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Abstract

We let G()(n, m) denote the set of r-uniform hypergraphs with n vertices and
m edges, and f()(n,p,s) is the smallest m such that every member of G(") (n,m)
contains a member of G(")(p, s). In this paper we are interested in fixed values r, p
and s for which f(")(n,p,s) grows quadratically with n. A probabilistic construc-
tion of Brown, Erdés and T. Sés ([2]) implies that £ (n, s(r — 2) +2,5) = Q(n?).
Erdés, Frankl and Rodl ([4], [6]) conjectured that this is best possible in the sense
that £ (n,s(r — 2) +3,s) = o(n?). This was first proved for 7 = s = 3 by Ruzsa
and Szemerédi [11]. Then Erdés, Frankl and Rddl [6] extended this result to any
r: f(n,3(r —2) + 3,3) = o(n?). In this paper by giving an extension of this
Erdés, Frankl, R6dl Theorem (and thus the Ruzsa-Szemerédi Theorem) we show
that indeed the Brown, Erdés, T. Sés Theorem is not far from being best possible.
Our main result is

FO(n,s(r —2) + 2+ [log s, 5) = o(n?).

1 Introduction

1.1 Notation and definitions

For basic graph concepts see the monograph of Bollobés [1]. V(G) and E(G) denote the
vertex-set and the edge-set of the graph G. (A, B) or (A, B, E) denote a bipartite graph
G = (V,E), where V.= AU B, and £ C A x B. In general, given any graph G and two
disjoint subsets A, B of V(G), the pair (A4, B) is the graph restricted to A x B. N(v) is
the set of neighbors of v € V. Hence the size of N(v) is |[N(v)| = deg(v) = degg(v), the
degree of v. For a vertex v € V and set U C V — {v}, we write deg(v,U) for the number
of edges from v to U. We denote by e(A, B) the number of edges of G with one endpoint



in A and the other in B. For non-empty A and B,

e(A, B)

4A.B) = TA1B

is the density of the graph between A and B.
Definition 1. The pair (A, B) is e-regular if
X CA, YCB, |X|>¢l|A], |Y|>¢|B|

imply
|d(Xa Y) - d(Aa B)‘ <g,

otherwise it is e-irreqular.

A hypergraph F is called k-uniform if |F'| = k for every edge F' € F. A k-uniform
hypergraph F on the set X is k-partite if there exists a partition X = X; U...U X, with
|FNX;| =1 for every edge F' € F and 1 < ¢ < k. In this paper logn denotes the base 2
logarithm.

1.2 Turan-type hypergraph problems

We let G)(n, m) denote the set of r-uniform hypergraphs with n vertices and m edges,
and f)(n, p, s) is the smallest m such that every member of G(")(n, m) contains a member
of G™(p,s). The determination of f()(n,p,s) has been a longstanding open problem.
Special cases of this problem appeared in [3], [5]. For more about Turén-type hypergraph
results consult the surveys by Fiiredi [8] and Sidorenko [12]. In this paper we are interested
in fixed values 7, p and s for which f{)(n,p,s) grows quadratically with 7.

A probabilistic construction of Brown, Erdés and T. S6s [2] implies that

f(T)(n, s(r—2) +2,5) = O(n?).

Erdés, Frankl and Radl ([4], [6]) conjectured that this is best possible in the following
sense:

Conjecture 1.
fO(n, s(r —2) + 3, 5) = o(n?).

This was first proved for r = s = 3 by Ruzsa and Szemerédi [11]. Erdés, Frankl and Radl
[6] extended this result to any 7:
fM(n,3(r —2) +3,3) = o(n?).

In this paper by giving an extension of this Erdés, Frankl, Rédl Theorem (and thus the
Ruzsa-Szemerédi Theorem) we show that indeed the Brown, Erdés, T. Sés Theorem is
not far from being best possible.

Our main result is the following.



Theorem 1. For all integers r,s > 3 we have
£, s(r —2) + 2 + [log s, 5) = o(n?).

In particular for s = 3 we get the Erdds, Frankl, R6dl Theorem (and thus the Ruzsa-
Szemerédi Theorem) as a special case.

Thus roughly speaking the Brown, Erdds, T. Sés Theorem is best possible apart from
a |logs| term. However, it still remains open whether one can eliminate this term and
prove Conjecture 1.

In the next section we provide the tools including the Regularity Lemma. Then in
Section 3 we apply the Regularity Lemma to obtain our main lemma. Finally in Section
4 we prove the theorem.

2 Tools

In the proof the Regularity Lemma of Szemerédi ([13]) plays a central role. Here we will
use the following variation of the lemma.

Lemma 1 (Regularity Lemma — Degree form). For every ¢ > 0 there is an M =
M (e) such that if G = (V, E) is any graph and d € [0, 1] is any real number, then there is
a partition of the vertex-set V into | + 1 sets (so-called clusters) Cy, C1, ..., Cy, and there
is a subgraph G' = (V, E') with the following properties:

o [ <M,

|Co| <elV,

all clusters C;, 1 > 1, are of the same size,

o dege (v) > dega(v) — (d+¢€)|V| forall veV,

G'lc, =0 (C; are independent in G'),

all pairs G'|c;xc;, 1 <4 < j <1, are e-regular, each with a density 0 or exceeding d.

This form (see [10]) can easily be obtained by applying the original Regularity Lemma
(with a smaller value of ¢), adding to the exceptional set Cj all clusters incident to many
irregular pairs, and then deleting all edges between any other clusters where the edges
either do not form a regular pair or they do but with a density at most d.

We will also use a simple but useful result of Erdés and Kleitman ([7], see also on page
1300 in [9]).

Lemma 2. FEvery k-uniform hypergraph F contains a k-partite k-uniform hypergraph H
with 2 il

u >

|Fl — k*



3 Applying the Regularity Lemma

We will prove the following lemma by applying the Regularity Lemma.

Lemma 3. For every c; > 0, co > 1 there are positive constants n,ng with the following
properties. Let G be a graph onn > ng vertices with |E(G)| > cin? that is the edge disjoint
unton of matchings My, Ms, ..., M,, where m < con. Then there exist an 1 < i < m and
A, B C V(M;) such that

e (AXxB)NM; =0,
o |A]= B[ =1m,
o |[E(Glaxs)l = F/A[B|.

Proof: Let us apply the degree form of the Regularity Lemma (Lemma 1) with
C1 C1
d=— d e=—. 1
5 and € 6es (1)

Let G" = G'\ Cy. Then we have
deggr (v) > degg(v) — (d + &)n — |Cy| > degg(v) — (d+2¢)n  for all v e V(G").
Thus using (1)

1 1 d—+2
\E(G")| = = Z deg(;u )> <= Y dega(v) — T
2 2 veV(G") 2
Z dega(v Z dega(v 5" > |BE(G)| - 5 > 5
vEV' (@ UECb
Hence there is an 1 < 3 < m such that
c
|Mi|GH| > 2—61271 = 3en. (2)

Write U = V(M;|gr) for the vertex set of M;|gr. (2) implies that |U| > 6en. Write
also U; = UNC;. Define I = {i | |U;| > 3¢|C;|}, and set U’ = Ui, U; and U” = U \ U'.
Clearly |U"| < 3en. Since |U| > 6en, we have two vertices u,v € U’ adjacent in M;|gn.
Let u € C; and v € C;. In G” we have at least one edge between C; and Cj, and hence
we must have a density more than d = % between them. Consider U; and U;. A is an
arbitrary subset of U; with |A| = |¢|Cy|| + 1 > ¢|C;|. B is an arbitrary subset of U; with
|B| = |e|Cy|| + 1 > ¢|C}| and (A x B) N M; = (0. This is possible since

|Uj| > 3¢|C5] > 2[e]Cy]] + 2,
if n > ng. Then the first property of A, B in the lemma is clearly satisfied. For the second

e(l1—¢)

property we can choose 1 = R Finally for the third property, &- regularlty of the pair
(Ci, C;) implies that the density between A and B is more than d — ¢ > <. This means

C
B (Glaxn)| > 4|1,

and thus completing the proof of the lemma. O

4



4 Proof of Theorem 1

Let 7,8 >3, p=s(r —2)+2+ |logs| and | = [log s].
Assume indirectly that there is a constant ¢ > 0 such that

f(n,p, s) > [en®]. (3)

From this assumption we will get a contradiction. (3) means that there exists an r-uniform
hypergraph F with
fO(n,p,s) = 1> [en®] > en®

edges that does not contain a member of G (p, s), i.e. a set of p vertices spanning at
least s edges. Let us assume that n is sufficiently large.
Using the Erdés-Kleitman theorem (Lemma 2) we find an r-partite sub-hypergraph

‘H of F with at least

rle ,

/rT
edges. Let X1,..., X, be the vertex classes of this r-partite hypergraph . Consider the
3-uniform hypergraph H* which is defined by the removal of X7, ..., X, 3 from the vertex
set of H and from all edges of H. If a 3-edge (triple) of H* has multiplicity greater than
1, then we keep only one edge. Note that every triple has multiplicity less than s. Indeed,
otherwise taking a triple with multiplicity at least s and s r-edges of H containing this
triple, we get a set of at most

s(r—=3)+3<s(r—2)+2+|logs| =p

vertices that span at least s r-edges, a contradiction. Then if in H* we keep only one edge
from each multiple triple we still have at least

rle 4

r’s
edges.

Consider first an arbitrary v € X,_» and the bipartite graph G} defined by v between
X,—1 and X, such that (u,w) is an edge in G} if and only if (u,v,w) is a triple in H*.
The maximum degree in G} is at most s. Indeed, otherwise taking s edges from a vertex
u, the vertex v and the s r-edges of H containing these triples, we get again a set of at
most

s(r—=2)+2<s(r—2)+2+|logs|] =p

vertices that span at least s r-edges, a contradiction. Then we can choose a matching M,
in G} such that

) > BGL
- S

We take the next v' € X,_,, and similarly as above we define G}j’ and M, , but now from
M, we remove all the edges that are already in M,. We continue in this fashion for all



the vertices in X, . Define the bipartite graph G, = U,ecx,_,M,. Since every edge of G}
is an edge in at most s of the graphs G}, we have

Next by applying Lemma 3 iteratively in G}, we will find a sequence of matchings
M,y,, ..., M,,. To obtain M,, we apply Lemma 3 in G. We can choose

n rle

1
and ¢y =c¢;, =1
rrgd

M,, is the M; guaranteed in the lemma. Denote M,, = (A, B;) where A; C X,_1,B; C
X,. Lemma 3 also guarantees that there are A}, B} C V(M,,) such that

o (A x B)NM,, =0,

o [A)| = |Bi[ = mn,

. ‘E (Gb\Ang;)| > AL Bi.

To obtain M, we apply Lemma 3 again, now for G| A, x B, Here we can choose

¢

cL=c —
' 2m

=— and ¢ = cg =
M,, is the M; guaranteed in the lemma. Note that technically this M, is not the whole
M,, in G, but it is restricted to G| 4, x5 Denote M, = (A, By) where Ay C X 1, B, C
X,

We continue in this fashion. Assume that M,, = (A;, B;) is already defined where
Aj C X,_1, Bj C X,. Futhermore, we have A, B; C V(M,,) such that

o (A} x Bj)NM,; =0,

o A5l = [Bj| = n;(|Aj1] + [Bj_);

o |E (Gilugs)| > $145B)l.

To obtain M, , we apply Lemma 3 for Gy| A'xB!- We can choose

Vj+1
o : c}
a=d"=2 and =4 =2,
T T 6 2T Ty,
M,,,, is the M; guaranteed in the lemma. Denote M, , = (A;;1, Bj;1). We continue

until M,,, ..., M,, are selected.
Next using these matchings M, we will select a set of p vertices spanning at least s
r-edges of H, a contradiction.



Lemma 4. For any 1 <i <1 = [logs]|, let G; be the graph obtained from bipartite graph
(Xr_l, X, U;Zlej) by removing all components which do not contain a vertex of A;U B;.
The vertices of G; are partitioned into |M,,| trees, each with 2¢ — 1 edges.

Proof: We use induction on ¢. For i =1, GG is just M,,, and each tree of G; has one
edge. We assume the lemma to hold for ¢ — 1. Each endpoint of each edge e € M,, is in
A; 1 UB;_1 and thus by the inductive hypothesis belongs to exactly one tree of G;_1, and
each of these trees has 2=! — 1 edges. Edge e, along with the two trees it joins, comprise
a new tree with 2° — 1 edges.O

Lemma 5. There exist |logs| + s + 2 vertices in H* which span at least s 3-edges.

Proof: In case there exists an integer k such that s = 2¥ — 1, then the |logs| + 1
vertices {vl, <+ Ullog s]} and the s+1 vertices of any tree in G[iog 5] span at least s 3-edges
of H*. Otherwise, we select any two trees 7, and 7, of G|1og,| assured by Lemma 4. We
remove leaves of 77 or 7, until a total of s edges (and s + 2 vertices) are left. Then the
|log s]| vertices {Ul, ce o Ullog SJ} and the s + 2 vertices of 71 and 7, span at least s 3-edges
of H*. O

For each of the s 3-edges in H* assured by Lemma 5, we add the r — 3 other vertices of
an edge in the original hypergraph H which contains it. So the s(r —2) +2+ |logs| =p
vertices span at least s edges, a contradiction.

This completes the proof of Theorem 1. O
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