An extension of the Ruzsa-Szemerédi Theorem

Gábor N. Sárközy, Stanley Selkow

Computer Science Department
Worcester Polytechnic Institute
Worcester, MA 01609
gsarkozy@cs.wpi.edu, sms@cs.wpi.edu

February 10, 2003

Abstract

We let $G^{(r)}(n,m)$ denote the set of r-uniform hypergraphs with n vertices and m edges, and $f^{(r)}(n,p,s)$ is the smallest m such that every member of $G^{(r)}(n,m)$ contains a member of $G^{(r)}(p,s)$. In this paper we are interested in fixed values r,p and s for which $f^{(r)}(n,p,s)$ grows quadratically with n. A probabilistic construction of Brown, Erdős and T. Sós ([2]) implies that $f^{(r)}(n,s(r-2)+2,s)=\Omega(n^2)$. Erdős, Frankl and Rödl ([4], [6]) conjectured that this is best possible in the sense that $f^{(r)}(n,s(r-2)+3,s)=o(n^2)$. This was first proved for r=s=3 by Ruzsa and Szemerédi [11]. Then Erdős, Frankl and Rödl [6] extended this result to any r: $f^{(r)}(n,3(r-2)+3,3)=o(n^2)$. In this paper by giving an extension of this Erdős, Frankl, Rödl Theorem (and thus the Ruzsa-Szemerédi Theorem) we show that indeed the Brown, Erdős, T. Sós Theorem is not far from being best possible. Our main result is

$$f^{(r)}(n, s(r-2)+2+\lfloor \log s\rfloor, s)=o(n^2).$$

1 Introduction

1.1 Notation and definitions

For basic graph concepts see the monograph of Bollobás [1]. V(G) and E(G) denote the vertex-set and the edge-set of the graph G. (A, B) or (A, B, E) denote a bipartite graph G = (V, E), where $V = A \cup B$, and $E \subset A \times B$. In general, given any graph G and two disjoint subsets A, B of V(G), the pair (A, B) is the graph restricted to $A \times B$. N(v) is the set of neighbors of $v \in V$. Hence the size of N(v) is $|N(v)| = deg(v) = deg_G(v)$, the degree of v. For a vertex $v \in V$ and set $U \subset V - \{v\}$, we write deg(v, U) for the number of edges from v to U. We denote by e(A, B) the number of edges of G with one endpoint

in A and the other in B. For non-empty A and B,

$$d(A,B) = \frac{e(A,B)}{|A||B|}$$

is the **density** of the graph between A and B.

Definition 1. The pair (A, B) is ε -regular if

$$X \subset A, Y \subset B, |X| > \varepsilon |A|, |Y| > \varepsilon |B|$$

imply

$$|d(X,Y) - d(A,B)| < \varepsilon,$$

otherwise it is ε -irregular.

A hypergraph \mathcal{F} is called k-uniform if |F|=k for every edge $F\in\mathcal{F}$. A k-uniform hypergraph \mathcal{F} on the set X is k-partite if there exists a partition $X=X_1\cup\ldots\cup X_k$ with $|F\cap X_i|=1$ for every edge $F\in\mathcal{F}$ and $1\leq i\leq k$. In this paper $\log n$ denotes the base 2 logarithm.

1.2 Turán-type hypergraph problems

We let $G^{(r)}(n,m)$ denote the set of r-uniform hypergraphs with n vertices and m edges, and $f^{(r)}(n,p,s)$ is the smallest m such that every member of $G^{(r)}(n,m)$ contains a member of $G^{(r)}(p,s)$. The determination of $f^{(r)}(n,p,s)$ has been a longstanding open problem. Special cases of this problem appeared in [3], [5]. For more about Turán-type hypergraph results consult the surveys by Füredi [8] and Sidorenko [12]. In this paper we are interested in fixed values r, p and s for which $f^{(r)}(n,p,s)$ grows quadratically with n.

A probabilistic construction of Brown, Erdős and T. Sós [2] implies that

$$f^{(r)}(n, s(r-2) + 2, s) = \Theta(n^2).$$

Erdős, Frankl and Rödl ([4], [6]) conjectured that this is best possible in the following sense:

Conjecture 1.

$$f^{(r)}(n, s(r-2) + 3, s) = o(n^2).$$

This was first proved for r = s = 3 by Ruzsa and Szemerédi [11]. Erdős, Frankl and Rödl [6] extended this result to any r:

$$f^{(r)}(n, 3(r-2) + 3, 3) = o(n^2).$$

In this paper by giving an extension of this Erdős, Frankl, Rödl Theorem (and thus the Ruzsa-Szemerédi Theorem) we show that indeed the Brown, Erdős, T. Sós Theorem is not far from being best possible.

Our main result is the following.

Theorem 1. For all integers $r, s \geq 3$ we have

$$f^{(r)}(n, s(r-2) + 2 + \lfloor \log s \rfloor, s) = o(n^2).$$

In particular for s = 3 we get the Erdős, Frankl, Rödl Theorem (and thus the Ruzsa-Szemerédi Theorem) as a special case.

Thus roughly speaking the Brown, Erdős, T. Sós Theorem is best possible apart from a $\lfloor \log s \rfloor$ term. However, it still remains open whether one can eliminate this term and prove Conjecture 1.

In the next section we provide the tools including the Regularity Lemma. Then in Section 3 we apply the Regularity Lemma to obtain our main lemma. Finally in Section 4 we prove the theorem.

2 Tools

In the proof the Regularity Lemma of Szemerédi ([13]) plays a central role. Here we will use the following variation of the lemma.

Lemma 1 (Regularity Lemma – Degree form). For every $\varepsilon > 0$ there is an $M = M(\varepsilon)$ such that if G = (V, E) is any graph and $d \in [0, 1]$ is any real number, then there is a partition of the vertex-set V into l + 1 sets (so-called clusters) $C_0, C_1, ..., C_l$, and there is a subgraph G' = (V, E') with the following properties:

- $l \leq M$,
- $|C_0| < \varepsilon |V|$,
- all clusters C_i , $i \geq 1$, are of the same size,
- $deg_{G'}(v) > deg_{G}(v) (d+\varepsilon)|V|$ for all $v \in V$,
- $G'|_{C_i} = \emptyset$ (C_i are independent in G'),
- all pairs $G'|_{C_i \times C_i}$, $1 \le i < j \le l$, are ε -regular, each with a density 0 or exceeding d.

This form (see [10]) can easily be obtained by applying the original Regularity Lemma (with a smaller value of ε), adding to the exceptional set C_0 all clusters incident to many irregular pairs, and then deleting all edges between any other clusters where the edges either do not form a regular pair or they do but with a density at most d.

We will also use a simple but useful result of Erdős and Kleitman ([7], see also on page 1300 in [9]).

Lemma 2. Every k-uniform hypergraph \mathcal{F} contains a k-partite k-uniform hypergraph \mathcal{H} with

$$\frac{|\mathcal{H}|}{|\mathcal{F}|} \ge \frac{k!}{k^k}.$$

3 Applying the Regularity Lemma

We will prove the following lemma by applying the Regularity Lemma.

Lemma 3. For every $c_1 > 0$, $c_2 \ge 1$ there are positive constants η , n_0 with the following properties. Let G be a graph on $n \ge n_0$ vertices with $|E(G)| \ge c_1 n^2$ that is the edge disjoint union of matchings M_1, M_2, \ldots, M_m where $m \le c_2 n$. Then there exist an $1 \le i \le m$ and $A, B \subset V(M_i)$ such that

- $(A \times B) \cap M_i = \emptyset$,
- $|A| = |B| > \eta n$,
- $|E(G|_{A\times B})| \ge \frac{c_1}{4}|A||B|$.

Proof: Let us apply the degree form of the Regularity Lemma (Lemma 1) with

$$d = \frac{c_1}{2} \quad \text{and} \quad \varepsilon = \frac{c_1}{6c_2}. \tag{1}$$

Let $G'' = G' \setminus C_0$. Then we have

$$deg_{G''}(v) > deg_G(v) - (d+\varepsilon)n - |C_0| \ge deg_G(v) - (d+2\varepsilon)n$$
 for all $v \in V(G'')$.

Thus using (1)

$$\begin{split} |E(G'')| &= \frac{1}{2} \sum_{v \in V(G'')} deg_{G''}(v) > \frac{1}{2} \sum_{v \in V(G'')} deg_{G}(v) - \frac{d+2\varepsilon}{2} n^2 = \\ &= \frac{1}{2} \sum_{v \in V(G)} deg_{G}(v) - \frac{1}{2} \sum_{v \in C_0} deg_{G}(v) - \frac{d+2\varepsilon}{2} n^2 \ge |E(G)| - \frac{d+3\varepsilon}{2} n^2 \ge \frac{c_1}{2} n^2. \end{split}$$

Hence there is an $1 \leq i \leq m$ such that

$$|M_i|_{G''}| > \frac{c_1}{2c_2}n = 3\varepsilon n. \tag{2}$$

Write $U = V(M_i|_{G''})$ for the vertex set of $M_i|_{G''}$. (2) implies that $|U| > 6\varepsilon n$. Write also $U_i = U \cap C_i$. Define $I = \{i \mid |U_i| > 3\varepsilon |C_i|\}$, and set $U' = \bigcup_{i \in I} U_i$ and $U'' = U \setminus U'$. Clearly $|U''| \leq 3\varepsilon n$. Since $|U| > 6\varepsilon n$, we have two vertices $u, v \in U'$ adjacent in $M_i|_{G''}$. Let $u \in C_i$ and $v \in C_j$. In G'' we have at least one edge between C_i and C_j , and hence we must have a density more than $d = \frac{\varepsilon_1}{2}$ between them. Consider U_i and U_j . A is an arbitrary subset of U_i with $|A| = \lfloor \varepsilon |C_i| \rfloor + 1 > \varepsilon |C_i|$. B is an arbitrary subset of U_j with $|B| = \lfloor \varepsilon |C_j| \rfloor + 1 > \varepsilon |C_j|$ and $(A \times B) \cap M_i = \emptyset$. This is possible since

$$|U_j| > 3\varepsilon |C_j| > 2\lfloor \varepsilon |C_j| \rfloor + 2,$$

if $n \geq n_0$. Then the first property of A, B in the lemma is clearly satisfied. For the second property we can choose $\eta = \frac{\varepsilon(1-\varepsilon)}{M(\varepsilon)}$. Finally for the third property, ε -regularity of the pair (C_i, C_j) implies that the density between A and B is more than $d - \varepsilon \geq \frac{c_1}{4}$. This means

$$|E\left(G|_{A\times B}\right)| \ge \frac{c_1}{4}|A||B|,$$

and thus completing the proof of the lemma. \Box

4 Proof of Theorem 1

Let $r, s \ge 3$, $p = s(r-2) + 2 + |\log s|$ and $l = [\log s]$.

Assume indirectly that there is a constant c > 0 such that

$$f^{(r)}(n, p, s) > \lceil cn^2 \rceil. \tag{3}$$

From this assumption we will get a contradiction. (3) means that there exists an r-uniform hypergraph \mathcal{F} with

$$f^{(r)}(n, p, s) - 1 \ge \lceil cn^2 \rceil \ge cn^2$$

edges that does not contain a member of $G^{(r)}(p, s)$, i.e. a set of p vertices spanning at least s edges. Let us assume that n is sufficiently large.

Using the Erdős-Kleitman theorem (Lemma 2) we find an r-partite sub-hypergraph $\mathcal H$ of $\mathcal F$ with at least

$$\frac{r!c}{r^r}n^2$$

edges. Let X_1, \ldots, X_r be the vertex classes of this r-partite hypergraph \mathcal{H} . Consider the 3-uniform hypergraph \mathcal{H}^* which is defined by the removal of X_1, \ldots, X_{r-3} from the vertex set of \mathcal{H} and from all edges of \mathcal{H} . If a 3-edge (triple) of \mathcal{H}^* has multiplicity greater than 1, then we keep only one edge. Note that every triple has multiplicity less than s. Indeed, otherwise taking a triple with multiplicity at least s and s r-edges of \mathcal{H} containing this triple, we get a set of at most

$$s(r-3) + 3 \le s(r-2) + 2 + \lfloor \log s \rfloor = p$$

vertices that span at least s r-edges, a contradiction. Then if in \mathcal{H}^* we keep only one edge from each multiple triple we still have at least

$$\frac{r!c}{r^rs}n^2$$

edges.

Consider first an arbitrary $v \in X_{r-2}$ and the bipartite graph G_b^v defined by v between X_{r-1} and X_r such that (u, w) is an edge in G_b^v if and only if (u, v, w) is a triple in \mathcal{H}^* . The maximum degree in G_b^v is at most s. Indeed, otherwise taking s edges from a vertex s, the vertex s and the s s-edges of s0 containing these triples, we get again a set of at most

$$s(r-2) + 2 < s(r-2) + 2 + |\log s| = p$$

vertices that span at least s r-edges, a contradiction. Then we can choose a matching M_v in G_b^v such that

$$|M_v| \ge \frac{|E(G_b^v)|}{s}.$$

We take the next $v' \in X_{r-2}$, and similarly as above we define $G_b^{v'}$ and $M_{v'}$, but now from $M_{v'}$ we remove all the edges that are already in M_v . We continue in this fashion for all

the vertices in X_{r-2} . Define the bipartite graph $G_b = \bigcup_{v \in X_{r-2}} M_v$. Since every edge of G_b is an edge in at most s of the graphs G_b^v , we have

$$|E(G_b)| \ge \frac{r!c}{r^r s^3} n^2.$$

Next by applying Lemma 3 iteratively in G_b , we will find a sequence of matchings M_{v_1}, \ldots, M_{v_l} . To obtain M_{v_1} we apply Lemma 3 in G_b . We can choose

$$c_1 = c_1^1 = \frac{r!c}{r^r s^3}$$
 and $c_2 = c_2^1 = 1$.

 M_{v_1} is the M_i guaranteed in the lemma. Denote $M_{v_1}=(A_1,B_1)$ where $A_1\subset X_{r-1},B_1\subset X_r$. Lemma 3 also guarantees that there are $A_1',B_1'\subset V(M_{v_1})$ such that

- $\bullet \ (A_1' \times B_1') \cap M_{v_1} = \emptyset,$
- $|A_1'| = |B_1'| \ge \eta_1 n$,
- $|E(G_b|_{A_1' \times B_1'})| \ge \frac{c_1}{4} |A_1'| |B_1'|.$

To obtain M_{v_2} we apply Lemma 3 again, now for $G_b|_{A_1'\times B_1'}$. Here we can choose

$$c_1 = c_1^2 = \frac{c_1^1}{16}$$
 and $c_2 = c_2^2 = \frac{c_2^1}{2\eta_1}$.

 M_{v_2} is the M_i guaranteed in the lemma. Note that technically this M_{v_2} is not the whole M_{v_2} in G_b , but it is restricted to $G_b|_{A_1' \times B_1'}$. Denote $M_{v_2} = (A_2, B_2)$ where $A_2 \subset X_{r-1}, B_2 \subset X_r$

We continue in this fashion. Assume that $M_{v_j} = (A_j, B_j)$ is already defined where $A_j \subset X_{r-1}, B_j \subset X_r$. Furthermore, we have $A'_j, B'_j \subset V(M_{v_j})$ such that

- $\bullet \ (A'_j \times B'_j) \cap M_{v_j} = \emptyset,$
- $|A'_j| = |B'_j| \ge \eta_j(|A'_{j-1}| + |B'_{j-1}|),$
- $\left| E\left(G_b|_{A_i' \times B_i'}\right) \right| \ge \frac{c_1^j}{4} |A_j'| |B_j'|.$

To obtain $M_{v_{j+1}}$ we apply Lemma 3 for $G_b|_{A'_i \times B'_i}$. We can choose

$$c_1 = c_1^{j+1} = \frac{c_1^j}{16}$$
 and $c_2 = c_2^{j+1} = \frac{c_2^j}{2\eta_j}$.

 $M_{v_{j+1}}$ is the M_i guaranteed in the lemma. Denote $M_{v_{j+1}} = (A_{j+1}, B_{j+1})$. We continue until M_{v_1}, \ldots, M_{v_l} are selected.

Next using these matchings M_{v_j} we will select a set of p vertices spanning at least s r-edges of \mathcal{H} , a contradiction.

Lemma 4. For any $1 \le i \le l = \lceil \log s \rceil$, let G_i be the graph obtained from bipartite graph $\left(X_{r-1}, X_r, \bigcup_{j=1}^i M_{v_j}\right)$ by removing all components which do not contain a vertex of $A_i \cup B_i$. The vertices of G_i are partitioned into $|M_{v_i}|$ trees, each with $2^i - 1$ edges.

Proof: We use induction on i. For i=1, G_1 is just M_{v_1} , and each tree of G_1 has one edge. We assume the lemma to hold for i-1. Each endpoint of each edge $e \in M_{v_i}$ is in $A_{i-1} \cup B_{i-1}$ and thus by the inductive hypothesis belongs to exactly one tree of G_{i-1} , and each of these trees has $2^{i-1}-1$ edges. Edge e, along with the two trees it joins, comprise a new tree with 2^i-1 edges. \square

Lemma 5. There exist $|\log s| + s + 2$ vertices in \mathcal{H}^* which span at least s 3-edges.

Proof: In case there exists an integer k such that $s = 2^k - 1$, then the $\lfloor \log s \rfloor + 1$ vertices $\{v_1, \ldots, v_{\lceil \log s \rceil}\}$ and the s+1 vertices of any tree in $G_{\lceil \log s \rceil}$ span at least s 3-edges of \mathcal{H}^* . Otherwise, we select any two trees τ_1 and τ_2 of $G_{\lfloor \log s \rfloor}$ assured by Lemma 4. We remove leaves of τ_1 or τ_2 until a total of s edges (and s+2 vertices) are left. Then the $\lfloor \log s \rfloor$ vertices $\{v_1, \ldots, v_{\lfloor \log s \rfloor}\}$ and the s+2 vertices of τ_1 and τ_2 span at least s 3-edges of \mathcal{H}^* . \square

For each of the s 3-edges in \mathcal{H}^* assured by Lemma 5, we add the r-3 other vertices of an edge in the original hypergraph \mathcal{H} which contains it. So the $s(r-2)+2+\lfloor \log s\rfloor=p$ vertices span at least s edges, a contradiction.

This completes the proof of Theorem 1. \square

References

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
- [2] W.G. Brown, P. Erdős, V.T. Sós, Some extremal problems on r-graphs, in New directions in the theory of graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, Academic Press, New York, 1973, 55-63.
- [3] W.G. Brown, P. Erdős, V.T. Sós, On the existence of triangulated spheres in 3-graphs and related problems, *Periodica Mathematica Hungarica*, 3 (1973), 221-228.
- [4] P. Erdős, Problems and results on graphs and hypergraphs: similarities and differences, in *Mathematics of Ramsey* (J. Nesetril, V. Rödl, eds.), Springer Verlag, Berlin, 1990, 12-28.
- [5] P. Erdős, Extremal problems in graph theory, in *Theory of graphs and its applications* (M. Fiedler, ed.) Academic Press, New York, 1964, 29-36.
- [6] P. Erdős, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, *Graphs and Combinatorics*, 2 (1986), 113-121.

- [7] P. Erdős, D.J. Kleitman, On coloring graphs to maximize the proportion of multicolored k-edges, J. of Combinatorial Theory, 5 (1968), 164-169.
- [8] Z. Füredi, Turán-type problems, Surveys in Combinatorics, London Math. Soc. Lecture Notes Ser., A.D. Keedwell, Ed., Cambridge Univ. Press (1991), 253-300.
- [9] R.L. Graham, M. Grötschel, L. Lovász, *Handbook of Combinatorics*, Elsevier Science B.V., 1995.
- [10] J. Komlós and M. Simonovits, Szemerédi's Regularity Lemma and its applications in graph theory, in *Combinatorics, Paul Erdős is Eighty* (D. Miklós, V.T. Sós, and T. Szőnyi, Eds.), pp. 295-352, Bolyai Society Mathematical Studies, Vol. 2, Budapest, 1996.
- [11] I.Z. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Volume II. 939-945.
- [12] A.F. Sidorenko, What we do know and what we do not know about Turán numbers, Graphs and Combinatorics, 11 (1995), 179-199.
- [13] E. Szemerédi, Regular partitions of graphs, Colloques Internationaux C.N.R.S. N^o 260 Problèmes Combinatoires et Théorie des Graphes, Orsay (1976), 399-401.