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Abstract
We give a simple quantitative proof that for every natural number p > 3 and
real number § > 0, there is a natural number Ny = Ny(p,d) such that for N > Ny,
every set of at least N2 points of [N]? contains a set of p points that determine at
least p — [log, p] isosceles right-angle triangles; i.e. triples in the form

{(a,b),(a +d,b),(a,b+d)}.

1 Introduction

1.1 Notation and definitions

For basic graph concepts see the monograph of Bollobés [2]. V(G) and E(G) denote the
vertex-set and the edge-set of the graph G. (A, B) or (A, B, E) denote a bipartite graph
G = (V,E), where V.= AU B, and E C A x B. In general, given any graph G and two
disjoint subsets A, B of V(G), the pair (A4, B) is the graph restricted to A x B. N(v) is
the set of neighbors of v € V. Hence the size of N(v) is |[N(v)| = deg(v) = degg(v), the
degree of v. For a vertex v € V and set U C V — {v}, we write deg(v,U) for the number
of edges from v to U. We denote by e(A, B) the number of edges of G with one endpoint
in A and the other in B. For non-empty A and B,

e(A, B)

A B) =
HAB) =T 41B]

is the density of the graph between A and B.
Definition 1. The pair (A, B) is e-regular if
X CA YCB, | X|>¢lA], |Y|>¢|B|
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mply
|d(X: Y) o d(A: B)‘ <g,

otherwise it is e-irreqular.

A triangle of the form {(a,b), (a + d,b), (a,b + d)}, where a,b and d are integers, is
called perfect; i.e. a perfect triangle is an isosceles right-angle triangle whose sides are
parallel to the axes.

1.2 Perfect triangles

Using Szemerédi’s celebrated theorem [12] about the existence of long arithmetic progres-
sions in dense sets of integers, Ajtai and Szemerédi [1] proved the following result: For
sufficiently large N, every subset of [IV]? of size at least §N? contains a perfect triangle
(here [N] = {1,2,..., N}). Later Fiirstenberg and Katznelson [3] proved a much more
general theorem, but their proof does not give an explicit bound on N as it uses ergodic
theory. After giving a new analytic proof for Szemerédi’s Theorem in [4], Gowers posed
the question of finding better quantitative proofs for the Ajtai-Szemerédi Theorem (see
the last section of [4] or Problem 1 in [5]). Very recently Solymosi [10] gave an elegant,
quantitative proof for the Ajtai-Szemerédi Theorem using the Ruzsa-Szemerédi Theorem
[7], which in turned used Szemerédi’s Regularity Lemma [13]. Then Vu [14] improved
on this result by using Gowers’ quantitative version of the Szemerédi’s Theorem and he
showed that for sufficiently large N, every subset of [N]? of size at least % con-
tains a perfect triangle. Let us also mention that recently Solymosi [11] showed that the
conditions of the Ajtai-Szemerédi Theorem guarantee not just a perfect triangle, but a
square as well.

In this paper we strengthen the Ajtai-Szemerédi Theorem in a different direction, we
show that there is a set of points which contain many perfect triangles.

More precisely, our main result is the following.

Theorem 1. For every natural number p > 3 and real number 6 > 0, there is a natural
number Ny = Ny(p,d) such that for N > Ny, every set of at least SN? points of [N]?
contains a set of p points that determine at least p — [log, p| perfect triangles.

In the proof we also apply the Regularity Lemma. In the next section we provide the
tools including the Regularity Lemma. Then in Section 3 we prove the theorem.

2 Tools

2.1 The Regularity Lemma

In the proof the Regularity Lemma of Szemerédi ([13]) plays a central role. Here we will
use the following variation of the lemma.



Lemma 1 (Regularity Lemma — Degree form). For every ¢ > 0 there is an M =
M (€) such that if G = (V, E) is any graph and d € [0, 1] is any real number, then there is
a partition of the vertex-set V into | + 1 sets (so-called clusters) Cy, C1, ..., Cy, and there
is a subgraph G' = (V, E") with the following properties:

o [ <M,

o [Co| <elV],

e all clusters C;, 1 > 1, are of the same size,

e degg (v) > degg(v) — (d+¢€)|V| forall veV,

e G'lc, =0 (C; are independent in G'),

o all pairs G'|c;xc;, 1 < i < j <, are e-reqular, each with a density 0 or exceeding d.

This form (see [6]) can easily be obtained by applying the original Regularity Lemma
(with a smaller value of ¢), adding to the exceptional set Cj all clusters incident to many
irregular pairs, and then deleting all edges between any other clusters where the edges
either do not form a regular pair or they do but with a density at most d.

2.2 Applying the Regularity Lemma

We will prove the following lemma by applying the Regularity Lemma.

Lemma 2. For every c; > 0, co > 1 there are positive constants n,ng with the following
properties. Let G be a graph onn > ng vertices with |E(G)| > cin? that is the edge disjoint

unton of matchings My, Ms, ..., M,, where m < con. Then there exist an 1 < i < m and
A, B C V(M;) such that

e (AXxB)NM; =0,
o |Al = B[ =mn,
o |[E(Glaxp)l = $1A[|B|.

Proof: We note that the proof of this lemma already appeared in [8] (see also [9]),
but for the sake of completeness we give the proof here as well.
Let us apply the degree form of the Regularity Lemma (Lemma 1) with

C1 C1
- ———— 1
d= 5 and &= 6(}2 ( )

Let G" = G'\ Cy. Then we have

deggr(v) > degg(v) — (d+ &)n — |Co| > degg(v) — (d+ 2e)n for all v € V(G").



Thus using (1)

1 1 d—+ 2
|E(G")| = = Z deger(v) > = Y dega(v) — “n? =

2 2 veV(G") 2

d + 2¢ d+ 3¢ c
Z dega (v Z dege(v 5 n? > |E(G)| — 5 2> 21 2
vEV (@) UECO
Hence there is an 1 < 3 < m such that
c
| M;|gn| > 2—61271 = 3en. (2)

Write U = V(M;|g) for the vertex set of M;|gs. (2) implies that |U| > 6en. Write
also U; = UNC;. Define I = {i | |U;| > 3¢|C;|}, and set U’ = Uy U; and U” = U \ U'.
Clearly |U"| < 3en. Since |U| > 6en, we have two vertices u,v € U’ adjacent in M;|gn.
Let v € C; and v € C}. In G" we have at least one edge between C; and C}, and hence
we must have a density more than d = < between them. Consider U; and U;. A is an
arbitrary subset of U; with |A| = |¢|C;i|| + 1 > ¢|C;|. B is an arbitrary subset of U; with
|B| = [e|Cj|] + 1 > €|Cy| and (A x B) N M; = (. This is possible since

|Uj| > 3¢|C;| > 2[e] G5l + 2,
if n > ng. Then the first property of A, B in the lemma is clearly satisfied. For the second

e(l—e)

property we can choose n = OR Finally for the third property, &- regularlty of the pair
(Ci, C;) implies that the density between A and B is more than d — ¢ > 9. This means

C
B (Glaxs)| > 411,

and thus completing the proof of the lemma. O

3 Proof of Theorem 1

Let p > 3 be an integer and § > 0 a real number. Let [ = [log,p|. Assume that N is
sufficiently large.

Let S be a set of at least 6 N? points of the grid [N]?. The points of the grid will be
represented by their coordinates (i, 7) for 4,5 € {1,..., N}.

Following Solymosi [10], we define the bipartite graph G, = G(A, B) with vertex
sets A = {uy,...,un} and B = {vy,...,vn}, where we have an edge (u;,v;) € E(G)) iff
(i,7) € S. Thus E(Gp) > §N?. We partition the edges of G} into 2N — 1 matchings M;.
The matching M; contains those edges (ug, v;) € E(Gp) for which k£ + [ = 3.

Next by applying Lemma 2 iteratively in G, we will find a sequence of submatchings
My, ..., M;. To obtain M; we apply Lemma 2 in G;. We can choose

co=ci=- and c;=cy=1.

4

M, is the M; guaranteed in the lemma. Denote Mli (A1, By) where A; C A,B; C B.
Lemma 2 also guarantees that there are A}, B} C V(M) such that
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o (A x BYNM, =0,
o |4} =[Bi| > mn,
J ‘E (Gb|A’1xB’1)

To obtain M, we apply Lemma, 2 again, now for Gj| A, x B, Here we can choose

> FA|Bil.

cl
=21 and g=c=-2

Ci =2¢C = .
2m

M, is the M; guaranteed in the lemma. Note thit technically this M is not the whole M;
in Gy, but it is restricted to Gb|A'1><B;- Denote My = (Ay, By) where Ay C Ay, B, C B;.
We continue in this fashion. Assume that M; = (A;, B;) is already defined where

Aj C Aj_1, Bj C Bj_,. Futhermore, we have A, B} C V(M) such that
o |Ajl = Bjl = ni([ A5 + [ Bj_i)),

o |E(Goluxn)| = F1a]Bj).

To obtain HjH we apply Lemma 2 for G| AL xB! - We can choose

: d : e
a=d"=2 and =4 =2,
T T 16 2T T gy,
HHIE the M; guaranteed in the lemma. Denote M;1 = (Aji1,Bjy1). We continue
until My, ..., M; are selected.
Next using these matchings M; we will select a set of p points containing at least
p — [log, p| perfect triangles.

Lemma 3. For any 1 <i <[ = [log, p|, let G; be the graph obtained from bipartite graph
<A,B, nglﬁj) by removing all components which do not contain a vertex of A; U B;.
The vertices of G; are partitioned into |M;| trees, each with 2! — 1 edges.

Proof: We use induction on 7. For i = 1, Gy is just M, and each tree of G; has one
edge. We assume the lemma to hold for 4 — 1. Each endpoint of each edge e € M, is in
A;_1U B;_; and thus by the inductive hypothesis belongs to exactly one tree of G;_;, and
each of these trees has 2=! — 1 edges. Edge e, along with the two trees it joins, comprise
a new tree with 2! — 1 edges.O

In G; we will call the edges (u1,v1), (u2,v1), (U, v2) a triple, if (ui,v1), (uz,v2) € M;
and (ug,v1) € M for some 1 < j < j' < i. Furthermore, the (us,v1) edge is called the
center of the triple, and the indez of the triple is j'. For an edge e in G;, the index of e
is the maximum number m such that there is a triple with index m containing e. Note
that each triple corresponds to a perfect triangle in S.



Lemma 4. There exist p points in S containing at least p — [log, p| perfect triangles.

Proof: In case p = 2 — 1, we consider a tree 7 in G}, and then the p points of S are
the points corresponding to the p edges of 7. Then the number of triples in 7 (and thus
the number of perfect triangles) is at least:

272 422 4 4+ (1-1)2°=2"—1—1=p~— [logp].

This is because each M, edge of 7 is a center for one triple in 7, each M3 edge of 7 is a
center for two triples, etc. finally the one M, edge of 7 is a center for (I — 1) triples.

In case 27! — 1 < p < 2! — 1, again consider a tree 7 in G;, as above. 7 consists of
two trees 71 and 7, in G;_; joined by an M; edge. We will start removing leaves from
71 until we have exactly p edges left in the remaining tree, and then these p edges will
correspond to the p points of S in the lemma. Furthermore, we will remove the leaves
in such a way, that with each removal we destroy only one new triple (and thus perfect
triangle), and thus on the resulting p points we will have the p — [log, p| perfect triangles,
as desired. In order to achieve this goal, from 7 we always remove the leaf with the
minimum index, where if we have several leaves with the minimum index, we remove one
of them arbitrarily. From the construction, it is not hard to see that with each removal we
destroy only one new perfect triangle. This implies that when we finish and we have only
p edges left, we have at least p — [log, p| perfect triangles on the corresponding points in
S.

This completes the proof of Theorem 1. O
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