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Abstract

The focus in Active Queue Management (AQM) research has been on FTP-type traffic that
is long-lived, insensitive to delay, and often has large TCP congestion windows. However, the
majority of the flows on the Internet today are from Web traffic, which is short-lived, more
sensitive to delay, and typically has small TCP congestion windows. In particular, short-lived
flows with small congestion windows frequently suffer from timeouts when encountering packet
loss. AQM approaches to date fail to adequately protect short-lived flows, resulting in relatively
low benefits from AQM techniques for more realistic traffic mixes of both long- and long-lived
flows. This paper presents and evaluates a new AQM scheme, SHort-lived flow friendly RED
(SHRED), targeted at providing better network performance for short-lived Web traffic. Using
an edge hint to indicate the congestion window size in each packet provided by the flow source
or by an edge router, SHRED preferentially drops packets from short-lived Web flows less often
than packets from long-lived flows. We present a wide-range of simulation results and analysis
that demonstrate that SHRED protects short-lived flows from unnecessary timeouts, improving
the response time characteristics for Web traffic when the router becomes congested, while not

degrading overall network performance.

1 Introduction

Since the 1980’s, Internet architects have addressed the problem of congestion control by modifying
the TCP protocol and investigating queuing schemes at bottlenecked routers. While mechanisms
such as slow-start, fast retransmit, and fast recovery were added to TCP, subnet routers employed
Drop Tail and Random Early Detection (RED) queuing to avoid internal congestion and provide
good performance. However, this combination of source mechanisms and queuing algorithms at

internal routers are unable to meet the QoS requirements of today’s applications.



The continually growing World Wide Web is significantly changing the nature and characteris-
tics of Internet traffic. An Internet traditionally made up of FTP and email applications is being
overwhelmed by newer, more-sophisticated and more-demanding Web-based applications' that re-
quire a range of network services, from small object transfers such as advertisements and buttons,
to retrieval of streamed multimedia. Whereas applications such as FTP bulk transfers are con-
cerned with throughput and packet loss rates, applications such as Web browsers that frequently
request many short downloads care about delay and overall response time as well as throughput.
This paper focuses on improving the performance of Web traffic.

Active Queue Management (AQM) research has focused on evaluating the benefits of congestion
control algorithms by analyzing the performance of traffic mixes dominated by long-lived TCP
flows. Most of the improvements and variations proposed for RED [11] have been evaluated using
predominately long-lived flows. However, [4] showed that RED provides little benefit when traffic
consists solely of short-lived Web flows, and under highly congested circumstances RED can perform
worse than Drop Tail. This paper proposes an AQM solution based on RED to improve Web traffic
performance.

A typical Web page is composed of text, pictures, advertisements and other embedded Web
objects, where each Web object is transfered over its own TCP connection. Since an entire Web
page is downloaded using multiple concurrent TCP connections, each TCP connection tends to be
a short-lived flow. Transmitting only a small number of packets, these short-lived flows spend most
of their lifetime in TCP’s slow-start phase with small TCP window sizes. In contrast, long-lived
flows transmit a larger number of packets predominantly during TCP’s congestion avoidance phase
with larger TCP window sizes.

Small TCP window sizes can significantly affect short-lived flows in several ways. First, a small
TCP window yields a lower transmission rate which increases delay. Second, short-lived flows are
more sensitive to packet drops because small windows increase the likelihood that a packet drop
will result in a retransmission timeout that adds significant delay to the transfer of a small object.
Finally, TCP’s fast retransmit is ineffective at preventing retransmission timeouts when a packet
is dropped at the beginning and end of the transmission.

To address the problems with Web traffic, this paper proposes a SHort-lived flow friendly
variant of RED, called SHRED, that provides preferential dropping for flows with small windows.
Sources mark each packet with their current window size, allowing SHRED to drop packets from
flows with small TCP windows with a lower probability. This reduces the negative effects of small
windows sizes, protects short-lived flows from low transmission rates, and provides fairer bandwidth
allocation among flows.

This paper uses ns-2 simulations [19] to compare SHRED’s performance to RED and Drop
Tail under traffic scenarios that include Web traffic only, mixed Web and FTP traffic, and FTP

'Measurements on the MCI backbone [15] show that about 75% of traffic in terms of number of flows and number
of bytes is HTTP.



traffic only. Additionally, we briefly discuss a Web traffic generator that was developed to facilitate
properly analyzing SHRED with Web traffic.

Our analysis shows that: for Web only traffic, SHRED performs slightly better than Drop Tail
for low to moderate congestion levels, whereas RED performs worse than Drop Tail; RED always
performs better than Drop Tail for mixed traffic environments; and SHRED performs significantly
better than RED and Drop Tail with mixed traffic and Web only traffic for moderate to high levels
of congestion.

This paper is structured as follows: Section 2 reviews related research; Section 3 describes
the SHRED architecture and algorithm details; Section 4 describes the experiments designed to
evaluate SHRED, RED and Drop Tail over a range of traffic conditions; Section 5 analyzes the
performance of SHRED and compares it to RED and Drop Tail; Section 6 discusses some issues
to address in deploying SHRED; and Section 7 summarizes our conclusions and presentes possible

future work.

2 Related Work

In this section, Section 2.1 provides a background of Random Early Detection, probably the most
well-known AQM technique, that our technique, SHRED, extends (see Section 3). Section 2.2
describes work that applies RED and RED variants to Web traffic, comparable to analysis similar
to that of this paper (see Section 5). Section 2.3 presents results from work that measure the
characteristics of Web traffic, results which we use to construct a new Web traffic generator (see
Section 4.1).

2.1 Random Early Detection

Random Early Detection [11] detects and reacts to incipient congestion before the router queue
overflows. When the average queue size is above a minimum threshold (ming,) but below a maxi-

mum threshold (mazy,), a packet is dropped with a probability between 0 and maz, using:

Pb = mazp(gavg — ming,)/(mazy, — ming,) (1)

When the average queue size exceeds mazxy,, the packet is dropped with probability 1. When
the RED average queue size hovers close to mazy,, RED drops many packets and performance
degrades. [9] proposes gentle RED, a RED variant, where if the average queue size is above mazy,
but below 2 x maz;,, the packet is dropped with a probability between max, and 1. If the average
queue size is above 2 X maxyy,, the packet is dropped with probability 1. As described in Section 3,

SHRED extends gentle RED to provide preferential dropping for short-lived flows.



2.2 Random Early Detection and Web Traffic

Christiansen et al. [4] examine tuning RED parameters for Web traffic and demonstrate that RED
provides little benefit over Drop Tail when the router forwards only Web traffic. The authors
conclude there is little difference in performance between RED and Drop Tail for loads less than
90 percent. They show that above 90 percent load, only a carefully tuned RED router provides
superior performance over a Drop Tail router and that a poorly-tuned RED router can negatively
impact Web traffic. While our analysis presented in Section 5 also includes experiments with only
Web traffic, we consider other traffic scenarios that include mixtures of Web traffic and long-lived
FTP flows traveling through a congested router.

Guo and Matta [12] describe differences in characteristics and performance concerns between
short-lived Web flows (mice) and long-lived flows (elephants). They propose a mechanism, called
RIO-PS, whereby edge routers classify packets as short or long based on a per-flow packet count
and preferentially drop packets based on the length classification. By maintaining separate RED
parameters for both classes, RIO-PS favors the mice over the elephants with a much lower drop
probability. Yilmaz and Matta [22] extend this class-based queuing approach by isolating short-
lived, long-lived, and UDP flows into separate queues. A drawback of these approaches is that
the ratio of service allocated to the classes is fixed regardless of the makeup of the traffic mix. As
described in Section 3, SHRED uses edge hints to permit core routers to adapt to changes in the
average window sizes of arriving flows to provide better treatment to mice without needing the

fixed partition associated with class-based solutions.

2.3 Web Traffic Characteristics

A proper model for generating short-lived Web flows is important to evaluate new AQM algorithms.
Typically, the majority of traffic in a Web client-server exchange is from the server sending requested
objects back to the client. Thus, the critical step, in terms of evaluating AQM techniques, in
developing a realistic Web traffic model is to properly reflect the flow characteristics between server
and clients.

Mah [17] develops an empirical model of HTTP/1.0 traffic by analyzing packet traces on a
university LAN. He reports the mean object reply size between 8-10 KB, the median reply sizes
around 1.5-2.0 KB and the maximum reply size over 1 MB. Mah claims that Web reply size
distributions are heavy-tailed and can be modeled effectively using a Pareto distribution with 1.04 <
a < 1.14. Barford and Crovella [2] and Crovella and Bestavros [5] also study the characteristics of
Web-traffic and Web-traffic generation. Their measurements show median reply sizes between 3-4
KB. They show that the reply size distribution tail can be modeled using a Pareto distribution with
a = 1.06 and that the reply size distribution body can be modeled using a log-normal distribution
with p = 9.357 and o = 1.318. Guo and Matta [12] use a bounded Pareto function with o = 1.2
to generate Web replies. As described in Section 4.1, the Web traffic generator developed for our



investigation combines the model in [17] with results from [2], [5], and [12].

3 SHRED

This section presents background issues with short-lived flows in Section 3.1 and details on the
SHRED architecture in Section 3.2.

3.1 Short-lived Flow Issues

For both congestion and flow control, TCP uses a congestion window (cwnd) to limit a flow’s
sending rate. TCP initializes the value of cwnd to one at the beginning of the connection and,
each round-trip time (RTT) either doubles cwnd (during slow start) or increases cwnd by one
(during congestion avoidance). However, since short-lived flows send a only a few packets for each
connection, they typically have only small cwnds. Therefore, TCP flows with small cwnds receive
a lower effective data rate than TCP flows with larger cwnds since the smaller window-sized flows
require more RTTs to send and acknowledge packets.

A second problem with short-lived TCP flows is that fast retransmit is ineffective when the
cwnd is small. Fast retransmit requires the receipt of three duplicate acknowledgments (acks) by
the TCP sender to trigger retransmission of a lost packet instead of waiting for a full retransmission
timeout period (RTO). TCP flows with a small cwnds, such as during the first three data packets,
are unable to send enough packets to generate three duplicate acks. Moreover, loss of the first
packet (a SYN packet) costs small cwnd flows even more time since the initial retransmission
timeout (ITO) is typically conservatively set to three seconds.

A third problem with short-lived TCP flows occurs at the end of a TCP connection. If one
of the last three packets is dropped, the TCP source does not send enough additional packets to
trigger three duplicate acks and an RTO occurs. Typically, the last three packets consist of the last
two data packets and the TCP FIN packet. Therefore, for small Web objects (i.e., 5 KB objects
for a 1 KB packet size or 7.5 KB objects for a 1.5 KB packet size) all packet drops at a congested
router will result in a costly RTO. Even for larger objects (i.e, 10 KB objects for a 1 KB packet
size), many dropped packets result in an RTO. For example, half of all randomly dropped packets
on result in an RTO for 10 KB objects (assuming a 1 KB packet size).

Overall, short-lived Web flows are more likely to suffer significant performance degradation when
their packets are dropped than are long-lived flows. It is this inherent disadvantage to short-lived
flows that SHRED attempts to reduce.

3.2 SHRED Algorithm

The fundamental idea of SHRED is to use a lower drop probability for flows with small cwnds and
have the drop probability increase linearly with a flow’s increased relative cwnd size. As in the

core-edge architecture presented in [21], an edge hint provides flow information, such as sending



rate, to core routers to more efficiently manage congestion. Edge hints reduce the need for per flow
state information in core routers. With SHRED, the sending host or the edge router inserts the the
current value of cwnd, a TCP state variable, into the IP packet header. The SHRED core router
extracts the cwnd value (cwndggmpre) from the arriving packet and computes an exponentially
weighted average cwnd (cwndgyg) as shown:

cundgyg = (1 — we)cwndayg + (we)cwndsampre (2)

where w, is set to 0.002, the same setting as originally recommended for RED’s wy [8].
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Figure 1: Computing Drop Probability in SHRED.

In SHRED, the packet drop probability is adjusted from that of gentle RED (see Section 2.1)
based on a ratio of cwndsgmpre to cwndgyy. As depicted in Figure 1, based on this cwnd ratio,
SHRED modifies miny, and maz, such that the slope of the drop probability line remains the

same for a given set of RED parameters:

MiNth—mod = Mgy + (Mazy, — ming,) * (1 — cwndsgmpre /cwWndayg) (3)

If the cwnd ratio is equal to 1, ming,_meq remains at miny,. If the cwnd ratio is greater than 1,
MINeh—mod 1S set lower than ming,. If the cwnd ratio is less than 1, ming, meq is set to a value
between ming, and mazy,. Based on recommendations [8], the lower bound for ming, 04 is set
at five packets. The upper bound for ming, _meq is asymptotic to maxyy.

Once mingy—moq is adjusted, max, is modified so as to maintain the slope of the original RED

drop probability line:

MATp—mod = MATp * (MAT4h — MINth—mod) [ (MATty — Miny,) (4)



Given mingn—mod and may_pmeq, SHRED computes the packet drop probability:

by = mafxp—mod(Qavg - minth—mod)/(maxth - minth—mod) (5)

with the remainder of the algorithm implementation identical to RED.

Figure 2 depicts the cumulative distributions of cwnd sizes for packets dropped in SHRED, RED,
and Drop Tail. Flows with small cwnds experience very few packet drops with SHRED, while flows
with small cwnds are dropped substantially more in RED and Drop Tail. Since SHRED drops
fewer packets with small cwnds, it drops more packets with larger cwnds, and, correspondingly,
SHRED’s drop CDF crosses that of Drop Tail at approximately 15 packets.
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Figure 2: Cumulative Density Functions of Window Sizes for Dropped Packets.

4 Experiments

This section discusses the experimental methodology used to evaluate SHRED, Drop Tail and RED.
Section 4.1 describes our Web traffic generator we developed in ns-2 [19] to properly analyze AQM
architectures. Section 4.2 describes our performance evaluation metrics, and Section 4.3 explains

our experimental setup.

4.1 Web Traffic Generation

Typically, Web traffic is simulated using one or more Web servers and a fixed number of Web clients.

Web clients generate load on a router from empirically or mathematically derived parameters that



may include: reply size, response size, think time, inter-object arrival time, and the number of
objects per Web page.

When the number of Web clients stays fixed, increased router congestion causes increased Web
response times. This, in turn, reduces the client’s request rate which effectively decreases the load
generated by individual clients and the total network load seen by the router. While this accurately
mimics the behavior of individual Web clients, it does not necessarily provide an accurate network
representation from the router’s perspective. Many Web servers, especially those from a content
distribution network, serve only part of a Web page and do not receive subsequent requests from
the same client. Clients often retrieve only one or two pages from a Web server before going to
another Web site and so do not generate subsequent requests to the same server. Moreover, during
flash crowds, the rate of users initially connecting is not influenced by the response time. Since
existing ns-2 Web traffic models all decrease their offered load during congestion, we developed a
Web traffic model that produces a fixed offered load through the router, independent of the level
of congestion.

Our traffic generator sends Web pages, composed of multiple Web objects, to a traffic sink. We
assume an HT'TP /1.0 model [3] where each object in the Web page is a separate TCP connection.?
The page generation rate is determined based on the previous page size and the aggregate load, in
bits per second, specified by the user. The Web traffic generator sends all objects in a Web page
and then waits for an amount of time determined by the page generation rate before sending the
next page.

In the standard HTTP procedure, the client first requests the primary container page and
then subsequently issues separate requests to transfer each embedded object. Since the model
constructed for this research is a best case scenario in terms of Web page response time in that
the primary object and all secondary objects are downloaded concurrently, actual response time
differences due to AQM strategies (see Section 5) should be more dramatic than the simulation
results presented here.

Building upon existing ns-2 Web traffic generators, our Web traffic uses the built in Pareto II
function to generate Web reply object sizes. Based on previous findings in [17] and [12], we use 1.2
as the Pareto shape parameter with 10 KBytes as the average size parameter. The minimum and
maximum object sizes are set to 12 Bytes and 2 MBytes, respectively. All the simulations used for
the experiments use 1 object per page unless otherwise noted. In Section 5.5, separate simulations
were run with the number of objects set to 1, 1-8 objects, 1-16 objects, and 1-32 objects to evaluate

the impact of number of objects per page on response time.

*While HTTP/1.1 [20] enables multiple objects to be transferred over a single connection, in times of heavy server
load, Web servers may close even persistent connections [16]. Moreover, [1] found nearly half of all TCP connections
to a Web server use multiple connections.



4.2 Metrics

We use both user-centric measurements that allow us to study evaluate the impact of Drop Tail,
RED and SHRED on Web traffic and network-centric measurements that allow us to evaluate the
impact of the same AQM techniques on overall network dynamics and long-lived traffic.

For user-centric measurements, we define object transmission time as the time taken to transfer
a single Web object from a server to the client and Web response time as the time taken to download
all objects in a Web page. While users certainly desire low response times, users also desire low
object transmission times since this indirectly results in a low response times. Moreover, typical
Web browsers can display part of a page when complete objects are downloaded even if the entire
page is composed of multiple objects. Routers should try to minimize object transmission time,
not only to provide better end-user performance, but also to reduce the number of flows through
the router.

For network-centric measurements, we evaluate the percentage of packets dropped per flow for
both Web and FTP traffic and goodput and Jain’s Fairness index [14] for FTP traffic.

4.3 Experiment Setup

The network configuration used for all the experiments in this investigation is shown in Figure 3.
The base RED parameters were set according to the latest recommended values from [8] and [10].
Although ns-2 RED simulations often set queue thresholds based on packets, since many Web
reply objects are smaller than a single packet, we used queue thresholds based on bytes. All
the experiments were run for 160 seconds with measurements taken after the first 20 seconds for
experiments using FTP traffic to allow long-lived flows to stabilize before performance data was
collected. For all experiments, both the FTP traffic and the Web traffic used TCP Reno.

The first set of experiments, referred to as Web-only, analyzes AQM performance with only Web
traffic generated, allowing evaluation similar to that in [4]. The second set of experiments, referred
to as Web-mized, analyzes AQM performance with both Web and long-lived traffic, a traffic mix
more representative of the current Internet. MCI backbone measurements [15] show that 75% of
the flows and bytes are Web, and Sprint backbone measurements [6] show 90% of the flows send
fewer than 20 packets. Thus, in the second set of experiments, the number of FTP flows is fixed at
10 while the load attributed to Web-traffic is varied between 40 and 80 percent of the bottleneck
bandwidth (10 Mbps). In third set of experiments, referred to as FTP-mized, the Web traffic load
is fixed at 50 percent while the number of FTP flows is varied between 0 and 40. The fourth set
of experiments, referred to as FTP-only, analyzes AQM performance when all traffic is long-lived,
with the number of FTP flows varied between 10 to 100.
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Figure 3: Network Configuration.

5 Analysis

This section compares the performance of SHRED to Drop Tail and RED by measuring object
transmission time and drop percentage for Web traffic, and goodput and Jain’s Fairness for FTP
traffic. Detailed results are presented for Web-only (Section 5.1), Web-mixed (Section 5.2) and
FTP-only (Section 5.4) experiments. Due to space constraints, only summary results are presented
for FTP-mixed (Section 5.3) experiments. Lastly, Web response times for pages with a range of

objects (Section 5.5) are also analyzed.

5.1 Web-only Experiments

To provide an upper bound on Web traffic performance, we first measured object transmission
times for an uncongested router. The bottleneck link capacity was set to 100 Mbps to ensure
little queuing delay and no packet drops. The cumulative density function of transfer times for the
uncongested router has “steps”, (as seen in Figure 4 and subsequent Figures) caused by an initial
window size of 1 and the slow-start phase of TCP. Specifically, an object small enough to fit in
a single packet is transmitted in one round-trip time (RTT); an object as large as two or three
packets is transmitted in two RTTs; and an object as large as four to seven packets is transmitted
in three RT'Ts. This effect continues throughout the slow-start phase.

Figures 4 through 6 present cumulative density functions (CDFs) of transmission times for
Web loads varying from 95 to 105 percent. Each CDF is split into a body displaying the CDF of
transmission times up to 1 sec and a tail displaying the CDF of transmission times between 1 and

10 seconds. Each body-tail pair of graphs is for a single load, where a 95 percent load is 9.5 Mbps

10



of a 10 Mbps link, for example.

Fraction of objects

08 [

0.6

0.4

02

Uncongested --------
SH

D —

L
0 200

. .
400 600
Transmission Time (ms)

800

(a) Body

09 |

Fraction of objects

0.8

Uncongested --------
SHRED

L L L
5000 6000 7000

Transmission Time (ms)

07 L L L
1000 2000 3000 4000

(b) Tail

8000

9000

Figure 4: Transmission Time CDF for 95 percent load (average of 81 active flows)
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At 95 percent Web-only load, shown in Figure 4(a), at 1 second, SHRED performs slightly

better than both Drop Tail and RED, and RED performs slightly worse than Drop Tail. However,
the tail of the CDF in Figure 4(b) implies that Drop Tail performs slightly better than SHRED
and better than Drop Tail by having fewer very high transfer times. Note the “step in the CDFs
in Figure 4(b) between one and two seconds for both RED and SHRED, attributable to TCP
retransmission time-outs (RTOs). The subsequent step in the RED CDF, and to some extent the

Drop Tail CDF, after three seconds is due to initial time-outs (ITOs) that occur from dropping of

the first packet in many flows.
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At 100 percent Web-only load, shown in Figure 5, the performance of Drop Tail begins to
degrade as the queue is frequently full and the queuing delay for all packets becomes large. With
a queue size of 225 packets, a packet takes approximately 175 ms to traverse the queue. Adding
this queuing delay to the 120 ms RTT: objects consisting of a single packet take roughly 300 ms to
transfer; objects of two or three packets in length take 600 ms to transfer; and objects between 4
and 7 packets in length take 900 ms to transfer. Furthermore, packet drop bursts induced by Drop
Tail make it difficult for the small-windowed TCP flows to employ fast retransmit. At 100 percent
load, RED performs slightly better than Drop Tail, while SHRED performs better than both RED
and Drop Tail.

08

06 [

Fraction of objects
Fraction of objects

0.4

0.2

Uncongested -------- \' Uncongested --------
SHR SHRED

D ) RED =—

RED +eserene s RED sereeer
‘DvopTall - - - g ) DropTal‘l - - -

f 1 1 0.7 1 1 1 1 1 1
[ 200 400 600 800 1000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Transmission Time (ms) Transmission Time (ms)

(a) Body (b) Tail

Figure 6: Transmission Time CDF for 105 percent load (average of 218 active flows)

At 105 percent Web-only load, shown in Figure 6, SHRED again performs better than both
RED and Drop Tail. For such very high congestion levels, RED consistently outperforms Drop
Tail.

Since general computer response times beyond one second disrupt the user’s flow of thought [18],
we summarize performance of RED and SHRED to that of traditional Drop Tail queuing by con-
sidering the fraction of transmission times that complete in one second or less. We compute the
transmission time benefit by normalizing the fraction of RED and SHRED flows that complete
in 1 second or less to the fraction of Drop Tail flows that complete in 1 second or less. Figure 7
summarizes the performance benefit of RED and SHRED for the Web-only experiments over a load
range from 70% to 120%. RED and SHRED provide little benefit at low congestion levels. SHRED
provides significant benefit to Drop Tail for moderate to high levels of congestion and always pro-
vides more benefit than does RED. For moderate to high levels of congestion, RED performs worse
than Drop Tail, confirming results in [4] that concluded RED does not provide benefit over Drop
Tail for Web traffic. However, for very high congestion levels, RED does provide significant benefit

12
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to Web traffic.

5.2 Web-mixed Experiments

The second set of SHRED experiments includes a more realistic traffic mix of long-lived and short-
lived flows. Figures 8 through 10 show the performance of SHRED for the Web-mixed experiments
for 60%, 70% and 80% Web load and 10 FTP flows.

For all Web-mixed loads, SHRED consistently provides a substantial performance improvement
over both Drop Tail and RED. The SHRED CDF is much closer to uncongested router CDF than
either RED or Drop Tail, especially for the 60% load. As noted in Section 3.1, a packet drop in a
small-windowed flow does not allow a fast retransmit, causing either an RTO or an ITO. Analysis
of the CDF tails suggest that at least 5 to 10 percent of RED’s performance degradation is due to
RTOs (between 1 and 2 seconds) and an additional 2 to 5 percent degradation is from ITOs. Drop
Tail suffers a performance degradation of at least 5 to 8 percent due to RTOs and an additional
4 to 10 percent degradation from ITOs. SHRED largely avoids performance degradation due to
ITOs and is less affected by RTOs than both RED and Drop Tail. Lastly, contrary to results in
Section 5.1, RED performs consistently better than Drop Tail for all Web-mixed loads, a more
realistic traffic environment.

Figure 11 summarizes the SHRED performance benefit over RED and Drop Tail for the mixed
traffic experiments. SHRED provides a 12 to 17 percent performance improvement over Drop Tail
and this advantage increases slightly as the Web traffic load increases. The RED improvement over
Drop Tail remains fairly constant around 8 percent regardless of the load. This is contrary to the
Web-only experiments where RED performed worse than Drop Tail in many situations.

Figure 12 shows the percent drops for nine of the Web-mixed experiments. Each bar in the
graph separates out the Web traffic drops from FTP traffic drops for a given experiment. For
each three column group, the first column is the SHRED drop percentage while the second and

13
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third column are drop percentages for RED and Drop Tail, respectively. SHRED drops fewer Web
packets than either RED or Drop Tail and drops packets more proportionally to the actual traffic
mix. SHRED yields the fewest drops at all three load levels.

5.3 FTP-mixed Experiments

The results from the FTP-mixed experiments are similar to the results from the Web-mixed ex-
periments. Due to space constraints, we only summarize these experiments as in Figure 7 in
Section 5.1. Figure 13 summarizes the performance benefit of RED and SHRED over Drop Tail for
the FTP-mixed experiments for 10 to 50 FTP flows and a Web load of 50%.

SHRED provides an increase in benefit versus Drop Tail with an increase in FTP load and
SHRED performs significantly better than RED at higher levels of congestion. While RED performs
consistently better than Drop Tail, the benefit of SHRED to Web traffic widens with an increase

in the number of flows.

5.4 FTP-only Experiments

Although SHRED does not seek to improve performance of long-lived flows, it should not have a
negative impact versus either Drop Tail or RED in the presence of only long-lived traffic. We ran
experiments with only 10 to 100 FTP flows under RED, SHRED and Drop Tail, and compute the
total goodput and Jain’s fairness for all flows. Table 1 shows that SHRED’s performance is similar
to Drop Tail and slightly better than RED for most the experiments. Table 2 shows that SHRED
yields a slightly higher Jain’s Fairness value than both RED and Drop Tail, by providing a more

uniform window size for all flows.
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Figure 9: Transmission Time CDF for 70 percent Web load (average of 84 active flows) and 10

FTP flows

Number | SHRED | RED | Drop Tail Number | SHRED | RED | Drop Tail

of Flows of Flows
10 9.4 9.6 10.0 10 1.000 | 0.997 0.991
20 9.7 9.7 10.0 20 0.999 | 0.996 0.990
30 9.8 9.8 9.9 30 0.999 | 0.997 0.994
40 9.7 9.7 9.9 40 0.999 | 0.997 0.989
50 9.7 9.7 9.8 50 0.999 | 0.996 0.991
60 9.6 9.6 9.8 60 0.999 | 0.995 0.993
70 9.5 9.6 9.7 70 0.998 | 0.994 0.988
80 9.5 9.3 9.6 80 0.998 | 0.993 0.990
90 9.4 8.7 9.6 90 0.999 | 0.989 0.989
100 9.3 8.4 9.5 100 0.998 | 0.988 0.990

Table 1: Goodput (Mbps) Table 2: Jain’s Fairness

5.5 Web Response Times

Web response time is a more useful measure of performance for users than transmission time, since
a Web page is not entirely usable until all the objects have been downloaded. While [12] consider
between 1-3 and 2-7 objects per page, recent measurements [16] imply that today’s Web pages have
considerably more objects per page. Thus, the Web-only and Web-mixed experiments were re-run
with a uniform distribution of 1 to 8, 1 to 16, and 1 to 32 objects per page.

Figures 14 summarizes the response time benefits of SHRED over Drop Tail for the Web-
only experiments. At lower congestion levels, the number of objects per page does not significantly
affect SHRED’s benefit, with SHRED providing only slightly more benefit than Drop Tail. Between
loads of 90 and 105 percent, SHRED provides significant response time benefits for Web pages with
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multiple objects. However, the benefit is similar for all pages with multiple objects. For higher
congestion levels, response times for Web pages with more objects decreases slightly, most likely
because when a large number of objects are transmitted concurrently, the queue receives a burst
of traffic causing bursts of dropped packets.

Figure 15 summarizes the response time benefit of SHRED over Drop Tail for the Web-mixed
experiments for 40% to 80% Web load and 10 FTP flows. Since our Web traffic generator transmits
all objects concurrently, Drop Tail routers see traffic as a burst of packets, consisting of a large
number of objects belonging to a page, that are more likely to overflow the router queue. Unlike
the Web-only results, the response time benefit increases approximately linearly as the number of
objects increases and remains constant over all loads except for the experiments with 1-32 objects

per page. SHRED provides over 60 percent response time benefit over Drop Tail for Web pages with
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1-8 objects and over 140 percent response time benefit over Drop Tail for pages with 1-16 objects.
For pages with 1-32 objects and loads of 40% or 50%, SHRED provides response time benefits
greater than 250 percent. For higher loads, the SHRED response time benefit reduce somewhat to
between 175 to 200 percent.

6 Discussion of Deployment

The research presented here is not intended for immediate deployment into the Internet, but rather
is meant to propose and evaluate the benefits to Web traffic for preferentially dropping packets
based on TCP window size. The benefits of SHRED can be realized by incorporating SHRED as
one of the many facets in the next generation of Internet routers. In light of this, this section
discuss practical deployment issues facing SHRED.

The cwnd edge hint can be implemented in IPv4 using the TOS byte in the IP header. The
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TCP source maintains cwnd in bytes, but can map it to a value in packets using TCP’s maximum
segment size (or any mapping where a value of 1 yields the lowest drop probability and a value of
255 yields the highest). Using the TOS byte gives 255 possible values for cwnd. SHRED does not
provide significant benefits for TCP flows with cwnds larger than 255 packets, and therefore any
TCP sources with cwnds larger than 255 automatically set the cwnd hint to 255. For IPv6, the
cwnd edge hint can be implemented using an extended header.

SHRED supports incremental deployment. Only users and Internet Service Providers (ISPs)
seeking improved Web performance need to upgrade. If the TCP source does not support SHRED,
the SHRED router uses normal RED dropping probabilities. Although there far more TCP sources
than routers, source operating systems are easier to update since popular operating systems issue
updates multiple times a year. An alternative to upgrading TCP in all end-host operating systems
would be to place a packet classifier at an edge router that keeps per low TCP state and inserts
cwnd hints into each packet.

Unfortunately, using cwnd hints provides opportunities for misbehaving hosts to deliberately
keep their cwnd hint low to get reduced drop rates from SHRED routers. Stagnant cwnd hints
could be policed by the first downstream router from the source keeping per flow TCP state since
all packets and TCP acknowledgments for the source must pass through that router.

Another possible source of misbehaving is between an ISP and a backbone provider, where the
ISP could set low cwnd hints such that all packets receive a lower dropping probability, yielding
better overall performance for network traffic for the ISP. However, as backbone router’s are typ-
ically over-provisioned to avoid packet drops [13], such false hints would not significantly affect
performance.

While SHRED does provide a substantial improvement in response time over Drop Tail in
simulations with multiple objects per page (see Section 5.5), the actual benefit to SHRED may be
lower since browser implementations typically establish a maximum of four parallel connections at
a time [1]. Also, a Web page may still be usable to the user prior to all the objects being displayed
by the browser (e.g., users don’t need ad banners when viewing a Web page). Thus, the Web

response times presented here may represent worst case times as far as a user is concerned.

7 Conclusions

The majority of the traffic on the Internet today is Web traffic, which is typically composed of
many short-lived flows. Typical AQM research uses long-lived flows to evaluate performance and
often ignores the issues with dropping packets from long-lived flows versus short-lived flows. In
particular, short-lived flows often have small cwnds, making them sensitive to packet drops which
cause retransmission timeouts and high response times.

This paper presents SHort-lived flow friendly RED (SHRED), an AQM mechanism designed to
improve response time for short-lived Web traffic. Using a cwnd hint from a TCP source, SHRED
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computes the cwnd ratio of an arriving packet to the cwnd average and reduces the probability
of dropping packets during the sensitive periods when a flow’s cwnd is small. We ran extensive
simulation experiments modeling Web-only traffic, FTP-only traffic, and mixes of Web and FTP
traffic to evaluate the performance of SHRED versus RED and Drop Tail routers.

Our analysis shows that SHRED produces lower object transmission times than either RED
or Drop Tail in both Web-only and mixed traffic environments. SHRED provides over 40 percent
improvement in Web response times over Drop Tail for Web-only traffic and between 70 and 300
percent improvement in Web response times over Drop Tail. Moreover the Web traffic performance
improvements are achieved without negatively impacting long-lived FTP traffic.

In contrast to results reported in [4] that show little improvement for RED over Drop Tail in
Web-only traffic experiments, our mixed traffic simulations indicate that RED consistently outper-
forms Drop Tail, although RED still performs consistently worse than SHRED.

Although SHRED protects short transfers and the beginning of longer transfers, there remains
the issue of fast retransmit ineffectiveness at the end of the transfer that can cause retransmission
timeouts. One possible extension to SHRED is to incorporate an indicator in the cwnd hint when
a flow is nearly finished and to avoid dropping the last few packets of a transfer.

A second area of future work is integrating SHRED with Adaptive RED [10] and ECN [7].
SHRED combined with Adaptive RED should operate well over a wider range of traffic loads and
SHRED with ECN should result in even fewer drops for Web traffic and should further improve
Web response times.

The effects of AQM on Web traffic performance is dependent on number of Web traffic charac-
teristics, including size of objects, number of objects on a page, number of persistent connections,
number of objects transmitted in one persistent connection, browser’s and server’s support for per-
sistent connections, number of objects per server for a page (when objects are distributed across
multiple servers), Web cache performance, and user’s behavior. For further improvements in the
treatment of Web traffic, more data collection studies of Web traffic characteristics are needed.

These results could also be used to improve on the Web traffic generator used here.
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