
WPI-CS-TR-02-25 Oct 2002

XML Algebra Optimization.

by

Xin Zhang
Bradford Pielech

Elke A. Rundensteiner

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

XML Algebra Optimization.

Xin Zhang, Bradford Pielech and Elke A. Rundesnteiner
Department of Computer Science

Worcester Polytechnic Institute Worcester, MA 01609
(xinz

�
winners

�
rundenst)@cs.wpi.edu

Abstract

Mapping of XML data into and out of relational database systems, including query processing over such virtual
XML views that wrap relational sources, has become a topic of critical importance recently. The Rainbow XML
data management system, being developed at WPI, focuses on the processing and optimization of XQuery queries
against XML views of that relational data. For this, Rainbow’s query model, XML Algebra Tree (XAT), has been
designed. Because the XML formatting operators are interleaved with the computation operators, this XAT must then
be optimized before being translated into SQL. For this, our computation pushdown technology splits the XAT into the
XML-specific and SQL-doable operators with the later then being converted into SQL statements. However, the XAT
after computation pushdown may contain unreferenced columns or unused operators. We show that these unneeded
operators cannot be discovered by the relational engine after SQL generation. Leaving these operators in the tree would
create unnecessarily large SQL statements that will slow down the overall execution.

Our main contributions to XML query processing, described in this paper, are threefold. One, we describe the
XAT algebra for modeling XQuery expressions. Two, we propose rewriting rules to optimize XQueries by cancelling
operators. Three, we describe a cutting algorithm that removes unreferenced columns and operators from the XATs.
We have implemented the techniques discussed in this paper in the Rainbow system. Our experimental study compares
the performance of execution before and after operator cancel out and before and after cutting.

Keywords: XML, query processing, algebra, XQuery, XML to relational, query optimization

1 Introduction

1.1 Motivation

XML [2] has emerged as a popular choice for exchanging structured data between web applications. Because

of its balance of power and flexibility, it is quickly becoming the standard for data representation on the Web.

Combining these strengths of the XML data model with the maturity of relational database technology into

one system makes a lot of sense given the demand for both reliable, persistent storage as well as for a flexible

means to exchange data between applications.

Combining these technologies creates major challenges that must be tackled. One is to load, model,

and extract XML data in and out of the relational backend system without losing the semantics of the data.

Creating an XML view of the relational data has emerged as the leading architectural design to bridge the

gap between these two different data models [3][10][6]. XQuery’s [20] expressive power can define such

mapping views that wrap the relational source. Such views can limit the data exposed to an application and

they also wrap the data in any XML format desired by the applications.

The second challenge is to efficiently process queries against these XML views. The end user can specify

queries against such XML views using their favorite XML query language. The XML query engine would

now need to rewrite the user query, combine it with the mapping query, and then to efficiently compute what

the user desires.

That larger query would need to be translated into SQL to be executed over the relational database.

However, this query rewriting and translation at the syntax level is difficult to optimize [8]. Therefore, instead

we propose an XML-based algebra (XAT) representation of XQuery expressions as a basis for these query

optimization and translation tasks. Our XML query engine first represents the XQuery expression as XAT

algebra trees and then performs the optimization of the query plan using this XML algebra representation

before SQL pushdown.

1.2 Running Example

The following XML, adapted from XML Use Cases [21], will be used as the running example throughout

this paper. The XML document describes a price list of multiple books where each book has one title and

one price are given in Figure 1. Figure 2 depicts the relations of shredded XML document in Figure 1. The

example XQuery in Figure 3 returns the book’s title in the price list. The query result is shown in Figure 4.

Figure 5 depicts the view query built on top of the relational tables that virtually restores the original XML

document view according to Figure 1. The user queries are specified against this view. Please notice that in

Figure 5, ���������
	�� is not used by the user query depicted in Figure 3.

1.3 Problem Definition

This paper focuses on the challenges faced when trying to optimize the XML algebra tree (XAT) generated

by merging the query tree for the user query with the query tree representing the view definition (depicted in

Figures 3 and 5 in our running example respectively). The goal of this optimization step is to first optimize

the XAT by rewriting it into equivalent yet more efficient query trees. In particular, our goal is to separate the

tree into two portions such that the top of the query contains the XML-specific operators (such as those that

create XML fragments) and the bottom half contains the SQL-doable operators (such as Select and Join).

This separation ensures that the bulk of the computation is pushed down to the relational engine and only

computation not typically doable by a standard relational engine is performed by the Rainbow engine.

2

<prices>

<book>

<title>TCP/IP Illustrated</title>

<price>65.95</price>

</book>

<book>

<title>Data on the Web</title>

<price>34.95</price>

</book>

</prices>

Figure 1: XML Data Example.

Data on the Web7

TCP/IP Illustrated2

TitleBid

34.957

65.952

PriceBid
Book Prices

Figure 2: Example of Relational Tables.

<result> {

FOR $t IN document("prices.xml")/book/title

RETURN $t/text()

}</result>

Figure 3: User XQuery Example.

<result>

<title>TCP/IP Illustrated</title>

<title>Data on the Web</title>

</result>

Figure 4: Query Result of User XQuery.

<prices>

FOR $book IN document("dxv.xml")/book/row,

$prices IN document("dxv.xml")/prices/row

WHERE $book/bid = $prices/bid

RETURN

<book>

$book/title,

$prices/price

</book>

</prices>

Figure 5: View XQuery to go from Relational Database to

XML

<!ELEMENT prices (book*)>

<!ELEMENT book (title, source, price)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT source (#PCDATA)>

<!ELEMENT price (#PCDATA)>

Figure 6: DTD Example.

However, just attempting to maximally push all SQL-like computation down does not necessarily corre-

spond to an optimal execution plan. Once SQL is to be generated in the lower portion of the XML algebra

tree (XAT), note that data may be extracted from the relational database that ultimately may not be required

by the user’s query. For example, the detailed information about authors and titles of the books they wrote in

the view defined in Figure 5 are not of interest to the user as expressed by the user query in Figure 3. We thus

are interested in developing an algorithm that assures that such data irrelevant to the user is not unnecessarily

computed.

3

1.4 Contributions

The core contributions of this paper are three fold. First, we design an XQuery algebra, called XAT, which

is capable of capturing the core features of the XQuery language. Using this algebra, we construct an XML

algebra tree that represents a logical query plan; forming the foundation for the execution of the XQuery

expression. The second contribution is the set of equivalence rules for the XAT algebra. These rules de-

fine for example how two operators may be combined or swapped with one another. Our rewriting strategy

optimizes the XAT logical query plan for efficient query execution either in main memory or against a rela-

tional database. For this, the rewriter iteratively applies our rewriting rules in a bottom up fashion to remove

intermediate XML fragment construction and to push computation down to the relational engine. Lastly,

we describe our top-down cutting algorithm that identifies and removes unused operators. This process will

shrink the XAT, resulting in a further optimized query plan. We have implemented the above proposed query

model and optimization algorithms in our XML data management system Rainbow [24]. In this paper, we

also present some of experiments we have conducted in order to evaluate the performance improvements

achievable as well as the overhead of our algorithms in a variety of different settings.

1.5 Outline

In the next section we briefly review the data model and operators of our XAT algebra. Section 3 introduces

the Rainbow framework, in particular we review XAT generation, decorrelation and query merging. Query

rewriting rules and heuristics are given in Sections 4 and 5 respectively. Section 6 describes the redundant

operator cutting algorithm. Section 7 reports on our experimental study. Related work and conclusions are

given in Sections 8 and 9 respectively.

2 XAT Data Model

2.1 XAT Data Model Components

XAT data model is an order-sensitive table called XAT table. Inspired by W3C’s XQuery 1.0 Formal Seman-

tics [22], every entry of a tuple ����� can be:

� An atomic value.

� A node: includes XML Element, XML Document, and XML Attribute.

� A collection: which is an unordered collection of items (i.e., any mixture of nodes and atomic values).

� A sequence: which is an ordered collection of items.

4

Every column is denoted by a column name, which can be either a variable binding from the user-specific

xquery, e.g., ��� , or an internally generated variable, e.g., ������� . Every column �����	� is typed by an XQuery

type defined in the XML Query Algebra [19]. This means that ��
 �������
� ������� 	
����������� ��� ��� � 	 , where �

is an XAT table, ��� � and ��
 �����	��� is the value of tuple � for column ����� � .

As we can see the XAT table is an extended relational table with XML domains and support for collec-

tions. As relational implementations found the multi-sets (bags) more useful than sets, we expect XAT tables

to also be implemented as multi-sets.

Collection and Sequence. A collection is an unordered bag of zero or more items while a sequence is an

ordered collection of zero or more items. They both have the following properties:

� A collection/sequence with one item can be treated as a singleton item, and vice versa.

� Collections/sequences cannot be nested into each other.

� A collection/sequence has a schema assigned to it. They are heterogeneous, i.e., there can be different

types of items in one collection/sequence. The collection/sequence’s type is the super type of the types

of items in the collection/sequence.

In the following discussion, we use sequence and collection interchangeably. We only use sequence when

we want to highlight the order of a given collection. Otherwise for both ordered and unordered collections

we use the term ����� � 	 � � �!��� henceforth.

title price

TCP/IP Illustrated 65.95

TCP/IP Illustrated 69.95

Data on the Web 34.95

Data on the Web 39.95

(a)

price

<price>65.95</price>

<price>69.95</price>

<price>34.95</price>

<price>39.95</price>

(b)

prices"
<price>65.95</price>,

<price>69.96</price> #"
<price>34.95</price>,

<price>39.95</price> #
(c)

Figure 7: Examples of Intermediate XAT Tables for XQuery in Figure 3.

Figure 7 depicts three examples of XAT tables. Figure 7(a) depicts a regular relational table. Figure 7(b)

is a table of XML nodes. Figure 7(c) is a table of collections. We use $&%'%'%'(�%'%'%*) to denote a collection.

2.2 Comparison and Node Identity

Comparison in the XAT data model is done by values, e.g., the deep equal comparison as in the object-

relational data model. A more efficient comparison can be done by node identity. If the comparison includes

an atomic value on one side of the equation, then it can only be done by value comparison. The comparison

5

between a collection with another collection is done by comparison of each pair of items, and in the case of

ordered sequences, only in the order of the sequences.

2.3 Document Order and Sequence Order

Sequence order refers to the order of the items within a given sequence. If a sequence is composed of sibling

items, e.g., items with a common parent, then we say the sequence is ordered in sibling order.

Document order refers to the total order among all nodes within a given document. It is defined as the

pre-order depth-first tree traversal order of all the nodes in the XML tree modeling the XML document.

2.4 XAT Schemas and Types

Rainbow’s algebra makes use of the schemas and types defined in the W3C XML Query Algebra [19].

The DTD in Figure 6 can be represented as a schema in Figure 8. As we can see Figure 8 defined two

types, i.e., the type � �����
	 � ��� � and the type � ����� . The definition of the type � �����
	�� ��� � says that it contains

a pricelist tag and zero or more instances of type � ����� . The definition of the type � ����� says that it

contains a book tag, and within the book tag, there are three other tags, i.e., title and price . For the

value of each tag has their terminal types, e.g., String and Float .

type Pricelist = pricelist [Book $ 0, *)]

type Book = book [title [String] , price [Float]]

Figure 8: Algebra Schema representing DTD in Figure 6.

In Figure 7(a), the type of the column “title” is � � � �!�
	 and the type of column “price” is � � ��� � . In

Figure 7(b), the type of column “price” is �������
	

 � � ��� � � . In Figure 7(c), the type of column “prices” is
�
� � � � 	

 � � ��� � ��
 $�� (��) .

3 Rainbow Framework for Mapping and Query Processing

Rainbow has been designed to exploit relational database technology to manage XML data based on a flexible

mapping strategy [23]. We now will briefly describe the general concept of XML to relational mapping and

XML query processing based on our system. The Rainbow system in Figuref 9 is composed of three sub-

systems: a loading manager, an extraction manager, and an XML query engine.

XML and Relational Data Mapping Management. Rainbow supports flexible mapping between XML

data and relational data by a mapping engine. This mapping engine [4] supports both directions of the

6

mapping by providing two managers, one responsible for loading and the other responsible for extraction.

The loading manager can choose between multiple loading strategies to load XML data into a relational

database. The mapping engine maintains an extraction view query for each loading query, i.e., they are

kept as mapping pairs. Hence, the extraction manager simply selects the proper extraction view query for

constructing the virtual XML document view over the relational data. This view query specifies the logic of

the reconstruction of the original XML document. The system can flexibly switch between several different

mapping strategies [4] by changing the XQuery mapping expressions.

Lo
ad

in
g

M
an

ag
er

E
xt

ra
ct

io
n

M
an

ag
er

XML
Repository

Optimizer

SQL

Relational Engine

Query
Result

XML
Publishing

XML Query XML

User

X
M

L
Q

ue
ry

 E
ng

in
e

Sub
System

Data

Process

Legend

XML Algebra Tree

XQuery
Engine

XML Schema XML Data

Default
XML View

XML
Source

Wrapper

Default
XML Schema

Schema generation Data Loading

XQuery
Engine

Default
XML View

XML
Source

Wrapper

Default
XML Schema

Data ExtractionSchema generation

XML
View

User

Figure 9: The Rainbow System.

Query Processing of XQuery Expressions over Relational Engines. Rainbow’s query engine uses

the XML algebra, called the XML Algebra Tree (XAT), explained in the previous section, for optimization

and execution of queries. Similar to XPERANTO [3], Rainbow employs SQL pushdown strategies, based

on algebraic equivalence rules, to extract maximal SQL expressions from the given XQuery expression.

The query executor currently implements the remaining XAT operators not expressible in SQL in a native

execution.

Figure 10 depicts the Rainbow Query Engine. Rainbow uses the Kweelt Parser [15] to parse XQuery

expressions. The XAT Generator analyzes the parsed tree and generates an XML Algebra Tree (XAT) for

both the user and mapping queries. See Figure 11 for the two respective XATs for our running example.

7

X
A

T
 M

erger

SQL
Generator

RDBMS

User XQuery

SQL

X
A

T
 G

enerator

XAT
Executor

User Query Results in XML

XAT
Optimizer

XAT

XAT

View XQuery

X
A

T
 D

ecorrelator

View XAT

User XAT

XAT

XAT: XML Algebra Tree

Virtual XML DocumentVirtual XML DocumentVirtual XML Document

View XAT

User XAT

XAT

Virtual XML DocumentVirtual XML DocumentXML Document

Figure 10: Architecture of Rainbow Query Engine.

The generated XATs are then unnested by the XAT Decorrelator. Query decorrelation is used to improve

the query performance by removing the repeated evaluation of the inner query. Unnesting also often results

in additional opportunities for the optimization. The decorrelation is done by creating an intermediate query

space of joining the inner and outer queries together [16]. Figure 12 displays the two decorrelated XATs of

our running example.

The two XATs are merged by the XAT Merger, generating one final merged XAT that has the user’s query

on top of the mapping query. The query merging will match the source node(s) of the user’s query with the

expose node of view’s query. The source and expose operators will be reduced into one rename operator that

matches the two column names. Figure 13 displays the merged XAT.

The XAT Optimizer is composed of an XAT Rewriter and an XAT Cleaner. The XAT Rewriter rewrites the

merged XAT so as to push as much SQL-do-able computation down to the bottom of the tree. The rules used

are explained in detail in Section 4, while the overall rewriting process is outlined in Section 5. XAT Cleaner

eliminates unused columns in the XAT tables and detects and removes unused operators. This optimized

query tree is shown in Figure 14.

SQL Generator generates SQL from the bottom portions of XAT (see Figure 14). This SQL is then

executed against the underlying relational database by the XAT Executor. The tuples returned by the SQL

engine are then tagged into XML elements using construction information from XML specific operators at

the top in XAT. Finally, the results in the form of an XML document are returned back to the user. In the

rest of this paper, we discuss the optimization of the XAT using the XAT Rewriter and XAT Cleaner in more

detail.

8

T ��� ��� ��� 	 ��
���	 ��
 � ��� ��� 	
�� � � �

S��� � � � ����� ����� � ���
φ ����
 ! ��� "
 	 � 	 � � ��	

ρ ��	 ��	

F O R ��	
A g g

ε #�$&% '

φ ��! ��� " 	 � 	 � ��� � � (�

T � � � � � ����
 � � �)���
 � � � � ����
 � � � *

S� + ��,�� ����� � � (

φ � (
 ! ��� "
 � ��- ��! ��� "

F O R ��! ��� "
A g g

T ��! ��� "
/. � � � (��0 . � � � (�1 0 ��
 ! ��� "
&� � �)

S� + ��,�� ����� � � �
φ � �
 � � � � ���
 � ��- � � � � � ���

F O R � � � � � ���

φ ��! ��� " !�� + � � � 2

φ � � � � � ��� !�� + � � � 3

σ � � � 2�4 � � � 3

φ � � � � � ��� � � � � � � � � (�1

ε � � � *10:

11:

12:

13:

14:

15:

19:

20:

21:

22:

23:

25:

26:

27:

28:

(a) (b)

Figure 11: (a) User XAT before Decorrelation, and (b) View XAT before Decorrelation.

4 Rewriting Rules

4.1 Navigate Pushdown Rules

This section details some of the most commonly used rewrite rules 1 in Rainbow, specifically the rules that

govern how a Navigate (Unnest or Collection) may be swapped with another XAT operator.

Navigate vs. Single Source Operator. The single source operator (� �) includes Distinct (
5
), Function

(� �
), NameColumn (6), Navigate (798;:), Orderby (<), and Tagger (�). Column = is the output column

name of that single source operator � � . Intuitively, the Navigate may be swapped if the output of the � � does

not serve as input to the Navigate. This is demonstrated by Equation 1. The output column of the Navigate,

which is � , is unaffected by this rule.

:?>@BA CEDGF&H � � �JI�
LK � �JI � :?>@BA C/DMF&H
 (1)

The rule (Equation 2) between navigate(798;:) and project (N) is different, because the project operator

will remove columns. Hence after the swapping, the project should include the navigate column in its list of
1Please note in the rest of the paper, we will use the terms rules and equations interchangeably to avoid repetition.

9

φ ��������� �	�
 � � ��
 ��� ���

T �����

 �����
 ��� �	��� ���

 ������
 ��� �

S� ��� �� ��!"� # $ �

φ $ � ��� ������� � � ��% ���������

×

A g g

T �����������'&
 ��� ����(&
 ��� ��)�(*�+� ���������,
 ��� �

S� ��� �� ��!-� # $.

φ $. ��� ���

 ��� � � ��% �����

 ���

φ ��������� �+��
 �
 ��� /

φ �����

 ��� �+��
 ��
 ��� 0
φ �����

 ��� �+���

 ��
 ��� ��)

ε
 ��� �10:

11:

12:

22:

23:

25:

27:

28:

14:

15:

20:

21:

31:

σ
 ��� /	1
 ��� 026:

T �,� ��� 2�� � ����� � ��� � ��� 2�� � �
 ��� .

S� ���

 ���� ��!"� #
$ �

φ $ ����� ������� � �
 � � � ���

A g g

ε 3�4+5 6

(a) (b)

Figure 12: (a) User (b) View XAT after Decorrelation.

output columns. This is analogous to the treatment of Select and Project rewrites in relational algebra.

: >@BA C/DMF&H � N I
LK N I A @
� : @BA C/DGF&H
 (2)

Navigate vs. Multi-Source Operator. The multi-source operators include Cartesian Product, Join (
7

),

merge (8), and set operators. Below we simply refer to them by � � .

: >@BA C/DGF&H � � � C � ���&(� �

LK � � C � : >@BA C/DMF&H � ���
 (� �

: >@BA C/DGF&H � � � C � ���&(� �

LK � � C � ���&(: >@BA C/DGF&H � � �

(3)

The navigate operator will be pushed down to the branch that contains the column it is navigating into.

Navigate vs. Navigate. Equation 4 states that a Navigate operator can be swapped with another Navigate

unless there is a dependency between them. A dependency exists between two operators if the output of one

operator serves as the input to another and vice versa.

7 @:9@<; A CEDGF&H<; � 7 > 9> ; A CEDGF&H:9
>= 7 > 9> ; A C/DGF&H?9
� 7 @:9@<; A CEDGF&H<;

 �A@CBEDCFG �IH����KJLBMHNFG �OD�% � (4)

Navigate vs. Selection. A Navigate may always be pushed through a Select, but a Select can only be

swapped with a Navigate if the output column of the Navigate is not in the expression of the Select. The is

captured by Equation 5.

10

T ��� �����	�
 ���
��
 ��� � �������
 ��� � � �

A g g

φ �����
� ����� �
 �
 � � ���

ε � � � �1:

2:

3:

6:

φ ��� ����� ��
 �
 � � � � � � �

T � ��� � � ����� � � � !	��� ��� � � ����� ���

S" #�$�%	& $	' � (�
�

φ �
����� � ����� � � ��) �	� �����

×

A g g

T � � ����� �+* � � � � �	, * � � � ��-	,���� � ����� � � � � !

S" #�$�%	& $�' � (�.�

φ �.����� ��� � � ��� � � ��) �	��� � � ���

φ ����� � � ��� �
��� � � � � � � ��-

11:

12:

22:

23:

25:

14:

15:

20:

21:

31:

φ �	� ����� �
��� #�� � � /

φ ����� � � ��� �
�	� # ��� � 0
27:

28:

σ � � � /�1 � � � 026:

User Query View Query

Figure 13: XAT after Merging

7 @:9@<; A C/DGF&H ; ��2 3
LK 2 3 � 7 @:9@<; A CEDGF&H<;

2 3 � 7 @:9@<; A C/DMF&H<;
LK 7 @:9@<; A C/DMF&H<; ��2 3

 �A@ B H � � � �!� ��% � (5)

Navigate vs. Aggregate. Navigate unnest (7) will navigate into a collection and turn each individual

value into one separate tuple. In that case, if there is an aggregation operator before the navigate-unnest

operator, the collection created by the aggregate operator will be decomposed into individual values. But if

the column B D is not a collection before the aggregate operator, then the aggregate operator will change the

structure of the column BED . Hence Equation 6 only holds when the column B D is only consumed (used) in

the navigate operator.

7 @:9@<; A C/DMF&H � 4 	 	 �

 K 7 @:9@<; A C/DMF&H (6)

Equation 7 shows the navigate collection (:) can be pushed through the aggregate operator. On the left

hand side, the aggregate operator will reduce the whole input table to one tuple. The the navigate-collection

(:) will create a new collection. Hence the final result is still one collection. On the right hand side,

the navigate-collection (:) operator can generate multiple tuples with a collection in each tuple. After the

aggregation, all the collections will be merged into one collection. Therefore, Equation 7 holds.

: @:9@<; A C/DGF&H � 4 	 	 �

 K 4 	 	 �
 � : @:9@<; A CEDGF&H
 (7)

Navigate vs. Single Source with Internal Subquery. The single source operator with internal sub-

queries includes FOR (�6587), groupby (9), and if-then-else (�A@) operators. Below we simply refer to any of

11

Φ ���������	��
��
�
 � ��

��������� � ���
 �����

φ ��� �� ��������� �! �#" �����#���

$&%'%

ε (���
)

14:

15:

23:

1:

3:

*,+ ! �#-�.�

 -#/���
 + �! �#-�.#

	/ (0��
)2:

SELECT “$ b o o k ”. t i t l e a s “$ t ”,
F R O M b o o k “$ b o o k ”,

Figure 14: XAT with SQL Statement

these by � � .

: >@BA CEDGF&H � � �21�3
LK � �21�3 � : >@BA C/DGF&H � �54

 (8)

4.2 Navigation Merging

There are two types of navigation operators, i.e., Navigate Unnest (7) and Navigate Collection (:). The

Navigate Unnest (7) will unnest the navigated results into multiple tuples, while the Navigate Collection (:)

will keep the result as one collection. The four rules given below dictate how to merge different navigations.

Let’s use the following example to illustrate the intuition of Rules 9 to 12. Assume we have element � ,

which has two sub-elements 6 D and 6 H , and element 6 D that has sub-elements � D , � H and �'7 , and element 6 H
that has sub-elements ��8 , �'9 , and �': . The tag for 6 D and 6 H is 6 , and tag for � D to �': is � .

Figure 15 illustrates the intuition of Equation 9. As we can see the column 8 6 8 � on the left hand side is

the same as the column 8 6 8 � on the right. Both are individual values in multiple tuples. Figure 16 illustrates

the intuition of Equation 10. As we can see the column 8 6 8 � on the left is also the same as the column

8 6 8 � on the right. Figure 17 illustrates the intuition of Equation 11. As we can see the column 8 6 8 � on the

left side is the same as the column 8 6 8 � on the right side. Both are of type collection. Figure 18 illustrates

the intuition of Equation 12. The column 8 6 8 � is equivalent neither to the column 8 6 8 � on the right side of

Equation 9 as separate values nor to the column 8 6 8 � on the right side of Equation 11 as a collection.

12

Assumption 1 For the following four rules, we assume the ����� D is only referenced by the two involved

navigate operators.

7 3���� 93���� ; A C/DGF&H ; � 7 3���� ;3������ A C/DGF&H:9
 = 7 3���� 93������ A C/DGF&H?9	� C/DGF&H<; (9)

7 3���� 93���� ; A C/DGF&H<; � : 3���� ;3������ A C/DGF&H?9
 = 7 3���� 93����
� A C/DMF&H:9	� C/DGF&H ; (10)

Please notice Equation 10 has the same result as Equation 9. Therefore, there are two alternatives for the

decomposition of a Navigate Unnest.

: 3���� 93���� ; A C/DGF&H ; � : 3���� ;3������ A C/DGF&H?9
 = : 3���� 93����
� A CEDGF&H:9	� C/DMF&H<; (11)

: 3���� 93���� ; A C/DMF&H<; � 7 3���� ;3������ A C/DGF&H?9
 K�� 8 4 (12)

/

a

������� �
/ /b

a b1

a b2

������������� �

/ /b /b/c

a b1 c1

a b1 c2

a b1 c3

a b2 c4

a b2 c5

a b2 c6

��� /

a

����������� �����

/ /b/c

a c1

a c2

a c3

a c4

a c5

a c6

Figure 15: Example for Rule 9

/

a

� ������ �
/ /b

a

"
b1, b2 #
������������� �

/ /b /b/c

a

"
b1, b2 # c1

a

"
b1, b2 # c2

a

"
b1, b2 # c3

a

"
b1, b2 # c4

a

"
b1, b2 # c5

a

"
b1, b2 # c6

��� /

a

����������� �����

/ /b/c

a c1

a c2

a c3

a c4

a c5

a c6

Figure 16: Example for Equation 10.
/

a

� ������ �
/ /b

a

"
b1, b2 # � ������������ �

/ /b /b/c

a

"
b1, b2 #

"
c1, c2, c3, c4, c5, c6 # ��� /

a

� ���������� �����
/ /b/c

a

"
c1, c2, c3, c4, c5, c6 #

Figure 17: Example for Equation 11.

/

a

������� �
/ /b

a b1

a b2

� ������������ �
/ /b /b/c

a b1

"
c1, c2, c3 #

a b2

"
c4, c5, c6 #

Figure 18: Example for Equation 12.

13

4.3 Operator Cancel Out

Due to the generality of the XQuery to XAT translation process, there may be redundant operators in the

XAT Tree. Therefore, the following rules (Equations 13 to 15) are used to eliminate these redundancies. For

example, the Navigate operator can be canceled with the Tagger operator, but not vice versa.

7 >@BA 1 F���C � � @��� ��� F�� � 1 F���C��	� I
 � � 1 F�� C�� � � � ��� F��
LK��
 �� � >� 1 F�� C��	� I
 � � 1 F�� C��
 �A@CB ��� � � � �
� 	?J ��� ������	
� 	 	 � ��	�% �
�
@��� ��� F��	� >
 � � � ��� F��

�
� >� 1 F�� C��	� I
 � � 1 F���C��

 �A@CB ��� � ��	:J ����� 	���� 	
� 	 	�����	�% �

(13)

7 >@BA ��F�� @ F���� � � @� 1 F�� C��	� I
 � � 1 F���C��
LK��
 �� 6 > I
 �"@ B ��� � � � �
� 	?J��
� ����� 	
� 	 	�����	�% �
�
@� 1 F���C��	� >
 � � 1 F���C��

� 6 > I

 �"@ B ��� �
� 	?J % �
(14)

As the XAT tree is generated from the parsed tree, we want to be able to keep track of how each column

in the XAT table was created. To accomplish this, a binding table is created to describe the origins of each

column for the operators in the entire query plan. Some examples of origin are given next. For example, if

the column is generated by a navigation operator, it will keep the path for the navigates. If the column is

generated by a tagger operator, it will keep the pattern of the tagger. If the column is generated by a source

operator, it will keep the source description. If the column is generated by a function, it will keep the function

name and its parameters. Making use of this binding table allows us to rewrite Equation 13 into the rule given

in Equation 15.

7 >@BA 1 F�� C � � @��� ��� F��	� I
 � � � ��� F��
 K �
@��� ��� F��	� >
 � � � ��� F��

� 6 > I

 �A@ � � 	 � ��� � ��	:J �!� 6 ���KJ �!�
	 � @ = ��% (15)

Figure 19 depicts the variable dependency graph represented by the binding table (Figure 20) for XAT

tree in Figure 13. The dependency graph and the binding table contain the same information. The boxes

in the graph represent column names. The solid arrows mean that one column name was derived from

another. The text on that edge details how it was derived from the other. For example, col3 was by adding

the � � 	 ��� � � � tag around the contents of column $t. A dotted line means that one column is inferred to

be equivalent to another. Let us examine columns $t and col10. Column $t represents col0/title, while col0

represents book/R0 where book is the tag generated by col5. If this trace continues, it becomes apparent that

these two represent the same columns. Equation 15 will find and eliminate such redundancy.

14

col3

<result>

$t

col0

title

R0(col4)

book

col5

<prices>

col10

<book>

col12

<book>

$book

title

$price

price

R1

book/row

R3

price/row

col6 col7

bid bid

Legend
col8

Column Name

<tag>

Derived by
Tagging

step

Derived by
Navigate

Inferred
Equivalence

Figure 19: Variable Dependency Graph for XAT in Figure 13.

Binding Origin Path/Tagger

col3 col2 ���������
	���

$t col0 title
col0 book R0
R0 col4 [EMPTY]
col4 col5 ��������������

col5 col10, col12 ����������

col10 $book title
$book R1 book/row
col12 $price price
$price R3 price/row
col6 $book bid
col7 $price bid
R1 data source [EMPTY]
R3 data source [EMPTY]

Figure 20: Binding Table.

4.4 Rename Rewriting Rules

Any time a NameColumn operator is pushed down the tree, the child of that NameColumn will have its

output column renamed if it corresponds to the old name of the NameColumn. The NameColumn can also

rename the entry point and destinations of Navigate operators, expressions in the Select operators, or column

names in Tagger operators.

���! "$#�%'&)(+* �$,.- %'&)(+* " (16)

%/&0(1* " #2� �! " ,3- %'&)(+* " (17)

4.5 Merge/Split Tagger Operator Rules

Finally, one Tagger operator may be split into two separate Tagger operators. The converse is also true, that

is, two Taggers can be merged into one.

4 ��!5 # 4
"
�76
,98 4 ��!5�: �76 (If ; is not used besides in pattern (=<) (18)

4.6 Operator Transformation Rules

After query generation, a navigation-unnest can be generated with a group-by operator with aggregate()

function as its parent. This combination of three operators is equivalent to a navigation-collection operator.

Following rule captures this transformation:

15

: >@BA C/DMF&H = 9 @ � 4 	 	 >
� 7 >@BA C/DGF&H

 �A@CB ��� � � ��4�� 	�% � (19)

4.7 Merge/Split Select Operator Rules

These rules are general rules not specific to Rainbow’s algebra. These rules are relate to merging and splitting

Select operators. They are simply applications of basic commutative and associative rules.

2 3 ; ��2 3 9
 K 2 3 ;������ 3 9 (20)

2 3 ;������ 3 9 K 2 3 ; ��2 3 9
 (21)

2 3 ;��	� 3 9 K 2 3 ;�
 2 3 9 (22)

Other relational traditional rewriting rules [9] also applies in our algebra.

4.8 Orderby Operator and Position Function Operator Rules

The transformation rules specificly for order-sensitive query handling is out of the scope of this report, and

hence described in the Master Thesis [12].

5 Query ReWriting

Query rewriting in Rainbow refers to the process of evaluating equivalence rules on an XML algebra tree

(XAT) to optimize the tree for efficiency and create a version of the tree where SQL queries can easily be

generated. The administrator can choose from several possible rule application heuristics in order to optimize

the tree. Otherwise default heuristics are chosen. Figure 13 shows the XAT of our running example after

decorrelation, but still before the rewriting process has been applied to this. We will now use this running

example to explain the main heuristics of rewriting in a step by step fashion.

5.1 XAT Traversing

The XAT Traverser uses a bottom up approach to find an operator to rewrite. The bottom up approach is

chosen because operators are moved downwards in the tree. If top down were used, the Traverser would try

to push down operators before their dependencies have been rewritten. Thus the operators may be stopped

16

prematurely from being moved maximally down the tree. The Traverser iterates over the tree and applies the

equivalence rules from Section 4 according to one of several of our heuristics as further explained in a later

section (Section 5.2). During rewriting, the engine only examines the local operator it is pushing down (x1)

and its child (x2). The appropriate rule is chosen based on the types of x1 and x2 and the heuristic. After

evaluating the rule, x1 and x2 are typically swapped in the tree. This has the affect of pushing x1 further

down the tree.

5.2 ReWrite Heuristics

Several heuristics can be chosen to rewrite XAT into the normalized form where all XML operators are on

the top and all SQL-doable are at the bottom. The order that the heuristics are applied can affect the resulting

tree.

Reorganize Navigate operators into logical groups: After XAT merging the Navigate operators are in

arbitrary order. Reorganizing both the NavUnnest and NavCollection operators into logical execution groups

makes the execution run more optimially. Pushing the Navigates through the Cartesian Product operators

will reduce the cost of executing the Cartesian because it will reduce the result set. In Figure 13 notice that

the Navigate operators #23, #25, #27, and #28 are in arbitrary order. Navigate #25 and #28 use $prices, and

#23 and #27 use $book. By evaluting rules 4 and 5, in Section 4 we can better organize the Navigates. The

tree after applying these rules can be found in 21. Notice that all the Navigates that use $price and $book

are all organized in their branches.

×31:

Φ ��� ����� ��� � � 	 ��
 �27:

φ ��
 ��� � � ��� � � � � � � � ���14:

S� � � ��� � ��
 � ��
15:

Φ ��� � ��� ��� � �
 � 	 ��

 �23:

Φ � � � � 	 � � ����� � 	
��
 �

28:

φ �! ��� ��� � 	 � � � � � �
� ��� � 	 � �20:

S� � � ��� � ��
 � �! 21:

Φ ��� � � 	 � � ��� � � 	 � 	
��

 "

25:

T # � � � $�
 � � %�� � # � � � � $�
 � %�	 ��

A g g

ε 	 ��
 1:

2:

3:

φ ��� ��� ����� � � � �
 � � �
6:

σ 	 ��
 ��& 	 ��
 �26:
T # � � � 	 � � % 	 ��
 ' # � � � � 	 � � %

���
11:

A g g12:

T # � � ��� %)(��

 ��* (�

 " *+# � � � ��� % 	
��
 '

22:

View QueryUser Query

Figure 21: XAT after Navigation Pushdown.

Removal of the construction of intermediate XML fragments: The mapping query generates bags

of XML data using the Navigate operators and then XML fragments are formed later from those bags by

17

the Tagger operators. The user query then navigates into said constructed fragments and builds additional

bags with Navigate operators and then more bags containing XML fragments with more Taggers operators.

This process is redundant as the same information is stored multiple times in intermediate result sets. This

redundancy can be eliminated by combining the different Navigate and Tagger operators from the user and

mapping query. Once the Navigate pairs have been identified, we can rename the mapping query Navigates

to what is specified in the user query and then remove the user query Navigates. This heuristic makes use of

Equations 13 and 14.

This heuristic is best illustrated by an example. In Figure 13, operator #23 navigates from $book to

title and binds that output bag to col10. Then, operator #21 creates a book element out of col10,

col11 and col12 (all 3 columns are elements). Using the equivalence rules for operator #23 and its child

listed above, operator #23 is pushed down. Figure 23 shows the final position of operator #23 in the XAT.

We then iterate over the tree looking for another Navigate to push down. After rewriting operator #6, the

Traverser next chooses operator #5. This operator #5 navigates from col0 (which represents R0/book) to

title and binds the result to $t. Operator #5 is equivalent to operator #23. The rewriter determines

this by evaluating equivalence rules for #5 and its children, including for #5 and #22. The rule says that

the Navigate #5 unnests the title element because its destination is title . The rule then deletes the

title element from the Tagger operator and then deletes #5 and replaces it with a NameColumn operator.

This NameColumn operator #34, not shown in the final tree due to space reasons, renames col10 into $t. The

traverser then searches for another Navigate operator to push down until none can be found.

Cancel Duplicate Navigate Operators: An XAT may contain one or more equivalent Navigates. These

duplicates may exist in both the user and the mapping query portion of the tree and are not necessarily

removed by the first heuristic because they do not relate to the construction of intermediate XML fragments.

The Rewrite engine identifies these operators by comparing the Navigates. If the entry point and destination

match, then the top most Navigate is replaced with a NameColumn operator. This NameColumn will rename

the output column from the lower Navigate into that of the upper. Figure 22 shows an example of a query

with duplicate Navigates. The reader may notice the $t/text() in the WHERE clause and in the RETURN

clause. These will each create a Navigate operator with $t/text() as the path.

<result>{
FOR $t IN distinct(document("prices.xml")/book/title)
WHERE $t/text() = "Data on the Web"
RETURN <booktitle>$t/text()</booktitle>

}</result>

Figure 22: XQuery Example with Duplicated Navigations.

18

����������	�
 ��
���	�
 �
31:

Φ ��� 	�	���� ��� �
��	�
 �

27:

φ ��� ��� � 	�	�� ��� 	�� ���
	�	��

14:

S ��!�"�# !�$
 % ���15:

Φ ��� 	�	�����& � &
 ' �
&

23:

Φ ��(� � ��'�) � ��� �
��	�
 �

28:

φ ��* ��� (� � ��'�) ��� 	�� ��(
� � ��'�)

20:

S ��!�"�# !�$
 % ��*21:

Φ ��(� � ��'�) � (� � ��'
��	�
 ��+

25:

ε ��	�
 *1:

T , � '�)�-�
 &)�. � & , ��� '�)�-�
 & .
��	�
 *2:

A g g3:

View Query

User Query

Figure 23: XAT Rewriting after is complete.

Computation Pushdown: Relational engine SQL operators such as Distinct
5
, Select

2
, GroupBy

/
,

Join
7

, and set operators can be pushed down from the user portion of the query tree into the mapping

portion by repeatedly evaluating equivalence rules. In the running example, the SQL computation that is

pushed down is the Join operator (operator #31). Note that although the Navigate operators do not have an

equivalent in relational algebra. This heuristic uses Equations 1 to 8. Navigates, depending on their context,

can be mapped into either SELECT and FROM clauses (in SQL). Therefore, they are pushed as far down in

the tree as possible.

Propagate Renames: Some of the above heuristics will create NameColumn operators in the tree. These

operators are elminated by pushing them down in the tree and changing the bindings of the corresponding

Navigate and Select operators. In the running example, after canceling Navigate and Tagger operators, there

are several NameColumn operators in the tree. The traverser starts from the bottom of the tree and moves up

until it finds the first NameColumn to push down. Then it evaluates the rules in Section 4.4 that will rename

each operator appropriately. Notice the binding change in operator #23 in Figure 23. The NameColumn

operators are deleted when they reach the bottom of the tree.

6 XQuery Optimization by XAT Cleanup

XAT cleanup eliminates unused columns in the XAT tables and detects and removes unused operators. This

cutting must be done before the SQL generation is performed because the relational database has no way of

19

knowing which columns are used later in the remaining XAT.

6.1 Schema Cleanup

XAT Schema cleanup is used to optimize the size of the intermediate results generated by each operator, ef-

fectively reducing the overall space used during XAT execution. Every operator in the XAT consumes (uses)

and modifies some existing columns and produces (creates) other new columns. By recursively analyzing

each operator in the algebra tree, we can compute the columns actually required for each operator. Table 1

describes the consumed, modified, and produced columns for the operators. Consumed refers to the columns

that an operator uses during its execution, such as a Select operator consumes the columns in its predicate.

Produced is the list of columns created by the execution of an operator. An example of this is a Navigate-

Collection operator will Produce an output column that is the result of executing the path over the document.

Modified denotes whether an operator can affect other columns.

Operator Consumed Produced Mod.
� ������ ����� Columns

in patternC

3���� No

� ������ �	��� Columns

in patternC

3���� No

 ������
����� � �
���	� ����� 3���� 3������ Yes
� �����
����� � �
���	� ����� 3���� 3������ No
����� ����� N/A N/A Yes
�� �����
������� ��� � ��� �	��� 3���� � ;� � �
 3���� � No
�! �����
������� ��� � ��� �	��� 3���� � ;� � �
 3���� � No
�
"
�����

������� ��� � ��� ����� 3���� � ;� � �
 3������ No

����� 3���� N/A Yes
�%$'& ������� ��� � ()�*+� (� N/A depends on

stmt

No

, ������.- (/� ��� � (�� ���%0 � columns in

prm[1..m]

3���� No

� ������� ��� � ���132 * � N/A 3���� � ;� � �
 No
4 ��������� �5�3��6 �	��� 3���� ; 3���� 9 No
4 � * ����� N/A N/A No
7 � 1 � ;� � �
 � N/A N/A No

Operator Consumed Produced Mod.

8 ������� ��� � ��� ����� 3���� � ;� � �
 N/A No
9 � �	��� columns in

condition 3
N/A No

: � � 1 A � 1 � N/A N/A Yes
; � � � 1 A � 1 � columns in

condition 3
N/A Yes

<;>= � � � 1 A � 1 � columns in

condition 3
N/A Yes

<;>? � � � 1 A � 1 � columns in

condition 3
N/A Yes

@ ������� ��� � ��� ��� A 1�3 � 3���� � ;� � �

and

columns in

sq

columns

generated

in sq

No

9 �5�3��� ��� � �A� ����� 3���� � ;� � �
 N/A No
�CB � � ;� � �
 � N/A N/A Yes<� �	� � ;� � �
 � N/A N/A Yes
! �	� � ;� � �
 � N/A N/A Yes

" � � 1 A � 1 � N/A N/A Yes
D �5����� ��� � �A�132 * � 3���� � ;� � �
 3���� � ;� � �
 No

Table 1: Column Consumed, Produced, and Modified for Each Operator.

Figure 24 shows the schema for the example in Figure 23. Column node stores the node number in Figure

23. Column parent stores the parent of this operator. Column produce and consumed store the columns

20

produced and consumed by this operator as defined in Table 1, respectively. By default, every operator will

simply append new columns to the end of the XAT tables. Figure 24 gives the original schema used by the

XAT evaluation in column Produced by Descendant. In Figure 24, the nodes #2 and #3 have more than eight

columns. On the other hand, the root node will only return one column.

As we can see, not all the columns will be used later in the XAT. Hence a lot of space and computation

time may be wasted. We define the minimum schema of an operator as the columns that will be used later by

its ancestors.

{R3}{}{R3}2021

{R3, $prices}{R3}{$prices}2820

{R3, $prices, col7}{$prices}{col7}2528

{R3, $prices, col7, col12}{$prices}{col12}3125

{R1}{}{R1}1415

{R1, $book}{R1}{$book}2714

{R1, $book, col6}{$book}{col6}2327

{R1, $book, col6, $t}{$book}{$t}3123

{R1, $book, col6, $t, R3, $prices,
col7, col12}

{col6, col7}{}331

{R1, $book, col6, $t, R3, $prices,
col7, col12}

{}{}23

{col3, R1, $book, col6, $t, R3,
$prices, col7, col12}

{$t}{col3}12

{col3}{col3}{}1

Produced by DescendantConsumedProducedParentNode

{R3}

{$prices}

{$prices, col7}

{col7, col12}

{R1}

{$book}

{$book, col6}

{col6, $t}

{$t}

{$t}

{col3}

{col3}

Minimum Schema

Figure 24: Original Schema before Schema Cleanup.

Intuitively, the minimal schema should include all columns, which are produced by this operator or its de-

scendants and consumed by the operator’s ancestors, but exclude all the columns produced by the operator’s

ancestors. Hence, we have the following formula to define the minimal schema of an operator as:

7 ��� ��� 132 * � 2 � 1 � � � ! � � � � � 2 *+� � - " � � � � 2 *+� � - � � � (23)

where 8 � represents the minimum schema of this operator. � represents the columns produced by

the operator whose 8 � we wish to calculate. � D � 3 � 1 F�� � and
� D � 3 � 1 F�� � are the set of columns produced

and consumed, respectively, by the operator’s ancestors. ��� � 1 3 � � � D � F denotes the columns produced by the

operator’s descendants.

The minimum schema for each operator can be computed iteratively by traversing the XAT tree top-down

and computing the following at each step:

7 ��� ��� (for root operator)
7 ��� ��� 132 * � 2 � 1 � � � ! � 7 � � " � � � � � � � � (24)

21

where 8 � C is the minimal schema for the operator’s parent. � C and
� C are the set of columns produced

and consumed, respectively, for the operator’s parent.

Figure 24 shows the schema for the example in Figure 23, using the formula depicted above. The column

minimum schema stores the computed minimum schema of this operator. Please notice the node #23 that has

a binary operator parent node #31, so the minimum schema of node #23 does not include the column ������� ,

which is produced by node #32.

During execution, each operator looks up its minimal schema in the MS table (generated before execution

for the XAT), and sets its output schema accordingly. An alternative to using this schema cleanup technique

would be to insert a Project operator after each operator. This Project operator will ensure that only the

columns consumed or modified later in the XAT are kept in the schema.

6.2 Unused Operator Cutting

After the above schema cleanup of the XAT, some operators may produce data that will not be consumed

(used) by the operators above it in the XAT. Therefore, those operators are not necessary for the final query

result. If we identify those operators, then we can cut them to improve the query execution performance.

Our strategy uses what we call the cutting matrix. Our cutting matrix is composed of operator identifi-

cations (for the row header) and column names (for the column headers). There are six symbols, r, c, p, m, ,

x, used in the matrix, where r represents a required column, c a consumed column, p a produced column, m

a modified column, a possibly affected column, and x denotes a cuttable operator.

P2021

CP2820

CP2528

CP3125

P1415

CP2714

CP2327

CP3123

CC331*

-------M-23

CP12

R1

Cut?R3$pricescol12R1$bookcol7col6$tcol3Parent()#

� ������� � 	�
���
 ��� ����� ����� ��
������ � ��� � ����� ����� ��� � � � ����! �"� ������#�$��%� ! !�&�������! � � � � �
Figure 25: Matrix for Nodes Cleanup.

P

M

C

R

$t

P2021

CP2820

CP2528

CP3125

P1415

CP2714

CP2327

C3123

CC331*

--------23

P12

RRR1

Cut?R3$pricescol12R1$bookcol7col6col3Parent()#

'�(*)�+ , , -�.�)�/ 0�1 2�3�1 3�2 4 5�.�0�3�1 6 7�8 5 9�:�5 ;�)�< =%1 ,) >?0�2�@ 7"2 0�3�)�A�B�=%1 @ @�C)�3�)�@) 5) 3?9
Figure 26: Analysis of Required Columns.

We first fill the cutting matrix with p, c, and to show which column names each operator produced,

consumed and possibly affected. Note that the root of the tree is at the top of the matrix. For example, the

cell at location D�EGFIHKJML�NPO in Figure 25 contains an Q , meaning HRJML�N is a required column for operator STE .

22

Before we discuss the rules, we define two relationships, called Parent(node1, node2) and Ancestor(node1,

node2). If an operator
4

’s parent is � , then, Parent(B, A) is true, otherwise false. For example, in Figure 25,

Parent(1,2) is true. Ancestor(node1, node2) is defined recursively as follows:

Ancestor(A, B) if Parent(A, B)

Ancestor(A, C) if Parent(A, B) and Ancestor(B, C)
(25)

For each operator, if a column produced lower in the tree is used higher in the tree, and that column is

possibly affected by the current operator, we put an m to show it is modified. For example, the cell
� 7�(� �

in Figure 25 means that the operator #3 modified � � , because � � was produced by operator � H 7 (� 7 ’s

descendant) and consumed by operator �CH (� 7 ’s parent).

S(A, x)=m if Ancestor(B, A) and S(B, x)=c

and Ancestor(A, C) and (S(C, x)=p or S(C, x)=m)
(26)

� � 4 (B
 denotes the content of operator
4

column B of operator in the matrix.

We then update the first row of the matrix with the required columns needed to generate the final result,

found in cell
� D�(����� 7
 in Figure 25. The rules to compute � (means required) are as follows:

S(1,y)=r if S(B,y)=c and (S(B,y)=p or

S(B,y)=m) and S(1,y)=r and Ancestor(1, B)
(27)

In other words, if the required column is modified or produced by another operator, then all other con-

sumed columns of that operator are required. In our case, we set cell
� D�(������7
 G � as the initial condition.

Because � � H�(� �
 G � and � � H�(����� 7
 G � and � � D�(����� 7
 G � and operator #1 is operator #2’s parent, the

column � � is required. For the same reason, columns 6������ and 7 D are all required.

The last step is to compute the columns that can be cut (removed) from the XAT using the following rule:

Operator A is cuttable IF Ancestor(1, A) and

for any X in (S(A, X)=p or S(A, X)=m) there is no S(1,X)=r
(28)

This means that none of the produced or modified columns of that operator are used in producing the final

result.

We compute the cutting matrix in Figure 27 for the XAT depicted in Figure 23. As we can see, the

operators #31, #27, #25, #28, #20, and #21 are deemed unnecessary (by our formula) and can safely be

removed from the tree. For example, the operator #25 produced columns �����-D:H but �����-D:H is never used.

Hence the operator #25 can be cut. After the cutting, the XAT is simplified as shown in Figure 28 (b).

Let’s compare the SQL statements generated for these two trees. Figure 28 (c) depicts the SQL statement

corresponding to the original XAT in Figure 28 (a). Figure 28 (d) depicts the SQL statement corresponding

23

XP2021

XCP2820

XCP2528

XCP3125

P1415

CP2714

XCP2327

CP3123

XCC331*

-------M-23

CP12

RRRR1

Cut?R3$pricescol12R1$bookcol7col6$tcol3Parent()#

������� � � �
	����

� ���
� ����� ��	�
���� � ��� � �
��� � ��� ��� � � ��
��� ����
�����!
"���� #����
�� � � �����

Figure 27: Analysis of Cuttable Nodes.

Φ $ % & & ' () *) + , $)

- . / 0 1 2 0 3 + 4�5 6

φ 5 6 (7 % & & ' 7 8 & 9
$ % & & '

:�;�;

ε < & + =

14:

15:

23:

1:

3:

>@? 8 , A B +) A C $) ? 7 8 , A B +) C < & + =2:

Φ $ % & & ' () *) + , $)

- . / 0 1 2 0 3 + 4 5 6

φ 5 6 (7 % & & ' 7 8 & 9
$ % & & '

D EGF H < & + I J < & + K

- . / 0 1 2 0 3 + 4 5 =

φ 5 = (7 L 8 * < , A 7 8 & 9
$ L 8 * < , A

Φ $ % & & ' (% * / < & + I Φ $ L 8 * < , A (% * / < & + K

Φ $ L 8 * < , A (L 8 * < , < & + 6 M

> ? 8 , A B +) A C $) ? 7 8 , A B +) C < & + =

:N;
;

ε < & + =

27: 28:

14:

15:

20:

21:

31:

23: 25:

1:

2:

3:

SELECT “$ b o o k ”. t i t l e a s “$ t ”,
“$ b o o k ”. b i d a s “c o l 6 ”,
“$ p r i c e s ”. p r i c e a s “c o l 1 2 ”,
“$ p r i c e s ”. b i d a s “c o l 7 ”

F R O M b o o k “$ b o o k ”,
p r i c e s “$ p r i c e s ”

W H ER E “c o l 6 ”=“c o l 7 ”

SELECT “$ b o o k ”. t i t l e a s “$ t ”,
F R O M b o o k “$ b o o k ”,

(a) (b)

(c)

(d)

Figure 28: Cutted XAT and SQLs Generated from Each.

to reduced algebra representation in Figure 28 (b). We can see that there is a major difference between the

tree and the final optimized query tree (Figure 28).

7 Preliminary Evaluation of Rainbow

We have implemented the Rainbow system in Java JDK1.2 using Xerces as DOM Parser and the Kweelt

Engine [15] to generate the parsed tree for each XQuery expression. The rewriting rules are written in Java

and can be loaded dynamically, depending on the situation. Schema clean up, SQL translation and also query

processing are also all implemented in Java.

7.1 Experimental Setup

We use the XQuery statements described in Kweelt’s test cases, which in turn were derived from the W3C’s

test cases. We also designed synthetic data sets with different sizes. All experiments are run on a Celeron

1.2G machine with 384 MB memory under Windows 2000 Professional.

7.2 Performance Gain

7.2.1 Native Execution with Fixed Loading

In the first experiment, we compare three kinds of query execution performances. In Figure 29, the x-axis

displays different data sizes in terms of the number of elements, while the y-axis shows the total execution

time for the queries.

24

0

100000

200000

300000

400000

500000

600000

10 100 1000 10000 100000

of Elements

T
im

e
(m

s)

Only Rewrite Opt. Rewrite and Cut Opt. Rewrite, Schema and Cut Opt.

Figure 29: Performance Comparison.

The query before operator cutting and schema cleanup scales the worst. After the cutting the useless

operators, the performance increased by 50 percent. The performance with schema clean and cutting scales

the best, which now is capable to handle up to 20,000 elements.

7.2.2 Computation Pushdown and Flexible Loading

In this experiment, we have explored how different mappings from XML to the relational data store can

affect the performance of our query optimization strategies. We have chosen three different kinds of loading

approaches, namely, edge approach [7], the attribute approach [7], and the maximally shredding approach

[23].

In all three charts in Figure 30, the x-axis denotes the number of XML elements that have been loaded into

the relational database. The y-axis measures the execution time of the optimized XAT in terms of millisec-

onds. There are two lines in each chart. The line annotated by the diamond symbol denotes the performance

before cutting, called FULL. The line annotated with the square symbol denotes the performance after cut-

ting, called PART. As we can see, for all three mapping approaches after the XAT cleanup and schema

cleanup, the performance improved dramatically compared to the performance before the schema cleanup.

The reason for this is that in all three approaches, the particular query would have required a join operation

similar to the query in our running example in this paper. For the edge mapping, this meant for example a

self-join. When used with schema and operator clean up, all the unnecessary joins were removed, and hence

25

���������	�
����	�
��

�

�����

�����

�����

�����

�����

�����

� ���� ����� ����� �����

�������������

�
�
�
�
�
�
�
�
	

�
�

�

���� ���

(a) Edge Mapping.

������������	�
�����
���������

�

����

�����

�����

�����

�����

�����

� ���� ����� �����

�������������

�
�
�
�
�
�
�
�
	

�
�

�

���� ���

(b) Attribute Mapping.

��������	�
���	
�
���

�

����

����

����

����

����

����

� ���� ����� ����� �����

���	�������
�

�
�
�
�
�
�
�
�
	

�
�

�

���� �� !

(c) Clock Mapping.

Figure 30: Performance Enhancement of Multiple Mappings.

the performance increased dramatically.

7.3 Optimizer Overhead

In this experiment we study the overhead of the query optimization. Figure 31 depicts the time for different

stages of the query processing. From the largest to the smallest, generation (2,834 ms), decorrelation (411

ms), rewrite (280 ms), schema cleanup (211 ms), cutting (80 ms), and merge (13 ms).

In Figure 31, we first notice the total time of processing a query before the execution can take up to 4

seconds in our prototyping system. Hence, a mechanism of keeping the optimized query plan in the database

instead of compiling it every time for execution can save a lot of time. The overhead of preparing the

algebra tree of merged queries composed of 44 operators can take up to 4 seconds. Hence, for large queries

a prepared statement is a good next step to avoid the compile time. The schema clean up is very efficient,

26

2834

411

13

280

211 80

Gen
Decor
Merge
Rewrite
Schema
Cut

Figure 31: Overhead of Schema Cleanup.

it roughly takes 0.2 seconds. Hence, we found schema-cleanup to be an important technique in our system

as at a neglectible cost for optimization it could then offer significantly improvements in query execution.

Though the rewriting heuristics are complex, the rewriting time of the algebra tree in our system still was

significantly shorter than the total generation time.

Currently, our Rainbow prototype does not contain any special code optimizations nor any sophisticated

memory manager to carefully manage the Java objects. Instead, we rely on JAVA’s object management and

garbage collection facilities, which at times is of course not in tune with high-performance query processing.

Our main goal has been to explore strategies for XAT optimization and to test them out, which we believe

has been done successfully. Now, further effort can go into making the query engine robust and scalable.

8 Related Work

8.1 XML Mapping

To be useful, any XML data management system including XPERANTO [3] or Rainbow must provide some

convenient way for XML data to be loaded into the database. The proposed solution in XPERANTO as

reported in [18] is to hand-code one algorithm for every possible loading strategy such as universal, edge,

inline, attribute, and the fully shredded approaches. Each such algorithm could then generate for example an

XQuery expression for loading some given XML document into the database. On the other hand, Rainbow’s

mapping approach is to directly provide generic XQuery expression pairs, namely, a loading and an extraction

expression, that by operating on XML Schema knowledge can load as well as extract any arbitrary XML

27

documents or XML schema without having to develop any code. Our solution (see Section 3, [4] contains

more details) is thus one level more general than what XPERANTO provides for this purpose.

Bohannon et. al. [1] proposed a heuristic search strategy for finding the most cost-effective relational

schema for a given query workload based on incremental schema modifications. A modified XML Schema

is used to include statistical information about the XML data in the decision process of how to represent the

particular XML structure with relational tables. Unlike the Rainbow mapping approach, they do not focus

on how to explicitly model mappings to drive the schema generation, the data loading and query processing

process

8.2 XML Query Processing

Most commercial DBMS systems also provide some level of XML querying capabilities. Oracle’s XMLSQL

utility [14] (XSU) issues queries against the stored XML objects using XSQL, an extension of SQL that

supports XPath expressions. Oracle relies on an additional external XSLT script to transform the returned

XML from the default encoding into a view desired by the user. Clearly, it thus hinges on the XSLT tool used

if this is scalable, and cursor-type of access to query results would not be possible in such a scheme. This

element construction task is instead directly incorporated into the core Rainbow engine due to Rainbow’s

support of XQuery processing. SQL Server 2000 [11] is capable of evaluating XPath expressions over XML

views, but not joins or nested queries. IBM’s DB2 Data Access Definition (DAD) [5] language generates

an XML document using arbitrary selections and joins on existing relational tables. However, the language

lacks support for user-defined functions and nested queries.

XPERANTO [3] [17] defines XML views on top of relational data using XQuery and supports user

querying of those views. The user query is composed with the view query and, after composition rules are

applied, the XML result is returned to the user. This approach is similar to that of the Rainbow system,

but there are several key differences. First, the data model for XPERANTO, the XML Query Graph Model

(XQGM), is more procedural in nature whereas Rainbow’s XAT is more declarative. XQGM does not sup-

port collections and is not order-sensitive; element construction and navigation are modeled using different

functions in the project operator. This is different than Rainbow’s use of explicit logical operators to model

those functionalities.

Query optimization in XPERANTO is also different than that of Rainbow. XPERANTO recursively

applies composition rules to the XQGM that compose navigate functions in the user query with their coun-

terparts in the view query. Select and Join predicates are then pushed down to the relational engine. In the

final step, XPERANTO iterates over the tree and separates the “tagger operations ... from the SQL operations

28

[17].” Our system differs in that the three XPERANTO steps are combined into one computation pushdown

step. This combined approach may result in a smaller number of iterations over the tree. XPERANTO also

uses function-composition for cancel out in the XQGM, whereas we propose rule-based optimization for the

XAT.

Silkroute [6], another research system, is similar to Rainbow. They use the same concept of composing

views as Rainbow and XPERANTO, although Silkroute uses a view forest as the intermediate representation.

The key difference between the two approaches is that, after separating the queries in two halves, Silkroute

focuses on generating efficient SQL queries that move all computation to the relational engine. One example

is the exploitation of one to one functional dependencies to reduce the number of sorted outer union queries

that are generated because these are more expensive than inlining. The translation depends on a query

representation that separates the structure of the output XML document from the computation that produces

the document’s content. In contrast, Rainbow focuses on optimization directed at the XML algebra-level

before the generation of SQL queries. The cutting algorithm is one example of this algebra-level focus of

Rainbow.

The two approaches have their trade-offs: Rainbow has not focussed on generating optimized SQL state-

ments while, by choosing the syntax level, Silkroute may miss some of the optimization opportunities that

are present at the algebraic level. Furthermore, due to the generality of the translation, the SQL queries gen-

erated by Silkroute tend to have redundant predicates and joins. Some of these redundancies can be removed

and the query further optimized, but [6] has showed this problem to be NP-complete.

AGORA [10] translates XQuery queries over XML views into equivalence SQL queries by rewriting at

the XQuery syntax level, not using an algebra. This approach has some merit, but it seems to be difficult

to optimize. Niagara [13] proposes an XML algebra for the purpose of efficiently processing queries over

XML data, not over relational systems. Niagara also proposes a set of equivalence rules, some of which were

adopted in the creation of Rainbow’s rule library.

9 Conclusions

This paper explains Rainbow’s approach to processing of XML queries over virtual XML views of relational

data. We have described our XML algebra that captures the semantics of XQuery. Using this algebra,

we have proposed a two-fold optimization process at the logical XML algebra level. First, equivalence

rules are applied according to some heuristics in order to push as much computation down to the SQL.

Second an algorithm for cleaning the schema for each operator and the cutting of unused operators has been

29

designed. These two techniques together result in a more efficient XML algebra query plan that then can

be converted into compact SQL queries. The proposed techniques have all been incorporated into an XML

data management prototype system, called Rainbow. Preliminary experimental results conducted using the

Rainbow system confirm that the query execution time was significantly improved by these optimization

strategies.

References

[1] P. Bohannon, J. Freire, P. Roy, and J. Simon. From xml schema to relations: A cost-based approach to
xml storage. In ICDE, 2002.

[2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensaible Markup Language (XML) 1.0.
http://www.w3.org/TR/REC-xml, Feburary 1998.

[3] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N. Subramanian. XPERANTO:
Middleware for Publishing Object-Relational Data as XML Documents. In The VLDB Journal, pages
646–648, 2000.

[4] S. Christ and E. A. Rundensteiner. X-Cube: A fleXible XML Mapping System Powered by XQuery.
Technical Report WPI-CS-TR-02-18, Worcester Polytechnic Institute, 2002.

[5] DB2 UDB XML Extender. XML Extender Administration and Programming. http://www-
4.ibm.com/software/data/db2/extenders/xmlext/library.html, December 1999.

[6] M. Fernndez, Y. Kadiyska, D. Suciu, A. Morishima, and W.-C. Tan. Silkroute: A framework for
publishing relational data in xml. ACM Transactions on Database Systems (TODS), 27(4):438–493,
2002.

[7] D. Florescu and D. Kossmann. Storing and Querying XML Data Using an RDBMS. In Bulletin of the
Technical Committee on Data Engineering, pages 27–34, September 1999.

[8] H. Garcia-Molina, J. Ullman, and J. Widom. Database System Implementation. Prentice-Hall, 2000.

[9] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems - The Complete Book. Prentice Hall,
2002.

[10] I. Manolescu, D. Florescu, D. Kossmann, F. Xhumari, and D. Olteanu. Agora: Living with xml and
relational. In VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases,
September 10-14, 2000, Cairo, Egypt, pages 623–626. Morgan Kaufmann, 2000.

[11] Microsoft Corp. Microsoft sql server. http://www.microsoft.com.

[12] B. Murphy. Order-Sensitive XML Query Execution Over Relational Sources. Master’s thesis, Worces-
ter Polytechnic Institute, 2003.

[13] J. Naughton, D. DeWitt, D. Maier, and J. C. etc. The Niagara Internet Query System. IEEE Data
Engineering Bulletin, 24(2):27–33, 2001.

[14] Oracle Technologies Network. Using XML in Oracle Database Applications.
http://technet.oracle.com/tech/xml/htdocs/about oracle xml products.htm, November 1999.

[15] A. Sahuguet. Kweelt: More than just ”yet another framework to query xml!”. In Demo Session
Proceedings of SIGMOD’01, page 602, 2001.

[16] P. Seshadri, H. Pirahesh, and T. Y. C. Leung.

[17] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and J. Funderburk. Querying XML views of
relational data. In The VLDB Journal, pages 261–270, 2001.

30

[18] J. Shanmugasundaram, E. J. Shekita, J. Kiernan, R. Krishnamurthy, S. Viglas, J. F. Naughton, and
I. Tatarinov. A General Technique for Querying XML Documents using a Relational Database System.
SIGMOD Record, 30(3):20–26, 2001.

[19] W3C. The XML Query Algebra. http://www.w3.org/TR/query-algebra/, February 2001.

[20] W3C. XQuery: A Query Language for XML. http://www.w3.org/TR/xquery/, February 2001.

[21] W3C. XML Query Use Cases. http://www.w3.org/TR/xmlquery-use-cases, 2002.

[22] W3C. XQuery 1.0 Formal Semantics. http://www.w3.org/TR/query-semantics, 2002.

[23] X. Zhang, G. Mitchell, W.-C. Lee, and E. A. Rundensteiner. Clock: Synchronizing Internal Relational
Storage with External XML Documents. In RIDE-DM, pages 111–118, April 2001.

[24] X. Zhang, M. Mulchandani, S. Christ, B. Murphy, and E. A. Rundensteiner. Rainbow: Mapping-Driven
XQuery Processing System. In Demo Session Proceedings of SIGMOD’02, page 614, 2002.

31

