GFz in C. Call this natural transformation®
w=GeF:ToT = T.

Here is the formal definition of a monad, using the convenient notation 7° = Id¢
and Tt = ToT™,

Definition 1.5 Given a category C', a monad in C'is a triple (7', 7, u) where

e T is a functor T: C — C.

e 1) is a natural transformation 7: 7% = T', called the unit.

"Scheme programmers familiar with the Wizard Book [AbSuSu96] may recognize this homomor-
phism as procedure accumulate.

80f course the result of all this manipulation is still a natural transformation, because in category
theory everything has an uncanny way of coming out right a corollary of the fact that category
theory is positively dripping with well-behavedness.

e ;i is a natural transformation p: 7% = T, sometimes called the multiplication®.

e For every object z € C,

puroTur = pxoulx T3z — Tx
proTnr = pronTx = idp, Tax —Tx
O

The monad equations follow from the properties of an adjunction!®. On the other
hand, since a monad evidently forgets some of the details of the adjunction, it
shouldn’t come as a surprise that many adjunctions may define the same monad. In
particular, an adjunction considers all objects y € D, but the corresponding monad
in C' ignores all objects in D that aren’t of the form F'x for some = € C.

Even though category D is no longer explicitly present in monad (7,7, u), its
identity and composition operations are still visible. Given any two arrows f:a — T'b
and ¢g: b — T'cin C, they can be “composed” through the monad to produce an arrow
(fi9):a — Tec, as follows. (Here, notation f;g follows the common programming
idiom for sequencing. Note carefully that this notation uses the opposite ordering
from categorical go f.)

The adjunction matches arrow f:a — GFbin C with f#:Fa — Fbin D, and
g:b— GFcin C with ¢#: Fb — Fc in D; obviously these two arrows compose in D,
giving g7 o f#: Fa — Fec, which the adjunction matches with an arrow a — GFc in C.
A moment’s thought (and perhaps sketching a commutative diagram or two) will af-
firm that the appropriate “composed” arrow is (f;g) = ucoTgo f.

The identity operation of D is also effectively visible, in the form of natural
transformation 7. For every arrow f:a —bin C, (na;f) = (f;nb) = f. (This
happens because the adjunction matches each arrow nz:x — GFx in C' with arrow
idp,: Fr — Fx in D.)

1.2 Notions of computation

Moggi uses a monad (T, n, u) to describe what he calls a notion of computation''.
Objects in his category of discourse C' are types; a type t may be thought of as a pair
t = (d, S) of a type designation d and a set of values S. C'is thus somewhat distinct
from Set in that, depending on the type system chosen, types may have all the same

9This terminology alludes to the formal analogy between monads and monoids, in which 1 and
u correspond respectively to the identity element and binary operation of a monoid. Observe that
the term unit makes far more sense in the context of this analogy, than it did when it was applied
to the same natural transformation in the underlying adjunction of the monad.

10The first equation is derived ultimately from the fact that € is a natural transformation in D,
while the other two equations come from setting f = nx in the adjunction’s commutative diagram
in D, and f# = ey in the adjunction’s commutative diagram in C.

"Tn [M089], he first defines a computational monad to be a monad (T, n, u) such that for all objects
x € C, nx is mono (the categorical generalization of a one-to-one function), but then immediately
admits that the mono requirement may not hold for all interesting cases.

10

possible values but still be distinct because they have different designations. Arrows
in C' are arbitrary functions between the sets of values. The functor T" of the monad is
a type constructor, since it maps any given type a to a type T'a; he characterizes T as
mapping a type a of values to the type T'a of “computations of type a”. A program is
a function mapping values to computations, thus an arrow in C' of the form a — T.

Moggi’s use of the word “computation” to describe elements of T'a must be in-
terpreted carefully. In the realm of automata (and therefore operational semantics),
computation is typically a function on some kind of configuration space. For exam-
ple, a configuration of a stateful computation might be a pair (v,s) € V x S of a
value v € V with a machine state s € S; computation would then be a function
V xS — V xS mapping one configuration to another. However, in the scenerio
Moggi envisions, a program p:a — 70 maps each input value v € a to an element
¢ € Ta; so, in our stateful computation, element ¢ already knows what the input value
is. Thus, instead of a general function V x S — V x S, cis a function S — V x S.
SoThb=(S—bxS),and pra— (S —bx.5).

In general, an element of type T'a is a computation whose output value is of type
a and whose input value is fixed.

For another typical example, consider nondeterminism. In the usual sense, a
nondeterministic computation with input type a and output type b would be simply
a function a — Pb; but once the input value is known, the remaining “computation”
is simply a subset of b; so T'b = Pb, and program p: a — Pb.

Where there is a monad, there is an underlying adjunction. Its domain cate-
gory (' is the category of data types, while the implicit codomain category D is
the category of computation types. Programs are arrows from computation type to
computation type; so, assuming that every object in D belongs to the image of the
left adjoint functor F', the adjunction matches each program Fa — Fbin D with an
arrow a — GFb in C.

For any data type a, program na:a — T'a is the identity under program compo-
sition (since it corresponds to an identity arrow in the implicit category D). Con-
ceptually, program na takes an input value v € a and returns a computation that
“does nothing” and produces output value v. For nondeterministic computation,
(na)v = {v}, the singleton set containing the input value; while for stateful compu-
tation, (na)v = As.(v, s), the function mapping a machine state s to the pair of the
input value and the same machine state s.

The program composition operation - ;- supported by p defines the semantics of
directing the output of one program to the input of another. (This is the composition
operation of category D.) In the nondeterminism example,

(pr;po)a = U b2y

yep1x

meaning that the output of py; p2 on x could be anything output by ps on any output

11

of p; on z; while for stateful computation,

(prip2)r = As.pa(pi(w, s))

which is to say that, to run computation (p;; py)x with initial state s, first run compu-
tation p; & with initial state s to produce a configuration (z', s’), then run computation
pox’ with initial state s'.

Building on his use of monads as notions of computation, Moggi defines semantic
rules for a generic programming language using A-calculus-style syntax [Mo89], which
he calls computational lambda calculus, or \.. His semantic rules are parameterized by
the monad (T, n, i), so that results deduced from his rules will automatically apply
to all variant calculi that fit his monadic framework; a particular variant calculus
is constructed by fixing the monad, and adding appropriate language primitives for
accessing whatever form of impurity the monad supports.

The two core assumptions underlying Moggi’s monadic strategy (embodied by)
are that

1. every pure function can be understood as an impure function (via), and
2. all impure function composition can be done through the monad (via - ;).

In applied “monadic” programming style, the mathematical structure used will almost
never be a monad; but these two assumptions will linger (cf. §2.2).

2 Monadic programming

In effect, Moggi used monads in his mathematics as an encapsulation device, to isolate
different mathematical concerns from each other, making them more independently
tractable'?. Advocates of “pure functional” programming languages had been looking
for a way to correct the obvious deficit between their desire to use pure functions, and
the need for impure behavior —such as input and output— in real-world programs;
they quickly latched onto monads as a way of incorporating impurities into a “pure”
functional language in a controlled manner, isolable from the pure portions of the
language. (See [PJWa93].)

Wadler also took the natural step'® of scaling down Moggi’s parameterization of
programming language semantics by a monad, to parameterization of an interpreter
for a language ([Wa92¢]). In this context, the monad is more explicitly an encapsula-
tion device: the interpreter is constructed with a “monad-shaped hole” in it, and the
semantics of the interpreted language can be varied by plugging in an appropriate

12The division of orthogonal concerns isn’t usually called encapsulation when it occurs in math-
ematics per se; instead it is referred to, if at all, by various other names such as “independence”,
“orthogonality”, or even (in a specialized but prominent case) “separation of variables”.

130f course the natural step isn’t necessarily obvious, and when it is obvious it generally takes
even longer for someone to think of it.

12

monad. The encapsulation of impurities isn’t complete because, as [St94] points out,
one must also tweak the code for the interpreter to add appropriate syntax to exploit
whatever semantic features have been provided by the monad; so the variations in
the interpreter are not quite entirely restricted to the monad itself'*.

2.1 Composing monads

Because Moggi had originally been looking at the problem of defining the semantics
of impure forms of computation, he’d had what seemed to be a quite finite number
of targets; so hand-fashioning a monad (and, as already noted, a specialized syntax)
for each targeted combination of impurities would not have seemed unreasonable.
Wadler, however, had promoted monads to the status of software components, and
thus engaged the programmer’s reflex to play around with them, build lots of different
ones, and find ways to parameterize and combine them to build new ones with ever-
greater facility.

Unfortunately, at this point the monad’s mathematical underpinnings come back
to haunt it. The monad is a manifestation of an adjunction, which is a directed
relation from the explicit category C' to the implicit category D. There is in fact
a very natural way to compose an adjunction ¢:C' — D with another adjunction
x: D — FE to produce an adjunction (y©¢):C — FE; and this composition'® has the
appropriate properties for a category it’s associative, and every category has an
identity adjunction. The category whose objects are categories and whose arrows are
adjunctions is called Adj.

For a monad to be a “notion of computation”, though, it has to be in the category
C of data types; and that means that the underlying adjunction must have domain
C. The codomain category D almost certainly isn’t (', since that would mean that
the category of computations (D) has no more structure than the category of pure
typed functions (C'). So if ¢ and y are the underlying adjunctions of two (nontrivial)
notions of computation, they almost certainly aren’t composable —at least, not via
ordinary composition of adjunctions— because they both have domain C' and neither
has codomain C.

One straightforward way of working around the non-composability problem is to
define, not monads directly, but higher-level functions that take a monad in C as
a parameter and return another monad in C' as a result a “monad parameter-
ized by another monad”. Steele advocated this approach in [St94], under the name

14Customizing syntax is really a problem only at the large-but-not-universal scale that Wadler was
working at. Moggi had had no difficulty when working at a universal scale because he was perfectly
willing to customize the syntax for each variant; and the smaller-scale phenomena to which monads
have since been applied already had syntactic strategies associated with them before monads were
ever brought into the picture.

15The reader can readily work out this composition operation by playing around with the functors
and natural transformations of ¢ and y because, once again, category theory is so steeped in
well-behavedness that everything tends to work out right.

13

“pseudomonads”.

Another approach was suggested by Jones and Duponcheel in [JoDu93]. Whereas
Steele had added facility to each individual monad, in order to parameterize it, Jones
and Duponcheel added facility to a particular pair of monads. In particular, given
monads (M, ny,) and (N, ny, pn), they assumed that a “composition” monad
would have functor T"= M o N and unit 1 = 1, ©ny, and identified several different
sufficient conditions for the construction of a natural transformation u: 7% = T such
that (T, n, p) is a monad'®. They also admitted mathematical structures that do not
have all the properties of a monad, a fact that they were quite open and pragmatic
about, noting that a monad-like entity may still usefully serve as an encapsulating
structure even though it lacks some of the mathematical well-behavedness of a monad.

2.2 Abandoning monads

Papers on monadic programming tend to use the notation of one or another ex-
tant functional language (typically Haskell or ML, except for Moggi’s early work
which was about the expression of language semantics through means other than
actual program code). Functional languages, however, cannot express any of the
well-behavedness properties'” that are essential to the applicability of the underlying
concepts of monads essential because without those properties there is no un-
derlying adjunction, just a type constructor and a couple of polymorphic functions.
Consequently, as work on monads in programming has become increasingly applied,
the well-behavedness properties have tended to fade from view, leaving only a tem-
plate for mechanical structure of program modules. For example, [Pr97] describes
a practical programming device in which “features” are defined using mechanically
monadic structure, and then pairwise compositions of features are defined using “lift-
ing” structures mechanically similar to the monad transformers of [JoDu93]. His
features are essentially OO abstraction classes, and lifting is a generalization of OO
inheritance neatly exemplifying the nature of the practical interaction between
composition and encapsulation.

The properties of monads have also been gradually weakened in theoretical work
on programming languages, as theory is devised to describe applications that them-
selves favor practical encapsulation over theoretical well-behavedness. A typical (also
topical) example is [Wa99], which recasts an effect system in monadic style.

Effects are a device for encapsulating computational impurities that has emerged
from the (comparatively) applied tradition of type systems (whereas monadic style
emerged for the same purpose out of the theoretical tradition of category theory). As

16They expressed their conditions entirely as equations in polymorphic functions on category C.
Whether the conditions can be recast elegantly in terms of underlying adjunctions is beyond the
scope of this paper. I do suspect —based mostly on general principles— that such a recasting once
identified would be extremely simple and, consequently, ezplaining it would not be at all difficult.

17The notion of a programming language that incorporates correctness proofs in the program code,
while not within current technology, is discernible in current research trends.

14

a conventional type constrains the range of permissible values of a datum, an effect
constrains the range of permissible side-effects of an impure function. Function type
notation is amended by writing the effect above the arrow; thus function f:7 5 7/
takes input of type 7, has effect o, and produces output of type 7'. Effects have
an associative binary operation U (union) and an identity () (the null effect); pure
functions have effect (), and the effect of a composition of functions is the union of
their effects, so that f:7 % 7" and ¢: 7' LY imply go f: 7 R

Wadler defines a “monad” structure in which the functor is parameterized by an
effect, thus 77. Object T7a is the type of computations with effect ¢ and output
type a. For each effect o there is a naturally associated monad ¢ = (T, 77, u7), but
Wadler has no interest in these monads individually. Instead he views the entire family
of them as a single monad-like entity. Binary operation -;- (representing the third
element of a monadic form) maps f:a — T°b and ¢g:b — T c to (f;g):a — TV c.
Note that this cannot correspond to categorical composition in the implicit codomain
of an adjunction, because in general the codomain of g isn’t the codomain of (f;g);
but in case o' = ¢ it collapses to program composition in monad ¢“, while in general
it connects monads ¢ and ¢7 to a monad ¢”“? that is therefore, in a sense, their
composite (though in not at all the sense of Jones and Duponcheel). The “unit”
of Wadler’s structure is n = 7°, which is the natural choice for the entire family of
monads because 17 a is a left and right identity under -:- with programs in monad
¢7 iff o' C o, hence 1%a is a left and right identity under -;- with programs in all
monads ¢°.

3 The basis of monadic style

The essence of the mathematical concept of monad is the existence of an implicit
underlying adjunction; in effect (whatever his intent), Moggi’s A. presumes that the
category of pure functions is adjunctively related to the category of programs. How-
ever, the subsequent departure of “monadic style” from the mathematical concept
demonstrates that, if monadic style has a conceptual basis, that basis isn’t monads.
So it’s worthwhile to ask what such a basis might be's.

A particularly rich source of insight into what monadic style is, and is not, is
Wadler’s paper [Wa93] on composable continuations. Wadler characterizes monadic
style as a generalization of continuation-passing style. The idea behind continuations
is that a configuration (i.e., intermediate state of computation) can be partitioned
into a wvalue, representing the culmination of past computation, and a continuation,
representing all future computation. The usual monadic treatment of continuations
uses functor Ta = ((a — O) — O); since Moggi’'s “computations of type a” already
know what their input value is, what remains to be specified is the continuation a —

18This question has an inherent subjectivity, in consequence of which this section will necessarily
have a distinct thread of editorial content subdued as feasible, but nonetheless present.

15

O. The fully explicated type of a program p:a — Tb is thus p:a — ((b — O) — O).

The generalization for “monadic style” is that a program p curries computation
—which is a mapping from initial configurations to final configurations— so that p
inputs only a data value of type a, leaving the rest of the initial configuration (if
any) unspecified, so that a “computation” (in Moggi’s sense) of type Tb maps all of
an initial configuration except the input data value to a complete final configuration.
However, stating the principle thus baldly, it becomes evident that two assumptions
have to have been stipulated before monadic style can be applied:

1. Computation is a mapping from initial configurations to final configurations.

2. Each configuration has a distinguishable part that may be regarded as an “input
value”.

At first glance, both of these assumptions sound reasonable!'’; however, there is a con-
ceptual problem here, originating in assumption (1) and visible in the continuation-
monad functor Ta = ((a—0O) — O). Type O is the data type of the final result of
computation. But as observed earlier, a continuation represents all future compu-
tation; as Scheme first-class continuations (for example) are actually experienced by
a programmer, a continuation doesn’t return: it has an input type (which would be
only implicit in Scheme, of course), but it shouldn’t have an output type. O is an
artifact of the pure functional programmer’s (or mathematician’s) determination to
express computation entirely in terms of pure functions.

(I don’t claim to have an alternative approach ready to hand; I merely suggest
that our approach to describing computation should be driven by the nature of com-
putation, but at present seems to be driving our perception of computation instead.
As to whether the solution is a drastic change of strategy or a subtle modulation of
tactics, I proffer no opinion.)

Wadler’s treatment of composable continuations further suggests the existence of
some kind of implicit conceptual structure that the mathematics is failing to exploit.

An ordinary continuation is captured by (in the syntax adopted by Wadler) an
expression (escape f.e), which evaluates e with variable f bound to the continuation
surrounding the escape expression. Continuation f is a “function that never returns”.
A composable continuation is captured by an expression (shift f.e), which snips off
a prefix of the continuation surrounding the shift expression and evaluates e with f
bound to that prefix. The prefix stops at the nearest dynamically enclosing reset
expression, (reset e¢). Because the prefix has a stopping point as well as a starting
point, it’s a function, hence composable. Here’s a very simple example (from [Wa93]):

1+ (reset (10 + (shift f.(f(f 100)))))

The construct (reset(10 + (shift f.—))) binds variable f in the body of the shift ex-
pression to (Ax.(10+x)). The expression in the body, (f(f 100)), therefore evaluates

19Choice examples of mixed metaphors are quoted under “mixed metaphor” in most (printed)
dictionaries of the English language.

16

to 120, which is returned directly to the context enclosing the reset expression be-
cause the intervening (10 + —) was removed when it was bound to f. The result of
evaluating the entire expression® is 121.

A general type system for computations involving composable continuations has in
general to keep track of three constituent data types: a type for the current expression,
a type for the nearest enclosed shift, and a type for the nearest enclosing reset.
The functor in Wadler’s monad-like structure is therefore parametric in two types.
Program composition -;- maps f:a — (Tzy)b and g:b0 — (Tyz)c to (f;g9):a —
(Tzz)c.

As with his (chronologically much more recent) treatment of effects, this com-
position operation isn’t categorical in general because the codomain of ¢ is not the
codomain of f;g. The only time they are the same is when x = y, and consequently
his general mathematical structure only reduces to a monad when the two parameters
of T are both fixed at some particular type x. This means that objects (Txy)a for
x # y are not in the codomain of any monad, and Wadler is moved to observe that
his treatment is “quite satisfactory. . .[but] not a monad.”

There is also something suspiciously categorical in the typing of this ‘composition’
operation that usually doesn’t reduce to a monad. The parameters of T"in the general
type ((a = (Tzy)b) x (b — (Tyz)c)) — (a — (Txzz)c) follow the pattern zy x yz —
xz; and that is the pattern of domains and codomains in the composition of arrows
in a category.

(Once again, I have no suggestions to offer as to just what is actually going on;
only an unsettled feeling that the treatment is missing something dreadfully important
because its conceptual foundations are insufficiently solid.)

4 Concluding note

The original objective of this work was to relate the abstract mathematical concept
of monads to the applied area of programming languages. My overall assessment is
that the mechanical form of monads has inspired extensive (more-or-less ad hoc) work
in programming languages, while thus far no strong relation has been demonstrated
between the mathematical concept itself and the applied area.

20Tn case this example isn’t confusing enough, Wadler also presents the following expression that
reverses the list [1,2,3].

letrec perverse = (ALif (null 1)

then []

else (shift f.((head 1) : (f (perverse (tail 1)))))
in (reset (perverse [1,2,3]))

17

Acknowledgments

I wish to thank my dissertation committee for keeping after me to complete this work
— without which, I'd have been missing an important piece of the Big Picture.

References

[AbSuSu96] Harold Abelson, Gerald Jay Sussman, and Julie Sussman, Structure and
Interpretation of Computer Programs, Second Edition, New York: The MIT
Press, 1996. Available (as of June 2003) at URL:
http://mitpress.mit.edu/sicp/sicp.html

[FeFr89] Matthias Felleisen and Daniel P. Friedman, “A Syntactic Theory of Se-
quential State”, Theoretical Computer Science 69 no. 3 (18 December 1989),
pp. 243 287.

[JoDu93] Mark P. Jones and Luc Duponcheel, “Composing monads”, Research Re-
port YALEU/DCS/RR-1004, Yale University, December 1993. Available (as
of June 2003) at URL:

http://www.cse.ogi.edu/ "mpj/pubs/composing.html

[Kr01] Shriram Krishnamurthi, “Linguistic Reuse”, Ph.D. Dissertation, Rice Univer-

sity, May 2001. Available (as of June 2003) at URL:
http://www.ccs.neu.edu/scheme/pubs/

[Ma71] Saunders Mac Lane, Categories for the Working Mathematician, New York:
Springer-Verlag, 1971.

[MaAr86] Ernest G. Manes and Michael A. Arbib, Algebraic Approaches to Program
Semantics, Springer-Verlag, 1986.

[Mo89] Eugenio Moggi, “Computational Lambda-Calculus and Monads”, Proceed-
ings, Fourth Annual IEEE Symposium on Logic in Computer Science, 1989,
pp. 14-23.

[PJWa93] S.L. Peyton Jones and P. Wadler, “Imperative functional programming”, in
20th Annual Symposium on Principles of Programming Languages, Charleston,
South Carolina, 1993. Available (as of June 2003) at URL:

http://www.research.avayalabs.com/user/wadler//topics/monads.html

[Pr97] Christian Prehofer, “From Inheritance to Feature Interaction or Composing
Monads”, TUM-19715, Technische Universitaet Muenchen, Institut fuer Infor-
matik, April 1997. Available (as of June 2003) at URL:
http://wwwbib.informatik.tu-muenchen.de/infberichte/1997/

18

[SeSa99] Miley Semmelroth and Amr Sabry, “Monadic Encapsulation in ML", SIG-

[Shog]

[St94]

PLAN Notices 34 no. 9 (September 1999) |[Proceedings of the ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’99),
Paris, France, 27 29 September 1999], pp. 8 17.

John N. Shutt, Recursive Adaptable Grammars, M.S. Thesis, WPI CS Depart-
ment, 10 August 1993, emended 4 June 1998. Available (as of June 2003) at
URL:

http://www.cs.wpi.edu/” jshutt/thesis/top.html

Guy L. Steele Jr., “Building Interpreters by Composing Monads”, Proceedings
of the ACM Conference on Principles of Programming Languages, 1994, pp.
472 492.

[Wa92c¢| Philip Wadler, “Monads for Functional Programming”, in M. Broy, editor,

Marktoberdorf Summer School on Program Design Calculi [NATO AST Se-
ries F: Computer and system sciences, volume 118 (August 1992)], Springer-
Verlag, 1992. Also in J. Jeuring and E. Meijer, editors, Advanced Functional
Programming, Springer-Verlag, 1995. Available (as of June 2003, with some
errata fixed August 2001) at URL:
http://www.research.avayalabs.com/user/wadler//topics/monads.html

[Wa93] Philip Wadler, “Monads and composable continuations”, Lisp and Symbolic

Computation 7 no. 1 (January 1994) [Special issue on continuations]|, pp. 39
56. Available (as of June 2003) at URL:

http://www.research.avayalabs.com/user/wadler//topics/monads.html

[Wa99] Philip Wadler, “The marriage of effects and monads”, SIGPLAN Notices

34 no. 1 (January 1999) [Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP ’98), Baltimore, Maryland,
27-29 September 1998], pp. 63—74. Available (as of June 2003; including a
longer version, submitted to ACM Transactions on Computational Logic, with
coauthor Peter Thiemann) at URL:
http://www.research.avayalabs.com/user/wadler//topics/monads.html

19

