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ABSTRACT 
There is a constant need for practical, efficient and cost-
effective software evolution techniques. We propose a 
novel evolution methodology that integrates the concepts of 
features and component-based software engineering 
(CBSE). We collect information about a legacy system’s 
features through interviews with key developers, users of 
the system and analyzing the existing regression test cases.  
We found that regression test cases are untapped resources, 
as far as information about system features is concerned.   
By exercising each feature with their associated test cases 
using code profilers and similar tools, we are able to locate 
code that we can refactor to create components. These 
components are then inserted back into the legacy system, 
ensuring a working system structure. Our methodology is 
divided into two parts. Part one deals with identification of 
source code associated with features which need evolution 
and part two deals with creating components.  In this paper, 
we present preliminary results of the our methodology. 
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1. INTRODUCTION 
Increasingly, organizations are viewing their software 
assets as an investment that grows in value rather than a 
liability whose value depreciates over time [1]. At the same 
time, organizations are under tremendous pressure to 
evolve their existing systems to better respond to 
marketplace needs and rapidly changing technologies. This 
constant pressure to evolve is driven by escalating customer 

expectations and the need to respond to new enterprise 
standards, incorporate new products and system features, 
improve performance, cope with endless new software 
releases, and hardware and software obsolescence. 

To effectively evolve legacy systems in this fast-paced 
environment, managers require answers to the following 
types of question [2]: How do we plan the evolution of a 
large and complex system, including the reengineering of 
the system? What are the critical success factors of system 
evolution? How do we evolve the system without adversely 
affecting operations?  

1.1. EVOLUTION MODEL 
The repeated modification of legacy system has a 
cumulative effect that increases system complexity. 
Eventually, existing information systems become too 
fragile to modify and too important to discard; 
organizations mu st consider modernizing these legacy 
systems to remain viable. 

Legacy systems are now written in modern programming 
languages; reengineering offers an approach to 
transforming a legacy system into one that can evolve in a 
disciplined manner. To be successful, reengineering 
requires insights from different perspectives including the 
software, managerial, and economic perspective [6]. Many 
software maintenance initiatives do not sufficiently 
incorporate the user’s point of reference [7]. 

Researchers [3,4,5,8] have identified the two domains 
around which the entire field of software engineering 
revolves: the problem domain and the solution domain. 
Users interact with the system by inputting their 
requirements in input files (or database) that the system 
uses. These users are directly concerned with systems 
functionality; their perspective is always in the problem 
domain.  These input files are often part of regression test 
cases that are used to check the stability between one 
version to another.  Developers are concerned with the 
creation and maintenance of software development life 
cycle artifacts such as components; their perspective is 
rooted in the solution domain.  A major source of difficulty 
in developing, delivering, and evolving successful software 
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is the complexity gap that exists between the two 
perspectives (as termed by Raccoon [4]). The risk to 
viewing evolution just within a single domain is missing 
the connection between the two domains.  

 

 

 

 

 

 

 

 

 

 

  

 

 
 

Evolution focused solely on the problem domain may 
suggest changes that degrade the structure of the original 
code; similarly, evolution based solely on technical merits 
could propose changes unacceptable to end-users.  The 
external evolutionary pressures shown in Figure 1 drive the 
implementation of new enhancements and functionality 
within the legacy system.  During such implementations the 
developers are focused in implementing the business logic 
that is directly visible to the end users such as a menu item 
that spell checks the document in a word processing 
application.  Often times the protocol and standards are not 
followed by the developers in order to meet the project 
dead lines, which can result in bad code such as adding a 
global variable when not needed.  The internal evolutionary 
pressures force the developers to either restructure or 
refactor the code so the future enhancement or maintenance 
becomes manageable and cost-effective.  During such 
evolutionary activities, the code is refactored, and protocols 
and standards are reestablished. The end-user may or may 
not see the changes made to the system but the goal of such 
refactoring is to reduce the future maintenance costs.   Our 
research provides methodology for handling internal 
evolutionary pressures. 

Years ago, researchers identified features as a natural 
organization of the problem domain [8,9]. Surprisingly, few 
approaches in the research literature concentrate on feature-
based organization of a system's functionality.  On the 
contrary, the solution domain is full of research that 
develops solutions revolving around software artifact 
management activities like design, component construction 

and testing. However, features are discussed in the problem 
domain and not mentioned in the solution domain. 

A successful software evolution methodology must be self-
sustaining; that is, over time, it should ensure that evolution 
is possible. Towards this end, we have identified an 
approach that integrates reengineering, features, and 
components.  The basic outline of our methodology is as 
following: 

• Test cases are selected by considering features. 

• Slicing is guided by exercising system on the 
selected test cases. 

• Slicing results drives refactoring, to create 
components. 

• Results are measured using maintenance cost. 

 Our methodology has three basic assumptions.  First, we 
assume that the legacy system to be evolved is written in 
one of the modern programming languages such as Visual 
Basic, C++, Java, COBOL or FORTRAN. Our 
methodology depends on a code- profiling tool for tracing 
the source that implements a particular feature. Second, we 
assume that the legacy system have regression test suites.   
Third, we assume that some domain knowledge and 
expertise is available, although this is not a binding 
constraint. 

In Section 2 of this paper, we present our feature model that 
provides the theoretical basis for the evolution.  We present 
a novel way to use the code profiling tools in the context of 
evolution in Section 3, while sharing some results.   Section 
4 explores related work and describes the expected benefits 
of our methodology.  

2. FEATURE MODEL 
Users often think of systems in terms of the features 
provided by the system. They exercise the system features 
by some sort of user input (stored in files or databases) 
which often times is also used by system maintainers as a 
part of regression testing.   Intuitively, a feature is an 
identifiable bundle of system functionality that helps 
characterize the system from the user's perspective.   
Examples of features include ability of a word processor to 
spell check or ability of an accounting system to generate 
balance sheet statement for a given fiscal year. Software 
developers are expected to translate such feature-oriented 
requests and reports into a system design. Feature 
Engineering is the area that addresses the understanding of 
features in software systems and then defines a set of 
mechanisms for carrying a feature from the problem 
domain into the solution domain [3]. We define the term 
feature by partly borrowing from Turner’s definition [3].  
We developed our definition by integrating and extending 
the definitions from [3,4]: 

 A feature is a group of individual requirements 

Problem 
Domain 

Solution 
Domain 

Internal Evolutionary
Pressures 

External Evolutionary
Pressures 

Complexity Gap 

Figure 1: A unified evolution strategy is demanded. 
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that describes a unit of functionality with respect 
to a specific point of view relative to a software 
development life cycle. 

This definition considers the root of feature(s) in the 
problem domain. It gives hints regarding the way a feature 
is implemented, traced [10] and how it can be used for 
software evolution because we consider the point of view 
relative to software development cycle.  For example, one 
of the features of a system that performs complex 
calculation could be an ability to run in a batch mode 
without user’s interaction.  To an end-user this feature is a 
tremendous time saver as they do not interact with the 
system but instead they input their requests in a file or a 
database.  At the same time this feature is used as a 
regression-testing tool by testers to maintain stability 
between two versions of the system, and to a developer it 
means designing a solution that requires no user 
interaction.   No matter what the perspective relative to the 
life cycle is, we show that features can be located inside a 
program using regression test cases and code-profiling 
tools.  Evolution follows after the location of the code. 

2.1 FEATURES AND FUNCTIONALITY 
Features and functionality are often used interchangeably 
which is a regrettable mistake.  While a function is 
inherently an encapsulated entity in programming 
languages, a unit of functionality may not be so easily 
contained.  For examp le, when a user spell checks a text 
document, many functions might execute.  

Users comprehend a system through its features and are 
unaware of the specific way in which these features are 
implemented.  Software developers view the same system 
in terms of data types, local and global control, reusable 
functions, and units of testing and maintenance; again, we 
see a clear gap between the problem and solution domain.  
To understand this gap between features and functionality 
consider figure 2. 

When a single Feature implementation is contained within 
many software functions then the point of reference is the 
solution domain. Such code is often highly coupled and 
embedded within the legacy system.  When many related 
features are implemented by a single function then the 
point of reference is the problem domain.  It is trivial when 
a feature is implemented by a single function and the 
domain distinction is not important. Features and 
Regression Tests Researchers from a theoretical point of 
view [26-29] have extensively studied regression testing.  
Over its lifetime, a legacy system accumulates test cases 
that exist to ensure its integrity as it evolves.  Often 
companies develop proprietary regression testing tools to 
automate these tests or to reduce the total number of tests to 
execute.  However, there has been little discussion on 
specifically applying regression testing for evolutionary 
reasons.  We propose a novel use of dynamic slicing [11] 
during regression testing to identify the code artifacts that 

interact with a particular feature and to incrementally 
refactor the code base to enable its future evolution. 

Feature Functionality Domain 

1 Many Solution 

Many 1 Problem 

1 1 Trivial Case 

Many Many Solution and Problem 

Figure 2: Relationships between features and functionality 

Testers, engineers and users work together to develop test 
cases to exercise the system.  The selection of test cases is 
often a manual, analytical, iterative and time-consuming 
process.  The goal in this step is to obtain right test cases  
instead of minimizing the number of test cases.  Many 
times the testers ensure that the test cases are valid with 
respect to the changes programmed into the system.  Over 
an extended period of time, these test cases reflect the 
system functionality in an implicit way because these test 
cases are viewed as a tool to test the stability of the system 
rather that a database of user input that reflects system 
functionality. 

2.1. FEATURES/FUNCTION INTERACTION 
To complete our description of our feature model, we 
identify feature/function interaction as depicted logically in 
Figure 3. This analysis is important when two or more 
features share common data or functions, and if developers 
are trying to identify the functionality implemented by 
these features. There are 5 cases where shared functionality 
between two or more features either affect the data and/or 
functionality in other features: 

SSF - Shared Stateless Function: A stateless function [13] 
can be shared between two features. To refactor this code, 
simply place the common function into a component to be 
invoked from both features’ code. 

SSFF - Shared State-Full Function: A state-full function 
[13] is shared between two features in question. 
Refactoring may be complex, involving global variables 
and require control structures to make a full analysis [14].  

DF – Dependent Function: A feature is dependent on a 
function that is part of another feature.  

DD – Dependent Data: A feature is dependent on the data 
that is part of another feature.  

SFD – Strong Function Dependency: A common function 
is associated with more than one feature and there is strong 
dependency on that common function.  

As each feature is executed, the code profiling tools 
identify the code slices associated with each feature. Once 
the code is identified we can refactor that code to enable 
evolution of key parts of the system. 
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3. METHODOLOGY 
There are many reasons for evolving a legacy system [1,6]. 
When evolving the system, the planned work must be 
prioritized first, and then mapped to their associated 
features within the system.    The system features are then 
identified and associated with the test cases, and a 
technique is developed to identify the code associated with 
each feature using the test cases (see Figure 4).  The code is 
then extracted to create a component; finally, the 
component is inserted back into the legacy system to 
validate results. Our goal is to incrementally evolve it. The 
methodology we propose does not reduce the complexity of 
a legacy system, but it helps to clarify that comp lexity by 
explicitly defining component interfaces. 

The legacy system that is used as a case study is American 
Financial Systems; Incr.’s (AFS) product called Master 
System (AMS). AFS is a small (60 employees) software 

firm that develops software for the COLI (Corporate 
Owned Life Insurance) market. AFS developed AMS to 
integrate Life Insurance and Executive Benefits using 
mathematical and financial modeling. AMS was developed 
nearly 14 years ago using BASIC. During this time, 
Microsoft® has evolved BASIC into the more modern 
programming language, Visual Basic®. Although, AMS is 
classified to be a legacy system, AFS has also evolved 
AMS from its original DOS version to use MS Windows. 
Currently, AMS uses Microsoft Visual Basic 6.0 ® and 
runs on Microsoft’s Windows operating system. We 
applied the following eight-step methodology to AMS. 

 

3.1 Prioritize evolution reasons: While it is theoretically 
possible to determine an optimal evolutionary path, we 
suggest instead that the engineers prioritize their reasons 
for evolution, including technical as well as marketing. In 
the same way that requirements are prioritized [16]], we 
suggest that a clear and concise list be developed that can 
dictate the evolution efforts. In this paper, we apply the 
methodology in evolving the error processing and 
assignment section of the AMS code.  It was brought to the 
developer’s notice that this area was problematic because a 
simple fix or a new enhancement in that area was taking 
unreasonable amount of time and often times the fix needed 
to be resent to the developer.  Error processing is a feature 
within AMS that validates user input.  Since there are about 
400 user inputs (or Items) and many of them dependent 
upon each other, this area was a natural candidate for 

Figure 5: Test cases and Items relationship 

F2
F3

F4
F5

Figure 4: Test cases exercising system features

F1

Features implemented by functions and data within the legacy code

Test Cases

T1
T2

T3
T4 T5

Common Data 

Feature 2 Implementation 

Feature 2 Implementation 

Feature 2 Implementation 

Feature 2 Implementation 

Feature 2 Implementation 

Feature 1 Implementation 

Feature 1 Implementation 

Feature 1 Implementation 

Feature 1 Implementation 

Feature 1 Implementation 

Common Functions 

Common Functions 

Common Data 
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SFD 

DD 

DF 

SSFF 

SSF 

Figure 3: Feature/Function Interaction 
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Figure 4: Test cases exercising system features
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evolution.  Upon closer examination we found that in 
addition to the error processing, the source code also made 
several assignments (user data is stored as strings and is 
then assigned to integer, float or array for later use).  Thus, 
the evolution of error processing in AMS involved two 
features, error processing and assignments.  Error 
Processing is visible to the user but the assignments are 
made within the system so they are invisible.   In addition, 
error processing for a single item may be dependent upon 
other items.  For example within the AMS system, the 
retirement age item value of an individual cannot be less 
than policy issue age item, when a user enters the policy 
issue age then retirement age must be checked for the 
above mentioned error condition.  Conversely, if retirement 
age is the input item then it must be checked against the 
policy issue age for the error condition.   There are more 
complicated dependencies within the AMS items, for space 
reasons we are unable to list them all.   Finally, a proper 
message must be displayed indicating the problem with the 
input item in question. User is also given a GUI to correct 
the problem.  Clearly the interdependencies between the 
items is so called the feature interaction problem mentioned 
in Section 2.1. 

3.2 Logically arrange features to be evolved: 
Once the features are associated with their test cases, we 
order the features to be evolved to minimize the 
interference between them. The test cases used in this step 
can be viewed as the representation of the AMS data 
model.  The AMS data model is a simple hierarchy of plan, 
employee and policy level information where a plan can 
have many employees and an employee can have many life 
insurance policies. A group of employees are part of a plan.  
Information regarding the plan is stored in the Master File 
Table. The Master File Table contains the default input for 
the entire plan. These input fields are called Items. The 
employee information is stored in the Census File Table.  
This information (Items) can be varied for each employee 
in the plan by indicating that the Master File Item belongs 
to the Census File Table.  This association allows a set of 
Items be varied for a group of employees.  For example, if a 
given plan has 3 employees who have everything in the 
plan the same except of their ages. Then the Master File 
Items in this case will contain the same information for all 
the Items except that the ages will be stored in the Census 
File Table.  There are about 400 Items in the AMS and 
about 75% of them can be varied from employee to 
employee.   A test case is a combination of Master File and 
Census File data.  There are about 250 test cases in the 
AMS with an average size of 10 employees per test case. 
This step in the methodology provides heuristics on how to 
logically arrange features (using test cases) that needs 
evolution.   We have identified the following three areas 
that can help detect interfering features: 

3.2.1 Domain Knowledge: Using domain knowledge it is 
possible to identify test cases that represent a particular 

feature or a group of features. We found that in many cases 
the testers knew exactly which test cases would execute 
specific functionality in the code. 

3.3.2 Documentation: Legacy systems also have rich 
regression test suites that consist of hundreds of test cases.  
Often these test suites are well documented and they are 
already grouped by the functionality that needs to be tested.   

3.2.3 Clustering and textual pattern analysis: Related 
test cases that exercise a feature of closely related feature 
can be clustered. There are several clustering techniques 
described in the literature. According to [32]:  

Clustering analysis is the organization of a collection of 
patterns (usually represented as a vector of measurements 
or a point in multidimensional space) into clusters based 
on similarity.  

The purpose of our research is not to explore the clustering 
techniques but to use them creatively. Jain and Flynn 
survey existing clustering techniques that can be used to 
group related test cases [32].  We begin by describing the 
test cases used in this case study and then provide a simple 
model that can be used to cluster or logically arrange the 
test cases that represent the features that need evolution. 

To illustrate the clustering heuristics we selected 10 test 
cases and identified 5 sets of items that are considered the 
most important user inputs in AMS.  We analyzed the user 
input and assigned an ordinal value to each of the valid user 
input for a given Item.  For example, if item number 1 had 
ten valid user input then the user input was given a numeric 
value of 1 through 10 respectively.   We created a matrix of 
test cases and Items as shown in Figure 5.  We then used 
Microsoft Excel™ to calculate the statistical measures that 
provide insight on potential clusters of related test cases.  
For example, if we consider two test cases T4 and T6 
(assuming that all the other items are exactly the same and 
only items 4 and 5 vary) we calculate the regression and 
standard deviation values to find the best fit  lines. It is easy 
to see that test cases T4, T6, T8, and T2 can be grouped 
together.  Similarly, test cases T1, T3, T5, T7, T9, and T10 
can be grouped together because they vary by item 1 and 
item 5.  We can use any of the existing clustering 
algorithms in this step, but for simplicity we use regression 

Figure 6: Test cases, Functions and Feature relationship 

Feature 1 Feature 2 
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and standard deviation as our measure to help us define the 
best fit for the lines.  It is possible to use just regression as 
a measure.  However, we suggest that both regression and 
standard deviation be used because it is quite possible that 
in a large set of data two unrelated test cases may end up 
getting the same value.  Using standard deviation as an 
additional check can help identify such cases. Using such 
heuristics we group the test cases into two broad groups: 
group 1 that exercises Feature 1 consists of T4, T6, T8, and 
T2 and group 2 that exercise Feature 2 consists of T1, T3, 
T5, T7, T9, and T10 in this example (Figure 5). We found 
that grouping these test cases into broad categories 
simplifies the evolution process by reducing the feature 
interaction problem. 

Item Number Dependencies 
(in order) 

9 119,16 

5 119,56,9 

13 9,5,22 

19 158 

119 13 

Figure 7: Test Clusters 

To identify interrelated and dependent items we used a 
combination of the three techniques mentioned above.  We 
collected test cases considered by the testers to be relevant 
for the error processing feature within AMS.  We also 
looked at existing documentation to see what problems 
were encountered and the solutions sought.  Finally, 
although the first two techniques gave us good intuition 
regarding the feature interactions, we verified our intuition 
by clustering the test cases (see Figure 7) that were used to 
test a particular set of item(s) and their dependencies. 

3.3 Locating System Features using Regression Test 
Cases: Besides validating marginal changes in regression 
testing, the test cases for a legacy system can be viewed as 
one of the primary source of information about the features 
that are most important to the end users.  This is 
particularly true for AMS because end-users input their 
requirements in these test cases.  Test cases are a repository 
of inputs that exercise the system features.  In this step we 
provide techniques to data-mine this repository and develop 
heuristics for evolutionary purposes.  As the regression test 
suite increases in size, more and more test cases are used to 
exercise the stability of system features from one version to 
another.   The goal of this step is to identify the test cases 
that are correlated to the features we want to evolve. Figure 
4 shows, for example, how test cases T1-T5 exercise 
features F1-F5. A single test case may exercise many 
features and vice versa. 

We instrument the source code with code-coverage 

software.  We run the regression test. We then analyze the 
path covered.  Finally, we develop heuristics to group 
related test cases together that exercise a particular feature 
for evolutionary purposes. 

The code coverage tool that we used is called 
TrueCoverage™ from NuMega®. TrueCoverage™ works 
with many programming languages such as Microsoft 
Visual Basic, Java, C++ and some scripting languages such 
as Jscript and VBScript.  To instrument the source code we 
compiled the source code image with TrueCoverage™.  
Since the regression testing is already being done using 
batch mode it was easy to get the instrumented output 
against the entire 246 regression test cases.  However, these 
instrumented images were in a TrueCoverage™ specific 
file format. TrueCoverage™ does provide an automated 
way to export the specific file format.  We had to manually 
export each file into a more standard file formats (comma-
separated values) so that we can then import them in a 
spreadsheet tool for further analysis.  The TrueCoverage™ 
tool has a merge utility that aggregates all the 246 test cases 
that were instrumented. This merge utility revealed that 
95% of the code was covered using the 246 test cases.  We 
are in the process of identifying whether the rest of the 
code is either unused or there are hidden features within the 
system that are not currently being exercised. The 
TrueCoverage™ tool provides the following information 
on each of the regression test cases: 

§ Function name – Name of the function that got 
executed. 

§ % lines covered – Percentage of lines in the function 
that were executed 

§ Called – Number of times the function was called 

§ # of lines not executed – Number of lines that were not 
executed 

§ Total # of lines – Number of lines in the function 

§ Image – Name of executable, DLL or OCX that 
contains the function 

§ Source – Name of source file that contains the function 

§ Address – Relative virtual address of the function 

For our analysis, we selected two columns: Function name  
and % lines covered for each of the test cases that represent 
features to be evolved. We sorted the data based upon the 
function name column for each of the 246 test cases by 
developing a simple utility that combined all 246 test cases. 
We then calculated standard deviation on the entire matrix. 
Figure 6 shows partial results due to space reasons. The 
matrix is sorted based on the standard deviation column. 
The function column is the function that got executed and it 
is preceded by the module name. Each of columns after the 
function column represents the % covered for that 
particular test case. Consider the evolution of two features, 
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Feature 1 and Feature 2, each represented by test cases {T1, 
T3, T5, T7, T9, and T10} and {T2, T4, T6, and T8} 
respectively, we deduce the following results from the data 
in Figure 6: 

§ For example, a standard deviation of 0 means either 
that all the functions in all test cases were executed or 
none of them were. This analysis helps identify unused 
code within the system and possible hidden features. 

§ Function 1 totally belongs to Feature 1 and likewise 
function 3 belongs to Feature 2. 

§ Functions 4, 5, and 6 appear to be 100% common to 
the two features that we consider for evolution. These 
are potentially part of the system core. The concept of 
core is defined in the next section. 

§ Functions 2 and 7 are a potential for the feature 
interaction problem (see Section 2.4) because parts of 
function 2 are exercised by Feature 1 (test cases, 7 and 
9). Likewise, all of Feature 1 test cases and some of 
Feature 2’s test cases exercise function 7.  

§ Function 8 is not used by any of the test cases while 
function 3 is used by Feature 2. 

Applying the aforementioned technique we identified 
following problems in the error processing part of AMS: 

1. Circular dependencies: As Figure 7 illustrates that item 
9 is dependent on 119 and 119 is dependent on 13 that 
in fact is dependent on 9. We found about 8 circular 
dependencies. The circular dependencies were the 
cause of system hangs as we verified this in the AMS’ 
bug tracking system. 

2. Readiness of dependent items: To solve the circular 
dependencies and determine what state an item is 
during assignment we found that original architects 
used an array called UNREADY(), which meant that if 
an item is dependent on another item and the other 
item still needs to be evaluated then the original item 
was identified in UNREADY state. Each item had a 
ready state (1) and an unready state (2).  The following 
code illustrates the issue at hand. We show a partial 
listing due to space reasons, in the code below item 
number 5 is assumed to be ready by setting the 
UNREADY array index. The item’s value is then 
evaluated and a global error flag is set to 1 in case of 
invalid input. The UNREADY state is set to the error 
flag’s value indicating that the item is in fact not ready.  
Since items are processed sequentially, if another item 
that is dependent upon 5 needs its value then the 
calling item will use the UNREADY array with an 
index of 5. The implicit setting of item state resulted in 
many problems such as bad patches to solve circular 
dependencies. 

 

      nUnready(5) = 1  

      Call Fix_Date(nItem)  

      If nError_F > 0 Then 
        nUnready(5) = nError_F 

        Exit Sub 

      End If 

3. Assignment intermingled with error processing: As 
items were evaluated for dependencies and error 
conditions, the original program also set the values to 
the internal program variables. Due to the nature of 
AMS data, time series is often used. An example of a 
time series is 100,1,200,5 which means that starting 
from year 1 through 5 use 100 and from year 5 and  
onwards use 200 as an input for certain items. Time 
series presents some complicated problems because the 
data needs to be evaluated over a period of time and 
thus errors can be present in any of the years. Coupled 
with circular dependencies we found that internal 
assignments were inconsistently used with error 
processing. 

3.4 Refactor code: Once we have identified the functions 
that implement the features that need evolution we begin 
refactoring the code. Typically, refactoring will result in 
low coupling and high cohesion. Refactoring will result in 
the removal of global variables and explicit communication 
rather than implicit communication across system 
functions. The refactoring may require extensive analysis, 
especially if two or more features interact or interfere 
within a given source function.  

For the error processing and assignment problem we 
refactoring by taking following steps: 

1. Removing the UNREADY array: The UNREADY 
array was used implicitly and was tightly coupled with 
assignments.  Instead, we used a component that 
accepted a collection of errors.  Then we developed 
routines to access (add, display and delete) the 
collection for one individual or the entire census data.  
This collection was then passed to the GUI that 
displayed errors to the users. 

2. Replace recursive call with sequential calls to evaluate 
each item: In the original system, items were checked 
for error condition and assignments were made using 
recursion.  In one routine the items were listed using 
the “Select Case” statements, so in case one item 
needed to check dependencies for another item a 
recursive call was made.    

3. When working with a given item in both assignment 
and error processing we established a protocol that no 
other items will be processed.  

These design decisions forced us to think about the core. 
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3.4.1 Identify core by identifying relationships between 
features to be evolved: If more than one features is to be 
evolved, it is important to evaluate the relationship between 
them.  The possible relationships were discussed earlier in 
Section 2. Indirect relationships are typically found in the 
problem domain. Direct relationships are found in the 
solution domain. These relationships can arise at various 
points in the software development cycle. The 
generalization, specialization, and composition are part of 
the problem domain and they are also more abstract in 
nature. The other relationships can arise in either the 
problem domain or in the solution domain, but for 
refactoring purposes they are part of the solution domain. 

It seems natural to ask the question: “What else is a system 
comprised of besides features?” Software systems include 
underlying infrastructure to support and implement their 
features. Turner identifies this infrastructure as “the core” 
[3]. This infrastructure exists solely within the solution 
domain. Users are generally not concerned with the core, 
and therefore it is not directly reflected in the requirements. 
The core is often composed of control structures, protocols 
and communication mechanisms that cannot be traced back 
to any feature at the requirements level. Chen, Rosenblum, 
and Vo [17] make an observation about the existence of 
feature components and core components; core components 
are exercised by all test cases, whereas feature components 
are those exercised by only a subset of the test cases. We 
will use this definition of core. 

The concept of core is also mentioned in feature-oriented 
domain models, although in this context it relates more to 
the properties of some features [18]. The FODA model 
defines the core to be what remains of the system in the 
absence of features. We identified earlier this to be the 
underlying infrastructure. Our methodology is not about re-
architecting the legacy system to impose a radically new 
vision of the software. Our primary goal in this step is to 
identify features that are not part of core by factoring out 
code that is common to all test cases. 

For example, Figure 8 shows three features to be evolved. 
Each of the features is implemented in the code represented 
as a circle. The intersection shown in the figure is the core. 
Running the code profiler tool with the test cases that 
implement these features can identify this intersection.  
Features tend to be cross cutting in implementation. 

Refactoring will bring together code related by features into 
well defined, cohesive units with clear interfaces. 

For the error processing and assignment evolution we 
found that the core consisted of following routines: 

1. Routine to determine age based on date of birth or 
simply a digit  

2. Routine for evaluating time series 

3. Add Error Routine 

4. Routine to evaluate a particular entry in the string 
(other than time series) 

The old code for a given item looked like following: 

1. Set the UNREADY Flag 
2. Do Assignment  
3. Go to dependent items and reset the UNREADY 

state. 
4. Evaluate error flag from dependent item then do 

recursion 
 The new code for assignment looked like following: 

1. Set core items 
2. Do Assignment for Item 1 
3. Do Assignment for Item 2 

The error processing looked like following 

1. Set core items 
2. Check Errors on Item 1 by calling core functions 
3. If error is returned then add Item to collection 

including error 
4. Do next item (sequentially) 

Figure 9 illustrates our findings regarding the feature-
function interaction among the items.  

Items Feature-Function Interaction 

9,5,13,119 SSF 

9,5 DD 

19,158 SFD 

Figure 9. Feature-Function Interactions 

3.5 Create components & Disable old code: Once the 
code is factored, we create components from that code. We 
expect that features encapsulated in components will be 
easy to maintain and evolve. We will initially use 
Microsoft’s Component Object Model (COM). Once 
extracted, the old code is disabled, for example, using 
compiler directives. 

3.6 Plug the component back in and verify behavior: 
Once the old code is disabled, we plug the component back 
into the legacy system. In essence we are evolving the 
legacy system into a component-based system. With our 
approach, the same test cases used in Section 3.2 can be run 
to compare the results before and after the evolution.  

Feature 1 Feature 2 

Feature 3 
Core 

Figure 8: Example of System Core 

Relationship 
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3.7 Verify evolutionary reasons: This is a longer-term 
data gathering and validating step. Once the legacy system 
has evolved using this methodology, we propose that the 
evolutionary result be measured against the expectations. 
This step usually will result in formal and informal data 
gathering regarding performance of the evolved system. 
This step also validates the reasons of why the evolution 
process was started in the first place. 

Our proposed methodology is programming language and 
platform independent. It makes some basic assumptions 
about availability of code profiling tools, requirement 
management tools and domain expertise needed. Since the 
results of the evolution process can be verified easily, we 
believe that this methodology has a good chance of being 
successful within the practitioners. 

4. SOFTWARE EVOLUTION – CURRENT 
TECHNIQUES 

Software evolution is a broad term that covers a continuum 
from adding a field in a database to completely re-
implementing a system. These evolution activities can be 
divided into three categories: maintenance, evolution, and 
replacement [1,21]. Repeated system maintenance supports 
the business needs sufficiently for a time, but as the system 
becomes increasingly outdated, maintenance falls behind 
the business needs. The evolution effort required represents 
a greater effort, both in time and functionality, than the 
maintenance activity. When a system can no longer be 
evolved, it must be replaced. 

Determining the category of evolutionary activity that is 
most appropriate at different points in the life cycle is a 
daunting challenge. Should maintenance continue or should 
the system be modernized? Should the system be replaced? 
To make the correct decision, the legacy system should be 
assessed and analyzed to consider the implications of each 
action. Ransom describes an assessment technique for 
determining if a legacy system should be replaced, 
modernized or maintained [23].  Organizations can simply 
use Ransom’s technique to determine whether they need to 
replace, modernize or maintain their legacy systems.  For 
the purpose of this research we will assume that the legacy 
system in question (AMS) needs evolutionary efforts. 

This research focuses on one aspect in the life of a system: 
software evolution. The primary focus will be on the white-
box evolution technique because this technique makes it 
possible to trace features to particular function(s) in the 
code and then carve the source code to create components. 

5. CONTRIBUTION AND RELATED WORK 
Although CBSE provides viable techniques to develop 
modularized software systems, these solutions focus 
primarily on the solution domain and therefore do not help 
to bridge the complexity gap because CBSE techniques 
often focus on constructing components from scratch rather 
than reengineering them from within the legacy code.  

Recent approaches to evolution within CBSE, such as 
ArchStudio [24], focus on evolving systems that are 
already designed and constructed from well-defined 
components and connectors. The emerging discipline of 
Software Architecture as defined by Garlan and Shaw is 
concerned with a level of design that addresses structural 
issues of a software system, such as global control 
structure, synchronization and protocols of communication 
between component [19]. Software Architecture is thus 
able to address many issues in the development of large-
scale distributed applications by using off-the-shelf 
components.  In particular, it is a useful vehicle for 
managing coarse-grained software evolution, as observed 
by Medvidovic and Taylor [20].  However, Software 
Architecture does not provide an efficient solution for 
legacy system evolution.   

In addition, we are encouraged by results from our prior 
work [3,4] where we converted a standalone executable 
into a component to evolve overall system architecture that 
resulted in a better maintenance platform for AMS [7], the 
feature rich legacy system that we are considering for our 
case study 

While there are some techniques [22,33-37] to locate 
program’s features using execution slices exist, they all 
assume that valid sets of input data (or test cases) are 
available at hand and are predominantly used for system 
debugging rather than evolution.  An opposing argument is 
often times the regression test cases are undocumented but 
are still part of the regression testing because testers are 
afraid they might miss testing a feature.   Not to mention it 
is not always possible to know what group of test cases will 
exercise a given feature(s).  It is also unclear as to how the 
existing techniques define the features and what feature 
model is used. Our methodology suggests using any code-
profiling tool that is available to the developers. χSuds [25] 
tool can be used to identify the program features, however 
it is limited to C.  We have developed a rich feature model 
that considers the issue of feature/function interaction (see 
Section 2).  In addition, the existing techniques certainly do 
not consider evolution in mind as the primary goal. 

Similarly, object oriented methodologies attempt to bridge 
the complexity gap by use cases. Since use cases are not 
represented in the requirements in a cohesive manner, they 
do not represent the end user’s perspective clearly.  In the 
end, the use cases are simply used as a tool for the 
developer, which remains in the solution domain thereby 
making no change to the complexity gap. 

We believe that there are several benefits of our 
methodology.  First, it addresses the important issue of 
legacy system evolution in an incremental manner.  
Second, it bridges the gap between the problem and the 
solution domain by mapping the features that the end user 
sees using regression test cases, to the functions in the 
source code that a developer sees.  Third, it recommends 
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using existing tools to carve out the code related to 
feature(s).  Fourth, it recommends using the existing CBSE 
techniques to construct the components thereby saving 
resources. Fifth, it has provisions for validating and 
verifying the changes made so one can measure success. 

5.1 FUTURE WORK 
We are currently applying the second part of our 
methodology to AMS, a legacy system with rich sets of test 
cases, historical data and features.  We are also developing 
a cost model to measure results.   
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