

 1

Applying Byzantine Agreement Protocols to
the Intrusion Detection Problem in
distributed systems

By

Fernando C. Colon Osorio
and Xiaoning Wang

Worcester Polytechnic Institute
Computer Science Department

100 Institute Road, Worcester, MA 01609

Abstract

"Fixed fortifications are monuments to the
stupidity of man"

General George Patton, Jr.

Solutions to the Byzantine General Problem are
applied to the design of an Intrusion Detection
& Countermeasure Systems, called SAFE,
being developed at the Worcester Polytechnic
Institute System Security Research Laboratory
(WSSRL). As described in this paper,
Byzantine Agreement Protocols (BAP) arrived
at a consensus on (identify) which nodes have
been compromised, through the use of a series
of synchronized, secure rounds of message
exchanges. Having arrived at such consensus,
offending or compromised nodes are isolated
and countermeasure actions initiated by the
system. Specifically, we consider in this
manuscript the necessary and sufficient
conditions for the application of Byzantine
Agreement Protocols to the intrusion detection
problem. In addition, the set of necessary
assumptions needed for the BAP protocol to
operate correctly, such as the need for a
secure communication channel, are presented

1. Introduction

In recent years, there has been an exponential
increase, as reported by CERT, see Figure 1,
in security threats or �attacks� by both
individuals attempting to use a system without
authorization (i.e., crackers) and those who
have legitimate access to the system but are
abusing their privileges (i.e., the insider threat�).
The nature and cost of these threats has
contributed to the increased focus, research,
and development in both academia and

industry in the design and implementation of
systems that are resistant to �hackers
/crackers� attack. More specifically, dating
back to the early nineties the study, research
and development, and the implementation of
Intrusion Detection & Countermeasure Systems
(IDCS), has become an essential element of
the design of modern computer systems and
applications, see [1], [2], [3], [4].

Unfortunately, current Research in the area of
�Systems Security� in general, and in the
design and implementation of Intrusion
Detection & Countermeasure Systems in
particular, has shown to have some significant
limitations. For a complete assessment of the
current state of the art of such systems, see
Allen [2], Jansen [4]. Modern approaches to
deal with such limitations have resulted in the
design of distributed systems (a.k.a, network
based systems), Spafford [1],
Balasubramaniyan [5], where autonomous local
agents collect and analyze information but
cooperate with other agents in the system to
arrive at decisions on the potential set of
intrusions. All such systems suffer from several
limitations as describe in [4]. Amongst the
most important limitation of current approaches
is the inherent vulnerability of the agents to
attack, rendering the system designed to
protect “the System” inoperable.

In recent months, at Worcester Polytechnic
System Security Research Laboratory
(WSSRL), research into the design of an
Intrusion Detection and Countermeasure
System, name SAFE, that can effectively
addressed this limitation, has taken shape.
The key to such a system is a distributed
module called the distributed Trust Manager or
TTM. The TTTTMM iiss aann iinnddeeppeennddeenntt eennttiittyy
sseerrvviinngg tthhrreeee mmaajjoorr ssyysstteemm ffuunnccttiioonnss.. TThheessee
aarree::

!! IItt kknnoowwss wwhhiicchh llooggiiccaall nnooddeess iinn tthhee
ssyysstteemm ccaann bbee ttrruusstteedd �� tthhiiss iiss
aaccccoommpplliisshheedd tthhrroouugghh aa ttrruusstt
rreellaattiioonnsshhiipp mmaattrriixx;;

!! IItt uusseess aa BByyzzaannttiinnee AAggrreeeemmeenntt
PPrroottooccooll ttoo iiddeennttiiffyy aanndd iissoollaattee nnooddeess
tthhaatt hhaavvee bbeeeenn ccoommpprroommiisseedd;;

!! IItt rreellaayyss aa ��LLaasstt GGaasspp MMeessssaaggee�� ttoo
ootthheerr nnooddeess iinn tthhee ssyysstteemm;; aanndd

!! PPrreevveennttss tthhee ttrruusstt ssyysstteemm ffrroomm bbeeiinngg
ppaarrttiittiioonn ((QQuuoorruumm ffoorrmmaattiioonn))..

 2

Figure 1 � Growth in Number of Incidents Handle by
CERT/CC

In SAFE, the primary security mechanism used
(at a system level1) is the creation, updating,
and maintenance of a trust relationship matrix.
This matrix, which is manage by the Trust
Manager, contains up to date information on
the trust relationship betweens all the nodes in
the system. In SAFE both �weak� and �strong�
trusted relationships exist among the nodes.
The concept of a �weak/ strong� relationship, as
used here, refers to the level of access that one
node, say node na has established with another
node, let�s say node nb.

A weak relationship will be, for example, the
situation where users in one system can ftp to
users in another system only. At the same time,
a strong relationship will refer to a
relationship where a node has complete access
to all the privileged functions of the other node.
Trust relationships are not symmetrical. In

1 SAFE implements different layers of security
protection and containment at different levels in
the system. For example, at the local layer an
autonomous agent, called SHM, is responsible
for detecting Intrusions locally. However,
information on the state of the system is share
with other nodes through the use of TTM
protocols.

Figure 2, shown below, nodes a and node e
have the same level of trust with each other,
while node a is trusted by node b (node a can
access privileged functions in node b) and not
vice-versa. The arrow in the diagram shows the
direction of trust.

A trust function Tij (t) for i ≠ j, exist between two
nodes, and as mentioned earlier, it is not
necessarily symmetrical. Tij is a function of
time. In addition, the lack of trust between two
nodes will be denoted as having a trust
relationship of zero value, Tij (t) = 0. In this
example, Node a is the source of the intruder
attack, while Node h is the target of the attack.
However, because there is not a direct trust
relationship between Node a and Node h, the
intruder is force to a set of attempted intrusions
into nodes e and f, before attempting to
compromised h. Due to the topology of the
trust relationships (in Figure 2, the topological
description is a logical one and not physical)
between nodes, compromising any node other
than nodes b or f will not allow the intruder to
compromise the target node h. This topological
constraint amongst nodes in a network has a
significant advantage over other approaches.
That is, it allows the designer of the IDCS
System to create multiple logical layers of
defense against intruders, in effect, creating
time to detect potential intrusions and dwarfed
them. Further, the concept of a trust
relationship can be extended to include trust
relationships with nodes that do not belong to
the immediate system under protection. For
example, a system like SAFE could pro-actively
engage other nodes outside the local network
to determine how trustworthy they are, and
then, create a periphery trust matrix to manage
the interactions with such nodes.

An example, of using a topological constraint to
manage and impede intrusions will be as
follows. Let�s say that nodes b and e suspect
an intrusion by using traditional audit methods.
Then, nodes b and e can invoke a state change
on their trust relationships with other nodes in
such a way that,

Equation 1:

Taj (t) = 0 for all j ≠ a and t > t of intrusion; and

Tej (t) = 0 for all j ≠ e and t > t of intrusion.

 3

Node b

Node h

Node g

Node e
Node d

Node a

Node f

Node c

Tab,

Tae, Tea

Tce, Tec

TebTbd

Tdg

Teg
Tef

Thg

Tfh

Source of Attack

Node Under Attack

Figure 2: A Simplified Intrusion Detection Model

Once, the problem of intrusion detection is
formulated in this context, then well know
solutions to the Byzantine Generals Problem
are readily available. In the remaining of this
paper, we will present how one such solution, a
Byzantine Agreement Protocol (BAP), can be
used in the design of the Trust Manager (TTM).

1.1 The Byzantine Generals Problem

The Byzantine Agreement Protocol (BAP),
which aims at establishing a fault-tolerant
agreement when one or more of the nodes in a
system have been compromised or failed,
received considerably attention in the literature
during the late 80� and early 90�s. The primary
application then was the design Fault Tolerant
Systems. Recently, and mainly because of the
increased importance of the �security problem�,
interest on its usage has increased. Lamport, et
al. described the Byzantine General Problem in
[7, 8]. Specifically, the Byzantine General
problem formulation is as follows.

Imagine that several divisions of a Byzantine
army are camped outside an enemy city, each
division commanded by its own general. The
generals can communicate with one another

only by messenger. After observing the enemy,
they must decide upon a common plan of
action. However, some of the generals may be
traitors, trying to prevent the loyal generals
from reaching agreement. The generals must
have an algorithm to guarantee that:

A. All loyal generals decide upon the same

plan of action. The loyal generals will all do
what the algorithm says they should, but
the traitors may do anything they wish. The
algorithm must guarantee condition A
regardless of what the traitors do. The loyal
generals should not only reach agreement,
but should agree upon a reasonable plan.

We therefore also want to insure that

B. A small number of traitors cannot cause the

loyal generals to adopt a bad plan.

Further, in [7], the Byzantine Generals
Problem was described as the design of an
algorithm such that when the commanding
general sends an order to his (n � 1) lieutenant
generals, then the algorithm guarantees that

IC1. ALL LOYAL LIEUTENANTS OBEY

THE SAME ORDER.

IC2. IF THE COMMANDING GENERAL IS

LOYAL, THEN EVERY LOYAL
LIEUTENANT OBEYS THE ORDER
HE SENDS.

The BAP algorithm is essentially a distributed
algorithm designed to achieve consensus.
Borrowing from Lampson [9], �several
processes achieve consensus if they all agree
on some allowed value called the �outcome� (if
they could agree on any value the solution
would be trivial: always agree on 0). Thus the
interface to consensus has two actions: allow a
value, and read the outcome. A consensus
algorithm terminates when all non-faulty (un-
compromised) processes know the outcome�.

BAP as a consensus algorithm can be applied
to two critical problems, which are of great
importance in the design of secure systems.
These are:

Membership, where a group of processes
cooperating to provide a highly available
service need to agree on which processes are
currently functioning as members of the group.

 4

Every time a process fails (is compromised) or
starts working2 again a new consensus must be
generated.

Electing a leader amongst a group of
processes prior to an exact determination on
the number of processes that belong to the
group.

Within this context, if we substitute Generals
for nodes in distributed systems, and
consensus for the need to agree on which
processes (agents, modules, etc.) are
safe/sane (i.e., have not been compromised).
Then, the problem of identifying an isolating
compromised nodes can be easily described as
follows:

Imagine in SAFE several nodes, which
cooperate with each other to detect intrusions.
Each node runs an autonomous agent, the
TTM, which continuously sends messages to
other nodes. The message that is sends has
two possible values. These are:

Message A1: “keep sane” or “0”; and

Message A2: “I am potentially compromised”
or “1”. Enclosed is the �signature that implies a
potential intrusion”.

In this context, the nodes that can be trusted
should be able to determine which nodes are
compromised, if there�s any, and arrive at a
consensus. A small number of nodes that have
been compromised should not be able cause
the other nodes to adopt a wrong or even
malevolent message. The Byzantine
Agreement Protocol (BAP), by which we can
detect intrusion and minimize the success of
attacks, fits this context perfectly.

Note that BAP doesn�t always hold. There is a
threshold t. That is, if more than t nodes are
compromised, the BAP will also fail. The
resiliency of the algorithms to the number of
nodes compromised depends heavily on the

2 In SAFE, a process (node) starts working
again after the local control module SHM has:
(1) isolated the process from the network; (2)
launch the prescribed set of countermeasures;
and (3) certified that the node is �sane� again.
When such actions are completed, SHM makes
a request to the local Trust Manager module to
re-integrate.

communication mechanism used to exchange
messages, and its characterize by the value of
t. Lamport et al. [7], suggested two distinct
algorithms depending on the mechanism used
for communication. The first one, which he
called an “Oral Message Algorithm”, makes use
of unauthenticated sequence of oral message
exchanges. The second algorithm, known as
“Signed Message Algorithm�, depends on the
assumption that messages are signed, and that
the identity of the sender can be guaranteed. In
the case of the Oral Message Algorithm it can
be shown that consensus can be achieved
when there are at most  3/)1(−m nodes
that have been compromised among a total
number of m nodes. Similarly, he
demonstrates that the Signed Message
Algorithm can effectively achieve consensus if
at most m-2 nodes have been compromised
amongst a total of m nodes.

In order to improve the intrusion-resiliency of
SAFE, as well as to make the implementation
of the Byzantine Agreement protocol simpler in
our system, we will assume the presence of a
communication channel, which is both reliable
and secure. Hence, the algorithm implemented
in our system, to achieve consensus, will be the
so-called SM (m-2) algorithm. Here, each node
will implement the message exchange
mechanism described by Hoffstein [10]. That
is, in order to exchange messages:

(1) The commander signs and sends its
message to every node Ni it can reach
directly.

(2) For each node Ni:

(a) Node, Ni, maintains a running list of
all the messages it has received;

(b) Node, Ni then, signs
(authenticates) all the messages
that node it has received, and then
sends a copy with its signature to
all other nodes that:

i. are directly connected (one hop

away) to node Ni., and

ii. Whose messages he has yet to
received.

 5

(c) The node will repeat step (b) until
node Ni does not received any
additional signed messages.

(3) Ni then will arrive at a decision on the

course of action based on all the signed
messages at hand.

It is also well noting that a compromised node
will not necessarily follow the above Signed
Message Algorithm. For that matter, a set of
compromised nodes may collude with each
other in an attempt to mislead or compromise
all other sane nodes. Collusion may take any
of the following forms:

(1) Falsify signatures, i.e., use each others

signatures as part of the authentication
process;

(2) Forge messages; and
(3) Send incorrect values or not send any

values at all.

However, as long as at least (m-2) trusted
nodes could exchange messages to arrive at
consensus, the Byzantine Agreement Protocol
(BAP) holds. This is true if and only if we can
guarantee the following:

 A1. Every message that is sent is delivered
correctly.
 A2. The receiver of a message knows who
sent it.
 A3. (a) A sane node�s signature cannot be
forged, and any alteration of the contents of his
signed messages can be detected.
 (b) Anyone can verify the authenticity of
a general�s signature.
 A4. The absence of a message can be
detected.

2.0 Building a Trusted System - Overview

By �Trusted System�, we mean a system
composed of a set of autonomous agents that
include at least a TTM and a SHM (Secure
Host Manager) per node. A Secure Host
Manager (SHM) is an autonomous agent
residing in each node in the system that
performs the following set of functions:

! Low level (or host based) intrusion
detection using a set of traditional
misuse or anomalous detection
models;

! Provides intrusion packets to the Trust
Manager for consensus forming;

! Incorporates learning algorithms for the
low level intrusion detection functions;
and

! It is responsible for node isolation,
countermeasure issuance, and
recovery.

The relationship between the TTM and SHM is
shown here in Figure 3. In this system EGO�s
are low-level Intrusion detectors (also known as
probes) which can be turned on/off to collect
information and minimize low level processing
A complete discussion of the EGO�s roles and
functions is not needed at this time.
.

Figure 3 � SAFE Architecture

For the purpose of this discussion, consider a
system SS,, in which all nodes are sane and
trusted a time t0.. At some pre-specified later
time, to + ∆, eevveerryy TTrruusstt MMaannaaggeerr in the
system exchanges a set of signed messages,
following the above protocol to determine if the
nodes in the system are still to be trusted. After
receiving all the messages broadcasted in the
system, a consensus must be reached to
determine if the system and its nodes are still
trustworthy. Here, we assume that every node
is either sane, which means the node is
believable, or insane, that is a node has been
compromised. As pointed out earlier, SAFE
uses a Signed Message algorithm, which can

 6

detect at most t insane nodes among m ones in
the network. Once, a node or set of nodes are
deemed to be compromised, then, the Trust
Matrix of every sane node is updated, setting
Tij = 0, for all compromised nodes, and
effectively isolates them. Finally, using a one-
way channel, the System Trust Manager will
force the Trust Manager in each compromised
nodes to a root state. While in its root state,
the TTM will no accept any further messages,
and will issue commands to SHM in order to
initiate countermeasures. A compromised
node will be allowed to join the trusted set of
nodes again, if and only if, a known secure
state is reached by the local TTM and SHM.

2.0 Building Trusted System – Detailed
Discussion

In order to simplify our discussion, we will
assume that: (1) during the period of time while
the system is attempting to arrive at a
consensus, a sane node cannot be
compromised3, and (2) the number of nodes in
the system does not change. In addition, any
non-trusted nodes that want to join a network
community (or trusted system), will use a
Quorum Algorithm that we define as follows.:

Consider the following case. There is at least
one node that does not belong to a trusted
system. Such node upon boot,

! Will verify the absence of a trusted
system by �broadcasting� on all links a
�join trusted system message”. If a
trusted system already exists, then a
consensus process is initiated amongst
all nodes in the trusted system.

! Otherwise, the node assumes that a

�trusted system� is not present; it will
declare itself the commanding general,
it will build a community of one, and
then will wait for other nodes to join in.

As described earlier, each node Ni maintains a
one-dimensional Trust Matrix locally in the form
of [ti1, ti2��tin], where tij is a measurement of
the degree to which the node Ni can believe
that another node Nj is sane. A higher value for

3 This constraint can be relaxed, and SAFE is
still capable of achieving consensus. We will
explore such algorithms as part of our ongoing
research.

tij indicates Ni has greater confidence that Nj is
sane. A value of 0 means Ni believes firmly that
Nj is insane. For simplicity, we set tij to be either
0 or1, that�s, tij is Boolean. The system can,
then, be represented by an n X n Trust Matrix
that represents the entire system trust
relationship.

We also set a Tolerant Parameter t, which is
the maximum number of compromised nodes a
secure system can tolerate. If more than t
nodes in the system are compromised, the
system cannot be trusted any longer because
its nodes have lost their capability to detect
intrusion. Our system uses Signed Message
Algorithm and hence t = n-2. If the number of
compromised nodes exceeds t, then the whole
network will be compromised. In this case,

(1) TTM at each node will issue a
command to SHM in such a way that
the node is taken offline, and it
disconnect itself from the whole
network.

(2) TTM will set all the elements in the
local Trust Matrix as zero, namely, tij =
0 for each node j, which means any
connection from this node to others
cannot be trusted.

(3) SHM will then repair the compromised
node locally.

(4) After step (3) has been accomplished
successfully, SHM will communicate
with TTM and request that the Quorum
Algorithm is run to either join the
existing community or create a new
one.

(5) Based on the trust relationship, TTM
will assign new values to tij.

After a node broadcasts a certain message to
other nodes, in order for consensus to yield a
trusted system, the following two conditions
must be satisfied:

1. All sane nodes must use the same
message as input, so they can get the
same output or we say they can reach
consensus.

2. If the node that sends the message is
sane, then all sane nodes use the
message it provides as input, so they
produce the correct output.

These are just our interactive consistency
conditions IC1 and IC2, where the

 7

�commander� is the node sending the
message, the �lieutenants� are the nodes
receiving the message.

In order for our system to work properly, a
Signed Message SM (m) algorithm must be
implemented. Implementing such a system
requires adherence to the following set of
assumptions, A1 through A4.
 A1. Every message that is sent is delivered
correctly.
 A2. The receiver of a message knows who
sent it.
 A3. (a) A sane node�s signature cannot be
forged, and any alteration of the contents of his
signed messages can be detected.
 (b) Anyone can verify the authenticity of
a general�s signature.
 A4. The absence of a message can be
detected.

Assumption A2 states that a node can
determine the identity of the owner for any
message that it receives. What is actually
required is that an insane node should not be
able to impersonate a sane one. Note that,
under our set of conditions, A2 is encompassed
by A3, and therefore not needed.

We now consider the assumption A1, A3 and
A4 in order, and show they are guaranteed in
SAFE.

A1. Here we assume the existence of a secure,
fast physical communication channel. This is a
well know research problem, see [10], [11],
[12]. However, in a real system, the channel
may fail. But in this case, a failed
communication channel, from our perspective,
just has the same effect as simply isolating it
from the network and the countermeasure is
building a correct, trusted network connection
again. A3 and A4 still hold.

A3. Property A3 (a) can not be guaranteed with
100% certainty since any message is just a
binary data item, and theoretically an insane
node could generate any data item, as it likes.
However, we can reduce the probability of this
occurrence to any comfort level that we so
desire. Using classical public key cryptography
solutions can insure assumption A3. That is,

(1) The sending node Ni will

(a) Bind the message, starting time
and its name together and encrypt
this message block Bi by its private
key.

(b) Bind Bi with Ni�s name, a random
data chunk Di, and a Time-stamp Ti
into a new block by Nj�s public key.
(Ti will be used for synchronization
in the last assumption.)

(c) Send the final message, which is
actually the tuple {Bi:Ni:Di:Ti,} to the
target node Nj.

(2) Only Nj is able to decrypt the message
block with its own private key. Then, after
knowing whom the originator of the
message is, Nj will decrypt the message Bi
by Ni�s public key, read the content and
verify the authenticity of Ni.

(3) If Nj is the destination, this branch of

sending message will stop; Otherwise, it
will:

(a) Bind Bi and its name together
and encrypt this message block
Bj by its private key.

(b) Bind Bj with Ni�s name, Nj�s
name, and a random data chunk
Dj, and a Time-stamp Tj, into a
new block by Nk�s public key.

(c) Send the final message block,
which is actually {Bj:Ni:Nj:Dj:Tj,} to
the target node Nk.

(d) Nk will repeat (2) and (3) until
stop. The only difference is that a
multi-layer
encryptions/decryptions will be
needed, which are very
expensive.

Any decryption failure in step (2) and (3) will
force the receiving node to assume that the
sender of the message is insane. On the other
hand, if an insane node fails to sign and
encrypt its identity, then, the lack of a signed
message will be used to declare such node
insane at final decision consensus-making
time. At that time, each sane node will look
thoroughly at all the available signatures. We
will discuss this latter case, and provide a
solution by the creation of a time bound in
Assumption 4.

We also iterate here that there are two copies
of the nodes� names in the message block. The
copy placed at outer layer is used to tell the
receiving node which public key it should

 8

choose for decryption and the inner copy,
together with private keys, virtually forms a
digital signature.
The random data chunk D used in (1) and (3) is
also critical, since the message B is predictable
to some extent. For example in step (2),
suppose that an insane node Nt, after having
received a message Bi from node Ni, attempts
to forge it, and sends it out as {Bj:Ni:Nj:Dj:Tt}, in
effect a forged copy. The receiving node cannot
decide that the time-stamp Tt is forged and will
use it to synchronize the whole distributed
system as explained in Assumption 4, which
will be disastrous. But with this random data
item, it will be extremely difficult for the insane
node to do so undetectably. We can even
rearrange the order of {Bj:Ni:Nj:Dj:Tj} to further
reduce the probability of such an event, as long
as the receiving node can understand it.

Note, that despite the fact that current
cryptosystem cannot insure 100% secrecy, we
can reduce the probability for an insane node to
succeed in impersonating sane nodes to such a
small probability that we can in effect ignore
this problem. In the paragraphs that follow, we
present one such solution, and describe its
error characteristics.

Selecting a cryptosystem should be based on
at least the following two factors:

1) High speed for both encryption and

decryption. This is of great importance
especially when considering the fact that:

a) The execution of Byzantine Agreement

Protocol can introduce a substantial
overhead due to the number of
messages required to arrive at
consensus;

b) The system requires multi-layer

cryptography.

2) Security. This includes both a correct
decryption process to insure an extremely
low probability of successful malicious
decryption.

Our approach is to adopt NTRU, a ring-based
public key cryptosystem that features
reasonably short, easily created keys, high
speed, and low memory requirements. [10, 12]
The novelty of NTRU lies in the use of the
mixture of polynomial algebra and reduction

modulo two numbers p and q where gcd(p, q) =
1 and q is significantly larger than p. So, both
the public key and the private key are
polynomials or vectors.

The biggest advantage that NTRU over other
PKCS is its considerably fast speed in both
encryption and decryption with a much shorter
key length. In [10, 12], the most time-
consuming elements of an NTRU
implementation are the computations of
polynomials in the vector ring modulo p and q,
which can be reduced to O(qNlog(N)), by using
Fast Fourier Transforms.

Based on analysis in [4, 6], NTRU signature
scheme has about the same security level as
RSA and other signature schemes. Moreover,
extensive experiments show the decryption
failure of NTRU can be controlled to a low
probability less than 5*10-5. So, the receiving
nodes can decrypt the message correctly and
authenticate the sender.

A4. This assumption requires that the absence
of a message can be detected and the
receiving nodes won�t be left waiting infinitely.
The absence of a message can only be
detected by its failure to arrive at the
destination within some fixed length of time.
Before we start our system, we can manually
specify this maximum time to be ∆Tmax,
according to the network speed for sending
message, the diameter [7] of the system and
the time used for generating a message. Since
for distributed systems, no two nodes can run
at exactly the same rate [7, 13] and the nodes
lack a common notion of global time, we must
use an algorithm to synchronize the clocks in
such a distributed system.

Leslie Lamport implemented �logical clocks�
based on a mathematically rigorous �happen
before� relation in [7]. The �Physical Clocks�
model he proposed in [13] can solve the
synchronization problem for our system. This
model has three assumptions:

(1) Every clock Ci in the distributed system
must run continuously, rather than in
discrete ticks, at approximately the
speed of 1. That�s,

ki ∃∀ , , so that k
dt

tdCi <−1)(

 9

where k<<1.

 (2) ε∃ , a sufficiently small constant, so that

ε<−)()(tCjtCi for all i, j.

 (3) The clocks satisfy the ordinary Clock
Condition in [7].

We also need to set a parameter ∆Tmin, which
denote the minimum delay for a message to go
from one node to the next node. Theoretically,

 ∆Tmin =

light of speed the
 nodes obetween tw distance physicalshortest the

However, the actual value of this parameter
should be much larger and we can assign a
proper value to it. Then, when a node Ni
receives a message with time-stamp Tm, it
updates its clock by the formula:

 Ci(t) = max(Ci(t), Tm+ ∆Tmin) where Ci(t)

denotes the reading of the clock Ci at physical
time t at Ni.

A theorem in [13] can help us calculate how
much time the clocks will take to be
approximately synchronized after the system is
first started. After that, we can run our
Byzantine Agreement Protocol (BAP). If the
receiver has not received the message by the
time ti + ∆Tmax where ti is the starting time for ith
execution of BGA, it concludes that the
message isn�t sent at all. Any message that
arrives at a time later than ti + ∆Tmax will be
viewed as �unsent� and thus ignored by the
BAP protocol. Hence, a node that does not
send a message within the time constraint is
considered insane. Messages received before
this maximum time will be used to reach
consensus. After consensus is reached, then,
all nodes whose messages have not been
received will be declared insane. The
countermeasure and repair process will be
initiated as described in Section 2.0.

3.0 Conclusion and Future Work

In this manuscript, solutions to the Byzantine
Generals Problem, and associated Agreement
Protocols to achieve consensus, have been
applied to the problem of designing a trusted
system. The Agreement protocols described
are encompassed as part of the functionality of
an autonomous and distributed agent called
The Trust Manager or TTM. The TTM is
responsible, among other things, for identifying
and isolating compromised nodes in the
system.

The work, although theoretical in nature, is
being use today in the design of an Intrusion
Detection and Countermeasure System called
SAFE currently under development at the WPI
System Security Research Laboratory,
WSSRL. The current work needs to be
extended in several areas. These are:

1. Performance evaluation of the
algorithms and the TTM under real-
time intrusion workloads;

2. Extension of the TTM concepts to

other areas in the system, such as
lower level intrusion detectors; and

3. Comparison of the current

approach to other similar systems
that depend on autonomous or
mobile agents for their operation.

Bibliography:

[1] Spafford, Eugene H., Diego Zamboni,
�Intrusion Detection Using Autonomous
agents�, Computer Networks 34 (2000),
pp. 547-570.

[2] Allen, Julia et.al., “State of the
Practice of Intrusion Detection
Technologies, Technical Report CMU/SEI-
99-TR-028 ESC-99-102.

[3] Vorwoerd, Theuns & Ray Hunt,
�Intrusion Detection Technicques and
Approaches�, Computer Communications,
25 (2002) pp. 1356-1365.

[4] Jansen, Wayne A., �Intrusion
detection with mobile agents�, Computer

 10

Communications, 25 (2002) pp. 1392-
1401.

[5] Balasubramaniyan, J.S., Jose Omar
Garcia-Fernandez, David Isacoff, Eugene
Spafford, and Diego Zamboni, COAST
Laboratory Technical Report 98/05.

[6] H.Cohen, A course in Computational
algebraic Number Theory, Springer-
Verlag, Berlin, 1993.

[7] L. Lamport, R. Shostak, and M.
Pease, The Byzantine Generals Problem
ACM Transactions on Programming
Languages and Systems, July 1982,
pages 382-401

[8] L. Lamport, R. Shostak, and M. Pease
, The Byzantine Generals Problem
http://www.cs.wisc.edu/~sschang/
OS-Qual/reliability/byzantine.htm

[9] Lampson, Butler, �How to Build a
Highly Available System Using
Consensus�
10th International Workshop on
Distributed Algorithms (WDAG 96)

[10] J. Hoffstein, J. Pipher, J.H.
Silverman, NTRU: A ring-based public
key cryptosystem.

[11] J. Hoffstein, J. Pipher, J.H.
Silverman, NTRU: A new high speed
public key cryptosystem, in Algorithmic
Number Theory (ANTS Ш), Portland, OR,
June 1998, Lecture Notes in Computer
Science 1423 (J.P. Buhler, ed.), Springer-
Verlag, Berlin, 1998, 267-288.

[12] Adam Avilez, Adam Wolfe, Lauren
Kennell, Eric Purdy, NTRU Public-Key
Cryptosystem.

[13] Leslie Lamport. Time, clocks, and
the ordering of events in a distributed
system. Communications of the ACM,
21(7):558-565, July 1978.

http://www.cs.wisc.edu/~sschang/OS-Qual/reliability/byzantine.htm
http://www.cs.wisc.edu/~sschang/OS-Qual/reliability/byzantine.htm

	3.0	Conclusion and Future Work
	[7] L. Lamport, R. Shostak, and M. Pease, The Byzantine Generals Problem
	[8] L. Lamport, R. Shostak, and M. Pease , The Byzantine Generals Problem http://www.cs.wisc.edu/~sschang/OS-Qual/reliability/byzantine.htm

