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Abstract

The Kernel programming language attempts to expand on the simplicity
and versatility of Scheme by exploiting a decomposition of Scheme’s lambda
constructor into two orthogonal constructors. The primary constructor, called
$vau, builds compound combiners that act directly on their unevaluated oper-
ands (“call-by-text”, or operative, compound combiners); while a second con-
structor, called simply wrap, induces evaluation of arguments. This report de-
scribes how these constructors work, and explores some of their consequences,
including some design differences of Kernel from Scheme that help the pro-
grammer to manage the inherent volatility of first-class operative combiners.

This report is an expanded form of material presented to the NEPLS 7

conference, held at WPI in October 2002.

Contents
1 Introduction

2 Background

2.1 Terminology . . . . . . . . . ...
2.2 History of combiner constructors . . . . . ... .. ... ... ..

iii

SCEy—



3 The decomposition

3.1 Applicatives . . . . .. oL
3.2 Operatives . . . . . . . . L e
3.3 $lambda . . . . ...
3.3.1 Anextended example . . . . . .. ... oL
3.4 apply . ..o e
4 Well-behavedness
4.1 Hygilene . . . . . . . L
4.1.1 Variable capturing . . . .. ... ... 0oL
4.1.2 Context capturing . . . . . . .. ... L.
4.2 Stability . . . ...
4.2.1 Isolating environments . . . . .. ... ...
4.2.2 Restricting environment mutation . . . . . . ... ... 0.

5 Conclusions and future work

A Kernel meta-circular evaluator (in Scheme)
A.1 Evaluator central logic . . . .. . .. ... .. L.
A2 Interpreter top level . . . . . . . . ... Lo
A.3 Encapsulated Kernel data types . . . . . .. ... ... ... .....
A.4 Kernel standard environment . . . . ... ... oL
A5 Termination . . . . . . . ...

B References
List of Equivalences

UBWPAD e e e e e e e e e e e e e e e e
$lambda . . . . . . ..
apply (fixpoint) . . . . . .. oo
apply (genmeral case) . . . . . . . .. ... ...
apply (default environment) . . . . . . . .. ...

Sy O i W N~

v

25

28
28
29
31
35
37

38



1 Introduction

The Kernel programming language attempts to expand on the simplicity and versa-
tility of Scheme by exploiting a decomposition of Scheme’s lambda constructor into
two orthogonal constructors. The primary constructor, called $vau, builds compound
combiners that act directly on their unevaluated operands (“call-by-text”, or opera-
tive, compound combiners); while a second constructor, called simply wrap, induces
evaluation of arguments. This report describes how these constructors work, and
explores some of their consequences, including some design differences of Kernel from
Scheme that help the programmer to manage the inherent volatility of first-class
operative combiners.

This report is an expanded form of material presented to the NEPLS 7 conference,
held at WPI in October 2002. [NEPLS]

§2 defines basic terminology and reviews some Lisp history. §3 explains the new
Kernel primitives, and shows how they can be used to build the primitives that they
replace. §4 discusses well-behavedness in Kernel versus Scheme. §5 assesses the state
of the Kernel project and its prospects for the future. Appendix A gives a meta-
circular evaluator for Kernel, written in Scheme.

2 Background

2.1 Terminology

This subsection establishes terminology for discussing various entities involved in the
evaluation process.

In Scheme (and Kernel), as in most Lisps, computation consists of evaluating
expressions, and expression evaluation has, more or less,! just three cases: Most
expressions self-evaluate, i.e., they evaluate to themselves; expressions of type symbol
are looked up in the current environment; and expressions of type pair are the only
case with internal structure, and the case with which we will be primarily concerned
here.

A pair to be evaluated is a combination; its unevaluated car is an operator; and
in the usual case that the combination is a list, any further elements of the list after
the operator are operands. In the usual case that all the operands are evaluated, and
all other actions use the results rather than the operands themselves, the results of

!The formal definition of Scheme in the R5RS, [KeCIRe98, §7.2], is not quite as uniform as
what is described here; it focuses on legal syntax, and consequently excludes certain cases (such
as improper lists) from the set of evaluable expressions. Kernel extends evaluation ruthlessly to
all objects, counting evaluation among the rights and privileges of first-class objects. The types of
expressions excluded by Scheme, and therefore rejected by Scheme prior to evaluation, are either
detected by Kernel during evaluation (which may be anticipated in some decidable cases); or in some
cases, noted below in §3.4, expression types rejected by Scheme are allowed by Kernel.



evaluating the operands are arguments. This much terminology may be considered
standard for Scheme, as it is taken from the Wizard Book, [AbSu96, §1.1.1].

There is no general Scheme term for the result of evaluating an operator, for
the straightforward reason that in Scheme, not all operators are evaluated; special-
form operators are not. In Kernel, where all operators are evaluated, the result of
evaluating an operator is (if type-correct) a combiner; and this term extends naturally
to the context of Scheme, or any other Lisp where special-form operators are not
evaluated, by saying in the general case that a combiner is the action designated by
an operator.

This report will use monospace lettering for symbols, and %talicized mono-
space lettering for combiners. Thus, for example, apply is the combiner named
(in whatever Lisp context we're considering, most often the standard environment of
Kernel) by symbol apply; cond is the (second-class) combiner designated by symbol
cond;? and so on.

Kernel also needs to distinguish between combiners that act on their operands (as
do special-form combiners), and combiners that act on their arguments (as do Scheme
procedures®). Combiners that act on their operands are sometimes said to use call-
by-text; however, this term is not used in the Kernel project because —besides the
word “text” conjuring visions of ASCII code— there is no similarly formed adjective
for an arbitrary combiner that acts on its arguments. Adjectives of the form call-
by-X are used to specify when the operands are evaluated to arguments, especially
whether they are evaluated eagerly (call-by-value) or lazily (call-by-name) [CrFe91]*;
but the eager/lazy distinction is orthogonal to most of our discussion here, which
concerns only whether the operands are evaluated at all, so call-by-X will not serve
Our purpose.

Instead, the Kernel project calls a combiner that acts directly on its operands
an operative combiner (or, simply an operative); and a combiner that acts on its
arguments an applicative combiner (an applicative).®

The principal terms presented in this subsection are summarized by Table 1.

2The corresponding (first-class) Kernel standard combiner is $cond, i.e., its standard name is
$cond.

3The use of the term procedure in Scheme does not coexist comfortably with the common use of
the term procedure in the (non-Scheme) literature, where it means what we call a combiner. For the
Kernel project it was found that using procedure in either sense tended to promote confusion; hence
Kernel avoids the term procedure entirely.

4Following [CrFe91], call-by-X specifies when the operands are evaluated (evaluation strategy),
while pass-by-X specifies how the operands/arguments are bound to the parameters (binding strategy,
usually either pass-by-worth or pass-by-reference).

5The term applicative could be taken to refer to the Scheme term application (a combination that
isn’t a special form), though that term is not used in Kernel. By original intent, applicative refers
to the type required of the first argument to Kernel’s apply combiner; see §3.4. Some looseness was
admitted in the symmetry between terms operative and applicative, because the more stringently
symmetrical term argumentative proved difficult to use with a straight face.



combination: pair to be evaluated

parts of a combination types of combiner

car cdr acts on type
unevaluated | operator | operands operands | operative
evaluated |combiner |arguments  arguments |applicative

Table 1: Terminology

2.2 History of combiner constructors

In most Lisp languages, the primary constructor of combiners is the lambda oper-
ative. lambda constructs applicatives, and is generally a universal constructor of
applicatives, in the sense that it can implement all applicatives that are possible
within the computational model of whatever Lisp dialect it occurs in. It is therefore
unnecessary to have any other combiner constructors in the language, provided one
is willing to accept that all constructed combiners will be applicative. lambda was
the only combiner constructor in the original description of Lisp [McC60], and it is
—or rather was, until quite recently [KeClRe98]— the only combiner constructor in
Scheme. It is of particular interest here that Scheme had only one call mechanism for
compound combiners, the one being used by compound applicatives constructed via
lambda, as this singularity appears to be an important element of the elegance for
which the Scheme design is noted: A language with multiple compound call mecha-
nisms must answer awkward questions about how they interact (a problem that will
appear in various guises in this report), but there can be no interactions between
mechanisms if there is only one mechanism.

In practice, though, it’s convenient to be able to construct new operatives. So,
in the 1960s and 70s, Lisps developed two rival strategies for constructing compound
operatives [Pi80]: macros and fexprs.

Lisp macros are a generalization of the technique commonly used in assembly
languages.® A macro takes in its operands —as abstract syntax— performs some
arbitrary computation on them, and returns a new expression that is then subject to
evaluation. Note that this technique forces an explicitly two-phase evaluation process.

Compound operatives under the other strategy have gone by a variety of names.
MacLisp called them FEXPRs (the name used here, and commonly found elsewhere in

6The sixties and into the early seventies were something of a heyday for macro facilities, and
macros in higher-level languages were not too remarkable. Remember, this is the era when C and
TEX were created. The apotheosis of object-orientation had not yet occurred; its later social niche
among programming language visionaries was being filled by eztensible languages [Sta75], and macros
were a commonly used extension technique. Another especially general macro facility, outside the
Lisp world, belonged to PL/I [Bar79].



modern literature, e.g. [Wa98]); Interlisp, the other major Lisp camp in the seventies,”
called them NLAMBDAS; and some experimental languages in the eighties called them
reflective, or reifying, procedures (e.g., [WaFr86]).

The idea behind fexprs is that the programmer defines a compound combiner using
the same form as with lambda, except that (1) the usual formal parameters will be
bound to the unevaluated operands, rather than to the arguments, and (2) there is
an additional formal parameter that will be bound to the dynamic environment from
which the call is made.® The fexpr thus has access to all the same information that
must be provided, in general, to evaluate a call to a special-form combiner; so that, in
effect, a fexpr us a programmer-defined special-form combiner. Anything that could
be done using special-forms (therefore, anything that could be done using macros)
can evidently be done using fexprs.

Macros in the 1970s had a few behavioral problems arising from name-space colli-
sions (called variable capturing, which will be discussed in §4.1.1); but programmers
had been living with those problems since before the advent of higher-level languages,
and in any case the problems would be eliminated by hygienic macro devices in the
late eighties [CIRe91]. Fexprs, however, were not merely badly behaved in themselves;
adding them to a Lisp language undermined the well-behavedness of the rest of the
language. The case against fexprs was carefully and clearly laid out in [Pi80], which
recommended omitting fexprs from future dialects of Lisp:

it has become clear that such programming constructs as NLAMBDA’s and
FEXPR’s are undesirable for reasons which extend beyond mere questions
of aesthetics, for which they are forever under attack.

In other words, fexprs are (were) badly behaved and ugly — this at a time, remember,
when mainstream Lisps were dynamically scoped, which in retrospect seems to add
a certain extra sting to the aesthetic criticism. The Lisp community mostly followed
his recommendation (and, incidentally, accumulated quite a lot of citations of his
paper), although, as noted, fexprs occurred under other names in the reflective Lisps
of the 1980s; and the misbehavior of fexprs has continued to attract a modicum of
attention, both in regard to the feature itself [Wa98| and as a paradigmatic example
of undesirable behavior [Mi93].

However, fexprs also have a potential advantage that macros cannot match. It
was suggested earlier that Scheme derived its elegance partly from the fact that it
had only one compound call mechanism. The macro strategy precludes this form of

7On the overall shape of the Lisp community over the decades, see the Lisp paper in HOPL II,
[StGa93].

8Even in the age of dynamically scoped Lisps, it was necessary to explicitly pass in the dynamic
environment. MacLisp did support “one-argument FEXPRs”, whose one parameter was bound to
the entire list of operands, but the name of the one parameter could be captured if it occurred in an
operand; so MacLisp also supported “two-argument FEXPRs”, whose second parameter was bound
to the unextended dynamic environment. [Pi83]



elegance: It requires two compound call mechanisms, one in each of the two phases
of evaluation, and the call mechanisms are inherently distinct from each other by
the very fact that they are in explicitly separate phases of evaluation. The fexpr
strategy, however, does not require explicitly multi-phase evaluation, and so does not
inherently preclude a single compound call mechanism; and this is the window of
opportunity through which Kernel attempts to climb.

3 The decomposition

Evaluation of a call to an applicative involves two logically separable parts: evaluation
of the operands, and action dependent on the resulting arguments. This is not a
language-specific statement; it is a paraphrase of the definition of the term applicative.
If the combiner call is dependent on the operands in any way other than through the
values of the arguments, the combiner isn’t applicative. Note that the two parts
of the call evaluation are only required to be separable, not necessarily consecutive:
Operand evaluation for an applicative can, in general, be lazy or eager, as long as it
is the only activity that depends on the operands directly.

The central idea in Kernel is that, by using two orthogonal primitive construc-
tors to support the two parts of an applicative call, one can reconcile fexprs with
the elegance of a single compound call mechanism. The second part of an applica-
tive call —action on the arguments— is allowed to range over all combiners, and is
therefore thoroughly supported by Kernel’s fexpr-style primitive constructor, $vau.
Applicatives can then be constructed near-trivially from operatives, avoiding both the
inelegance of two highly non-orthogonal primitive constructors ($vau and $lambda .’
the latter being non-primitive in Kernel), and the conceptual difficulties attendant
on defining operatives as a variant of applicatives (cf. §5).

Breaking the classical lambda constructor into two parts is a deep change to the
Lisp computation model, and cannot be accomplished —in an elegant way, which
is the point of the exercise— as a small localized amendment to the language (in
this case, Scheme). lambda is almost the entire core of the language; the only other
operatives in the minimal semantics of Scheme ([KeClRe98, §7.2]) are ¢f and set!
— and each of the others handles just one task, whereas lambda covers everything
else.l? In order to make the Kernel design work out cleanly —and especially, to
allow the programmer to manage the inherent volatility of first-class operatives— it
was sometimes necessary to make sweeping global changes to the Scheme design; so
that, while Kernel s unmistakably a variant of Scheme, it is nowhere near achieving
Scheme source compatibility.

9The Kernel name for the classical constructor is $1ambda. When we speak of lambda, we are
referring to the constructor in Lisps generally, or in Scheme particularly.

0A quick list of roles covered by lambda would include variable binding, compound control
construction, recursion, and encapsulation.



3.1 Applicatives

The primitive constructor for Kernel’s applicative data type is wrap ; it simply takes
any combiner ¢, and returns an applicative that evaluates its operands and passes the
list of results on to ¢. More precisely, the equivalence

(Cwrap o) 1 22 ... Ty)
- . (1)
= C(eval (list zg x1 x2 ... x,) (get-current-environment))

must hold for all z, provided z( evaluates to a combiner.!’ That is, to evaluate a
combination with an applicative, build a combination that passes the arguments to the
underlying combiner, and evaluate the new combination in the current environment.
(This equivalence constitutes, in itself, something like half the nontrivial logic in the
heart of the Kernel meta-circular evaluator in §A.1.)

Equivalence 1 is not between “syntactic” expressions in the usual sense. Because
operators wrap, eval, list, and get-current-environment are italicized, they
specify the standard combiners of those names, of type applicative rather than type
symbol. Had the operators been unitalicized, the two expressions would only be
equivalent if evaluated in an environment where symbols wrap, eval, etc. are bound
to the respective standard combiners. As stated, evaluating the two expressions in
any environment should produce the same results, since the combiners will evaluate
to themselves regardless of what their standard symbolic names might be bound to.

We can now be more specific about our claim, in §2.1, that the operative/applica-
tive distinction is orthogonal to lazy/eager operand evaluation. Equivalence 1 would
be unchanged if applicatives constructed with wrap used lazy rather than eager
operand evaluation, provided that standard applicative 12st used lazy operand eval-
uation too; later equivalences in this report will be similarly invariant under choice
of lazy /eager policy. (Kernel follows Scheme in practicing eager operand evaluation.)

It may be noted, in passing, that Equivalence 1 does not require z, to evaluate
to an operative. It is entirely possible in Kernel to wrap an operative, say, twice,
in which case the equivalence dictates that the resulting combiner will evaluate its
operands, then evaluate the results of those first evaluations, and pass the results of
the second evaluations to the operative.

To make operand evaluation fully separable from the rest of an applicative call,
Kernel provides an accessor unwrap , that extracts the underlying combiner of a given
applicative. This behavior is expressed by the equivalence:

(unwrap (wrap z)) = (2)

Equivalence 2 holds for all z, provided z evaluates to a combiner.!?

"'The restriction arises because in the second expression, the result of evaluating zo, call it z, is
itself evaluated when it occurs as the operator of the combination constructed by list. If zj is a
combiner, then it self-evaluates, so the redundant evaluation doesn’t spoil the equivalence.

12This time, the restriction comes from error-checking: If x evaluates without error to an object
2’ of some non-combiner type, a dynamic type error will occur when z’ is passed to wrap.



3.2 Operatives

The general form of a $vau expression is:
($vau ptree eparm x; x9 ... Xp)

As noted (of fexprs generally) in §2.2, this works almost the same way as classical
lambda:

e piree is the formal parameter tree, a slight generalization of the formal parameter
list used in Scheme.

e When the compound operative is called, the formal parameters in the tree will
be bound to the operands of the call, rather than to the arguments.

e eparm is an additional formal parameter, called the environment parameter,
that will be bound to the dynamic environment, i.e., the environment from
which the compound operative is called.

In all other respects (notably static scoping), $vau works as does Scheme lambda .

Here are some simple examples; the behavior of $vau will be shown in detail for
a more sophisticated example in §3.3.1.

($define! $quote
($vau (x) #ignore x))

When this compound operative is called, a local environment is created whose
parent environment is the static environment in which the vau expression was evalu-
ated; then the local environment is extended by matching the formal parameter tree,
(x), against the operand list of the call. There must be exactly one operand, which
is locally bound by symbol x. Kernel has a special atomic object #ignore that can
be used in place of a formal parameter name; it matches anything and makes no local
binding.'® In this case, the dynamic environment —from which the call is made—
is not given a local name. There is one expression in the body of the compound
operative, x, which is evaluated in the local environment, where it has been bound
to the operand of the call, and so the unevaluated operand of the call is returned as
the result of the call — just the behavior one expects of the quotation combiner.!4

13The use of #ignore in the formal parameter tree is a matter of uniformity and occasional
convenience; but its use in place of the environment parameter is needed to preserve proper tail
recursion. If every local environment contained a dynamic reference, it would be impossible for the
language interpreter to garbage-collect local environments during a supposedly iterative process.

MHowever, the current draft of the Kernel design, [ShOx], specifically omits operative $quote.
Operative $quote will be considered several times in relation to various undesirable behaviors in
§4.1.2.



The leading dollar-signs ($) on operators $define!, $quote, and $vau are a nam-
ing convention. With two potentially infinite domains of constructed combiners ex-
isting side by side in the language, and the question of operand evaluation riding on
the distinction between them, it’s important to know which combiners are of which
type; so Kernel observes a universal convention that operative names begin with $.
There is (following Scheme design philosophy) no enforcement of the convention, just
as predicates aren’t required to end with ?'%; but, by articulating the programmer’s
intent, the convention makes programs much easier to manage.

(The character $ was originally meant to be a stylized “S”, mnemonic for “Spe-
cial”, as in “special form”. Since Greek letter vau is the ancestor of Roman letter F,
the name of Kernel’s “special form constructor”, so to speak, could be read as “SF”.)

($define! get-current-environment
(wrap ($vau () e e)))

In this definition, the wrap expression constructs an applicative from an underlying
compound operative. The operative takes zero operands —that is, the cdr of the
calling combination must be nil— so the applicative takes zero arguments.'® The first
instance of e is the environment parameter, which is locally bound to the dynamic
environment from which the call was made. The second instance of e is evaluated in
the local environment, so that the dynamic environment is returned as the result of the

call. Standard applicative get-current-environment was used in Equivalence 1, in
§3.1.

($define! list
(wrap ($vau x #ignore x))

Here, the underlying compound operative locally binds x to the entire list of
operands to the operative — which are themselves the results of evaluating the
operands to the enclosing applicative. So the overall effect of the constructed ap-
plicative is to evaluate its operands, and return a list of the resulting arguments.

3.3 $lambda

In the final 14st example of §3.2, above, Scheme programmers may have noted that
standard applicative l14st is much easier to construct in Scheme, using lambda:

I5Kernel is, incidentally, generally more uniform than Scheme about its naming conventions,
appending ?’s to its numeric ordering predicates (<? <=7 =7 >7 >=7), and ! to the name of its
primitive mutator of environments ($define!).

16One might ask, if there are no operands to be evaluated or not evaluated, why we bother to wrap
get-current-environment. We prefer to make our combiners applicative unless there’s a specific
need to make them operative. It’s a matter of not crying wolf: Anyone reading a program should
know to pay special attention when he encounters an explicit operative. Operative definitions will
stand out more once we introduce $lambda in the next subsection (§3.3).



Instead of Kernel
(wrap ($vau x #ignore x))
one could simply write Scheme
(lambda x x)

Naturally, Kernel does have a standard operative $lambda ; it simply isn’t primitive.
The behavior we want from $lambda is expressed by equivalence

($lambda ptree T1 x5 ... x,)
= (wrap ($vau ptree #ignore x1 T2 ... Ty))

(3)

In other words, a lambda expression is just a wrapped vau expression that ignores its
dynamic environment. The equivalence can be converted straightforwardly into an
implementation of $lambda as a compound operative:

($define! $lambda
($vau (ptree . body) static-env
(wrap (eval (list* $vau ptree #ignore body)
static-env))))

We describe how this compound operative $lambda works, first in brief, and then in
detail through an extended example.

When this $lambda is called, the first operand in the call is locally bound by
symbol ptree, and the list of remaining operands (the cddr of the combination) is
locally bound by symbol body. The dynamic environment of the call to $lambda
is locally bound by symbol static-env; that environment will become the static
environment of the applicative constructed by $lambda. The body of $lambda is
then evaluated in the local environment.

list* is a standard applicative that works almost like 1¢st, returning a list of
its arguments except that the last argument becomes the rest of the list rather than
the last element of the list. In this case it constructs a combination whose operator
is operative $wvau (not symbol $vau), whose cadr is the intended parameter tree,
whose caddr is #ignore, and whose cdddr is the intended body. The constructed
combination is then evaluated in the intended environment static-env, so that
$vau makes static-env the static environment of the compound operative that it
constructs. That compound operative is then wrapped, and the resulting applicative
is returned as the result of the call to $lambda .

3.3.1 An extended example

To show how this works in detail, we trace through an extended example — defining
$lambda, using $lambda to define an applicative square, and using square to



square a number. While elsewhere in this report we have used, and will use, a semi-
formal equational approach to describe language semantics, here we use a semi-formal
reduction approach to describe language processing.

We use square-bracketed lists'” both to denote computational states, where the
first element of the list is a verb; and to denote records, where the first element is a
tag. The two record types are:

[operative ptree eparm body env]
[applicative combiner]

where the first form denotes a compound operative with given parameter tree, envi-
ronment, parameter, body, and static environment; and the second form denotes an
applicative with given underlying combiner. The only two verbs we’ll need are “eval”
and “combine”; our primitive rewrite rules for combinations are:

[eval (operator . operands) e]
= [combine [eval operator €] operands e]

[combine [applicative xy] (1 ... z,) €]
= [combine z ([eval z; €] ... [eval z,, €]) €]

[combine [operative ptree eparm (x) e1] operands es]
= [eval = €] where e} extends e; by matching
ptree against operands, and
eparm against e

The third rule has been simplified for this example, by assuming that the body
of a compound operative always contains just one expression.!® For each standard
operative $foo, there is also a rule for rewriting [combine $foo x e|; we omit these
here, as they are self-evident where they occur in the reductions.

As a guide and supplement to the reductions, the entire arrangement of envi-
ronments and (constructed) combiners through all three phases of the example is
illustrated by Figure 1. An environment is depicted as a boxed set of bindings, a
constructed operative is an oval, and a constructed applicative is a boxed reference to
its underlying combiner. Unused bindings in each environment are omitted; in par-
ticular, the figure omits the bindings created by the definitions — those of $lambda
in ey and square in e;.

"Historically, square brackets have been used in the Lisp world to delimit M-ezpressions, a notion
and notation that date all the way back to [McC60]. S-expressions (S for Symbolic) are passive data
to be manipulated, while M-expressions (M for Meta) are active programs that do the manipulating.

1BWithout this simplification, we’d need a third verb, “sequence”. We're glossing over issues of
evaluation order, here; the reductions could just as well be in a pure subset of the language.

10



ptree: (ptree . body)
eparm: static-env

body: ((wrap ...))
env:

€0
ptree = (x)
body — ((x x x))
static-env — .
J

$vau — $vau

wrap > wrap

eval +— ewal

list* — l2st*
€1

$lambda — o/

* X
€2

s ()
eparm: #ignore

- ((*x x x))

square +— @

Figure 1: Objects of the extended example.
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Suppose our compound definition for $1ambda (which we repeat here),

($define! $lambda
($vau (ptree . body) static-env
(wrap (eval (list* $vau ptree #ignore body)
static-env))))

is evaluated in an environment ey, in which we will assume the default bindings for
all the standard combiners used in the definition — $vau, wrap, eval, and list*.1?
We have:

[eval ($vau (ptree . body) static-env ...) e
= [combine [eval $vau e¢g] ((ptree . body) static-env ...) e
= [combine $vau ((ptree . body) static-env ...) eg]
= [operative (ptree . body) static-env (...) e

Now, suppose we evaluate another definition,

($define! square
($lambda (x) (¢ x x)))

in environment e;. It doesn’t matter to us whether e; is related to ey (they could even
be the same environment), so long as symbol $lambda is bound in e; to the compound
operative $lambda we just constructed, and symbol * to standard combiner *.

For any standard applicative foo, we’ll name its underlying operative $foo; that
is, foo = [applicative $foo].

[eval ($lambda (x) (* x x)) €]
= [combine [eval $lambda e;] ((x) (¥ x X)) €]

= [combine [operative (ptree . body) static-env ((wrap ...)) e
((x) (*x x %))
61]
= |eval (wrap ...) ef] where e extends ey with bindings
ptree = (%)
body = ((x x x))

static-env — e;

= [combine [eval wrap ej] ((eval (...) static-env)) ep]
= [combine wrap ((eval (...) static-env)) e
= [combine $wrap ([eval (eval (...) static-env) ej]) ep]

9We don’t bother to assume a binding for $define! because, to simplify the example, we will
only describe the evaluation of the body of each definition — that is, evaluation of the second
operand passed to $define!. If we wanted to trace the actual call to $define!, we’d need another
verb, “bind”, that binds a given symbol to a given value in a given environment, so that

[combine $define! (symbol body) e] = [bind symbol [eval body e] €]
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From this point, it would be needlessly cumbersome to carry along the continuation
[combine $wrap (O) ep] through the entire subsidiary evaluation of (eval ...), so
we follow the subsidiary evaluation separately.

[eval (eval (list* ...) static-env) ep

[combine [eval eval ep] ((listx ...) static-env) ep]

[combine eval ((list* ...) static-env) e

[combine $eval ([eval (1ist* ...) ej] [eval static-env ef]) ef]

R

[combine $eval (($vau (x) #ignore (* x x)) e1) €]
[eval ($vau (x) #ignore (* x x)) e]

[combine [eval $vau e;] ((x) #ignore (¥ x x)) €]
[combine $vau ((x) #ignore (* x x)) e

= [operative (x) #ignore ((* x x)) €]

=
=
=
=

Although the details of evaluating (1ist* ...) were omitted above, note that, since

it was evaluated in e, that is also the environment in which symbol $vau was looked

up, so that the operator later evaluated in e; was the self-evaluating object $vau.
Splicing this subsidiary work back into the main reduction,

[eval ($lambda (x) (* x X)) €]
= [combine $wrap ([eval (eval (...) static-env) ep]) €]
= [combine $wrap ([operative (x) #ignore ((* x x)) e1]) e}
= [applicative [operative (x) #ignore ((x x x)) e4]]

To round out the example, suppose e, is an environment where symbol square is
bound to the applicative we just constructed. (We don’t need to assume any other
bindings in es.)

[eval (square 5) es]

= [combine [eval square es] (5) es]
= [combine [applicative [operative (x) #ignore ((* x x)) e1]] (5) es]
= [combine [operative (x) #ignore ((x* x x)) e1] ([eval 5 e3]) €3]
= [combine [operative (x) #ignore ((* x x)) e1] (5) es]
= Jeval (¥ x x) €] where €] extends e; with binding x +— 5
= [combine [eval * €] (x x) €]
= [combine * (x x) €]
= [combine $* ([eval x €] [eval x €]]) €]
= [combine $x* (5 5) ¢}]
= 256
3.4 apply

Standard applicative apply is used to replace the usual process of operand evaluation
with an arbitrary computation to produce the “argument list” to be passed to the
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underlying combiner of an applicative. The fixpoint of this replacement —where the
usual process is replaced by itself— is expressed by equivalence

(apply x9 (list x; ... x,) (get-current-environment))
== (ZE() 1 ... .’L'n)

(4)

This equivalence is taken to be basic to the purpose of apply; but it only makes

sense if xy evaluates to an applicative, because if xy evaluated to an operative then

the x> would be evaluated in the first form but not the second. Kernel therefore

signals a dynamic type error if the first argument to apply is not an applicative.?’
In full generality, the behavior of Kernel’s apply is expressed by equivalence

(apply (wrap ¢) z e) (5)
= (eval (cons c z) €)

(which holds provided c evaluates to a combiner?!; cf. Equivalence 1). The environ-
ment argument e does not occur in Scheme because all Scheme applicative calls are
independent of their dynamic environment.?? Argument e in Kernel is optional; if it’s
omitted, an empty environment is manufactured for the call. That is,

(apply (wrap c¢) z) (6)
= (eval (cons c z) (make-empty-environment))

Defaulting to an empty environment favors good hygiene (§4.1) by requiring the
programmer to explicitly specify any dynamic environment dependency in the call,
as in Equivalence 4.

As with $lambda in §3.3, the general equivalence for apply (Equivalence 5) trans-
lates straightforwardly into a compound operative implementation (where for simplic-
ity of exposition we ignore the optionality of the third argument):

($define! apply
($1lambda (c x e)
(eval (cons (unwrap c) x) e)))

20Tn MacLisp, where generality tended to be pursued for its own sake, it was permissible to APPLY
a fexpr. The resulting situation was in keeping with the general reputation of fexprs as aesthetically
unpleasant.

21'We specifically do not require that x evaluate to a proper list. Scheme requires a list here; but
in Scheme, all constructed combiners implicitly expect a proper list of operands because they’re all
applicative. In Kernel, one can explicitly construct an unlimited range of first-class operatives that
have no inherent commitment to a proper list of operands, such as ($vau x #ignore x) (which
constructs an operative equivalent to the underlying operative of 1ist); restricting Equivalence 5 to
proper list arguments would therefore be giving up a great deal. Thus, for example, Kernel evaluates
(apply list 2) = 2.

22Gcheme supports an extended syntax for apply, taking three or more arguments, in which all
arguments after the first are cons’d into a list as by Kernel’s 12st#* applicative. This would seem
to defy a natural orthogonality between application and improper list construction; at any rate,
in Kernel the list* applicative tends to arise in compound operative constructions where apply
would have to be artificially imposed (such as the compound construction of $lambda in §3.3).

14



4 Well-behavedness

The Kernel language design generally strives to preserve, consolidate, and further
philosophical principles of the Scheme language design. From Scheme design choices
such as latent typing, Kernel extrapolates the principle that features should not be
introduced into the language design merely to prohibit the programmer from do-
ing things that are potentially dangerous.??> Recognizing that “lack of constraint”
describes some highly undesirable language features as well as some positive ones,
Kernel further extrapolates the guideline that potentially dangerous things should be
difficult to do by accident.

This section considers some of the potentially dangerous things that can be done
in Kernel, and to what extent Kernel helps the programmer to negotiate the dangers.
The appraisal of Kernel facilities is frank; some of the dangers are handled well, some
are only peripherally mitigated, and in one case the language design ([ShOx]) is still
fluid while possible further mitigating measures are contemplated.?*

4.1 Hygiene

The programmer ordinarily tends to assume that, when a compound combiner is
called, syntax in the operands of the combination will be interpreted in its dynamic
environment, syntax in the body of the combiner will be interpreted in its local envi-
ronment, and neither interpretation will be disrupted by the other environment. This
clean partitioning of interpretation concerns according to lexical position is referred
to, somewhat informally, as hygiene.?®

4.1.1 Variable capturing

In naive macro facilities, the expanded code is interpreted strictly in the dynamic
environment, and this can lead to two similar but distinct forms of bad hygiene called
variable capturing.?® We consider both forms below; both are rooted in dynamic

23 Although this principle is extrapolated from latent typing, it does not preclude static typing
per se; rather, it precludes the most common motivation for static typing, which is the principle
that features should be introduced for the express purpose of prohibiting the programmer from
potentially dangerous actions. It is not necessarily inconsistent with Scheme/Kernel philosophy for
the architect of a compound facility to prohibit his creation from being used in ways he didn’t intend
and for which he doesn’t warrant it to be correct. Treading this fine line, techniques that might be
loosely characterized as “static typing” are planned for a future version of Kernel (or a descendant
language).

24The fluid case concerns environment capturing, noted in §4.1.2.

2 [KoFrFeDu86] cites Barendregt for the informal term hygiene: H.P. Barendregt, “Introduction
to the lambda calculus”, Nieuw Archief voor Wisenkunde 2 4 (1984), pp. 337-372; it also notes the
formal property of being-free-for in [Kle52] (where it occurs in Kleene’s §34 as an auxiliary to his
definition of free substitution).

26[C1Re91] describes four, rather than two, kinds of variable capturing; but this doubling of cases
is an artifact of the explicitly two-phase evaluation model required by macros. Each of the two
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scoping, not in macros, so fexpr-style facilities such as Kernel’s have the potential for
both; but in each case, the danger will be largely defused for Kernel by the fact that
$vau-based compound operatives are statically scoped (i.e., the body is interpreted
primarily in the local, lexical environment), so that interpretation subtasks in the
dynamic environment are minimized and explicitly flagged out.

(1) The macro may specify variables to be included in the expanded code on the
unsafe assumption that, in the dynamic environment, they will have their standard
bindings. If the dynamic environment overrides those standard bindings, the variables
are said to be captured by the dynamic environment. For example (recalling §3.3 —
and imagining that a suitable macro facility were added to Kernel), one might define
a naive macro $lambda by transformation

($lambda p . b) = (wrap ($vau p #ignore . b))

but then, if one uses $lambda in an environment where symbol wrap or symbol $vau
has a nonstandard binding, the expanded code will not have the intended meaning.

Kernel is particularly resistant to this form of capturing because, when building
an expanded expression to be evaluated in the dynamic environment (as in §3.3),
one tends to insert the actual combiners (here, wrap and $vau ) into the expansion,
where they will later self-evaluate, unless one goes out of one’s way to deliberately
insert the unevaluated variables. However, in all of the compound implementations
of Kernel library operatives to date, there has never been any reason to do this (i.e.,
to insert a literal symbol into an expression constructed for evalation).?”

(2) Variables in the operands of a combination may be captured by binding con-
structs in the expanded code. For example, transformation

($or =z y) = ($let ((temp z)) ($if temp temp y))
would capture any free variable temp in operand y, so that

($or foo temp) = ($let ((temp foo)) ($if temp temp temp))
= foo

(assuming that using foo as the conditional test for $5f won’t cause a dynamic type
28
error.”®)

cases we describe here is divided by [CIRe91] into two subcases depending on whether the captured
variable is processed in the first or second phase of evaluation.

2T As of this writing, compound implementations have been written for most of the library com-
biners in the core module of Kernel. [Sh0x]

28Kernel $4f requires the result of the conditional test to be of type boolean. This design detail
is based ultimately on consistent adherence to the principle of latent typing, which requires that
at runtime every object knows its type. In brief: The basic motivation for allowing arbitrary test
results is to let the programmer omit the predicate when cdr’ing down a list, but that trick only
works if nil (“the empty list”) counts as false — in which case, de facto, an instance of nil at runtime
doesn’t really know whether it is a list or a boolean.
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While the first form of variable capture could occur in almost any macro trans-
formation, this second form is limited to those more elaborate transformations that
introduce a binding construct. Both hygienic and unhygienic implementations are
correspondingly more elaborate; but still, the unhygienic implementations in Kernel
are generally more arduous than the hygienic ones.?

Here is a hygienic Kernel implementation of the above two-operand $or:

($define! $or
($vau (x y) e
($let ((temp (eval x e)))
($if temp temp (eval y e)))))

The hygiene of this implementation stems directly from the fact that the introduced
binding construct is interpreted in the local, rather than the dynamic, environment.

4.1.2 Context capturing

In the realm of macros, variable capturing commands so much attention that one
might be tempted to think of variable capturing and bad hygiene as synonyms. How-
ever, Kernel combiners prominently exhibit some misbehaviors that, while clearly
not variable capturing per se, nevertheless fit rather well with our notion of “bad hy-
giene”. We will call this second group context capturing. Context capturing occurs,
in general, when a called combiner accesses information usually meant to belong to
the interpretation state of the caller.?®

In Kernel, combiners can access three kinds of contextual information (not count-
ing the arguments to an applicative, which can’t be “captured” because they are
presumably always meant to be accessible, or they wouldn’t exist); hence there are
three kinds of context capturing.

(1) Because Kernel supports first-class operatives —“fexprs”— it is subject to
operand capturing, whereby a combiner that was thought to be applicative may ac-
tually be operative and so unexpectedly access its operands. Consider the following
minimalist example3!:

($define! call ($lambda (f x) (f x)))

29 Accidental variable capturing, of either form, would be much more likely if $quote were included
in the Kernel standard library — which, as already noted, it isn’t. The propensity of $quote for
bad hygiene also extends to operand capturing (§4.1.2); cf. the note at the end of §4.2.2 on use of
$quote in an alternative implementation of $set!.

30Tn principle, both forms of variable capturing are special cases of context capturing. We won'’t
pursue that connection in this report, though.

31Exactly this example (modulo trivialities of Kernel syntax) was used in [Baw88] as a criticism of
the behavior of first-class operatives in general — quite accurately, since operand capturing is just
exactly the form of context capturing enabled by language support for first-class operatives.
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Applicative call is apparently intended to take a function f and an arbitrary object
x, and call f with argument x; we expect equivalence

(call f z) = (f x)

This equivalence holds for a tame argument f, such as
(call cos 0) =— 1

but (recalling the implementation of $quote from §3.2),
(call $quote 0) = x

This behavior violates the encapsulation of call, by capturing and publicizing an
operand, x, that we’'d intended to remain strictly private.

The misbehavior is, in essence, a poorly managed consequence of a type error.
Combiner call expected an applicative as its first argument, but got an operative
instead; the intended non-operativity of the argument is suggested (though not, alas,
guaranteed) by the absence of a $ prefix on the parameter name, f.32

We could replace the misbehavior with an error report by using apply to call f:

($define! call ($lambda (f x) (apply f x)))

Now (call $quote 0) explicitly fails, when apply attempts to unwrap operative
$quote. This is a slightly less than pleasing resolution, because it seems to defy
our principle that dangerous things be difficult to do by accident; as another partially
mitigating measure, it may be appropriate for Kernel compilers to generate a warning
message when a parameter without a $ prefix occurs directly as an operator.

How serious is this misbehavior? Most any software construct (such as call) is
apt to behave in unexpected and even bizarre ways when given an input outside its
design specs. That said, certain aspects of the situation are particularly troublesome.

e There is no way in general to distinguish statically (i.e., prior to evaluation)
between operands that must be treated as syntax, and operands that will affect
the computation only through the results of evaluating them. This was one
of the most important objections to fexprs in [Pi80], because it sabotages pro-
grams that manipulate other programs as data.?® Such higher-order programs
prominently include compilers, as well as forming an entire genre of custom pro-
grams within the Lisp tradition. An important mitigation against this problem
in Kernel is the use of environment stabilization techniques, as discussed below
in §4.2.

32The type constraint is not only “not guaranteed” in the sense that it isn’t enforced, but also in
the sense that it might not be intended: The naming convention distinguishes variables that should
always be operative, but does not distinguish between those meant to be strictly non-operative and
those meant to range over both operative and non-operative values.

33In particular, it sabotages a-conversion, i.e., the semantics-invariant renaming of local variables

in a compound combiner; note for example that renaming the local variable in the first implemen-
tation of call would alter the result of (call $quote 0).

18



e The possibility of operand capture leads to the prospect that any vulnerable,
non-atomic operand might be mutated. Especially messy would be operand
mutation within the body of a compound operative, where it could alter the
behavior of the operative on subsequent calls. Kernel precludes most common
opportunites for accidental operand mutation by imposing immutability on se-
lected data structures.3*

(2) Because Kernel combiners, applicative as well as operative, have the option of
accessing their dynamic environments, Kernel is also subject to environment captur-
ing. To continue the above example of (the first, unsafe implementation of) call,

(call ($vau #ignore e e) 0) == [environment]

Here, the value returned is actually the local environment created for the call, and
thus a child of the static environment of combiner call. This is especially alarming
because Scheme programmers commonly rely for encapsulation on the inability of
clients to directly access the static environment of an exported applicative (as below
in §4.2.2). Its destructive potential is considerably reduced, on a relative scale, by
the measures to be described in §4.2; but on an absolute scale it remains a serious
threat and, for this reason, proactive measures are under consideration for possible
addition to Kernel.?

(3) Because Kernel, and Scheme, include the standard applicative call-with-
current-continuation, both languages are subject to continuation capturing. That
this effect satisfies our definition of context capturing should be self-evident. That
it also satisfies our intuitive notion of bad hygiene follows from the fact that first-
class continuations subsume the behavior of GOTOs, defying the ability of a caller to
know whether he’ll ever get control back (even in a terminating computation). Far
from being decried as “bad hygiene”, however, continuation capturing is commonly
presented as a major selling point for the Scheme language. Our interest in mentioning
it here (besides making a clean sweep of the possible forms of context capturing) is
that it demonstrates the ambivalent nature of bad hygiene, which can sometimes be
deliberately exploited to achieve useful effects.?®

4.2 Stability

A source expression has, by definition, an explicit input representation. This means

34In particular, data structures loaded from an external file are immutable.

350ne such measure would be to introduce a facility that moderates environment capturing, anal-
ogously to the way Scheme’s dynamic-wind moderates continuation switching. The precise details
of such a facility are under intense scrutiny, lest the design miss an opportunity for elegant exception
handling.

36 A telling remark in this regard occurs in [CIRe91], the key paper on Scheme’s hygienic macro
facility: “We here ignore the occasional need to escape from hygiene; we have implemented a com-
patible low-level macro system in which non-hygienic macros can be written.”
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that all of its atoms are either symbols or literal constants; and since there are no liter-
als that denote combiners, all source-expression atomic operators have to be symbols.
The upshot is that a Kernel source expression has substantially no meaning indepen-
dent of the environment where it is evaluated.

This phenomenon differs Kernel from Scheme only in degree. Consider Scheme
source expression

(define square (lambda (x) (¥ x x)))

The resulting compound applicative square ceases to have its original meaning if
the binding of symbol * in its static environment is later changed. In the general
case, a Scheme processor would have to look up symbol * every single time square
is called. These repeated lookups could be eliminated, and other optimizations might
also become possible, if it could be proven that the relevant binding of * is stable
(i.e., will never change).

The corresponding Kernel source expression,

($define! square ($lambda (x) (* x x)))

is potentially even worse off, since the definition itself will misfire unless variables
$define! and $lambda have their standard bindings when the definition is evaluated.
If the definition occurs at the top level of the program, at least it will only be evaluated
once; but local definitions won’t even have that reassurance. It is therefore of great
importance in Kernel to cultivate circumstances under which binding stability can be
guaranteed.

If an environment, is only accessible from a fixed finite set of source code regions,
it will usually be straightforward (if tedious) to prove that most of its bindings are
stable. The key to stability is therefore to avoid open-ended access to environments.
Open-ended access can occur in two ways: unbounded lexical extent, and environment
capturing. Kernel is designed with defenses against both vectors of instability.

4.2.1 Isolating environments

The lexical extent of an environment is the set of all source expressions that are
evaluated in it. Whether it is possible for such an extent to be unbounded depends
on how the language processor is arranged; the usual case is a global environment
used by a read-eval-print loop to evaluate the entire (unbounded) sequence of input
expressions. If virtually all environments are descended from the global environment,
as is commonly the case in Scheme systems, then mutating standard bindings in the
global environment will cause most compound combiners to malfunction.
Fortunately, the flexibility with which Kernel handles environments can be brought
to bear on this problem, by making it easy to isolate software subcomponents in non-
descendants of the global environment. This is done by introducing a variant of the
standard $let operative, in which the parent of the local environment for the body of
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the construct is not a child of the surrounding environment, but instead is explicitly
specified.
Ordinary $let is defined by equivalence

($1et ((sym, exp;) ... (sym, exp,)) . body)
= (($lambda (sym; ... sym,) . body) exp, ... exp,)

The following implements $let as a compound operative:

($define! $let
($vau (bindings . body) dynamic
($define! ptree (map car bindings))
($define! operator (list* $lambda ptree body))
($define! operands (map cadr bindings))
(eval (cons operator operands) dynamic)))

Our instability-resistant version, which for the sake of discussion we call $let-
redirect, takes the intended parent environment as its first operand (evaluated
in the dynamic environment, as are the ezp,). The constructed $lambda expression
is then evaluated in the specified parent, so that

($let-redirect env ((sym, expy) ... (sym, exp,)) . body)
= ((eval ($lambda (sym, ... sym,) . body) env) exp, ... exp,)

The following implements $let-redirect:

($define! $let-redirect
($vau (parent bindings . body) dynamic
($define! static  (eval parent dynamic))
($define! ptree (map car bindings))
($define! operator (list* $lambda ptree body))
($define! operands (map cadr bindings))
(eval (cons (eval operator static) operands) dynamic)))

The combination

($let-redirect (make-kernel-standard-environment)

((foo foo)
(quux quux))
.

would then evaluate the body, “...” in a local environment with all the Kernel

standard bindings, and also bindings of symbols foo and quux to whatever those
symbols were bound to in the surrounding environment when the local environment
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was set up.>” Once the local environment has been set up, mutations to the outside
environment are not (directly) visible in it.

The current Kernel draft includes an operative $let-safe as shorthand for $let-
redirect with the standard environment; that is,

($let-safe bindings . body)
= ($let-redirect (make-kernel-standard-environment)
bindings . body)

4.2.2 Restricting environment mutation

Measures to prevent environment capturing were discussed in §4.1.2. Given that envi-
ronment capturing occurs at all, however, Kernel curtails its destructive potential by
requiring, in effect, that $define! be the only primitive mutator of environments.®
(In addition to mere damage control, this feature supports the principle that danger-
ous things should be difficult to do by accident. More on that toward the end of the
subsection.) To illustrate how this works, consider the following Scheme code for an
encapsulated counter.

(define count
(let ((counter 0))
(lambda ()
(set! counter (+ counter 1))
counter)))

The first time count is called it returns 1, the second time 2, and so on. The internal
counter can’t be accessed except through count because it’s stored in an environment
reachable only through the static-environment reference from count — and Scheme
provides no general way to extract the static environment of an applicative.

Scheme’s set! operative, although it seems innocuous in this example, is an
indiscriminately overpowered tool in general. Whereas $define! creates or modifies
a binding in the immediate dynamic environment, set! finds the visible binding
for the specified symbol, and mutates that binding, even if the binding is non-local.
Consequently, there is no way in Scheme to make a binding visible without also
granting the observer the right to mutate it.

37 Actually, the Kernel standard bindings are not in the local environment, but rather in an an-
cestor. The local environment binds symbols foo and quux, and has as its parent the environment
returned by make-kernel-standard-environment; and that environment actually contains no bind-
ings at all, but has a parent containing all the Kernel standard bindings. The significance of this
distinction has to do with mutation of bindings, which will be addressed in §4.2.2.

38We present $define! as the primitive here because its behavior should be more familiar to
Scheme programmers; but, as we’ll see, $define! is equi-powerful with standard combiner $set!,
and from a formal perspective it would actually be slightly simpler to make $set! the primitive
and derive $define! from it.
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Kernel’s $define!, like Scheme’s define, only mutates its immediate dynamic
environment; non-local bindings are unaffected (although they might be locally over-
ridden by a local binding for the same symbol). Given an explicit reference to any
environment e, one could mutate e by assembling and evaluating a $define! com-
bination in e; but because all environment mutators in Kernel must be constructible
from $define! | there is no way to mutate e without an explicit reference to it. And,
just as there is no generic operation for extracting the static environment of a given
combiner, there is also no generic operation for extracting the parent of a given en-
vironment. So bindings in Kernel can be made visible without granting the right to
mutate them.

The following implements operative $set !3%:

($define! $set!
($vau (e s v) dynamic-env
($let ((target-env (eval e dynamic-env)))
(eval (list $define! s
(list (unwrap eval) v dynamic-env))
target-env)))

The key to this implementation is that $define! will always evaluate its second
operand in target-env, but we need v to be evaluated in dynamic-env; so we
have to make the second operand to $define! an operative combination, whose
operands therefore won’t be evaluated before calling it. Here we’ve used the underly-
ing operative of ewal, which will take its unevaluated first operand (v, which is the
unevaluated third operand of $set!) and evaluate it in the environment that is its
unevaluated second operand (dynamic-env, the dynamic environment from which
$set! was called).?0

39The implementation of $define! using $set! is simpler than that of set! using $define!:

($set! (get-current-environment)
$define!
($vau (s v) e (eval (list $set! e s v) e)))

40 Alternatively, we could have evaluated v in dynamic-env before we constructed the $define!
expression, and embedded the result in the constructed expression as the operand to $quote (§3.2).
Following is an implementation using this approach, for illustrative purposes; but note that the use
of $quote introduces a gratuitous additional step to the computation.

($define! $set!
($vau (e s v) dynamic-env
($let ((target-env (eval e dynamic-env))
(result (eval v dynamic-env)))
(eval (list $define! s
(1ist $quote result))
target-env)))
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ptree: ()
eparm: #ignore
body: C ... )

env:

€2

self — e

Figure 2: Objects in the first Kernel version of count

Using this device, here is a translation of count into Kernel:

($define! count
($1et-safe ((counter 0))
($1let ((self (get-current-environment)))
($1lambda ()
($set! self counter (+ counter 1))
counter))))

The $let-safe creates a local environment, call it e;, with binding counter — 0,
whose parent contains the standard Kernel bindings. The $let then creates a lo-
cal environment e, whose parent is e;, with binding self — e; in e;. This last
binding arises because $let evaluates value expressions for its bindings in the sur-
rounding environment: The surrounding environment is e;, and the value expression
is (get-current-environment), so the value to be bound is e;. Finally, $lambda
constructs an applicative with static environment e,. The arrangement of objects is
illustrated by Figure 2.

Note that the need for additional code in the Kernel version of count —code for
binding and accessing variable self— is consistent with the language design prin-
ciples stated at the beginning of the section (§4). Non-local environment mutation
(which is a potentially dangerous activity) must have an explicitly specified target
(so the programmer has to do it deliberately); and permission for non-local environ-
ment mutation (dangerous) must be explicitly supported by providing a name for the
environment to be mutated (deliberate).

Finally, lest the above Kernel implementation of count be taken dogmatically,
here is an alternative Kernel implementation that more closely parallels the Scheme
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Figure 3: Objects in the second Kernel version of count

version.

($define! count
($1etrec ((counter 0)
(self (get-current-environment)))
($1lambda ()
($set! self counter (+ counter 1))
counter)))

The call to $let-safe has been omitted, reducing the nesting depth to that of the
Scheme implementation (and, of course, leaving the local environment vulnerable to
mutations of the surrounding environment). The call to $1et has been replaced with
$letrec, a variant also available in Scheme that evaluates its binding expressions in
the constructed local environment, rather than its surrounding parent environment;
thus, the local environment is returned by get-current-environment , and locally
bound by variable self. The arrangement of objects is illustrated by Figure 3.

5 Conclusions and future work

There are three main perspectives from which a programming language may be stud-
ied. The human perspective concerns the feasibility of the language as a medium for
programmers to write and read programs; the mathematical perspective concerns the
feasibility of stating and proving theorems about programs; and the implementation
perspective concerns the feasibility of efficiently interpreting programs — usually,
though not necessarily, by compiling them to efficient executable images.
Traditionally, fexprs have been criticized from all three perspectives.
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The mathematical difficulty with fexprs is rooted in the lambda calculus.

(Classical semantics characterizes each programming language £ by its contextual
equivalence relation: M =, N for any L-expressions M, N iff for every L-context
C[d] (an L-context being simply an L-program with a hole in it), C[M] and C[N]
are observationally equivalent. If two languages have the same contextual equivalence
relation, classically they have the same semantics. For a Lisp language, observational
equivalence is generally based on some variant lambda calculus, to which have been
added whatever peculiar semantic features are needed for the target language —
call-by-value, sequential state, etc. [FeHi92]

Unfortunately, lambda calculus is founded on the assumption that all subterms
are subject to rewriting at any time. Thus, adding fexprs to lambda calculus means
adding a mechanism to actively inhibit subterm rewriting — in other words, a quota-
tion device. But if we have a quotation device, we can create a context C'[0] such that
C[M] and C[N] are observationally equivalent iff M and N are syntactically identi-
cal; so, the contextual equivalence relation becomes trivial, and classical semantics
goes into meltdown.*! What we really need is not an extended lambda calculus, but
a modified calculus —presumably, vau calculus— in which subterms remain passive
until their evaluation is initiated by a surrounding context. With no active inhibitor
in the calculus, evaluation once initiated proceeds regardless of context. That is the
technique we used (without a complete calculus to support it) in §3.3.1: For any
expression x, we write [eval x e] to designate evaluation of x in environment e, and so
on. Then we can define a non-syntactic equivalence M =, N iff, for all environments
e and all contexts C, Cleval M e] and Cleval N e] are observationally equivalent.

Given the current state of the work, development of a complete vau calculus
appears to be a substantial but feasible exercise.

From an implementation perspective, the essential problem with fexprs is that,
owing to their potential for operand capturing (§4.1.2), they interfere with static
program analysis, and thus, with optimization. This was Pitman’s foremost objection
to fexprs in [Pi80]. There is no denying that static analysis is more complicated
with fexprs than without. However, while the type of combiner designated by an
operator is clearly undecidable in general, tedious but straightforward static analysis
can decide the type in some —hopefully, common— particular cases by proving that
the operator’s binding in the local environment will not change. Measures to promote
such environment stability are in place in the Kernel design (§4.2); and the primary foil
to those measures, environment capturing, is the subject of further language features
under consideration (§4.1.2). Moreover, as noted above, the vau calculus should
provide a good formal medium for pursuing relevant optimizing transformations. We
are therefore cautiously optimistic that, once sufficient groundwork has been laid,
Kernel will be compilable with competitive efficiency.

41We present the problem at its simplest here. [Wa98] makes a detailed study of contextual
equivalence in the presence of various kinds of fexpr facilities.
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The preceding sections of this report have considered Kernel mostly from the
human perspective. The outlook from that perspective is predominately positive;
use of the facilities seems to be straightforward and, for the most part, accident-
resistant. Since preliminary assessments of the other perspectives (as described above)
are also positive, it appears likely that Kernel will continue to develop into a viable
programming medium.

27



A Kernel meta-circular evaluator (in Scheme)

Here we provide a meta-circular evaluator*? for a (near) subset of Kernel (current pre-
liminary version, [ShOx]), written in Scheme. The only omissions from the language
are standard combiners that were deemed not to contribute significantly to the illus-
trative purpose of the exercise. (Besides a few lesser core primitives, we have omitted
all non-primitive combiners and most non-core primitives such as arithmetic.)

Because Scheme does not recognize a lexeme #ignore, symbol ignore is used
instead. Consequently, in the interpreted language it isn’t possible to have a formal
parameter named ignore.

Complete code is provided for a working interpreter.

A.1 Evaluator central logic

; Evaluate an expression in an environment.
(define eval
(lambda (exp env)
(cond ((pair? exp) (combine (eval (car exp) env) (cdr exp) env))
((symbol? exp) (lookup exp env))
(else exp))))

; Evaluate a combination in an environment.
(define combine
(lambda (combiner operands env)
(if (operative? combiner)
(operate combiner operands env)
(combine (unwrap combiner) (map-eval operands env) env))))

“2Re the term meta-circular: A meta-circular evaluator for a programming language £ is an
interpreter for £ written in another programming language £'. If £ = L', the definition would be
circular, meaning that you couldn’t understand the definition of £ unless you already knew £; but
all such definitions are meta-circular, in that no matter how many such evaluators you have, you
can’t understand any of them unless you already know at least one programming language. [Rey72]
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; Call an operative.
(define operate
(lambda (operative operands env)
((get-operative-action operative) operands env)))

; Evaluate a list of expressioms,
; and return a list of the results.
(define map-eval
(lambda (objects env)
(map (lambda (x) (eval x env)) objects)))

A.2 Interpreter top level

; The interpreter is simply a read-eval-print loop run on a child
; of the standard environment. Using a child environment insulates
; the standard environment from mutations of the global environment.
(define interpreter
(lambda ()
(rep-loop (make-child-environment standard-environment))))

; The read-eval-print loop, parameterized by the choice of
; global environment.

(define rep-loop
(lambda (env)

(display ">>> ")

(let ((exp (read)))
(newline)
(show (eval exp env))
(newline)
(newline)
(rep-loop env))))
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; Show an object of the interpreted language.
(define show
(lambda (x)

(cond ((applicative? x) (display "#[applicativel"))
((inert? x) (display "#inert"))
((operative? x) (display "#[operative]"))
((environment? x) (display "#[environment]"))
((pair? x) (display "(")

(show (car x))

(show-aux (cdr x))

(display ")"))
(else (write x)))))

(define show-aux
(lambda (x)
(cond ((null? x))
((pair? x) (display " ") (show (car x)) (show-aux (cdr x)))
(else (display " . ") (show x)))))
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A.3 Encapsulated Kernel data types

2299999992923 3333332)2)

; encapsulated types ;

339333333333 33 333333

; Encapsulated objects in the interpreted language are represented by
; procedures in the meta-language. The representing meta-procedure

; takes a symbol as argument, and returns one of several fields.

; Internally, it’s an alist.

(define make-encapsulated-object
(lambda (type alist)
(lambda (message)
(if (eq? message ’type)
type
(cdr (assoc message alist))))))

(define make-encapsulated-type-predicate
(lambda (type)
(lambda (object)
(and (procedure? object)
(eq? (object ’type) type)))))

I
; operative ;

5353353535355

5

; An operative has type ’operative, and attribute ’action whose value
; 1s a meta-procedure that takes the operands and environment as its

; parameters.

(define make-operative
(lambda (action)
(make-encapsulated-object ’operative
(list (cons ’action action)))))

(define operative? (make-encapsulated-type-predicate ’operative))

(define get-operative-action (lambda (x) (x ’action)))
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2999999339293
; applicative ;

2202220222022

; An applicative has type ’applicative, and attribute ’underlying

; whose value is a combiner (either applicative or operative).

; The principal constructor is called '"wrap" instead of

; "make-applicative", and the accessor is called "unwrap" instead of
; "get-applicative-underlying". Note the secondary constructor

; metaproc->applicative.

(define wrap
(lambda (combiner)
(make-encapsulated-object ’applicative
(list (cons ’underlying combiner)))))

(define applicative? (make-encapsulated-type-predicate ’applicative))
(define unwrap (lambda (x) (x ’underlying)))

(define metaproc->applicative
(lambda (metaproc)
(wrap (make-operative (lambda (operands env)
(apply metaproc operands))))))

355555555
; inert ;

555355555

;

; The inert value has type ’inert and no attributes.

H

(define inert (make-encapsulated-object ’inert ()))
(define inert? (make-encapsulated-type-predicate ’inert))
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2999999339293

; environment ;

; An environment has type ’environment, and attribute ’frames whose
; value is a list of lists of name-value pairs. Lookup starts with
; the first list of name-value pairs.

(define make-empty-environment
(lambda Q)
(make-encapsulated-object ’environment
(1ist (cons ’frames (list ()))))))

(define make-child-environment
(lambda (env)
(make-encapsulated-object ’environment
(l1ist (cons ’frames (cons () (get-environment-frames env)))))))

(define environment? (make-encapsulated-type-predicate ’environment))

(define get-environment-frames (lambda (x) (x ’frames)))

H

; Returns the value bound to name if there is one, otherwise fails.
(define lookup

(lambda (name env)
(cdr (get-binding name (get-environment-frames env)))))
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; Locally binds name to value. Mutates an existing local binding,
; or creates one. Be careful of the parameter order:
; The env is first here, last in match!.

(define add-binding!
(lambda (env name value)
(let ((frames (get-environment-frames env)))
(let ((binding (assoc name (car frames))))
(if (eq? binding #f)
(set-car! frames (cons (cons name value) (car frames)))
(set-cdr! binding value))))))

; Locally binds a formal-parameter-tree to an object.
; Be careful of the parameter order:
; The env is last here, first in add-binding!.
(define match!
(lambda (ptree object env)
(cond ((equal? ptree ’ignore))
((symbol? ptree) (add-binding! env ptree object))
((pair? ptree) (match! (car ptree) (car object) env)
(match! (cdr ptree) (cdr object) env))
(else #£))))

; Returns the binding for name if there is one, otherwise
; returns #f. This is the only procedure in the interpreter
; that takes a frames parameter instead of an environment.

(define get-binding
(lambda (name frames)
(if (null? frames)
#f
(let ((binding (assoc name (car frames))))
(if (pair? binding)
binding
(get-binding name (cdr frames)))))))
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A.4 Kernel standard environment

b

; The standard environment contains bindings for all built-in

; combiners.

3

(define standard-environment (make-empty-environment))

(add-binding!
(add-binding!
(add-binding!
(add-binding!
(add-binding!
(add-binding!

(add-binding!

(add-binding!

standard-environment
standard-environment
standard-environment
standard-environment
standard-environment
standard-environment

>+ (metaproc->applicative
' (metaproc->applicative
’<? (metaproc->applicative
’>?7 (metaproc->applicative
’=? (metaproc->applicative

‘wrap  (metaproc->applicative wrap))

standard-environment

’unwrap (metaproc->applicative unwrap))

standard-environment

’exit  (metaproc->applicative
(lambda () (terminate-the-interpreter))))
; @ lambda expression is used here to defer

; lookup of symbol "terminate-the-interpreter"

+))
*))
<))
>))

; because the symbol hasn’t been bound yet.

(add-binding! standard-environment ’$if
(make-operative
(lambda (operands env)

(if (eval (car operands) env)

(eval (cadr operands) env)
(if (null? (cddr operands))

inert

(eval (caddr operands) env))))))
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(add-binding! standard-environment ’$vau
(make-operative
(lambda (operands static-env)
(let ((parameter-tree
(env-parameter
(body
(make-operative
(lambda (operands

(car operands))
(cadr operands))
(cddr operands)))

dynamic-env)
(let ((local-env (make-child-environment static-env)))
(match! parameter-tree operands

local-env)
(match! env-parameter

dynamic-env local-env)
(eval-sequence body local-env))))))))

(define eval-sequence

(lambda (sequence env)

(cond ((null? sequence ) inert)

((null? (cdr sequence)) (eval (car sequence) env))
(else (eval (car sequence) env)
(eval-sequence (cdr sequence) env)))))

(add-binding! standard-environment ’$define!
(make-operative

(lambda (operands env)

(add-binding! env (car operands) (eval (cadr operands) env))
inert)))
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A.5 Termination

H

H

The special case of interpreter termination shouldn’t intrude
on the central logic of the evaluator, therefore termination
should be entirely encapsulated within meta-procedure
terminate-the-interpreter. The way to do that is to use a
first-class continuation.

This binding is a stub; lastly we’ll set! it to what we want.

(define terminate-the-interpreter ())

H
H
3

3

Capture the continuation here at the end of building the
interpreter; normal termination passes ’interpreter-terminated

; to the captured continuation.

(call-with-current—-continuation

(lambda (c)
(set! terminate-the-interpreter
(lambda () (c ’interpreter-terminated)))
’interpreter-constructed))
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