
1

A Framework for Visualizing the Behavior of Component-Based
Software Systems

Matt Ward and George Heineman1

Computer Science Department
WPI

Worcester, MA 01609
WPI-CS-TR-01-19

{matt,heineman}@cs.wpi.edu
1. Introduction
It is commonly accepted that software systems have grown too large to statically verify and analyze. This is
true even when the software is decomposed into well-defined software components. Until the software
engineering community develops more powerful analysis techniques, there is a need for developers to
assess the run-time behavior of complex software systems. We propose a framework for visualizing the
execution of component-based software systems to answer such questions as:

• What interface elements of component X are accessed when the system performs functionality Y?
• What is the order of method calls (over time) for a particular object-oriented class C?
• Is the function void f (char *s) ever called with a NULL pointer?
• What is the temporal relationship between the method invocations on components X and Y?

Visualization provides the means for developers to ask questions (such as these) that they could not have
known in advance, but only formulated as they viewed a visual representation of the system in execution.

An inherent difficulty in general software visualization, whether static or dynamic, is the lack of an agreed-
upon set of “ideal” metrics for component-based software systems. In contrast, network quality of service
(QoS) characterizes deviations from ideal network behavior (e.g., infinite capacity, zero delay and
corruption) as a multi-dimensional distortion space, which becomes visible only when delivered to the end-
points. QoS visualization and control thus becomes a framework to discuss which of several forms of
distortion is least disruptive to the application and what the resource cost of controlling these distortions is
to the network [9]. It is possible to build very large networking systems whose overall behavior cannot be
formally analyzed, but whose day-to-day operation can be practically visualized and managed. In the
software engineering community, we face a similar situation because we must manage the composition and
integration of component-based software systems that we are unable to formally analyze within acceptable
cost and time bounds.

The DASADA (Dynamic Assembly for Systems Adaptability, Dependability, and Assurance) research
program funded by the Department of Defense is divided into two interconnected infrastructures [10]. A
probe infrastructure is responsible for extracting meaningful events from the execution of a working
component-based software system. A gauge infrastructure processes and delivers these events to specific
gauges programmed to listen for events. A primary aim of DASADA is to develop a partnership between
gauges and probes to evaluate a software system. However, gauges are carefully designed to observe
specific situations and report results back to system administrators. In this paper, we present our proposed
approach to visualizing the events of the software system. In a way, the visualization provides a standard
means for observing the behavior.

There are several important benefits of the monitoring infrastructure. First, the probe infrastructure
decouples the model (of the system) from the realization (implementation) of the system being monitored.
Second, the approach is language independent. Third, it allows for exploration and customization, as
different visualizations are activated in real or near-real time. One of the authors of this paper has
implemented a probe run-time infrastructure as part of the DASADA program. To date, however, this
infrastructure has only been plugged into simplistic pre-programmed gauges. This paper sketches the
principles behind a new visualization framework that we will build on top of the probe infrastructure. To

1 Heineman is supported in part by Air Force Cooperative Agreement No. F30602-00-2-0611.

2

date, we have focused our effort on defining the models we will use as a foundation for visualization. The
pictures in this position paper show the type of visualizations we plan to implement.

2. Models
We have developed a set of interrelated models to form the basis of the visualizations. The structural model
captures the hierarchical structure of any software system. This model is language-independent and
captures the way software is decomposed into finer units of granularity. A behavior model captures the
dynamic behavior of a software system as it executes. We incorporate the results of our DASADA project
for the continual validation of the dynamic functional and extra-functional properties of component-based
systems [4]. To continually validate a software system, probes are injected to extract information as the
system executes. These probes emit events that identify the individual software elements (i.e., functions,
methods, or components) that execute and their attributes. We correlate the dynamic events generated from
the probes with the structural model. The final visualization model enables users to explore large amounts
of system information to debug the system, validate functional properties, or monitor on-going
performance.

2.1. Structural Model
The basic structural model is stratified into five hierarchical levels: system, layer, components, entity, sub-
entities. A system is composed of multiple layers. For our purposes, we identify four layers: Graphical
User Interface, Business Logic, Wrapping and Legacy Services, and Data and Operating System Services
[1]; the number (and type) of layer is customizable. Each layer is further decomposed into components that
have been assigned to that layer. To ensure that the model can be applied to multiple programming
languages, we decompose components into entities, which can be interpreted according to the particular
component implementation. For example, an entity could be an object, a module, a java package, or a
function. Sub-entities enable further decomposition, for example, into attributes, or private functions. Our
model is extensible and through scaling, multiple levels can be added to the model (e.g., sub-layers,
decomposed components, or even sub-systems).

2.2. Behavior Model
We attach “probes” to each component’s interface, introducing before and after callbacks wrapped around
each entry point, in the style of our active interfaces paradigm [2] - but now extended beyond procedure
call to other connector types, including events, data accesses, linkages, streams, arbitrators, adaptors, and
distributors (as in the taxonomy of Mehta et al. [3]). We are thus able to extract detailed semantic
information about the software system as it executes and correlate this information with the structure of the
component-based software system.

2.3. Visualization Model
Given a hierarchical structural model, we developed structures upon which to base our visualizations. We
are interested in exploring both static and dynamic attributes of a software system, and have developed four
interconnected views of the software model:

Node view
As the layers, components, and entities define a hierarchical relationship, we use a radial visualization
(similar to [6]), with the radius corresponding to the depth of the hierarchy, to visualize the building blocks
of the software system. Color is used to associate sibling nodes with each other and their parents. A node is
any wedge within a visual level. Direct manipulation enables selective drill-down (to reach a more detailed
level) and roll-up (to aggregate child nodes into their parent node). Sets of nodes can be selected as slices
of interest, and may include nodes from multiple levels.

Link view
Links represent communication or flow between nodes. We generate visualizations by exploding the node
view outward from the center to help preserve the nodal relationships while making room for explicit links
between nodes. Links can be used to convey many types of relations and dynamic attributes, such as call
graphs and class inheritance. Because of the large number of links possible, it is essential that users be able
to select links of interest, which results in other links being hidden. We can specify a “chain” of links by
selecting a node of interest and displaying the paths leading into or out of the node. The user can constrain

3

a chain length in a number of ways, including a fixed link count and an ending node. A set of chains (which
we call a “fence”) can be created and explored in the same manner as a slice of nodes. Links can be colored
either according to a single attribute (e.g., communication volume or chain ID) or using the two colors
associated with the nodes sharing the link.

Time view
Each node in a selected slice – or link in a selected chain or fence – can generate events, and these events
can either affect the node/link views or add an entry to the time view, which is simply a horizontal line with
vertical colored lines to mark the events (similar to PV [7]). Each line is colored to correspond to its node
or link to enable easy matching of events to their location in the node or link structures. Aggregation
events, which can be based on time, accumulated values/counts, or other node/link characteristic, can be
used to reduce the amount of clutter in the time view. The user can filter the time view, either by type of
event of by bounding the time period of interest, and replay the events to watch their effect on the other
visualizations.

Attribute view
Each node or link may have a large number of attributes that could be the focus of exploration and analysis.
We might be interested in the values of these attributes at a single point in time, or how their values change
over time. At present we restrict ourselves to the display of numeric quantities, and we use a suite of
multivariate visualization techniques (from XmdvTool [8], developed at WPI) to convey the values for a
selected node or link. Techniques such as data glyphs are useful for showing the values of an attribute set at
a single point in time, while scatterplot matrices and parallel coordinates are effective for showing behavior
over time. Because different nodes or links may have different attributes, we cannot, at present, show the
attributes of multiple nodes/links in a single visualization. Instead we can juxtapose these visualizations to
help identify correlations or anomalies.

3. User Interaction with the Visualization
We are exploring and integrating several methods to improve the effectiveness of visual exploration of the
behavior of a large-scale software systems, including:

Linking
We use color and selective highlighting as the main devices for conveying associations between views. The
user can activate multiple views that are automatically linked to each other. A selection in one view is
automatically applied to all other open views.

Brushing
Users click on or brush over parts of the display as mechanisms for selection. This in turn can result in an
action such as highlighting, drill-down, or filtering.

Multiresolution viewing
Each visualization can be viewed at a number of resolutions, using drill-down/roll-up interactions to
specify where more or less detail is needed and various forms of aggregation to represent values within
groups of nodes, links, or events.

Filtering
As the user builds a mental model of the behavior of different aspects of the system, different parts become
more or less interesting. By filtering uninteresting aspects, as selected by the user, the available screen
space is used more effectively. Because visualizations can persist over time, so must all filters selected by
the user.

Distorting views
Another mechanism commonly used to manage dense information displays is to redistribute screen space
for the different components of the display. Thus we can use lens effects and other non-linear distortions of
the pixels, structures, or data to examine parts of the display at higher resolution [11] while preserving the
overall context. Distortion is mostly independent from the other user interactions.

4

4. Visualization Sketch
To give a sense of the types of visualizations we envision, consider Figures 1 and 2. These visualizations
are correlated by color and selection (not shown here). Figure 1 shows the radial display of the structural
model. The innermost circle represents the system. The second circle is divided into four layers. Layers L1
and L2 could be the GUI and processing layers of a client application, while Layers L3 and L4 could
represent two layers within a server application. Layers L2 – L4 are exploded out one more layer of detail to
show the components contained within the respective layers. Finally, several components are further
exploded to show the entities within the component, for example, individual method calls, attributes, or
low-level events. Figure 2 shows a temporal radial depiction of the behavior of a component from time T0
through time T1. Each black dot represents an interface access, method invocation, or attribute access.

Acknowledgements
We would like to acknowledge the efforts of all groups funded through DASADA. For the full list, visit
http://www.rl.af.mil/tech/programs/dasada

References
1. S. Latchem, “The Design of Component Infrastructures”, in George T. Heineman and William T. Councill, eds.,

Component-Based Software Engineering: Putting the Pieces Together, Addison-Wesley, Longman, 2001.
2. G. T. Heineman. A Model for Designing Adaptable Software Components. 22nd Annual International Computer

Software and Applications Conference, Aug., 1998.
3. N. Mehta, N. Medvidovic, and S. Phadke. Towards a Taxonomy of Software Connectors. 22nd International

Conference on Software Engineering, June, 2000, pp. 178-187.
4. P. Gill, Probing for a Continual Validation Prototype, M.S. Thesis, Aug., 2001.
5. Software Visualization: programming as multimedia experience, J. Stasko, J. Domingue, M. Brown, B. Price,

Eds., MIT Press, 1998.
6. J. Stasko and E. Zhang, “Focus+context display and navigation techniques for enhancing radial, space-filling

hierarchy visualizations”, Proceedings, Information Visualization 2000, pp. 57-65.
7. D. Kimelman, B. Rosenburg, and T. Roth, “Strata-Various: multi-layer visualization of dynamics in software

system behavior”, Proceedings, Visualization 1994, pp. 172-178.
8. M. Ward, “XmdvTool: integrating multiple methods for visualizing multivariate data”, Proceedings, Visualization

1994, pp. 326-333.
9. DARPA ITO Sponsored Research: Massachusetts Institute of Technology (MIT). 1998 Project Summary: Robust

Multi-Scalable Networks, http://www.darpa.mil/ito/psum1998/F443-0.html.
10. DASADA, Dynamic Assembly for Systems Adaptability, Dependability, and Assurance,

http://www.rl.af.mil/tech/programs/dasada.
11. Y. Leung and M. Apperley, “A review and taxonomy of distortion-oriented presentation techniques”, ACM

Transactions on Computer-Human Interaction, Vol. 1, No. 2, 1994, pp. 126-160.

L1 L3

L2

L4

C1
C2 C3

C4

C5

C6

C7C8
C9

e1 e2
e3

e4

e5

e6

e7

e8

e9

S

Figure 2: Visualization of Component

Interface

Methods

Attributes

open

write
bufferSize

readOnly

isEOF

blockRead

T0
T1

Figure 1: Visualization of Structure

