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Note

Abstract

We let G() (n,m) denote the set of r-uniform hypergraphs with n vertices and
m edges, and f(")(n,p,s) is the smallest m such that every member of G")(n,m)
contains a member of G(")(p, s). In this paper we are interested in the growth of
f@)(n,p,s) for fixed values r,p and s. Brown, Erd8s and T. Sés ([2]) proved that
for r > k > 2 and s > 3 we have f()(n,s(r — k) + k,s) = ©(n¥). This suggests
the difficult question whether f()(n,s(r — k) + k + 1,s) = o(n*). This was first
established for 7 = s = 3 and k = 2 by Ruzsa and Szemerédi ([11]). Then for s =3
and k = 2 Erdés, Frankl and Rodl ([6]) extended this result for any r, and they
conjectured that it also holds for k¥ = 2 and any s. In this note we show that

FT(n, s(r — k) + k+ |logy s],s) = o(nF) forall k> 2.
In addition we show that

FO)(n,4(r — 3) + 4, 5) = o(n®).

1 Introduction

1.1 Notation and definitions

For basic graph and hypergraph concepts see the monograph of Bollobds [1].

A hypergraph F is called r-uniform if |F| = r for every edge F' € F. An r-uniform
hypergraph F on the set X is r-partite if there exists a partition X = X; U...U X, with
|FNX;| =1 for every edge FF € F and 1 < i < r. |F| denotes the number of edges of F.
In this paper logn denotes the base 2 logarithm.
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1.2 Turan-type hypergraph problems

We let G (n,m) denote the set of r-uniform hypergraphs with n vertices and m edges,
and f)(n, p, s) is the smallest m such that every member of G (n, m) contains a member
of G")(p,s). The determination of f)(n,p,s) has been a longstanding open problem.
Special cases of this problem appeared in [3], [5]. For more about Turdn-type hypergraph
results consult the surveys by Fiiredi [9] and Sidorenko [13]. In this note we are interested
in the growth of f(")(n,p, s) for fixed values r,p and s.

Brown, Erdés and T. S6s ([2]) proved that for » > k > 2 and s > 3 we have

fO(n, s(r — k) + k, s) = O(nk).
This suggests the following difficult question.

Conjecture 1.
O (n,s(r — k) +k+1,5) = o(nk).

This was first established for r = s = 3 and k£ = 2 by the celebrated result of Ruzsa
and Szemerédi ([11]). Then for s = 3 and k = 2 Erdds, Frankl and Rodl ([6]) extended
this result for any r, and they conjectured that it also holds for £ = 2 and any s. In this
direction in [12] we showed that

f(’")(n, s(r —2) + 2+ |logs], s) = o(n?).

In this note we extend this result for £ > 2, showing that Conjecture 1 is not far from
being true.

Theorem 1. For all integersr >k > 2 and s > 3,
fO(n, s(r — k) + k + |log s|, s) = o(n¥).

Thus roughly speaking Conjecture 1 is true apart from a |logs| term. However, it
still remains open whether one can replace this term with 1 and prove Conjecture 1.

In addition, by using a recent, deep result of Frankl and Rd4dl ([8]) we show that
Conjecture 1 is true for £k = 3 and s = 4.

Theorem 2. For all integers r > 4,
FO(n, 4(r — 3) + 4,4) = o(n®).

In the next section we provide the tools, then we prove the theorems.



2 Tools

We will use a simple but useful result of Erdés and Kleitman ([7], see also on page 1300
in [10]).

Lemma 1. Every k-uniform hypergraph F contains a k-partite k-uniform hypergraph H
with .

@ >

|F| — K

We will also need a recent result of Frankl and Ro6dl. Following their notation from
8], let A; = {a;,b;} be pairwise disjoint 2-element sets for 1 < ¢ < k. Define F; =
{a1,...,ax,0;} \ {a;} and F(k) = {Fi,...,F;}. Let ex*(n,F(k)) denote max|#| such
that #H is a k-partite hypergraph on n vertices that is F(k)-free, and |[H N H'| < k — 2
holds for all distinct H, H' € H. In [8] the following deep result is shown.

Lemma 2.

ex*(n, F(4)) = o(n?).

3 Proof of Theorem 1

Let 7 >k >2,5s>3,p=s(r—k)+k+ |logs] and | = [logs]. For k = 2 we showed
that the theorem is true in [12]; thus we may assume &k > 2.
Assume indirectly that there is a constant ¢ > 0 such that

f(n,p, 5) > [en*]. (1)

From this assumption we will get a contradiction. (1) means that there exists an r-uniform
hypergraph F with
fO(n,p,s) = 1> [en*] > enf

edges that does not contain a member of G (p, s), i.e. a set of p vertices spanning at
least s edges. Let us assume that n is sufficiently large.
Using the Erdds-Kleitman theorem (Lemma 1) we find an r-partite subhypergraph H

of F with at least

rle

/,'-7‘
edges. Let X1,..., X, be the vertex classes of this r-partite hypergraph H. Consider the
(k 4+ 1)-uniform hypergraph H* which is defined by the removal of X;,..., X, ;_; from
the vertex set of # and from all edges of H. If a (k + 1)-edge of H* has multiplicity
greater than 1, then we keep only one edge. Note that every (k+ 1)-edge has multiplicity
less than s. Indeed, otherwise taking a (k + 1)-edge with multiplicity at least s and s
r-edges of H containing this edge, we get a set of at most

s(r—k—1)+k+1<s(r—k)+k+|logs|=p
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vertices that span at least s r-edges, a contradiction. Then if in H* we keep only one edge
from each multiple (k + 1)-edge we still have at least

]

rle
—nk
r’s

edges.
Define for every 1 € X, _j, 22 € Xy _gi1,---,2k—2 € X,_3 the following hypergraph:

7‘[*(331, ... ,xk_g) = {G \ {.Tl, . 73319—2} | {.7)1, ceey xk_Q} Cc(Ge H*}
There are 1, ..., xr_s for which we have
|H*($1, ceey $k,2)| Z %TL?.

By Theorem 1 for £ = 2 ([12]), we have a G® (s + 2 + |logs],s) in this 3-uniform
H*(x1,--.,Zk_2). Then in the original H we have a set of at most

s(r—(k+1)+(k—=2)+s+2+ |logs| =s(r—k)+k+ |logs] =p

vertices spanning at least s r-edges, a contradiction.
This completes the proof of Theorem 1. O

4 Proof of Theorem 2

Let r >4 and p = 4(r — 3) + 4.
Proceeding similarly as above, assume indirectly that there is a constant ¢ > 0 such
that

fO(n,p,4) > [en®]. (2)
From this assumption we will get a contradiction. (2) means that there exists an r-uniform

hypergraph F with
fO(n,p,4) =1 > [en®] > en®

edges that does not contain a member of G() (p,4), i.e. a set of p vertices spanning at
least 4 edges. Let us assume that n is sufficiently large.
Similarly as above, first by using Lemma 1 we find an r-partite subhypergraph H of

JF with at least
rlc 4

frT'
edges and with partite sets X7,..., X,. Then we reduce H to {X,_3, X, 2, X;_1, X, } to

get H* with at least
rlc 4

r’s
4-edges.



Now consider an arbitrary 4-edge H € H*, and H; C H with |H;| = 3. There can be
at most 3 H' € H* edges with H N H' = Hy, since otherwise we get a set of at most

Ar—4)+7=4(r—-3)+3<p

vertices spanning at least 4 r-edges, a contradiction.

Since we can choose H; in 4 different ways, altogether there can be at most 12 H' € H*
edges with |H N H'| = 3. We remove all these at most 12 H' edges from H*. In the
remaining hypergraph again we consider an arbitrary 4-edge H and we remove all other
edges H' for which |[HN H'| = 3. We continue in this fashion until we have no two 4-edges
H and H' with |H N H'| = 3. Denote the resulting hypergraph by #**, then

|
ric g4

*3% > .
"z 13r’sn (3)

Furthermore, H** is F(4)-free, since otherwise we get a set of at most
4r—4)+8=4(r—3)+4=p

vertices spanning at least 4 r-edges, a contradiction.
However, then (3) is in contradiction with Lemma 2.
This completes the proof of Theorem 2. O
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