On a Turán-type hypergraph problem of Brown, Erdős and T. Sós

Gábor N. Sárközy, Stanley Selkow

Computer Science Department
Worcester Polytechnic Institute
Worcester, MA 01609
gsarkozy@cs.wpi.edu, sms@cs.wpi.edu

February 11, 2003

Note

Abstract

We let $G^{(r)}(n,m)$ denote the set of r-uniform hypergraphs with n vertices and m edges, and $f^{(r)}(n,p,s)$ is the smallest m such that every member of $G^{(r)}(n,m)$ contains a member of $G^{(r)}(p,s)$. In this paper we are interested in the growth of $f^{(r)}(n,p,s)$ for fixed values r,p and s. Brown, Erdős and T. Sós ([2]) proved that for $r>k\geq 2$ and $s\geq 3$ we have $f^{(r)}(n,s(r-k)+k,s)=\Theta(n^k)$. This suggests the difficult question whether $f^{(r)}(n,s(r-k)+k+1,s)=o(n^k)$. This was first established for r=s=3 and k=2 by Ruzsa and Szemerédi ([11]). Then for s=3 and k=2 Erdős, Frankl and Rödl ([6]) extended this result for any r, and they conjectured that it also holds for k=2 and any s. In this note we show that

$$f^{(r)}(n, s(r-k) + k + \lfloor \log_2 s \rfloor, s) = o(n^k)$$
 for all $k \geq 2$.

In addition we show that

$$f^{(r)}(n, 4(r-3) + 4, s) = o(n^3).$$

1 Introduction

1.1 Notation and definitions

For basic graph and hypergraph concepts see the monograph of Bollobás [1].

A hypergraph \mathcal{F} is called r-uniform if |F| = r for every edge $F \in \mathcal{F}$. An r-uniform hypergraph \mathcal{F} on the set X is r-partite if there exists a partition $X = X_1 \cup \ldots \cup X_r$ with $|F \cap X_i| = 1$ for every edge $F \in \mathcal{F}$ and $1 \leq i \leq r$. $|\mathcal{F}|$ denotes the number of edges of \mathcal{F} . In this paper $\log n$ denotes the base 2 logarithm.

1.2 Turán-type hypergraph problems

We let $G^{(r)}(n,m)$ denote the set of r-uniform hypergraphs with n vertices and m edges, and $f^{(r)}(n,p,s)$ is the smallest m such that every member of $G^{(r)}(n,m)$ contains a member of $G^{(r)}(p,s)$. The determination of $f^{(r)}(n,p,s)$ has been a longstanding open problem. Special cases of this problem appeared in [3], [5]. For more about Turán-type hypergraph results consult the surveys by Füredi [9] and Sidorenko [13]. In this note we are interested in the growth of $f^{(r)}(n,p,s)$ for fixed values r,p and s.

Brown, Erdős and T. Sós ([2]) proved that for $r > k \ge 2$ and $s \ge 3$ we have

$$f^{(r)}(n, s(r-k) + k, s) = \Theta(n^k).$$

This suggests the following difficult question.

Conjecture 1.

$$f^{(r)}(n, s(r-k) + k + 1, s) = o(n^k).$$

This was first established for r=s=3 and k=2 by the celebrated result of Ruzsa and Szemerédi ([11]). Then for s=3 and k=2 Erdős, Frankl and Rödl ([6]) extended this result for any r, and they conjectured that it also holds for k=2 and any s. In this direction in [12] we showed that

$$f^{(r)}(n, s(r-2) + 2 + \lfloor \log s \rfloor, s) = o(n^2).$$

In this note we extend this result for k > 2, showing that Conjecture 1 is not far from being true.

Theorem 1. For all integers $r > k \ge 2$ and $s \ge 3$,

$$f^{(r)}(n, s(r-k) + k + \lfloor \log s \rfloor, s) = o(n^k).$$

Thus roughly speaking Conjecture 1 is true apart from a $\lfloor \log s \rfloor$ term. However, it still remains open whether one can replace this term with 1 and prove Conjecture 1.

In addition, by using a recent, deep result of Frankl and Rödl ([8]) we show that Conjecture 1 is true for k = 3 and s = 4.

Theorem 2. For all integers $r \geq 4$,

$$f^{(r)}(n, 4(r-3) + 4, 4) = o(n^3).$$

In the next section we provide the tools, then we prove the theorems.

2 Tools

We will use a simple but useful result of Erdős and Kleitman ([7], see also on page 1300 in [10]).

Lemma 1. Every k-uniform hypergraph \mathcal{F} contains a k-partite k-uniform hypergraph \mathcal{H} with

$$\frac{|\mathcal{H}|}{|\mathcal{F}|} \ge \frac{k!}{k^k}.$$

We will also need a recent result of Frankl and Rödl. Following their notation from [8], let $A_i = \{a_i, b_i\}$ be pairwise disjoint 2-element sets for $1 \leq i \leq k$. Define $F_i = \{a_1, \ldots, a_k, b_i\} \setminus \{a_i\}$ and $\mathcal{F}(k) = \{F_1, \ldots, F_k\}$. Let $ex^*(n, \mathcal{F}(k))$ denote $\max |\mathcal{H}|$ such that \mathcal{H} is a k-partite hypergraph on n vertices that is $\mathcal{F}(k)$ -free, and $|H \cap H'| \leq k - 2$ holds for all distinct $H, H' \in \mathcal{H}$. In [8] the following deep result is shown.

Lemma 2.

$$ex^*(n, \mathcal{F}(4)) = o(n^3).$$

3 Proof of Theorem 1

Let $r > k \ge 2$, $s \ge 3$, $p = s(r - k) + k + \lfloor \log s \rfloor$ and $l = \lceil \log s \rceil$. For k = 2 we showed that the theorem is true in [12]; thus we may assume k > 2.

Assume indirectly that there is a constant c > 0 such that

$$f^{(r)}(n, p, s) > \lceil cn^k \rceil. \tag{1}$$

From this assumption we will get a contradiction. (1) means that there exists an r-uniform hypergraph \mathcal{F} with

$$f^{(r)}(n, p, s) - 1 \ge \lceil cn^k \rceil \ge cn^k$$

edges that does not contain a member of $G^{(r)}(p, s)$, i.e. a set of p vertices spanning at least s edges. Let us assume that n is sufficiently large.

Using the Erdős-Kleitman theorem (Lemma 1) we find an r-partite subhypergraph \mathcal{H} of \mathcal{F} with at least

$$\frac{r!c}{r^r}n^k$$

edges. Let X_1, \ldots, X_r be the vertex classes of this r-partite hypergraph \mathcal{H} . Consider the (k+1)-uniform hypergraph \mathcal{H}^* which is defined by the removal of X_1, \ldots, X_{r-k-1} from the vertex set of \mathcal{H} and from all edges of \mathcal{H} . If a (k+1)-edge of \mathcal{H}^* has multiplicity greater than 1, then we keep only one edge. Note that every (k+1)-edge has multiplicity less than s. Indeed, otherwise taking a (k+1)-edge with multiplicity at least s and s r-edges of \mathcal{H} containing this edge, we get a set of at most

$$s(r-k-1) + k + 1 \le s(r-k) + k + |\log s| = p$$

vertices that span at least s r-edges, a contradiction. Then if in \mathcal{H}^* we keep only one edge from each multiple (k+1)-edge we still have at least

$$\frac{r!c}{r^rs}n^k$$

edges.

Define for every $x_1 \in X_{r-k}, x_2 \in X_{r-k+1}, \dots, x_{k-2} \in X_{r-3}$ the following hypergraph:

$$\mathcal{H}^*(x_1,\ldots,x_{k-2}) = \{G \setminus \{x_1,\ldots,x_{k-2}\} \mid \{x_1,\ldots,x_{k-2}\} \subset G \in \mathcal{H}^*\}.$$

There are x_1, \ldots, x_{k-2} for which we have

$$|\mathcal{H}^*(x_1,\ldots,x_{k-2})| \ge \frac{r!c}{r^rs}n^2.$$

By Theorem 1 for k=2 ([12]), we have a $G^{(3)}(s+2+\lfloor \log s \rfloor,s)$ in this 3-uniform $\mathcal{H}^*(x_1,\ldots,x_{k-2})$. Then in the original \mathcal{H} we have a set of at most

$$s(r - (k+1)) + (k-2) + s + 2 + |\log s| = s(r-k) + k + |\log s| = p$$

vertices spanning at least s r-edges, a contradiction.

This completes the proof of Theorem 1. \square

4 Proof of Theorem 2

Let $r \ge 4$ and p = 4(r - 3) + 4.

Proceeding similarly as above, assume indirectly that there is a constant c > 0 such that

$$f^{(r)}(n, p, 4) > \lceil cn^3 \rceil. \tag{2}$$

From this assumption we will get a contradiction. (2) means that there exists an r-uniform hypergraph \mathcal{F} with

$$f^{(r)}(n, p, 4) - 1 \ge \lceil cn^3 \rceil \ge cn^3$$

edges that does not contain a member of $G^{(r)}(p,4)$, i.e. a set of p vertices spanning at least 4 edges. Let us assume that n is sufficiently large.

Similarly as above, first by using Lemma 1 we find an r-partite subhypergraph $\mathcal H$ of $\mathcal F$ with at least

$$\frac{r!c}{r^r}n^3$$

edges and with partite sets X_1, \ldots, X_r . Then we reduce \mathcal{H} to $\{X_{r-3}, X_{r-2}, X_{r-1}, X_r\}$ to get \mathcal{H}^* with at least

$$\frac{r!c}{r^rs}n^3$$

4-edges.

Now consider an arbitrary 4-edge $H \in \mathcal{H}^*$, and $H_1 \subset H$ with $|H_1| = 3$. There can be at most $3 H' \in \mathcal{H}^*$ edges with $H \cap H' = H_1$, since otherwise we get a set of at most

$$4(r-4) + 7 = 4(r-3) + 3 < p$$

vertices spanning at least 4 r-edges, a contradiction.

Since we can choose H_1 in 4 different ways, altogether there can be at most $12 \ H' \in \mathcal{H}^*$ edges with $|H \cap H'| = 3$. We remove all these at most $12 \ H'$ edges from \mathcal{H}^* . In the remaining hypergraph again we consider an arbitrary 4-edge H and we remove all other edges H' for which $|H \cap H'| = 3$. We continue in this fashion until we have no two 4-edges H and H' with $|H \cap H'| = 3$. Denote the resulting hypergraph by \mathcal{H}^{**} , then

$$|\mathcal{H}^{**}| \ge \frac{r!c}{13r^rs}n^3. \tag{3}$$

Furthermore, \mathcal{H}^{**} is $\mathcal{F}(4)$ -free, since otherwise we get a set of at most

$$4(r-4) + 8 = 4(r-3) + 4 = p$$

vertices spanning at least 4 r-edges, a contradiction.

However, then (3) is in contradiction with Lemma 2.

This completes the proof of Theorem 2. \square

References

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
- [2] W.G. Brown, P. Erdős, V.T. Sós, Some extremal problems on r-graphs, in New directions in the theory of graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, Academic Press, New York, 1973, 55-63.
- [3] W.G. Brown, P. Erdős, V.T. Sós, On the existence of triangulated spheres in 3-graphs and related problems, *Periodica Mathematica Hungarica*, 3 (1973), 221-228.
- [4] P. Erdős, Problems and results on graphs and hypergraphs: similarities and differences, in *Mathematics of Ramsey* (J. Nesetril, V. Rödl, eds.), Springer Verlag, Berlin, 1990, 12-28.
- [5] P. Erdős, Extremal problems in graph theory, in *Theory of graphs and its applications* (M. Fiedler, ed.) Academic Press, New York, 1964, 29-36.
- [6] P. Erdős, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, *Graphs and Combinatorics*, 2 (1986), 113-121.
- [7] P. Erdős, D.J. Kleitman, On coloring graphs to maximize the proportion of multicolored k-edges, J. of Combinatorial Theory, 5 (1968), 164-169.

- [8] P. Frankl, V. Rödl, Extremal problems on set systems, Random Structures and Algorithms, 20 (2002), 131-164.
- [9] Z. Füredi, Turán-type problems, Surveys in Combinatorics, London Math. Soc. Lecture Notes Ser., A.D. Keedwell, Ed., Cambridge Univ. Press (1991), 253-300.
- [10] R.L. Graham, M. Grötschel, L. Lovász, *Handbook of Combinatorics*, Elsevier Science B.V., 1995.
- [11] I.Z. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Volume II. 939-945.
- [12] G.N. Sárközy, S.M. Selkow, An extension of the Ruzsa-Szemerédi Theorem, submitted for publication, WPI Technical Report WPICS-CS-TR-03-02, http://www.cs.wpi.edu/Resources/techreports/
- [13] A.F. Sidorenko, What we do know and what we do not know about Turán numbers, *Graphs and Combinatorics*, 11 (1995), 179-199.