
Evolving Legacy System Features using Regression Test Cases and
Components

WPI-CS-TR-01-14

 Alok Mehta George T. Heineman
 Chief Technology Officer Associate Professor
 American Financial Systems, Inc. Computer Science
 9 Riverside Office Park Worcester Polytechnic Institute
 Weston, MA 02493 Worcester, MA
 amehta@afs-link.com heineman@cs.wpi.edu

ABSTRACT
There is a constant need for practical, efficient and cost-
effective software evolution techniques. We propose a
novel evolution methodology that integrates the concepts of
features and component-based software engineering
(CBSE). We collect information about a legacy system’s
features through interviews with key developers, users of
the system and analyzing the existing regression test cases.
We found that regression test cases are untapped resources,
as far as information about system features is concerned.
By exercising each feature with their associated test cases
using code profilers and similar tools, we are able to locate
code that we can refactor to create components. These
components are then inserted back into the legacy system,
ensuring a working system structure. Our methodology is
divided into two parts. Part one deals with identification of
source code associated with features which need evolution
and part two deals with creating components. In this paper,
we present preliminary results of the our methodology.

KEYWORDS
Software Evolution, Legacy Systems, Program Slicing
Feature Engineering, Component Based Software
Engineering (CBSE), Testing, Refactoring, Source Code
Renovation.

1. INTRODUCTION
Increasingly, organizations are viewing their software
assets as an investment that grows in value rather than a
liability whose value depreciates over time [1]. At the same
time, organizations are under tremendous pressure to
evolve their existing systems to better respond to
marketplace needs and rapidly changing technologies. This
constant pressure to evolve is driven by escalating customer

expectations and the need to respond to new enterprise
standards, incorporate new products and system features,
improve performance, cope with endless new software
releases, and hardware and software obsolescence.

To effectively evolve legacy systems in this fast-paced
environment, managers require answers to the following
types of question [2]: How do we plan the evolution of a
large and complex system, including the reengineering of
the system? What are the critical success factors of system
evolution? How do we evolve the system without adversely
affecting operations?

1.1. EVOLUTION MODEL
The repeated modification of legacy system has a
cumulative effect that increases system complexity.
Eventually, existing information systems become too
fragile to modify and too important to discard;
organizations mu st consider modernizing these legacy
systems to remain viable.

Legacy systems are now written in modern programming
languages; reengineering offers an approach to
transforming a legacy system into one that can evolve in a
disciplined manner. To be successful, reengineering
requires insights from different perspectives including the
software, managerial, and economic perspective [6]. Many
software maintenance initiatives do not sufficiently
incorporate the user’s point of reference [7].

Researchers [3,4,5,8] have identified the two domains
around which the entire field of software engineering
revolves: the problem domain and the solution domain.
Users interact with the system by inputting their
requirements in input files (or database) that the system
uses. These users are directly concerned with systems
functionality; their perspective is always in the problem
domain. These input files are often part of regression test
cases that are used to check the stability between one
version to another. Developers are concerned with the
creation and maintenance of software development life
cycle artifacts such as components; their perspective is
rooted in the solution domain. A major source of difficulty
in developing, delivering, and evolving successful software

 2

is the complexity gap that exists between the two
perspectives (as termed by Raccoon [4]). The risk to
viewing evolution just within a single domain is missing
the connection between the two domains.

Evolution focused solely on the problem domain may
suggest changes that degrade the structure of the original
code; similarly, evolution based solely on technical merits
could propose changes unacceptable to end-users. The
external evolutionary pressures shown in Figure 1 drive the
implementation of new enhancements and functionality
within the legacy system. During such implementations the
developers are focused in implementing the business logic
that is directly visible to the end users such as a menu item
that spell checks the document in a word processing
application. Often times the protocol and standards are not
followed by the developers in order to meet the project
dead lines, which can result in bad code such as adding a
global variable when not needed. The internal evolutionary
pressures force the developers to either restructure or
refactor the code so the future enhancement or maintenance
becomes manageable and cost-effective. During such
evolutionary activities, the code is refactored, and protocols
and standards are reestablished. The end-user may or may
not see the changes made to the system but the goal of such
refactoring is to reduce the future maintenance costs. Our
research provides methodology for handling internal
evolutionary pressures.

Years ago, researchers identified features as a natural
organization of the problem domain [8,9]. Surprisingly, few
approaches in the research literature concentrate on feature-
based organization of a system's functionality. On the
contrary, the solution domain is full of research that
develops solutions revolving around software artifact
management activities like design, component construction

and testing. However, features are discussed in the problem
domain and not mentioned in the solution domain.

A successful software evolution methodology must be self-
sustaining; that is, over time, it should ensure that evolution
is possible. Towards this end, we have identified an
approach that integrates reengineering, features, and
components. The basic outline of our methodology is as
following:

• Test cases are selected by considering features.

• Slicing is guided by exercising system on the
selected test cases.

• Slicing results drives refactoring, to create
components.

• Results are measured using maintenance cost.

 Our methodology has three basic assumptions. First, we
assume that the legacy system to be evolved is written in
one of the modern programming languages such as Visual
Basic, C++, Java, COBOL or FORTRAN. Our
methodology depends on a code- profiling tool for tracing
the source that implements a particular feature. Second, we
assume that the legacy system have regression test suites.
Third, we assume that some domain knowledge and
expertise is available, although this is not a binding
constraint.

In Section 2 of this paper, we present our feature model that
provides the theoretical basis for the evolution. We present
a novel way to use the code profiling tools in the context of
evolution in Section 3, while sharing some results. Section
4 explores related work and describes the expected benefits
of our methodology.

2. FEATURE MODEL
Users often think of systems in terms of the features
provided by the system. They exercise the system features
by some sort of user input (stored in files or databases)
which often times is also used by system maintainers as a
part of regression testing. Intuitively, a feature is an
identifiable bundle of system functionality that helps
characterize the system from the user's perspective.
Examples of features include ability of a word processor to
spell check or ability of an accounting system to generate
balance sheet statement for a given fiscal year. Software
developers are expected to translate such feature-oriented
requests and reports into a system design. Feature
Engineering is the area that addresses the understanding of
features in software systems and then defines a set of
mechanisms for carrying a feature from the problem
domain into the solution domain [3]. We define the term
feature by partly borrowing from Turner’s definition [3].
We developed our definition by integrating and extending
the definitions from [3,4]:

 A feature is a group of individual requirements

Problem
Domain

Solution
Domain

Internal Evolutionary
Pressures

External Evolutionary
Pressures

Complexity Gap

Figure 1: A unified evolution strategy is demanded.

 3

that describes a unit of functionality with respect
to a specific point of view relative to a software
development life cycle.

This definition considers the root of feature(s) in the
problem domain. It gives hints regarding the way a feature
is implemented, traced [10] and how it can be used for
software evolution because we consider the point of view
relative to software development cycle. For example, one
of the features of a system that performs complex
calculation could be an ability to run in a batch mode
without user’s interaction. To an end-user this feature is a
tremendous time saver as they do not interact with the
system but instead they input their requests in a file or a
database. At the same time this feature is used as a
regression-testing tool by testers to maintain stability
between two versions of the system, and to a developer it
means designing a solution that requires no user
interaction. No matter what the perspective relative to the
life cycle is, we show that features can be located inside a
program using regression test cases and code-profiling
tools. Evolution follows after the location of the code.

2.1 FEATURES AND FUNCTIONALITY
Features and functionality are often used interchangeably
which is a regrettable mistake. While a function is
inherently an encapsulated entity in programming
languages, a unit of functionality may not be so easily
contained. For examp le, when a user spell checks a text
document, many functions might execute.

Users comprehend a system through its features and are
unaware of the specific way in which these features are
implemented. Software developers view the same system
in terms of data types, local and global control, reusable
functions, and units of testing and maintenance; again, we
see a clear gap between the problem and solution domain.
To understand this gap between features and functionality
consider figure 2.

When a single Feature implementation is contained within
many software functions then the point of reference is the
solution domain. Such code is often highly coupled and
embedded within the legacy system. When many related
features are implemented by a single function then the
point of reference is the problem domain. It is trivial when
a feature is implemented by a single function and the
domain distinction is not important. Features and
Regression Tests Researchers from a theoretical point of
view [26-29] have extensively studied regression testing.
Over its lifetime, a legacy system accumulates test cases
that exist to ensure its integrity as it evolves. Often
companies develop proprietary regression testing tools to
automate these tests or to reduce the total number of tests to
execute. However, there has been little discussion on
specifically applying regression testing for evolutionary
reasons. We propose a novel use of dynamic slicing [11]
during regression testing to identify the code artifacts that

interact with a particular feature and to incrementally
refactor the code base to enable its future evolution.

Feature Functionality Domain

1 Many Solution

Many 1 Problem

1 1 Trivial Case

Many Many Solution and Problem

Figure 2: Relationships between features and functionality

Testers, engineers and users work together to develop test
cases to exercise the system. The selection of test cases is
often a manual, analytical, iterative and time-consuming
process. The goal in this step is to obtain right test cases
instead of minimizing the number of test cases. Many
times the testers ensure that the test cases are valid with
respect to the changes programmed into the system. Over
an extended period of time, these test cases reflect the
system functionality in an implicit way because these test
cases are viewed as a tool to test the stability of the system
rather that a database of user input that reflects system
functionality.

2.1. FEATURES/FUNCTION INTERACTION
To complete our description of our feature model, we
identify feature/function interaction as depicted logically in
Figure 3. This analysis is important when two or more
features share common data or functions, and if developers
are trying to identify the functionality implemented by
these features. There are 5 cases where shared functionality
between two or more features either affect the data and/or
functionality in other features:

SSF - Shared Stateless Function: A stateless function [13]
can be shared between two features. To refactor this code,
simply place the common function into a component to be
invoked from both features’ code.

SSFF - Shared State-Full Function: A state-full function
[13] is shared between two features in question.
Refactoring may be complex, involving global variables
and require control structures to make a full analysis [14].

DF – Dependent Function: A feature is dependent on a
function that is part of another feature.

DD – Dependent Data: A feature is dependent on the data
that is part of another feature.

SFD – Strong Function Dependency: A common function
is associated with more than one feature and there is strong
dependency on that common function.

As each feature is executed, the code profiling tools
identify the code slices associated with each feature. Once
the code is identified we can refactor that code to enable
evolution of key parts of the system.

 4

3. METHODOLOGY
There are many reasons for evolving a legacy system [1,6].
When evolving the system, the planned work must be
prioritized first, and then mapped to their associated
features within the system. The system features are then
identified and associated with the test cases, and a
technique is developed to identify the code associated with
each feature using the test cases (see Figure 4). The code is
then extracted to create a component; finally, the
component is inserted back into the legacy system to
validate results. Our goal is to incrementally evolve it. The
methodology we propose does not reduce the complexity of
a legacy system, but it helps to clarify that comp lexity by
explicitly defining component interfaces.

The legacy system that is used as a case study is American
Financial Systems; Incr.’s (AFS) product called Master
System (AMS). AFS is a small (60 employees) software

firm that develops software for the COLI (Corporate
Owned Life Insurance) market. AFS developed AMS to
integrate Life Insurance and Executive Benefits using
mathematical and financial modeling. AMS was developed
nearly 14 years ago using BASIC. During this time,
Microsoft® has evolved BASIC into the more modern
programming language, Visual Basic®. Although, AMS is
classified to be a legacy system, AFS has also evolved
AMS from its original DOS version to use MS Windows.
Currently, AMS uses Microsoft Visual Basic 6.0 ® and
runs on Microsoft’s Windows operating system. We
applied the following eight-step methodology to AMS.

3.1 Prioritize evolution reasons: While it is theoretically
possible to determine an optimal evolutionary path, we
suggest instead that the engineers prioritize their reasons
for evolution, including technical as well as marketing. In
the same way that requirements are prioritized [16]], we
suggest that a clear and concise list be developed that can
dictate the evolution efforts. In this paper, we apply the
methodology in evolving the error processing and
assignment section of the AMS code. It was brought to the
developer’s notice that this area was problematic because a
simple fix or a new enhancement in that area was taking
unreasonable amount of time and often times the fix needed
to be resent to the developer. Error processing is a feature
within AMS that validates user input. Since there are about
400 user inputs (or Items) and many of them dependent
upon each other, this area was a natural candidate for

Figure 5: Test cases and Items relationship

F2
F3

F4
F5

Figure 4: Test cases exercising system features

F1

Features implemented by functions and data within the legacy code

Test Cases

T1
T2

T3
T4 T5

Common Data

Feature 2 Implementation

Feature 2 Implementation

Feature 2 Implementation

Feature 2 Implementation

Feature 2 Implementation

Feature 1 Implementation

Feature 1 Implementation

Feature 1 Implementation

Feature 1 Implementation

Feature 1 Implementation

Common Functions

Common Functions

Common Data

Common Functions

SFD

DD

DF

SSFF

SSF

Figure 3: Feature/Function Interaction

F2
F3

F4
F5

Figure 4: Test cases exercising system features

F1

Features implemented by functions and data within the legacy code

Test Cases

T1
T2

T3
T4 T5

 5

evolution. Upon closer examination we found that in
addition to the error processing, the source code also made
several assignments (user data is stored as strings and is
then assigned to integer, float or array for later use). Thus,
the evolution of error processing in AMS involved two
features, error processing and assignments. Error
Processing is visible to the user but the assignments are
made within the system so they are invisible. In addition,
error processing for a single item may be dependent upon
other items. For example within the AMS system, the
retirement age item value of an individual cannot be less
than policy issue age item, when a user enters the policy
issue age then retirement age must be checked for the
above mentioned error condition. Conversely, if retirement
age is the input item then it must be checked against the
policy issue age for the error condition. There are more
complicated dependencies within the AMS items, for space
reasons we are unable to list them all. Finally, a proper
message must be displayed indicating the problem with the
input item in question. User is also given a GUI to correct
the problem. Clearly the interdependencies between the
items is so called the feature interaction problem mentioned
in Section 2.1.

3.2 Logically arrange features to be evolved:
Once the features are associated with their test cases, we
order the features to be evolved to minimize the
interference between them. The test cases used in this step
can be viewed as the representation of the AMS data
model. The AMS data model is a simple hierarchy of plan,
employee and policy level information where a plan can
have many employees and an employee can have many life
insurance policies. A group of employees are part of a plan.
Information regarding the plan is stored in the Master File
Table. The Master File Table contains the default input for
the entire plan. These input fields are called Items. The
employee information is stored in the Census File Table.
This information (Items) can be varied for each employee
in the plan by indicating that the Master File Item belongs
to the Census File Table. This association allows a set of
Items be varied for a group of employees. For example, if a
given plan has 3 employees who have everything in the
plan the same except of their ages. Then the Master File
Items in this case will contain the same information for all
the Items except that the ages will be stored in the Census
File Table. There are about 400 Items in the AMS and
about 75% of them can be varied from employee to
employee. A test case is a combination of Master File and
Census File data. There are about 250 test cases in the
AMS with an average size of 10 employees per test case.
This step in the methodology provides heuristics on how to
logically arrange features (using test cases) that needs
evolution. We have identified the following three areas
that can help detect interfering features:

3.2.1 Domain Knowledge: Using domain knowledge it is
possible to identify test cases that represent a particular

feature or a group of features. We found that in many cases
the testers knew exactly which test cases would execute
specific functionality in the code.

3.3.2 Documentation: Legacy systems also have rich
regression test suites that consist of hundreds of test cases.
Often these test suites are well documented and they are
already grouped by the functionality that needs to be tested.

3.2.3 Clustering and textual pattern analysis: Related
test cases that exercise a feature of closely related feature
can be clustered. There are several clustering techniques
described in the literature. According to [32]:

Clustering analysis is the organization of a collection of
patterns (usually represented as a vector of measurements
or a point in multidimensional space) into clusters based
on similarity.

The purpose of our research is not to explore the clustering
techniques but to use them creatively. Jain and Flynn
survey existing clustering techniques that can be used to
group related test cases [32]. We begin by describing the
test cases used in this case study and then provide a simple
model that can be used to cluster or logically arrange the
test cases that represent the features that need evolution.

To illustrate the clustering heuristics we selected 10 test
cases and identified 5 sets of items that are considered the
most important user inputs in AMS. We analyzed the user
input and assigned an ordinal value to each of the valid user
input for a given Item. For example, if item number 1 had
ten valid user input then the user input was given a numeric
value of 1 through 10 respectively. We created a matrix of
test cases and Items as shown in Figure 5. We then used
Microsoft Excel™ to calculate the statistical measures that
provide insight on potential clusters of related test cases.
For example, if we consider two test cases T4 and T6
(assuming that all the other items are exactly the same and
only items 4 and 5 vary) we calculate the regression and
standard deviation values to find the best fit lines. It is easy
to see that test cases T4, T6, T8, and T2 can be grouped
together. Similarly, test cases T1, T3, T5, T7, T9, and T10
can be grouped together because they vary by item 1 and
item 5. We can use any of the existing clustering
algorithms in this step, but for simplicity we use regression

Figure 6: Test cases, Functions and Feature relationship

Feature 1 Feature 2

 6

and standard deviation as our measure to help us define the
best fit for the lines. It is possible to use just regression as
a measure. However, we suggest that both regression and
standard deviation be used because it is quite possible that
in a large set of data two unrelated test cases may end up
getting the same value. Using standard deviation as an
additional check can help identify such cases. Using such
heuristics we group the test cases into two broad groups:
group 1 that exercises Feature 1 consists of T4, T6, T8, and
T2 and group 2 that exercise Feature 2 consists of T1, T3,
T5, T7, T9, and T10 in this example (Figure 5). We found
that grouping these test cases into broad categories
simplifies the evolution process by reducing the feature
interaction problem.

Item Number Dependencies
(in order)

9 119,16

5 119,56,9

13 9,5,22

19 158

119 13

Figure 7: Test Clusters

To identify interrelated and dependent items we used a
combination of the three techniques mentioned above. We
collected test cases considered by the testers to be relevant
for the error processing feature within AMS. We also
looked at existing documentation to see what problems
were encountered and the solutions sought. Finally,
although the first two techniques gave us good intuition
regarding the feature interactions, we verified our intuition
by clustering the test cases (see Figure 7) that were used to
test a particular set of item(s) and their dependencies.

3.3 Locating System Features using Regression Test
Cases: Besides validating marginal changes in regression
testing, the test cases for a legacy system can be viewed as
one of the primary source of information about the features
that are most important to the end users. This is
particularly true for AMS because end-users input their
requirements in these test cases. Test cases are a repository
of inputs that exercise the system features. In this step we
provide techniques to data-mine this repository and develop
heuristics for evolutionary purposes. As the regression test
suite increases in size, more and more test cases are used to
exercise the stability of system features from one version to
another. The goal of this step is to identify the test cases
that are correlated to the features we want to evolve. Figure
4 shows, for example, how test cases T1-T5 exercise
features F1-F5. A single test case may exercise many
features and vice versa.

We instrument the source code with code-coverage

software. We run the regression test. We then analyze the
path covered. Finally, we develop heuristics to group
related test cases together that exercise a particular feature
for evolutionary purposes.

The code coverage tool that we used is called
TrueCoverage™ from NuMega®. TrueCoverage™ works
with many programming languages such as Microsoft
Visual Basic, Java, C++ and some scripting languages such
as Jscript and VBScript. To instrument the source code we
compiled the source code image with TrueCoverage™.
Since the regression testing is already being done using
batch mode it was easy to get the instrumented output
against the entire 246 regression test cases. However, these
instrumented images were in a TrueCoverage™ specific
file format. TrueCoverage™ does provide an automated
way to export the specific file format. We had to manually
export each file into a more standard file formats (comma-
separated values) so that we can then import them in a
spreadsheet tool for further analysis. The TrueCoverage™
tool has a merge utility that aggregates all the 246 test cases
that were instrumented. This merge utility revealed that
95% of the code was covered using the 246 test cases. We
are in the process of identifying whether the rest of the
code is either unused or there are hidden features within the
system that are not currently being exercised. The
TrueCoverage™ tool provides the following information
on each of the regression test cases:

§ Function name – Name of the function that got
executed.

§ % lines covered – Percentage of lines in the function
that were executed

§ Called – Number of times the function was called

§ # of lines not executed – Number of lines that were not
executed

§ Total # of lines – Number of lines in the function

§ Image – Name of executable, DLL or OCX that
contains the function

§ Source – Name of source file that contains the function

§ Address – Relative virtual address of the function

For our analysis, we selected two columns: Function name
and % lines covered for each of the test cases that represent
features to be evolved. We sorted the data based upon the
function name column for each of the 246 test cases by
developing a simple utility that combined all 246 test cases.
We then calculated standard deviation on the entire matrix.
Figure 6 shows partial results due to space reasons. The
matrix is sorted based on the standard deviation column.
The function column is the function that got executed and it
is preceded by the module name. Each of columns after the
function column represents the % covered for that
particular test case. Consider the evolution of two features,

 7

Feature 1 and Feature 2, each represented by test cases {T1,
T3, T5, T7, T9, and T10} and {T2, T4, T6, and T8}
respectively, we deduce the following results from the data
in Figure 6:

§ For example, a standard deviation of 0 means either
that all the functions in all test cases were executed or
none of them were. This analysis helps identify unused
code within the system and possible hidden features.

§ Function 1 totally belongs to Feature 1 and likewise
function 3 belongs to Feature 2.

§ Functions 4, 5, and 6 appear to be 100% common to
the two features that we consider for evolution. These
are potentially part of the system core. The concept of
core is defined in the next section.

§ Functions 2 and 7 are a potential for the feature
interaction problem (see Section 2.4) because parts of
function 2 are exercised by Feature 1 (test cases, 7 and
9). Likewise, all of Feature 1 test cases and some of
Feature 2’s test cases exercise function 7.

§ Function 8 is not used by any of the test cases while
function 3 is used by Feature 2.

Applying the aforementioned technique we identified
following problems in the error processing part of AMS:

1. Circular dependencies: As Figure 7 illustrates that item
9 is dependent on 119 and 119 is dependent on 13 that
in fact is dependent on 9. We found about 8 circular
dependencies. The circular dependencies were the
cause of system hangs as we verified this in the AMS’
bug tracking system.

2. Readiness of dependent items: To solve the circular
dependencies and determine what state an item is
during assignment we found that original architects
used an array called UNREADY(), which meant that if
an item is dependent on another item and the other
item still needs to be evaluated then the original item
was identified in UNREADY state. Each item had a
ready state (1) and an unready state (2). The following
code illustrates the issue at hand. We show a partial
listing due to space reasons, in the code below item
number 5 is assumed to be ready by setting the
UNREADY array index. The item’s value is then
evaluated and a global error flag is set to 1 in case of
invalid input. The UNREADY state is set to the error
flag’s value indicating that the item is in fact not ready.
Since items are processed sequentially, if another item
that is dependent upon 5 needs its value then the
calling item will use the UNREADY array with an
index of 5. The implicit setting of item state resulted in
many problems such as bad patches to solve circular
dependencies.

 nUnready(5) = 1

 Call Fix_Date(nItem)

 If nError_F > 0 Then
 nUnready(5) = nError_F

 Exit Sub

 End If

3. Assignment intermingled with error processing: As
items were evaluated for dependencies and error
conditions, the original program also set the values to
the internal program variables. Due to the nature of
AMS data, time series is often used. An example of a
time series is 100,1,200,5 which means that starting
from year 1 through 5 use 100 and from year 5 and
onwards use 200 as an input for certain items. Time
series presents some complicated problems because the
data needs to be evaluated over a period of time and
thus errors can be present in any of the years. Coupled
with circular dependencies we found that internal
assignments were inconsistently used with error
processing.

3.4 Refactor code: Once we have identified the functions
that implement the features that need evolution we begin
refactoring the code. Typically, refactoring will result in
low coupling and high cohesion. Refactoring will result in
the removal of global variables and explicit communication
rather than implicit communication across system
functions. The refactoring may require extensive analysis,
especially if two or more features interact or interfere
within a given source function.

For the error processing and assignment problem we
refactoring by taking following steps:

1. Removing the UNREADY array: The UNREADY
array was used implicitly and was tightly coupled with
assignments. Instead, we used a component that
accepted a collection of errors. Then we developed
routines to access (add, display and delete) the
collection for one individual or the entire census data.
This collection was then passed to the GUI that
displayed errors to the users.

2. Replace recursive call with sequential calls to evaluate
each item: In the original system, items were checked
for error condition and assignments were made using
recursion. In one routine the items were listed using
the “Select Case” statements, so in case one item
needed to check dependencies for another item a
recursive call was made.

3. When working with a given item in both assignment
and error processing we established a protocol that no
other items will be processed.

These design decisions forced us to think about the core.

 8

3.4.1 Identify core by identifying relationships between
features to be evolved: If more than one features is to be
evolved, it is important to evaluate the relationship between
them. The possible relationships were discussed earlier in
Section 2. Indirect relationships are typically found in the
problem domain. Direct relationships are found in the
solution domain. These relationships can arise at various
points in the software development cycle. The
generalization, specialization, and composition are part of
the problem domain and they are also more abstract in
nature. The other relationships can arise in either the
problem domain or in the solution domain, but for
refactoring purposes they are part of the solution domain.

It seems natural to ask the question: “What else is a system
comprised of besides features?” Software systems include
underlying infrastructure to support and implement their
features. Turner identifies this infrastructure as “the core”
[3]. This infrastructure exists solely within the solution
domain. Users are generally not concerned with the core,
and therefore it is not directly reflected in the requirements.
The core is often composed of control structures, protocols
and communication mechanisms that cannot be traced back
to any feature at the requirements level. Chen, Rosenblum,
and Vo [17] make an observation about the existence of
feature components and core components; core components
are exercised by all test cases, whereas feature components
are those exercised by only a subset of the test cases. We
will use this definition of core.

The concept of core is also mentioned in feature-oriented
domain models, although in this context it relates more to
the properties of some features [18]. The FODA model
defines the core to be what remains of the system in the
absence of features. We identified earlier this to be the
underlying infrastructure. Our methodology is not about re-
architecting the legacy system to impose a radically new
vision of the software. Our primary goal in this step is to
identify features that are not part of core by factoring out
code that is common to all test cases.

For example, Figure 8 shows three features to be evolved.
Each of the features is implemented in the code represented
as a circle. The intersection shown in the figure is the core.
Running the code profiler tool with the test cases that
implement these features can identify this intersection.
Features tend to be cross cutting in implementation.

Refactoring will bring together code related by features into
well defined, cohesive units with clear interfaces.

For the error processing and assignment evolution we
found that the core consisted of following routines:

1. Routine to determine age based on date of birth or
simply a digit

2. Routine for evaluating time series

3. Add Error Routine

4. Routine to evaluate a particular entry in the string
(other than time series)

The old code for a given item looked like following:

1. Set the UNREADY Flag
2. Do Assignment
3. Go to dependent items and reset the UNREADY

state.
4. Evaluate error flag from dependent item then do

recursion
 The new code for assignment looked like following:

1. Set core items
2. Do Assignment for Item 1
3. Do Assignment for Item 2

The error processing looked like following

1. Set core items
2. Check Errors on Item 1 by calling core functions
3. If error is returned then add Item to collection

including error
4. Do next item (sequentially)

Figure 9 illustrates our findings regarding the feature-
function interaction among the items.

Items Feature-Function Interaction

9,5,13,119 SSF

9,5 DD

19,158 SFD

Figure 9. Feature-Function Interactions

3.5 Create components & Disable old code: Once the
code is factored, we create components from that code. We
expect that features encapsulated in components will be
easy to maintain and evolve. We will initially use
Microsoft’s Component Object Model (COM). Once
extracted, the old code is disabled, for example, using
compiler directives.

3.6 Plug the component back in and verify behavior:
Once the old code is disabled, we plug the component back
into the legacy system. In essence we are evolving the
legacy system into a component-based system. With our
approach, the same test cases used in Section 3.2 can be run
to compare the results before and after the evolution.

Feature 1 Feature 2

Feature 3
Core

Figure 8: Example of System Core

Relationship

 9

3.7 Verify evolutionary reasons: This is a longer-term
data gathering and validating step. Once the legacy system
has evolved using this methodology, we propose that the
evolutionary result be measured against the expectations.
This step usually will result in formal and informal data
gathering regarding performance of the evolved system.
This step also validates the reasons of why the evolution
process was started in the first place.

Our proposed methodology is programming language and
platform independent. It makes some basic assumptions
about availability of code profiling tools, requirement
management tools and domain expertise needed. Since the
results of the evolution process can be verified easily, we
believe that this methodology has a good chance of being
successful within the practitioners.

4. SOFTWARE EVOLUTION – CURRENT
TECHNIQUES

Software evolution is a broad term that covers a continuum
from adding a field in a database to completely re-
implementing a system. These evolution activities can be
divided into three categories: maintenance, evolution, and
replacement [1,21]. Repeated system maintenance supports
the business needs sufficiently for a time, but as the system
becomes increasingly outdated, maintenance falls behind
the business needs. The evolution effort required represents
a greater effort, both in time and functionality, than the
maintenance activity. When a system can no longer be
evolved, it must be replaced.

Determining the category of evolutionary activity that is
most appropriate at different points in the life cycle is a
daunting challenge. Should maintenance continue or should
the system be modernized? Should the system be replaced?
To make the correct decision, the legacy system should be
assessed and analyzed to consider the implications of each
action. Ransom describes an assessment technique for
determining if a legacy system should be replaced,
modernized or maintained [23]. Organizations can simply
use Ransom’s technique to determine whether they need to
replace, modernize or maintain their legacy systems. For
the purpose of this research we will assume that the legacy
system in question (AMS) needs evolutionary efforts.

This research focuses on one aspect in the life of a system:
software evolution. The primary focus will be on the white-
box evolution technique because this technique makes it
possible to trace features to particular function(s) in the
code and then carve the source code to create components.

5. CONTRIBUTION AND RELATED WORK
Although CBSE provides viable techniques to develop
modularized software systems, these solutions focus
primarily on the solution domain and therefore do not help
to bridge the complexity gap because CBSE techniques
often focus on constructing components from scratch rather
than reengineering them from within the legacy code.

Recent approaches to evolution within CBSE, such as
ArchStudio [24], focus on evolving systems that are
already designed and constructed from well-defined
components and connectors. The emerging discipline of
Software Architecture as defined by Garlan and Shaw is
concerned with a level of design that addresses structural
issues of a software system, such as global control
structure, synchronization and protocols of communication
between component [19]. Software Architecture is thus
able to address many issues in the development of large-
scale distributed applications by using off-the-shelf
components. In particular, it is a useful vehicle for
managing coarse-grained software evolution, as observed
by Medvidovic and Taylor [20]. However, Software
Architecture does not provide an efficient solution for
legacy system evolution.

In addition, we are encouraged by results from our prior
work [3,4] where we converted a standalone executable
into a component to evolve overall system architecture that
resulted in a better maintenance platform for AMS [7], the
feature rich legacy system that we are considering for our
case study

While there are some techniques [22,33-37] to locate
program’s features using execution slices exist, they all
assume that valid sets of input data (or test cases) are
available at hand and are predominantly used for system
debugging rather than evolution. An opposing argument is
often times the regression test cases are undocumented but
are still part of the regression testing because testers are
afraid they might miss testing a feature. Not to mention it
is not always possible to know what group of test cases will
exercise a given feature(s). It is also unclear as to how the
existing techniques define the features and what feature
model is used. Our methodology suggests using any code-
profiling tool that is available to the developers. χSuds [25]
tool can be used to identify the program features, however
it is limited to C. We have developed a rich feature model
that considers the issue of feature/function interaction (see
Section 2). In addition, the existing techniques certainly do
not consider evolution in mind as the primary goal.

Similarly, object oriented methodologies attempt to bridge
the complexity gap by use cases. Since use cases are not
represented in the requirements in a cohesive manner, they
do not represent the end user’s perspective clearly. In the
end, the use cases are simply used as a tool for the
developer, which remains in the solution domain thereby
making no change to the complexity gap.

We believe that there are several benefits of our
methodology. First, it addresses the important issue of
legacy system evolution in an incremental manner.
Second, it bridges the gap between the problem and the
solution domain by mapping the features that the end user
sees using regression test cases, to the functions in the
source code that a developer sees. Third, it recommends

 10

using existing tools to carve out the code related to
feature(s). Fourth, it recommends using the existing CBSE
techniques to construct the components thereby saving
resources. Fifth, it has provisions for validating and
verifying the changes made so one can measure success.

5.1 FUTURE WORK
We are currently applying the second part of our
methodology to AMS, a legacy system with rich sets of test
cases, historical data and features. We are also developing
a cost model to measure results.

REFERENCES
1. N Weiderman, J Bergey, D. Smith, B. Dennis and S

Tilley. “Approaches to Legacy System Evolution”
(CMU/SEI-97-TR-014). Software Engineering
Institute, Carnegie Mellon University, 1997.

2. D. Smith, H. Muller, and S. Tilley. “The Year 2000
Problem: Issues and Implications” (CMU/SEI-97-TR-
002, ADA325361). Software Engineering Institute,
Carnegie Mellon University, 1997.

3. C. Turner, A. Fuggetta, and A. Wolf. “Toward Feature
Engineering of Software Systems ”. Technical Report
CU-CS-830-97, Department of Computer Science,
University of Colorado, Boulder, Colorado, February
1997.

4. L. Raccoon. “The Complexity Gap”. SIGSOFT
Software Engineering Notes, 20(3), Jul. 1995, pp. 37-
44.

5. H. Kaindl, S. Kramer, and R. Kacsich. “A Case Study
of Decomposing Functional Requirements Using
Scenarios”. In Third International Conference on
Requirements Engineering, pp. 82-89. IEEE Computer
Society, Apr. 1998.

6. S. Tilley, and D Smith, “Legacy System
Reengineering, Software Engineering Institute”,
Carnegie Mellon University, Presented at the
International Conference on Software Maintenance,
Nov. 4-8, 1996.

7. S Comella-Dorda. K Wallnau, R. Seacord, and J
Robert. “A Survey of Legacy System Modernization
Approaches”. SEI Technical Note CMU/SEI-00-TN-
003. Software Engineering Institute, Carnegie Mellon
University, Apr. 2000.

8. A. Davis and R. Rauscher. “Formal Techniques and
Automatic Processing to Ensure Correctness in
Requirements Specifications”. In Proceedings of the
1979 Conference on Specifications of Reliable
Software, IEEE Computer Society, 1979, pp. 15-35.

9. A. Davis. “The Design of a Family of Application-
Oriented Requirements Languages”. IEEE Computer,
15(5), May 1982, pp. 21-28.

10. IEEE Standard Glossary of Software Engineering
Terminology, IEEE Standards Collection, Software
Engineering, IEEE, New York, NY. 1994.

11. M. Weiser. “Program Slicing”, In Proceedings of the
5th International Conference on Software Engineering,
IEEE Computer Society, Mar. 1981, pp. 439-449.

12. D. Parnas. “On the criteria to be used in decomposition
systems into modules”, Communications of the ACM,
15(12): 1053-1058, Dec. 1972.

13. J. Field, G. Ramalingam and F. Tip, Parametric
program slicing, Papers of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, 1995, pp. 379-392.

14. R. Pressman. Software Engineering: A Practitioner's
Approach, 4th Edition. New York, NY: McGraw-Hill,
1997

15. Martin Griss, Implementing Product-Line Features
with Component Reuse, Proceedings, 6th International
Conference on Software Reuse, Springer-Verlag,
Vienna, Austria, Jun. 2000.

16. D. D'Souza and A. Wills, Objects, Components, and
Frameworks with UML: The Catalysis Approach,
Addison-Wesley, Reading, MA, 1999.

17. Y Chen, D. Rosenblum, and K. Vo. “Test Tube: A
System for Selective Regression Testing”. In
Proceedings of the 16th International Conference on
Software Engineering, IEEE Computer Society, 1994,
pp. 211-220.

18. C. Kop and H. Mayr. “Conceptual Predesign Bridging
the Gap between Requirements and Conceptual
Design”. In 3rd International Conference on
Requirements Engineering, IEEE Computer Society,
Apr. 1998, pp. 90-98.

19. D. Garlan and M. Shaw, “An Introduction to Software
Architecture”, Advances in Software Engineering and
Knowledge Engineering, Volume I. World Scientific
Publishing, 1993.

20. N. Medvidovic and R. Taylor, "Separating Fact from
Fiction in Software Architecture", 3rd International
Workshop on Software Architecture, Edited by Jeff N.
Magee and Dewayne E. Perry, Orlando, Florida, Nov.
1998, pp. 105-108.

21. N. Weiderman, D. Smith, S. Tilley, and K. Wallnau.
“Implications of Distributed Object Technology for
Reengineering” (CMU/SEI-97-TR-005 ADA326945).
Pittsburgh, PA, SEI, CMU.

22. N. Wilde and M. Scully. “Software reconnaissance:
Mapping features to code,” Software Maintenance:
Research and Practice.

 11

23. J. Ransom and I. Warren. “A Method for Assessing
Legacy Systems for Evolution,” Proceedings, Second
Euromicro Conference on Software Maintenance and
Reengineering (CSMR98), 1998.

24. P Oreizy, N Medvidovic, and R. Taylor, “Architecture-
based runtime software evolution”, Proceedings,
International Conference on Software Engineering,
Kyoto, Japan, Apr. 1998.

25. χSuds User’s Manual, Telecordia Technologies, 1998.

26. H. Agrawal, Horgan, J Krauser, E.W., and London,
S.A. “Incremental regression testing”. In Proceedings
of the IEEE Software Maintenance Conference (1993),
pp. 348–357.

27. H. Leung, and L. White. “Insights into regression
testing”. Proceedings, IEEE Conference on Software
Maintenance, 1989, pp. 60–69.

28. G. Rothermel and M. Harrold. “A safe, efficient
algorithm for regression test selection”. Proceedings,
IEEE Software Maintenance Conference, 1993, pp.
358–367.

29. G. Rothermel. And M. Harrold. “A Comparison of
Regression Test Selection Techniques”. Tech. Rep.,
Department of Computer Science, Clemson University,
Clemson, SC, Oct. 1994.

30. A. Onoma, W Tsai, M Poonawala, H Suganuma.
“Regression Testing in an Industrial Environment”,
Communications of the ACM. Vol. 41, May 1998.

31. B. Beizer. Software Testing Techniques, 2d. ed. R.
Norstrand , New York, 1990.

32. M Jain and Flynn. “Data Clustering – A Review”.
ACM Computing Surveys, Vol. 31, No. 3, Sept. 1999.

33. T. Ball, “Software visualization in the large,” IEEE
Computer, Apr. 1996, pp 33-43.

34. B. Korel and J. W. Laski, “Dynamic program slicing,”
Information Processing Letters, 29(3):155-163,1998.

35. B. Korel and J Rilling, “Dynamic program slicing in
understanding of program execution,” Fifth
International Workshops on Program Comprehension,
Dearborn, MI, May, 1997, pp 80-89.

36. A. D. Malony, D. H. Hammerslag, and D. J.
Jabalonski, “Traceview: A Trace visualization tool,”
IEEE Software, Sept. 1991, pp. 19-28.

37. M Weiser, “Program slicing”, IEEE Trans. On
Software Engineering, SE-10 (4): 352-357, Jul. 1984.

