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Abstract 
 

This paper describes how cooperative coevolution 
can be used for GP of technical trading rules.  A 
number of different methods of choosing 
collaborators for fitness evaluation are 
investigated.  Several of the methods 
outperformed, at a statistically significant level, a 
buy-and-hold strategy for the S&P500 on the 
testing period from 1990-2002, even taking into 
account transaction costs. 

 
1 Introduction 
 
Genetic Programming (GP) has been applied to a wide 
range of problems in finance[1].  There have been a 
number of attempts to use GP for acquiring technical 
trading rules, both for Foreign Exchange Trading [2][3] 
and for S&P500 market timing by Allen & Karljalainen 
[4] and Neely[5].  These studies were not able to establish 
that GP-evolved technical trading rules could outperform 
a buy-and-hold strategy if transaction costs were taken 
into consideration.  Our research involves five changes 
from that of previous studies.  First, a complexity 
penalizing factor was added to the fitness function.  This 
made the evolved rules more comprehensible by reducing 
the expression tree size and at the same time served to 
avoid overfitting.  Second, additional derived technical 
indicators were used; these included Rate of Price 
Change, Price Resistance Markers, and Trend Line 
Indicators.  These derived indicators also increased 
comprehensibility and they allowed us to incorporate 
domain at the cost of introducing bias in the search.  The 
details and effects of these first two changes are discussed 
elsewhere[6].  Third, the fitness function used in 
evolution used the number of yearly periods in the 
training sample in which the rule outperformed a buy-
and-hold strategy, and not the return obtained for using 
the rule for the entire in-sample period.  This favored 
rules that worked well more of the time under a variety of 
conditions rather than ran up big returns in one portion of 
the period.  The fourth change is the focus of this paper.  
This is the change from a single rule to two rules one a 

buy rule and a sell rule.  This changed the nature of the 
GP from evolution to coevolution.  
 
The remainder of the paper is organized as follows.  
Previous work on coevolution in genetic algorithms is 
discussed.  The details of the application of GP 
coevolution to our domain are described. The results of 
our experiments are then presented and discussed. 
 
2  Coevolution and its use in Evolutionary 
Computing 
 
According to geneticists Futuyuma & Slatkin[7] 
following Jansen[8], “a rigorous definition of 
coevolution requires that a trait in one species has 
evolved in response to a trait of another species, which 
trait was itself evolved in response to the first species.”  
In Evolutionary Computing considerable work on 
coevolution has been from a competitive point of 
view[9],[10].  This no doubt stems, in part, from the 
instances of competitive coevolution found in nature, 
for example, between parasites and their hosts or 
predators and their prey, or multiple competing 
predators.  There is also a long tradition of competitive 
learning in AI, dating back to the work of Samuel’s on 
checkers[11].  Finally, there are a number of tasks to 
which AI has been applied that are inherently 
competitive, for example, games and auctions. 
 
In coevolution, the fitness of individuals in one species 
cannot be evaluated independently of the individuals in 
the other species.  As the species evolve, the fitness 
landscape of each is changing[12]; this has been 
referred to as “coupled fitness landscapes”[13].   A 
well-known issue associated with the fitness evaluation 
of multiagent systems is credit assignment.  When the 
system performs well or poorly which of the individual 
agents gets the credit or blame.  For competitive 
coevolution systems with only two agents, this is not a 
problem since one can use a complement.  However, 
when multiple agents are cooperating to achieve a 
solution, this is a more serious issue.  Holland’s[14] 
work on classifier systems used the ‘bucket brigade’ 
algorithm for assigning credit. 
 



Potter & De Jong[15] describe an architecture for 
cooperative coevolution, in which individuals in one 
species are evaluated by using collaborators from each of 
the other coevolving species.  There exist a number of 
logical possibilities for choosing collaborators: 

• All invididuals of each of the other species[16], 
but this is time-consuming and can lead to a 
combinatorial explosion if there are many 
species. 

• The best individuals of each of the other species 
in the last generation[17]. 

• Randomly drawn individual(s) of each of the 
other species in the same generation[18][19]. 

• With a fixed partner (or set of partners) of the 
other species from the same generation[9]. 

 
3  Cooperative GP Coevolution of Technical Trading 
Rules  
 
As depicted in the figure below, we started first with a 
single rule as our solution, we then moved to a pair 
consisting of a buy and a sell rule as our solution, and 
finally to two the best buy and the best sell rule as a 
solution.  In the case of the pair and the last case, the buy 
rules and the sell rules were isolated species and could 
only mate, i.e. crossover, with rules of the same species.  
In the case of the pair, this differed from the cooperative 
coevolution architecture of Potter & DeJong[15] in that 
all members of one species did not have their fitness 
evaluated with same collaborators of the other species, 
rather each buy rule was always evaluated with the same 
sell rule as its collaborator.  This is similar to the bipartite 
scheme used by Hillis[9] for competitive coevolution.   
 

 
In addition to testing the benefit of having fixed 
collaborators, we were interested in comparing other 
methods for choosing collaborators.  As mentioned above 
and depicted in the figure below the collaborators used to 
establish fitness for one species can come from 
individuals of other species of the same generation or 
from the previous generation or potentially with a mixture 
of both. In our case, we had needed only a single 

collaborator.  We experimented using 5 randomly 
chosen individuals of the other species from the same 
generation and the 5 best individuals of the other 
species from the preceding generation.  
 

 
 
In changing from using a single rule to two rules the 
buy vs. sell decision changes from that of the first table 
below to the second.  The blank sells in the second table 
indicate the truth-value of the rule is not considered.  
Taking those truth-values into consideration would alter 
the decision behavior.  

 
For each technical trading rule, non-leaf nodes in the 
expression tree allowed the logical operators (AND, 
OR, NOT) and the arithmetic comparison operators (>, 
<).  The leaf nodes include the following types of 
technical indicators: Prices (Opening, Closing, High, 
Low of the current month),  Moving Averages (2,3,6,10 
month), Rate of Change (3,12 month), Price Resistance 
Markers (two previous 3-month moving average 
minima, two previous 3-month moving average 
maxima), and Trend Line Indicators (a lower resistance 
line extending the line connecting the 2 previous 
minima and a upper resistance line based on the 2 
previous maxima).  
 
We used a standard GP algorithm[20].  The software 
for this work used the GAlib genetic algorithm 
package, written by Matthew Wall at the Massachusetts 
Institute of Technology[21].  We used a population of 
500 trees and ran for 150 generations.  It was a steady 
state GA with half the population being replaced each 

2-Rule Case Buy Rule Sell Rule Action
In Market T Sell
In Market F Do Nothing

Out of market T Buy
Out of market F Do Nothing

1 -R ule  C a se R ule A c tio n
In  M a r k e t T D o  N o th in g
In  M a r k e t F S e ll

O u t of  m a r k e t T B u y
O u t of  m a r k e t F D o  N o th in g



generation in the case of the single rule and the fixed 
partner and elitism in the case of the other two conditions. 
Given the difference in types of the nodes (boolean-
valued vs. real-valued) there were constraints on the 
nodes that could be exchanged during crossover. 
 
We used S&P500 data from January 1954 through 
December 2002.  With the exception of the Prices, all the 
technical indicators are derived.  The latter were pre-
processed, and the need to assure the two previous 
minima and maxima required data from 1954-1959.  We 
trained on data from 1960-1990 and tested on data from 
1991-2002.  For testing, we assumed transaction costs of 
.5% for each buy or sell.  For months when we were out 
of the market, we credited the interest rate on 3-month T-
bills. 
 
4  Results and Discussion 
 
The table below compares the performance of the best 
technical trading rule or pair of rules generated by each of 
ten runs of 150 generations.  The last row gives the 
means..  The columns hold the IN-sample and OUT-of-
sample returns for the following four experimental 
conditions: SINGLE rule, PAIRED rule, i.e. always 
evaluated with the same collaborator, best buy rule and 
best sell rule as evaluated with the BEST five individuals 
of the PREVious generation, and evaluated with five 
RANDOMly chosen individuals. 
 

SINGLE PAIRED BEST PREV RANDOM 
IN OUT IN OUT IN OUT IN OUT 

7705 2064 10816 2807 13820 3256 13832 2742 
7143 2654 14957 3476 14377 3036 12757 2438 
8126 3983 22074 3434 18898 2399 17746 3376 
7541 2166 18467 3475 14819 2837 16117 3374 
6916 2953 19861 2856 12893 3222 14747 2837 
7644 3437 12374 2823 14525 2807 16249 3059 
7131 3184 11530 3258 21525 2567 12911 2807 
7143 2654 12667 2911 12893 2807 6233 3876 
7968 2982 10646 3541 14809 2971 15243 2807 
7110 3691 11818 2837 18795 2527 12077 2842 
7443 2977 14521 3142 15735 2843 13791 3016 
 
 
In considering the performance of the trees, one should 
note that with a buy and hold strategy if one invested 
$1000 in the S&P500 at the beginning of 1960, it would 
have grown to $5457 at the end of 1990.  This was the in-
sample period on which the GP was trained.  For the out-
of-sample period, $1000 would have grown to $2638.  In 
terms of the mean the paired rules performed best.  Both 
the paired rules and the best buy and best sell rules 

evaluated with random collaborators outperformed the 
buy-and-hold at 99% statistical significance.  Neither 
the single rule nor the best buy and best sell evaluated 
with the best individuals of the previous generation 
outperformed the buy-and-hold at 95% significance.  
Given the large variances the difference in means 
between any of the experimental conditions was not 
statistically significant.  The best performance was in 
the case of the PAIRED rules, which were evaluated 
with a fixed collaborator.  It appears that in the tradeoff 
between diversity of collaborators and the compatibility 
of a fixed (set of) collaborator(s), compatibility may be 
more important. 
 
Looking at the IN-sample results, all of the pairs of 
rules (PAIRED, BEST PREV, RANDOM) performed 
much better than the single rule.  This is apparently due 
to the increased expressive power, which is  partially a 
function of the number of nodes in the two expression 
trees.  The greater expressive power  allows the pairs of 
rules to fit the training data better.  The large difference 
in performance did not carry over to the OUT-of-
sample, which suggests they may have overfit the 
training data.  Therefore we increased the complexity 
penalizing factor mentioned above, which results in 
reduced tree size for the rules in the pairs.  The results 
of the PAIRED rules can be compared with those of the 
PAIRED MODIFIED rules with the increased 
complexity penalizing factor in the fitness function.  As 
expected they fit the in-sample data less well, or didn’t 
overfit it as much, but generalized better to the out-of-
sample data.  The combined size of two trees evolved in 
the PAIRED MODIFIED is approximately the same as 
that of the single rule, yet its performance is superior.  
This may be attributable to the specialization gained by 
separating the buy and sell rules.   
 

SINGLE PAIRED PAIRED MODIF. 
IN OUT IN OUT IN OUT 

7705 2064 10816 2807 11712 3102 
7143 2654 14957 3476 8394 3750 
8126 3983 22074 3434 7950 3514 
7541 2166 18467 3475 8260 3390 
6916 2953 19861 2856 12258 3750 
7644 3437 12374 2823 8039 3437 
7131 3184 11530 3258 8992 3772 
7143 2654 12667 2911 8394 3834 
7968 2982 10646 3541 11031 3329 
7110 3691 11818 2837 9746 2728 
7443 2976.8 14521.00 3141.80 9477.60 3460.60 

 
In conclusion, the results seem to indicate that there is 
value in the specialization gained by separating the buy 
and sell rules and cooperatively coevolving the rules.  



This technique may be applicable to other domains that 
are traditionally thought of as having a single 
undifferentiated solution.  For such domains at least, one 
should consider using fixed collaborators from the other 
species for fitness evaluation. 
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