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Abstract 
 

This paper presents two methods for increasing 
comprehensibility in technical trading rules 
produced by Genetic Programming.  For this 
application domain adding a complexity 
penalizing factor to the objective fitness function 
also avoids overfitting the training data.  Using 
pre-computed derived technical indicators, 
although it biases the search, can express 
complexity while retaining comprehensibility.  
Several of the learned technical trading rules 
outperform a buy and hold strategy for the 
S&P500 on the testing period from 1990-2002, 
even taking into account transaction costs. 

 
 
1 Introduction 
 
Genetic Programming (GP) has been applied to a wide 
range of problems in finance[1].  There have been a 
number of attempts to use GP for acquiring technical 
trading rules, both for Foreign Exchange Trading [2][3] 
and for S&P500 market timing by Allen & Karljalainen 
[4].  One problem encountered in the latter study was the 
complexity of the rules produced.  The complexity of 
expression trees produced by GP can easily grow to 100s 
or even 1000s of nodes.  Even if complex rules achieve 
excellent performance, they may turn out not be applied 
in practice because they are not comprehensible to human 
decision makers, for example, in this domain to a 
portfolio manager.  Another problem that is encountered 
in many machine learning and data mining techniques, 
including GP is overfitting.  This can occur when the 
learned or evolved model fits the particulars of the 
training data overly well and consequently does not 
generalize to new unseen examples.  Our study 
demonstrates a method for GP which promotes 
comprehensibility and at the same time avoids overfitting. 
 
The remainder of the paper is organized as follows.  
Previous work and approaches to overfitting avoidance 

and comprehensibility are presented.  The details of the 
application of GP to our domain are described. The 
results of our experiments are then presented and 
discussed. 
 
2  Previous Work and Approaches to Overfitting 
Avoidance and Comprehensibility 
 
There are basically three approaches to avoiding 
overfitting: (1) penalizing complexity or biasing toward 
simplicity, (2) limiting the number of models 
considered, (3) using a validation data set. 
 
Penalizing complexity or biasing toward simplicity  
may involve post-pruning of models or generating and 
hypothesizing models in the order from simple to 
complex or searching in the space of solutions from 
general to specific and using some stopping criterion.  
There have been a number of studies ( [5], [6], [7]) 
where accuracy has not been reduced or has even been 
improved as a result of simplifying trees by pruning.  
There have also been theoretical arguments in favor of 
what has sometimes been referred to as Occam’s Razor, 
namely that simpler models have greater predictive 
power and lead to less generalization error ( [8], [9]).   
 
However, Domingos[10] argues against these 
theoretical arguments and cites numerous recent 
empirical studies where simpler models have 
underperformed.   Following Jensen & Cohen [11], 
Domingos regards the number of models considered 
rather than the complexity of the models as leading to 
overfitting.  For GP, overfitting is often avoided by 
limiting the number of generations, and limiting the 
size of the population would also result in reducing the 
number of models considered.   
 
A validation data set can be used to directly test 
generalization errors and thus directly decide between 
different models.  It can be used to cutoff search thus 
limiting the number of models considered.  Such a 
cutoff can also prevent complexity when the search is 
biased from simple to complex. 



 
Extensive work has been done the issue of 
comprehensibility for decision trees. In a number of 
studies ([12], [13]) it is argued that deeper trees are less 
comprehensible especially if they are binary.   To a 
certain extent one can equate comprehensibility with the 
simplicity or conciseness of the model, but consistency 
with the domain knowledge of the users who must 
comprehend the model is also an important factor [14].  If 
a user were to possess a chunk([15],[16]) corresponding 
to a significant portion of the model, the 
comprehensibility of the model would be better than if the 
model contained the same ‘size’ portion for which the 
user had no corresponding chunk.  For expression trees 
the possibility of simplification via subsumption 
relationships is also exists.  While doing this by hand may 
not be practical for large complex trees, building a 
domain-specific simplifier or using Mathematica or 
Maple to simplify equations would also be possible. 
 

 
3 Genetic Programming for Comprehensible 
Technical Trading Rules  
 
To achieve comprehensibility in technical trading rules 
we use two techniques.  First, we use derived technical 
indicators.  These are derived from the raw data indicators 
using various arithmetic operations, and are known to, 
and used by, experts in technical trading.  These could 
conceivably be generated by GP as parts of more 
complicated technical trading rule expression trees.  GP is 
particularly amenable to this use of domain knowledge.  
By starting with these derived indicators we bias the 
search, but we also will produce more comprehensible 
trees.  Second, we use a complexity penalizing factor [17] 
in GP’s objective fitness evaluation function.  As 
discussed above, reducing complexity of models has 
sometimes led to fewer and sometimes to more 
generalization errors.  We therefore compare the 
performance of the models generated by GP with vs. 
without the complexity penalizing factor.   
 
For each technical trading rule, non-leaf nodes in the 
expression tree allowed the logical operators (AND, OR, 
NOT) and the arithmetic comparison operators (>, <).  
The leaf nodes include the following types of technical 
indicators. 
Prices:  Opening, Closing, High, Low of the current 
month. 
Moving Averages:  2,3,6, and 10 month. 
Rate of Change: 3 and 12 month. 
Price Resistance Markers: two previous 3-month moving 
average minima and two previous 3-month moving 
average maxima. 

Trend Line Indicators:  a lower resistance line based on 
the slope of the 2 previous minima and a upper 
resistance line based on the slope of the 2 previous 
maxima.  
 
Below is a sample trading rule: if the 3 month moving 
average is less than the lower trend line and the 2 
month moving average is less than the 10 month 
moving average and the lower trend line is greater than 
the second previous 3 month average maxima.   If you 
are out of the market and the rule becomes true, buy.  If 
you are in the market and the rule becomes false, sell. 
 
 

 
 
 
We used a standard GP algorithm[18].  The software 
for this work used the GAlib genetic algorithm 
package, written by Matthew Wall at the Massachusetts 
Institute of Technology[19].  We used a population of 
500 trees and ran for 100 generations.  It was a steady 
state GA with half the population being replaced each 
generation. Given the difference in types of the nodes 
(boolean-valued vs. real-valued) there were constraints 
on the nodes that could be exchanged during crossover. 
 
We used S&P500 data from January 1954 through 
December 2002.  With the exception of the Prices, all 
the technical indicators are derived.  The latter were 
pre-processed, and the need to assure the two previous 
minima and maxima required data from 1954-1959.  
We trained on data from 1960-1990 and tested on data 
from 1991-2002.  For testing, we assumed transaction 
costs of .5% for each buy or sell.  For months when we 
were out of the market, we credited the interest rate on 
3-month T-bills. 
 
 
 



4  Results and Discussion 
 
Below are tables comparing the technical trading rules 
generated by the GP without the complexity penalizing 
factor and with it.   Each table includes the best technical 
trading rule generated by each of ten runs of 100 
generations.  The.last row gives the average values.  It is 
obvious that the size in terms of the number of nodes as 
well as the depth of the trees is much larger when the 
factor is not used. 
 
In considering the performance of the trees, one should 
note that with a buy and hold strategy if one invested 
$1000 in the S&P500 at the beginning of 1960, it would 
have grown to $5457 at the end of 1990.  This was the in-
sample period on which the GP was trained.  For the out-
of-sample period, $1000 would have grown to $2638.  
Looking at the averages, on the in-sample period the 
returns of the technical trading rules generated without 
and with the factor exceeded the buy and hold; without 
the factor it was more than 3 times the buy and hold 
return, whereas with the factor it reduced to just over 2 
times the buy and hold.   The large trees without the 
factor were able to fit the in-sample data better.  When we 
look at the performance on the out-of-sample period we 
see that on average the technical trading rules learned 
without the factor perform worse than those with the 
factor.  It appears that without the factor the technical 
trading rules were overfit to the training data.  In fact, the 
average performance of those rules was worse than a buy 
and hold strategy.  In contrast, the rules learned with the 
complexity penalizing factor were less overfit and their 
average performance exceeded the buy and hold strategy 
for the out-of-sample period.  
 

 
Without Factor 

Size Depth 1960-1990 1991-2002 
224 19 15195 3491 
542 88 13856 3300 
530 45 20265 1469 
41 11 16832 2023 
200 38 12818 1835 
967 87 14984 1834 
178 28 19605 1626 
45 11 16367 1977 
596 68 23702 2089 
111 20 17637 1764 
343 42 17126 2141 

 
 
 

 
 

With Factor 
Size Depth 1960-1990 1991-2002 

15 5 10976 3128 
15 5 13690 2006 
3 2 8762 3377 

15 5 13981 2003 
3 2 8762 3377 

12 5 14788 1685 
15 4 15078 2096 
3 2 8762 3377 

15 5 9128 3697 
3 2 8762 3377 

10 4 11269 2812 
 
 

With respect to the individual rules generated, it should 
be noted that while two of the ten rules generated 
without the factor exceeded the buy and hold return in 
the out-of-sample period, six of the ten rules generated 
with the factor exceeded it.   
 
At least for this domain, it appears that reducing 
complexity in the learned models does increase 
performance on the unseen testing sample.  Given the 
smaller size of the trees generated with the factor, 
comprehensibility is also clearly improved.  We 
conclude that for this domain when a complexity 
penalizing factor is combined with the use of derived 
technical indicators, we can produce comprehensible 
rules and avoid overfitting.  In addition, the 
performance of these learned rules can exceed that of a 
buy and hold strategy, which in the past has not proved 
easy to do [4]. 
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