
Comprehensibility & Overfitting Avoidance in Genetic Programming

 for Technical Trading Rules

 Lee A. Becker & Mukund Seshadri
 Department of Computer Science
 Worcester Polytechnic Institute
 Worcester, MA 01609 USA
 {lab | mukund}@cs.wpi.edu

Abstract

This paper presents two methods for increasing
comprehensibility in technical trading rules
produced by Genetic Programming. For this
application domain adding a complexity
penalizing factor to the objective fitness function
also avoids overfitting the training data. Using
pre-computed derived technical indicators,
although it biases the search, can express
complexity while retaining comprehensibility.
Several of the learned technical trading rules
outperform a buy and hold strategy for the
S&P500 on the testing period from 1990-2002,
even taking into account transaction costs.

1 Introduction

Genetic Programming (GP) has been applied to a wide
range of problems in finance[1]. There have been a
number of attempts to use GP for acquiring technical
trading rules, both for Foreign Exchange Trading [2][3]
and for S&P500 market timing by Allen & Karljalainen
[4]. One problem encountered in the latter study was the
complexity of the rules produced. The complexity of
expression trees produced by GP can easily grow to 100s
or even 1000s of nodes. Even if complex rules achieve
excellent performance, they may turn out not be applied
in practice because they are not comprehensible to human
decision makers, for example, in this domain to a
portfolio manager. Another problem that is encountered
in many machine learning and data mining techniques,
including GP is overfitting. This can occur when the
learned or evolved model fits the particulars of the
training data overly well and consequently does not
generalize to new unseen examples. Our study
demonstrates a method for GP which promotes
comprehensibility and at the same time avoids overfitting.

The remainder of the paper is organized as follows.
Previous work and approaches to overfitting avoidance

and comprehensibility are presented. The details of the
application of GP to our domain are described. The
results of our experiments are then presented and
discussed.

2 Previous Work and Approaches to Overfitting
Avoidance and Comprehensibility

There are basically three approaches to avoiding
overfitting: (1) penalizing complexity or biasing toward
simplicity, (2) limiting the number of models
considered, (3) using a validation data set.

Penalizing complexity or biasing toward simplicity
may involve post-pruning of models or generating and
hypothesizing models in the order from simple to
complex or searching in the space of solutions from
general to specific and using some stopping criterion.
There have been a number of studies ([5], [6], [7])
where accuracy has not been reduced or has even been
improved as a result of simplifying trees by pruning.
There have also been theoretical arguments in favor of
what has sometimes been referred to as Occam’s Razor,
namely that simpler models have greater predictive
power and lead to less generalization error ([8], [9]).

However, Domingos[10] argues against these
theoretical arguments and cites numerous recent
empirical studies where simpler models have
underperformed. Following Jensen & Cohen [11],
Domingos regards the number of models considered
rather than the complexity of the models as leading to
overfitting. For GP, overfitting is often avoided by
limiting the number of generations, and limiting the
size of the population would also result in reducing the
number of models considered.

A validation data set can be used to directly test
generalization errors and thus directly decide between
different models. It can be used to cutoff search thus
limiting the number of models considered. Such a
cutoff can also prevent complexity when the search is
biased from simple to complex.

Extensive work has been done the issue of
comprehensibility for decision trees. In a number of
studies ([12], [13]) it is argued that deeper trees are less
comprehensible especially if they are binary. To a
certain extent one can equate comprehensibility with the
simplicity or conciseness of the model, but consistency
with the domain knowledge of the users who must
comprehend the model is also an important factor [14]. If
a user were to possess a chunk([15],[16]) corresponding
to a significant portion of the model, the
comprehensibility of the model would be better than if the
model contained the same ‘size’ portion for which the
user had no corresponding chunk. For expression trees
the possibility of simplification via subsumption
relationships is also exists. While doing this by hand may
not be practical for large complex trees, building a
domain-specific simplifier or using Mathematica or
Maple to simplify equations would also be possible.

3 Genetic Programming for Comprehensible
Technical Trading Rules

To achieve comprehensibility in technical trading rules
we use two techniques. First, we use derived technical
indicators. These are derived from the raw data indicators
using various arithmetic operations, and are known to,
and used by, experts in technical trading. These could
conceivably be generated by GP as parts of more
complicated technical trading rule expression trees. GP is
particularly amenable to this use of domain knowledge.
By starting with these derived indicators we bias the
search, but we also will produce more comprehensible
trees. Second, we use a complexity penalizing factor [17]
in GP’s objective fitness evaluation function. As
discussed above, reducing complexity of models has
sometimes led to fewer and sometimes to more
generalization errors. We therefore compare the
performance of the models generated by GP with vs.
without the complexity penalizing factor.

For each technical trading rule, non-leaf nodes in the
expression tree allowed the logical operators (AND, OR,
NOT) and the arithmetic comparison operators (>, <).
The leaf nodes include the following types of technical
indicators.
Prices: Opening, Closing, High, Low of the current
month.
Moving Averages: 2,3,6, and 10 month.
Rate of Change: 3 and 12 month.
Price Resistance Markers: two previous 3-month moving
average minima and two previous 3-month moving
average maxima.

Trend Line Indicators: a lower resistance line based on
the slope of the 2 previous minima and a upper
resistance line based on the slope of the 2 previous
maxima.

Below is a sample trading rule: if the 3 month moving
average is less than the lower trend line and the 2
month moving average is less than the 10 month
moving average and the lower trend line is greater than
the second previous 3 month average maxima. If you
are out of the market and the rule becomes true, buy. If
you are in the market and the rule becomes false, sell.

We used a standard GP algorithm[18]. The software
for this work used the GAlib genetic algorithm
package, written by Matthew Wall at the Massachusetts
Institute of Technology[19]. We used a population of
500 trees and ran for 100 generations. It was a steady
state GA with half the population being replaced each
generation. Given the difference in types of the nodes
(boolean-valued vs. real-valued) there were constraints
on the nodes that could be exchanged during crossover.

We used S&P500 data from January 1954 through
December 2002. With the exception of the Prices, all
the technical indicators are derived. The latter were
pre-processed, and the need to assure the two previous
minima and maxima required data from 1954-1959.
We trained on data from 1960-1990 and tested on data
from 1991-2002. For testing, we assumed transaction
costs of .5% for each buy or sell. For months when we
were out of the market, we credited the interest rate on
3-month T-bills.

4 Results and Discussion

Below are tables comparing the technical trading rules
generated by the GP without the complexity penalizing
factor and with it. Each table includes the best technical
trading rule generated by each of ten runs of 100
generations. The.last row gives the average values. It is
obvious that the size in terms of the number of nodes as
well as the depth of the trees is much larger when the
factor is not used.

In considering the performance of the trees, one should
note that with a buy and hold strategy if one invested
$1000 in the S&P500 at the beginning of 1960, it would
have grown to $5457 at the end of 1990. This was the in-
sample period on which the GP was trained. For the out-
of-sample period, $1000 would have grown to $2638.
Looking at the averages, on the in-sample period the
returns of the technical trading rules generated without
and with the factor exceeded the buy and hold; without
the factor it was more than 3 times the buy and hold
return, whereas with the factor it reduced to just over 2
times the buy and hold. The large trees without the
factor were able to fit the in-sample data better. When we
look at the performance on the out-of-sample period we
see that on average the technical trading rules learned
without the factor perform worse than those with the
factor. It appears that without the factor the technical
trading rules were overfit to the training data. In fact, the
average performance of those rules was worse than a buy
and hold strategy. In contrast, the rules learned with the
complexity penalizing factor were less overfit and their
average performance exceeded the buy and hold strategy
for the out-of-sample period.

Without Factor

Size Depth 1960-1990 1991-2002
224 19 15195 3491
542 88 13856 3300
530 45 20265 1469
41 11 16832 2023
200 38 12818 1835
967 87 14984 1834
178 28 19605 1626
45 11 16367 1977
596 68 23702 2089
111 20 17637 1764
343 42 17126 2141

With Factor
Size Depth 1960-1990 1991-2002

15 5 10976 3128
15 5 13690 2006
3 2 8762 3377

15 5 13981 2003
3 2 8762 3377

12 5 14788 1685
15 4 15078 2096
3 2 8762 3377

15 5 9128 3697
3 2 8762 3377

10 4 11269 2812

With respect to the individual rules generated, it should
be noted that while two of the ten rules generated
without the factor exceeded the buy and hold return in
the out-of-sample period, six of the ten rules generated
with the factor exceeded it.

At least for this domain, it appears that reducing
complexity in the learned models does increase
performance on the unseen testing sample. Given the
smaller size of the trees generated with the factor,
comprehensibility is also clearly improved. We
conclude that for this domain when a complexity
penalizing factor is combined with the use of derived
technical indicators, we can produce comprehensible
rules and avoid overfitting. In addition, the
performance of these learned rules can exceed that of a
buy and hold strategy, which in the past has not proved
easy to do [4].

References

[1] Chen, S.-H. 2002. Genetic Algorithms and
Genetic Programming in Computational Finance.
Boston, MA: Kluwer.

[2] Neely, C., Weller, P., & Dittmar, R. 1997. Is
Technical Analysis in the Foreign Exchange Market
Profitable? A Genetic Programming Approach.
Journal of Financial and Quantitative Analysis
32:405-26.

[3] Thomas, J. & Sycara, K. 1999. The Importance
of Simplicity and Validation in Genetic
Programming for Data Mining in Financial Data.
Proceedings of the joint AAAI-1999 and GECCO-
1999 Workshop on Data Mining with Evolutionary
Algorithms, July, 1999.

[4] Allen, F. & Karjalainen, R. 1999. Using genetic
algorithms to find technical trading rules. Journal of
Financial Economics 51:245-271.

[5] Buntine, W. & Nibblet, T. 1992. A further
comparison of splitting rules for decision-tree
induction. Machine Learning 8:75-86.

[6] Clark, P. & Nibblet, T. 1989. The CN2 Induction
Algorithm, Machine Learning 3:261-283.

[7] Mingers,J. 1989. An empirical comparison of
pruning methods for decision tree induction.
Machine Learning 4:227-443.

[8]A. Blumer,A., Ehrenfeucht, A., Haussler, D., &
M.K.Warmuth, M.K. 1987. Occam’s Razor.
Information Processing Letters 24:377-380.

[9] Rissanen, J. 1978. Modeling by shortest data
description. Automatica 14:465-471.

[10] Domingos, P. 1999. The Role of Occam’s
Razor in Knowledge Discovery. Data Mining and
Knowledge Discovery 3:409-425, 1999.

[11] Jensen, D. & Cohen, P.R. 2000. Multiple
Comparisons in Induction Algorithms. Machine
Learning, 38:309-338.

[12] Quinlan J.R. 1987. Simplifying decision
trees. Interational Journal of Man-Machine
Studies 27:221-334.

[13] Shepherd, B. An appraisal of a decision-tree
approach to image classification. In Proceedings
of the Eight International Joint Conference on
Artifical Intelligence, 496-501. Philadelphia , PA:
Morgan Kaufman.

[14] Pazzani, M., Mani, S., & Shankle, W.R. 1997.
Beyond concise and colorful: Learning
Intelligible Rules. In Proceedings of the Fourth
International Conference on Knowledge Discovery
and Data Mining, 235-238. Newport Beach, CA:
AAAI Press.

[15] Miller, G.A. 1956. The magic number seven,
plus or minus two: Some limits on our capacity
for processing information. Psychological Review
63:81-97.

[16] Laird, J.E., P.S. Rosenbloom, A. Newell.
1986. Chunking in Soar: The Anatomy of a
General Learning Mechanism. Machine Learning
1:11-46.

[17] Bojarczuk, C.C., Lopes, H.S., & AA Freitas,
Data Mining with Constrained-syntax Genetic
Programming: Applications in Medical Data Sets.
In Proc Intelligent Data Analysis in Medicine and
Pharmacology - a workshop at MedInfo-2001,
London, September 2001.

[18] Koza, J. R. 1992. Genetic Programming: On
the Programming of Computers by means of
Natural Selection. Cambridge, MA: MIT Press.

[19] http://lancet.mit.edu/ga/

