

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN
RATIONALE IN SOFTWARE MAINTENANCE

J. BURGE, D. C. BROWN
AI in Design Research Group
Department of Computer Science
WPI, 100 Institute Road
Worcester, MA 01609, USA

Abstract. Design Rationale consists of the reasons behind decisions
made while designing. This information would be particularly useful
during software maintenance. In this paper, we describe a study
performed to investigate the content, structure, and use of design
rationale during maintenance. The major goal of this study was to
discover an agenda for further research into the use of design rationale
for software maintenance.

1. Introduction

For a number of years, members of the Artificial Intelligence (AI) in Design
community have studied Design Rationale (DR), the reasons behind
decisions made while designing. Standard design documentation consists of
a description of the final design itself: effectively a “snapshot” of the final
decisions. Design rationale offers more: not only the decisions, but also the
reasons behind each decision, including its justification, other alternatives
considered, and argumentation leading to the decision (Lee, 1997). This
additional information offers a richer view of both the product and the
decision-making process by providing the designer’s intent behind the
decision. DR is invaluable as an aid for revising, maintaining, documenting,
evaluating, and learning the design.

Rationale for past decisions is especially useful during software
maintenance. One reason for this is that the software lifecycle is a long one.
Large projects may take years to complete and spend even more time out in
the field being used (and maintained). Maintenance costs can be more than
40 percent of the cost of developing the software in the first place (Brooks,
1995). The panic over the “Y2K bug” highlighted the fact that software

2 J. BURGE AND D.C. BROWN

systems often live on much longer than the original developers intended.
Also, the combination of a long life-cycle and the typically high personnel
turnover in the software industry increases the probability that the original
designer is unlikely to be available for consultation when problems arise.

1.1 DIFFICULTIES WITH RATIONALE

While rationale has great potential value, rationale is not in widespread use.
One difficulty, despite a good deal of research, is the capture of design
rationale. Recording all decisions made, as well as those rejected, can be
time consuming and expensive. The more intrusive the capture process, the
more designer resistance will be encountered.

Documenting the decisions can impede the design process if decision
recording is viewed as a separate process from constructing the artifact
(Fischer, et. al., 1995). Designers are reluctant to take the time to document
the decisions they did not take, or took and then rejected (Conklin and
Burgess-Yakemovic, 1995). A real danger is the risk that the overhead of
capturing the rationale may impact the project schedule enough to make the
difference between a project that meets its deadlines and is completed,
versus one where the failure to meet deadlines results in cancellation
(Grudin, 1995).

1.2 USES OF RATIONALE

The key to making the capture worthwhile, as well as providing
requirements for DR representation, is the use for, and usefulness of, the
rationale. There are a number of potential uses for DR. These include:

• Design verification – using rationale to verify that the design meets
the requirements and the designer’s intent.

• Design evaluation – using rationale to evaluate (partial) designs and
design choices relative to one another to detect inconsistencies.

• Design maintenance – using rationale to locate sources of design
problems, to indicate where changes need to be made in order to
modify the design, and to ensure that rejected options are not
inadvertently re-implemented.

• Design reuse – using rationale to determine which portions of the
design can be reused and, in some cases, suggest where and how it
should be modified to meet a new set of requirements.

• Design teaching – using rationale to teach new personnel about the
design.

• Design communication – using rationale to communicate the reasons
for decisions to other members of the design team.

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN RATIONALE
IN SOFTWARE MAINTENANCE 3

• Design assistance – using rationale to clarify discussion, check
impact of design modifications, perform consistency checking and
assist in conflict mitigation by looking for constraint violations
between multiple designers.

• Design documentation – using rationale to document the design by
offering a picture of the history of the design and reasons for the
design choices as well as a view of the final product.

Because use is the key behind the value of the rationale, the focus of our
investigation is on how rationale can be used to assist in software
maintenance.

In this paper, we describe a study performed to discover a research
agenda for further work in using design rationale for software maintenance.
This study investigated the content, structure, and use of design rationale.
The following sections discuss observations made during this study and
provide the resulting research agenda.

This paper is structured as follows: in section 2, we describe related
work. In section 3, we describe the overall goal of our study. Section 4
describes the study and section 5 presents the results. Section 6 outlines our
research agenda that resulted from the study and section 7 gives the
summary and conclusions.

2. Related Work

Design Rationale is a kind of Knowledge Representation. How the DR can
be used depends on its representation format and content (Lee, 1997).
Design Rationale representations vary from informal representations such as
audio or video tapes, or transcripts, to formal representations such as rules
embedded in an expert system (Conklin and Burgess-Yakemovic, 1995). A
compromise is to store information in a semi-formal representation that
provides some computation power but is still understandable by the human
providing or using the information.

Semi-formal representations are often used to represent argumentation.
Argumentation notations provide a structure to indicate what decisions were
made (or not made) and the reasons for and against them. Some examples
are Questions, Options, and Criteria (QOC) (MacLean, et. al., 1995), Issue
Based Information Systems (IBIS) (Conklin and Burgess-Yakemovic, 1995),
and DRL (Decision Representation Language) (Lee, 1990).

There are also many different ways to capture DR. One approach is to
build the rationale capture into a system used for the design task. An
example is RCF (Rationale Construction Framework) (Myers, et. al., 1999),
which integrates DR capture into an existing design tool.

4 J. BURGE AND D.C. BROWN

DR has a variety of uses. Systems such as JANUS (Fischer, et. al.,
1995), critique the design and provide the designers with rationale to
support the criticism. Others, such as SYBIL (Lee, 1990), verify the design
by checking that the rationale behind the decisions is complete. C-Re-CS
(Klein, 1997) performs consistency checking on requirements and
recommends a resolution strategy for detected exceptions. InfoRat (Burge
and Brown, 2000) performs inferencing over the rationale to verify that the
rationale is complete and consistent, and to also evaluate that decisions
made were well supported.

There has also been work on using design rationale in software design.
DRIM (Design Recommendation and Intent Model) was used in a system to
augment design patterns with design rationale (Pena-Mora and Vadhavkar,
1996). Co-MoKit (Dellen, et. al., 1996) uses a software process model to
obtain design decisions and causal dependencies between them. WinWin
(Boehm and Bose, 1994) aims at coordinating decision-making activities
made by various “stakeholders” in the software development process. Bose
(Bose, 1995) defined an ontology for the decision rationale needed to
maintain the decision structure. The goal was to model the decision
rationale in order to support decision maintenance by allowing the system to
determine the impact of a change and propagate modification effects.

Less work has been done to study the usefulness of DR. Field trials were
done using itIBIS and gIBIS for software development at NCR (Conklin and
Burgess-Yakemovic, 1995). Capturing rationale was found to be useful
during both requirements analysis and design. In particular, several errors
were found during design that would not have been uncovered until much
later when the code was written. IBIS also helped with team
communication by making meetings more productive. A study was also
performed using DR documents to evaluate a design (Karsenty, 1996). In
this study, 50% of the designers’ questions were about the rationale behind
the design and 41% of those questions were answered using the recorded
rationale.

3. Goal

Our design study had a number of goals. First, we wanted to collect some
software design rationale to obtain a better understanding of what software
design rationale was. Second, we wanted to begin investigation into how
rationale was affected and used during software maintenance. Third, we
hoped to produce an agenda for further research into using design rationale
during software maintenance. Our study, described in section 4, resulted in
initial insight into the first two goals and provided us with a research agenda
with which to continue our investigation.

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN RATIONALE
IN SOFTWARE MAINTENANCE 5

3.1 SOFTWARE DESIGN RATIONALE

Design rationale could be generated at any stage of the software design
process. Figure 1 shows the development phases and the rationale that could
be generated during each of them.

PROGRAM RATIONALE
Requirements:

- what it must do (F)
- constraints on how

- NFRs , scheduling, re - use
- User Interface

Analysis:
- Use Cases
- Collaboration Diagrams

Design:
- Class Diagrams (S)
- Sequence Diagrams (B)

- for each use - case (F)

Implementation:
- Code

what decisions are made that are not
captured in the design?

error handling
persistent storage
logic/control/branching
algorithms
…

“why” for requirements
application specific
domain specific
customer specific

alternative or rejected requirements
and reasons

why these use - cases
alternative or rejected use - cases
and reasons
why these classes
why these interactions

why these classes
why these attributes
why these methods

why these relationships

why these types
why these types
why this visibility

why these parameters
why these returns

why this order
why these messages
why these collaborators

why handle errors this way
why this type of storage
why these control structures
why this algorithm
…

Figure 1: Software Development Phases and Rationale

This rationale could describe many different types of decisions:
• Requirements – rationale could exist for the existing requirements

and for requirements that were considered but then rejected. There
would be rationale for the user interface design if the design was
performed during the requirements phase.

• Analysis – rationale could be associated with use-cases and with the
partitioning of the problem into analysis classes and collaboration
diagrams.

• Design – rationale could be associated with any portion of any
design artifact. This could include reasons behind the choice of the
design classes, the attributes (including reasons for data types and
visibility), the methods, etc.

6 J. BURGE AND D.C. BROWN

• Implementation – rationale could describe the choice of algorithms,
data structures, persistent storage, and more.

• Maintenance – rationale could describe both why the modifications
were necessary, as well as the reasons behind the design and
implementation choices necessary for the modification.

Capturing all this information would present a significant amount of
overhead to the software developer. During our study, we collected data on
the decisions made and the rationale collected as a start at better
understanding what information comprised design rationale for software.

3.2 SOFTWARE MAINTENANCE

In order to investigate using DR during software maintenance, we first must
look at the maintenance task itself. There are a number of different
classifications for types of software maintenance (Chapin, 2000). We looked
at three types in this experiment: corrective, perfective, and enhancive. We
used an existing meeting scheduler system to investigate the different types.

1. Corrective – Corrective maintenance involves correcting failures of
the system (Lientz and Swanson, 1980). In the meeting scheduler,
there was a minor bug where meetings could not be cancelled after
saving the schedule if the time period indicated exactly overlapped
the meeting duration.

2. Perfective – Perfective maintenance involves “perfecting the
system,” improving processing, performance, or maintainability
(Lientz and Swanson, 1980). The meeting scheduler will not allow
users to schedule two meetings that overlap. The initial version of
the system did not check for this until after prompting the user for
the name of the meeting. An improvement was proposed to verify the
validity of the time range before asking the user for more
information. This change was put into the perfective category since it
did not affect the result of the scheduling operation but improved the
experience for the user.

3. Enhancive – Enhancive maintenance involves replacing, adding, or
extending “customer-experienced functionality” (Chapin, 2000). The
initial meeting scheduler system allowed the user to create a single
meeting schedule. An enhancement was proposed that allowed the
system to be used as a conference room scheduler where the user
could select a room and then reserve a time slot for the meeting. This
extended the original functionality by maintaining a meeting
schedule for each conference room.

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN RATIONALE
IN SOFTWARE MAINTENANCE 7

3.3 DISCOVERING A RESEARCH AGENDA

To drive and evaluate our research into using rationale for software
maintenance, we will develop a system that supports the maintainer. This
system will present the relevant DR when required and allow entry of new
rationale for the modifications.

The new DR will then be verified against the existing DR to check for
inconsistencies. There are several types of checks that should be made:
structural checks to ensure that the rationale is complete, evaluation, to
ensure that it is based on well-founded arguments, and comparison to
rationale collected previously for similar changes to see if the same
reasoning was used. In the latter, the previous rationale could be used as a
guide in determining the rationale for the new change. The system will also
propagate any necessary changes to the existing DR as well as alerting the
maintainer if the code modifications are the same as those made earlier and
then rejected.

Our research, and development of this system, will require examining at
least the following questions:

a) What types of design rationale are present at the different phases
of the software development process?

b) What is the relationship between rationale collected during the
different phases?

c) Are there portions of the design or phases of the development
process (Figure 1) where rationale capture would be more useful
than others?

d) What is the appropriate level of detail to capture in the rationale
that will be useful, yet minimize the collection burden on the
user?

e) How do modifications to the software affect the rationale?
f) Does rationale differ for different types of software

modifications?
g) How does rationale for modifications differ from rationale for

the initial design?
h) How can rationale assist during software maintenance?

We hope to use the answers to questions a and b to assist us in answering
c. We expect that the types of rationale present will be similar to those
shown in Figure 1. The relationship between rationale at different phases
may only be via the development artifacts produced as part of the design and
implementation. We need to answer question d to determine the
representation for our rationale. Questions e, f, and g investigate how
rationale is affected during different types of software maintenance.
Question h has a number of possible answers and drives this research.

8 J. BURGE AND D.C. BROWN

4. Study Description

One of the difficulties in studying potential uses for software design
rationale is that there are few (if any) examples of it available for analysis.
In order to better understand software design rationale, its role in software
maintenance (both as a product and an input), and to provide a research
agenda for further investigation, we performed a small design study that
looked at rationale for an initial design and at rationale that was
generated/changed when modifications were performed. Modifications were
examined because our main interest is in how rationale can be used to assist
software maintenance.

Since the focus of our work is how DR can be used during software
maintenance, an existing system, a Meeting Scheduler, was used. This
system had the following useful properties:

• Requirements, use-cases, and source code were available;
• The system made use of a pre-existing component;
• The system had (at least) one error in the current implementation that

was typical of the types of errors that would need to be repaired
during maintenance.

The system studied was a meeting scheduler system written in Java. It
used a previously developed component as part of its user interface that
allowed the user to enter meeting information into a schedule. The following
sections describe the artifacts and rationale created for the initial design and
each of the proposed modifications.

4.1 INITIAL DESIGN

The system being modified had the following design artifacts available:
requirements, use-cases, and source code. These were augmented by
reverse-engineering the system to produce Unified Process (Jacobson, et. al,
1999) development artifacts focusing on parts of the system that were most
likely to be affected by the proposed modifications. This involved creating
user interface storyboards, collaboration diagrams, class diagrams, and
event trace diagrams.

During this process, rationale was collected for decisions that involved
conscious choices between multiple alternatives. The rationale format was
kept simple in order to lessen the burden on the developer. Figure 2 shows
the graphical convention used in documenting the rationale.

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN RATIONALE
IN SOFTWARE MAINTENANCE 9

selected

-

-
+

decision

argument

explanation

argument

alternative

alternative

argument

process
artifact

Figure 2: Rationale Components

This contained the following components:
• Process artifact – this could be a requirement, a display element, a

use-case, a piece of code, or any portion of the system being
developed.

• Decision – this is the decision that the rationale is documenting.
• Alternatives – these are the different alternatives considered to

implement the decision.
• Argument – reasons for and against the alternatives (for marked with

a “+” and against marked with a “-”).
• Explanation – the (optional) reason explaining why an argument

applies to a particular alternative.
During each phase of the development process, the applicable Unified

Process artifacts were created along with the rationale behind them:
• Requirements Phase – In most cases, the system is developed to meet

a set of customer needs and desires that may not be fully explained.
Requirements are developed to indicate what the system must do to
satisfy these needs. There may be more than one way in which this
can be done, hence the need to choose between alternative
requirements and to provide reasons for the requirements chosen.
Initial user interface design was also done during this phase.

• Analysis Phase – In the Analysis Phase, use-cases, analysis classes,
and collaboration diagrams were developed. In the Unified Process,
there are three types of analysis classes: boundary, control, and
entity. Rationale was collected to indicate the reasons behind the
type of class used, specifically the reasons for distinguishing
between boundary and control classes.

• Design Phase – The Design Phase consisted of developing class
diagrams and sequence diagrams. Rationale was collected to indicate

10 J. BURGE AND D.C. BROWN

the reasons behind the choice of classes and allocation of
responsibilities.

• Implementation Phase – The primary output of the Implementation
Phase was the source code. Rationale was collected to indicate
reasons behind the lower level design decisions made while writing
the code. This included detailed information about data structures
and algorithms.

4.2 CORRECTIVE MAINTENANCE – MINOR BUG IN THE PROGRAM

This exercise consisted of looking for a fairly minor error that occurred
under a specific set of circumstances. The error turned out to be due to a
misunderstanding on the part of the developer of how a particular Java
method call worked. This was easily corrected by writing a new method that
performed the desired function, rather than using an existing method that did
not work as expected. The modification affected the design level, since a
new method was added, and the code level, the implementation and use of
the method. The rationale was updated to capture both the original decision
and the alternative used to replace it.

4.3 PERFECTIVE MAINTENANCE – REVISITING THE DESIGN FOR
USABILITY

In this case, a design decision from the original design was revisited to
improve the usability of the scheduling system. Unlike the previous
modification, this one started at the analysis level with the collaboration
diagrams and then propagated down to the implementation.

4.4 ENHANCIVE MAINTENANCE – EXTENDING THE FUNCTIONALITY

This exercise involved extending the Meeting Scheduler system into one
that scheduled meetings in different conference rooms. This was a
significant increase in functionality since it involved saving several different
schedules that could be moved between by selecting different conference
rooms.

5. Results

The following sections describe what was learned during the initial design,
the corrective maintenance modification, the perfective maintenance
modification, and the enhancive maintenance modification.

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN RATIONALE
IN SOFTWARE MAINTENANCE 11

5.1 INITIAL DESIGN

Rationale was generated during each phase of the development process.
Some observations were specific to design phases while others apply to the
rationale overall.

5.1.1 Phase Specific Observations
In the Requirements Phase, rationale consisted of the arguments for and
against the candidate requirements as well as relationships between
requirements. There are a number of different types of arguments. In some
cases, the arguments capture a relationship between requirements and
indicate which requirements cannot exist independently from each other.
The argument may be that a candidate requirement supports a non-
functional requirement (NFR) that is part of the base set of requirements
(i.e., it is an NFR that directly supports a user request, such as a requirement
to use a pre-existing component). In other cases, the arguments can be
quality attributes that are not specifically mentioned as requirements but that
are compelling reasons for preferring one alternative over another (where, in
this phase, alternatives are in fact different requirements).

Much of the rationale captured during the Analysis Phase consisted of
reasons for the categories (boundary, entity, or control) assigned to the
analysis classes. This rationale is specific to the Unified Process since other
software development methodologies do not use different types of classes
during the analysis phase. Rationale was also collected to explain why some
requirements were not given use-cases. Again, this is process-specific
rationale.

Rationale captured during the Design Phase centered on the class
diagrams, rather than the sequence diagrams. Many of the major sequencing
decisions were made at the analysis level and were captured in the
collaboration diagrams. The detailed sequencing of events represented at the
design level seemed to obscure more than it revealed.

When the Meeting Scheduler system was implemented, the rationale
collected made a dramatic leap in the level of detail. The explanations for
why particular arguments applied to particular decisions became extremely
detailed. Some decisions were fairly generic. For example, when choosing
the type of data structure (such as hash table vs. vector), the different
structures could have default rationale.

5.1.2 General Observations
There needs to be a way to represent arguments at different levels of
abstraction. In some cases, the same argument was used for different
alternatives but with different meanings. For example, two different user

12 J. BURGE AND D.C. BROWN

interface designs could both be considered to be usable but for different
reasons or to a different degree (one design may have the best utilization of
screen real estate while the other may minimize keystrokes). There are also
many different types of arguments – some will map back to an NFR, others
are based on assumptions or on preferences. Recording detailed arguments
is most informative but makes it difficult to compare arguments when
performing inferencing over the rationale. If an ontology of arguments
existed, it could be used to capture detailed arguments yet still allow them to
be compared at a higher level. For example, screen real estate and keystroke
minimization arguments could be rolled up into an evaluation of usability.

One surprise was that in most cases (except at the requirement level),
requirements were not used as arguments for or against alternatives. Instead,
the requirements were the reasons that the decisions were necessary.
Usually alternatives were not recorded in the rationale if they were clearly
in violation of the requirement that spawned the decision. On the other
hand, it is quite possible that an alternative chosen to meet one requirement
may violate other requirements. It is very important to record requirement
violations in the rationale.

The original, simplified format proposed for the rationale did not have an
“explanation” component. The explanations were added because there was a
need to explain why an argument applied to a particular situation. For this
reason, explanations are attached to the relationship between the argument
and the alternative, not to the arguments themselves. It would be desirable to
make arguments specific enough that explanations would be less necessary.
This is not easy – as the decisions became more specific, so did the reasons
behind the alternatives. It became more and more difficult to come up with
general names and categories for the arguments. Similarly, during the latter
development phases, the explanations for the alternatives became very
detailed – not something that could be reasoned over. There needs to be a
way to break explanations down into more manageable pieces that can fit
into an argument ontology and allow for comparisons. It would be useful if a
system could be developed to help with this process.

The representation used in this study, with its simple +/- links for the
arguments, was insufficient to express enough information to accurately
document decisions. These need to be made more detailed, possibly using
the InfoRat (Burge and Brown, 2000) format of amount and importance.

5.2 CORRECTIVE MAINTENANCE

In this maintenance example, an alternative selected during the initial design
was rejected because it did not work. This raised a number of questions.
First, there needs to be a way to specify in the rationale that an alternative
was tried and failed. This needs to be more specific than simply giving a

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN RATIONALE
IN SOFTWARE MAINTENANCE 13

reason of “failed” as an argument against an alternative. The conditions
under which the alternative failed and the reasons for failure also need to be
specified. In some cases, the circumstances under which an alternative failed
(or conversely, succeeded) may change. The rationale can be used to point
out if decisions should be re-evaluated.

When modifications are made, both the rationale for the decisions made
as part of implementing the change and the rationale for the reason the
change was necessary need to be represented. This could be rolled into the
reasons for rejecting previously selected alternatives but that would not be
as explicit as linking the reason for the change to the decision affected.

An interesting rationale observation was that the rationale is not a flat
structure, even within a development phase. Making a specific decision will
spawn sub-decisions, with rationale at both levels. For example, the bug in
the Meeting Scheduler was due to a decision to use a Java-provided Equals
method to compare two date classes. This method did not do what was
expected so the alternative was rejected and the alternative to create a
custom comparison method was chosen. This choice then spawned a number
of sub-decisions that concerned how to implement the new method.

It is not clear how multi-level rationale would affect inferencing over the
rationale for decision evaluation. If the support for two alternatives is being
compared, would rationale for the sub-decisions for those alternatives be
used in this evaluation?

5.3 PERFECTIVE MAINTENANCE

This was a case where assigning more detailed information to the arguments
(such as amount and importance) would have captured exactly why the
alternative was selected. Was it necessary to change a decision because the
preferences changed, thereby making the original choice sub-optimal, or
was the original decision poorly thought out? This is an important
distinction to make and was not captured by the original rationale.

If a detailed rationale representation involving amount and importance
(how much the argument applies and how important the argument is) were
available then the rationale would have been useful in pointing out that this
change should be made. If the alternative chosen was rated as less desirable
than others, this could be detected automatically by evaluating each
alternative. If the importance assigned to an argument was inconsistent with
that elsewhere in the system, this could be checked for as well. If external
preferences changed, therefore affecting the importance of the various
arguments, this could be used to re-evaluate each alternative and point out
ones that are no longer the best choice.

14 J. BURGE AND D.C. BROWN

5.4 ENHANCIVE MAINTENANCE

This modification involved adding two new requirements. The rationale
recorded for the modification was used as the rationale for these new
requirements. It did not look any different than any other rationale and the
requirements did not look any different from the requirements that were
already present. One thing that occurred during the Requirements Phase
was that a requirement spawned additional requirements. In this example, a
new requirement was added to state the new functionality and a second
requirement was added to provide support for that functionality.

During the enhancement, some alternatives were chosen because they
supported future enhancements. This needs to be clearly indicated in the
rationale since often this results in choices that may appear to be less
efficient in the current implementation. There were also cases where some
code was “temporary”, i.e. this code would need to be removed when the
anticipated additional enhancements were made. This code needs to be
clearly marked so that it can be removed or modified later. Rationale can
help to point out places that will require modification. There were also some
design decisions made based on assumptions. Again, rationale could be used
to point out these places if the assumptions later prove to be untrue.

6. Research Agenda

This study highlighted a number of areas that need to be addressed in order
for rationale to be useful during maintenance.

6.1 RATIONALE REPRESENTATION

The simplified representation used in the experiment quickly proved to be
insufficient to support software maintenance. In some cases, the same
arguments could apply to different alternatives, but to different degrees.
This can be addressed by giving each argument an importance and amount
relative to the alternative being considered. This method has been used in
other systems including KBDS (Bañares-Alcantara, et. al., 1995) and
InfoRat (Burge and Brown, 2000).

There also needs to be more investigation into how certain special-case
arguments are handled. For example, requirement violations (which may be
represented as arguments against alternatives) need to be given sufficient
importance to ensure that the alternative is not chosen. Also, if an argument
is only valid under certain circumstances (which may change over the life of
the product), then this also needs to be represented. It is also important to
indicate explicitly when an alternative has been tried and rejected and why.

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN RATIONALE
IN SOFTWARE MAINTENANCE 15

The rationale for modifications to the software also needs to be captured.
If the modifications start at the requirements level this can be captured as
rationale for the new requirements. If not, there needs to be a way to tie
together the changes to the rationale and give the overall reasons for them.

The rationale representation structure also needs to be examined. This
study showed that rationale is not a flat structure – some decisions then
spawn additional sub-decisions. This needs to be represented. This will also
affect inferencing over the rationale, as the support for sub-decisions may
need to be factored into calculations of support for the parent decisions.

6.2 ARGUMENT ONTOLOGY

In order to support inferencing, the arguments for and against alternatives
need to be represented in a way that allows them to be compared. This
points to a general vocabulary as the best solution. This experiment,
however, illustrated that this is not an acceptable solution – if the argument
terms are too general, the situation arises when the same argument can mean
different things for different alternatives. If arguments are too specific,
they cannot be compared.

One way to address these issues is to develop an extensible argument
ontology where arguments can be supplied at varying levels of detail and
can be compared at different levels.

The first question is what should be in the ontology. There needs to be a
“default” ontology to serve as a baseline. The developer could extend this
ontology to meet specific system needs. We also need to decide if
requirements should be part of the ontology or if they should be treated
separately. Another issue is how arguments should be classified. One
possibility is based on type. Examples include: functional requirement,
customer-specified non-functional requirement, other non-functional
requirements, preferences (possibly designer-specific), and assumptions.
Another possibility is the source: general, customer-specific, domain-
specific. Temporal qualities may also be useful – is this an argument that
will always apply or does it only apply under certain circumstances? Is there
a way to measure the likelihood of it not holding in the future? Classifying
arguments may be useful in supporting inferencing.

The next question is should the ontology be augmented with additional
domain dependent information such as argument importance? While
importance is likely to be different for each project, the ontology would be
useful in propagating importance down the hierarchy to provide default
values that can then be modified by the developer.

Another area of investigation is to determine if there is a way to assist
the user in generating additional ontology entries. One reason for supporting

16 J. BURGE AND D.C. BROWN

a project-specific ontology is to try to eliminate (or at least reduce) the need
for explanations for the argument-alternative relationship. It would be
helpful if the system could support the user in breaking down the detailed
explanations into specific arguments.

6.3 DECISION ANALYSIS

There are two different ways that decisions can be analyzed for common
characteristics. One is by development phase – what are the typical types of
decisions made at each phase. The other is by types of maintenance
performed. First we will examine the decisions by phase.

In the Requirements Phase, there were two types of decisions made:
• What the requirements are;
• User interface design decisions.
In the Analysis Phase, there were decisions both about the system and

about the process. These include:
• Which requirements do or do not require use-cases;
• What the analysis classes should be, and their types;
• Sequencing of interactions between the analysis classes;
In the Design Phase, the following types of decisions were made:
• What the classes are;
• Assignment or responsibilities to the classes;
• Coupling between classes (visibility);
• Inter-object message content and format;
• Choice between custom and language provided classes and methods.
Finally, the following types of decisions were made during the

Implementation Phase:
• Data structures;
• Algorithms;
• Persistent storage methods;
• Refinements to use-cases.
Some decisions were made in later stages that probably should have been

made earlier. An example of this is refining the use-cases. This involved
adding information that had not been considered earlier in the development
process.

Categorizing decisions based on the type of maintenance being
performed is much more difficult since in this preliminary study there was
only one change made of each type. Any categorization along the
maintenance type axis would require more data collection.

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN RATIONALE
IN SOFTWARE MAINTENANCE 17

6.4 INFERENCING OPTIONS

There are a number of different uses for inferencing over the rationale.
InfoRat (Burge and Brown, 2000) used the rationale to check to see if the
decisions made were well supported. Several other possibilities were
suggested by this study.

One possibility would be to inference over the rationale to support
perfective maintenance. Rationale is valuable during perfective maintenance
because it is the only place where the consideration (or lack of
consideration) of quality attributes is documented. Since perfective
maintenance involves improving the software, there are a number of ways
that the rationale can assist:

• Indicate which decisions should be reconsidered if quality priorities
change.

• Indicate which areas of the system involved particular qualities in
decision making (and may have a greater impact on the overall
ability of a system to have a particular quality).

• Indicate areas where a particular quality attribute was not considered
(and possibly should have been).

Another interesting use of inferencing over rationale would be to look for
areas of the rationale where alternatives were tried and rejected. The
rationale could be used to see if there were other decisions made for similar
reasons that should be re-investigated. Rationale could also be used to keep
track of what decisions were made based on reasons that are temporal in
nature – i.e. are likely to change in the future. If the conditions change, the
rationale can be used to determine where the design should change.

6.5 ENSURING RATIONALE USE

There are two difficulties with rationale use. The first, is how to use the
rationale. There are a number of potential uses, some of which are
described in the previous section. The second difficulty is how to ensure
that the maintainer makes use of the rationale. The maintainer needs to be
aware of when rationale is available and be able to easily access it. An even
better approach would be to find ways of automatically displaying the
rationale when needed.

Automatic presentation of rationale involves a number of issues. One is
how and when to present the rationale to the user. This has to be done in
such a way that it is useful yet not intrusive enough to hamper the
development effort. A second problem is how to determine which rationale
should be presented. The rationale needed may not be at the same level as
the artifact currently being modified. In this case, it would be necessary to

18 J. BURGE AND D.C. BROWN

determine if rationale attached to a higher-level artifact (i.e., from an earlier
development phase) needs to be shown to the user. For example, a decision
may be made at the design level. Later, the maintainer may modify the code
that implements that decision. It is not useful to only display the
implementation rationale associated with the code, as the rationale that the
user should really be seeing is the rationale for the design decision behind
the code.

7. Summary and Conclusions

While this study was a good first step, and provided an initial research
agenda, additional studies need to be performed in order to answer a number
of questions. One is to determine how rationale could be most useful during
maintenance. In this study the rationale was not used as much as we would
have hoped during the modifications. This is more likely due to the types of
changes made, rather than any indication of the usefulness of the rationale.
More experiments need to be made. One gap in particular was exposed:
there needs to be an extension/enhancement that modifies or removes an
existing requirement, as opposed to the one made in this study that merely
added a requirement. This could be used to see if the rationale can help to
assess the affect on the existing code. It would also be interesting to see how
the type of requirement (NFR vs. domain specific requirement vs. customer
specific requirement) modified/removed affects the rationale.

Another reason for additional studies is to explore additional
maintenance types. As mentioned earlier, there have been a number of
attempts to define maintenance types. These range from the three intentions
of perfective, adaptive, and corrective (Lientz and Swanson, 1980) to the
twelve maintenance types described by Chapin (2000). While some types of
maintenance may be of greater interest than others, it would be worthwhile
to look at adaptive maintenance, since that was missing from this study.

Earlier, we analyzed the types of decisions made at each development
phase. It might be interesting to also analyze the types of decisions made
during different types of maintenance. If this becomes a goal of this
research, it will be necessary to perform multiple studies of each type of
maintenance to generate more data. That would allow us to compare the
types of decisions made.

Design rationale has many potential uses yet has failed to live up to its
full potential. By continuing with the research agenda outlined in Section 6,
along with the additional studies outlined above, we hope to determine how
design rationale can be most useful during software maintenance.

DISCOVERING A RESEARCH AGENDA FOR USING DESIGN RATIONALE
IN SOFTWARE MAINTENANCE 19

Acknowledgements

We would like to thank George Heineman for his discussions about how design rationale
could be used to support the software design process.

References

Bañares-Alcantara, R., King, M.P., and Ballinger, G.: 1995, “Egide: A Design Support
System for Conceptual Chemical Process Design,” AI System Support for Conceptual
Design: Proc. of the 1995 Lancaster International Workshop on Engineering Design,
Springer-Verlag, New York.

Boehm, B. and Bose, P.: 1994, “A Collaborative Spiral Software Process Model Based on
Theory W”, Proc. 3rd International Conf. on the Software Process, IEEE Computer
Society Press, CA, pp. 59-68.

Bose, P.: 1995, “A Model for Decision Maintenance in the WinWin Collaboration
Framework”, Proc. of the Conf. on Knowledge-based Software Engineering, IEEE
Computer Society Press, CA, pp. 105-113.

Brooks, F.P. Jr.: 1995, The Mythical Man-Month, Addison Wesley, MA.
Burge, J. and Brown, D.C.: 2000, “Inferencing Over Design Rationale”, Artificial Intelligence

in Design ‘00, J. Gero (ed.), Kluwer Academic Publishers, Netherlands, pp. 611-629.
Chapin, N.: 2000, “Software Maintenance Types—A Fresh View,” Proc. of the International

Conf. On Software Maintenance, IEEE Computer Society Press, CA, pp. 247-252.
Conklin, J. and Burgess-Yakemovic, K.: 1995, A Process-Oriented Approach to Design

Rationale, in Design Rationale Concepts, Techniques, and Use, T. Moran and J. Carroll,
(eds), Lawrence Erlbaum Associates, Mahwah, NJ, pp. 293-428.

Dellen, B., Kohler, K., and Maurer, F.:1996, “Integrating Software Process Models and
Design Rationales”, Proc. of the Conf. on Knowledge-based Software Engineering, IEEE
Computer Society Press, pp. 84-93.

Fischer, G., Lemke, A., McCall, R. and Morch, A.: 1995, Making Argumentation Serve
Design, in Design Rationale Concepts, Techniques, and Use, T. Moran and J. Carroll,
(eds), Lawrence Erlbaum Associates, pp. 267-294.

Grudin, J.: 1995, “Evaluating Opportunities for Design Capture”, in Design Rationale
Concepts, Techniques, and Use, T. Moran and J. Carroll (eds), Lawrence Erlbaum
Associates, NJ, pp. 453-470.

Jacobson, I., Booch, G., and Rumbaugh, J.: 1999, The Unified Software Development
Process, Addison-Wesley, MA

Karsenty, L.: 1996, An Empirical Evaluation of Design Rationale Documents, in Proceedings
of the Conference on Human Factors in Computing Systems, Vancouver, BC, April 13-
18.

Klein, M.: 1997, An Exception Handling Approach to Enhancing Consistency, Completeness
and Correctness in Collaborative Requirements Capture, Concurrent Engineering
Research and Applications, March, 1997, pp. 37-46.

Lee, J.: 1997, Design Rationale Systems: Understanding the Issues, IEEE Expert, Vol. 12,
No. 3, pp. 78-85.

Lee, J.: 1990, SIBYL: A qualitative design management system, in Artificial Intelligence at
MIT: Expanding Frontiers, P.H. Winston and S. Shellard (eds), Cambridge MA: MIT
Press, pp. 104-133.

20 J. BURGE AND D.C. BROWN

Lientz, B. P., Swanson, E. B.:1980, Software Maintenance Management, Addison-Wesley,
Reading, MA.

MacLean, R.M., MacLean, A., Young, R.M, Bellotti , V., and Moran, T.P.: 1995, “Questions,
Options and Criteria: Elements of Design Space Analysis”, in Design Rationale Concepts,
Techniques, and Use, T. Moran and J. Carroll (eds), Lawrence Erlbaum Associates, NJ,
pp. 201-251.

Myers, K., Zumel, N. and Garcia, P.: 1999, Automated Capture of Rationale for the Detailed
Design Process, Proc. of the Eleventh National Conference on Innovative Applications of
Artificial Intelligence, AAAI Press, Menlo Park, CA, pp. 876-883.

Peña-Mora, F. and Vadhavkar, S.: 1996, Augmenting design patterns with design rationale,
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 11,
Cambridge University Press, pp. 93-108.

	Introduction
	DIFFICULTIES WITH RATIONALE
	USES OF RATIONALE

	Related Work
	Goal
	SOFTWARE DESIGN RATIONALE
	SOFTWARE MAINTENANCE
	DISCOVERING A RESEARCH AGENDA

	Study Description
	INITIAL DESIGN
	CORRECTIVE MAINTENANCE – MINOR BUG IN THE PROGRAM
	PERFECTIVE MAINTENANCE – REVISITING THE DESIGN FOR USABILITY
	ENHANCIVE MAINTENANCE – EXTENDING THE FUNCTIONALITY

	Results
	INITIAL DESIGN
	5.1.1 Phase Specific Observations
	5.1.2 General Observations

	CORRECTIVE MAINTENANCE
	PERFECTIVE MAINTENANCE
	ENHANCIVE MAINTENANCE

	Research Agenda
	RATIONALE REPRESENTATION
	ARGUMENT ONTOLOGY
	DECISION ANALYSIS
	INFERENCING OPTIONS
	ENSURING RATIONALE USE

	Summary and Conclusions
	Acknowledgements
	References

