
 1

The Content Manager: A tool to develop multilingual and multi-
preference web sites

WPI-CS-TR-01-11
Alok Mehta, Piedad Rodriguez, Ricardo Rodriguez George T. Heineman
{amehta,prodriguez,rrodriguez}@afs-link.com heineman@cs.wpi.edu

American Financial Systems, Inc. Computer Science Department
9 Riverside Office Park Worcester Polytechnic Institute
Weston, MA USA Worcester, MA USA

1. ABSTRACT
In this experience paper we outline our experience in
developing a multilingual and multiple preference web
site. In particular we describe Content Manager, a tool we
developed to support the implementation of a business to
consumer (B2C) international web site. We also describe
the business requirements and challenges that we
encountered. There are many commercial tools for
managing a web site’s content, but these tools are unable
to manage the complexity of diverse languages taxation
frameworks, and cultural systems. We found that by
separating the content from the source code (as supposed
to embedding text within the web page), we were able to
focus on the development of the web site instead of
worrying about the differences between target countries.
Content Manager allowed us to maintain this separation
and eased the development process.
2. INTRODUCTION
The Internet makes it possible to reach potential
customers from around the world by breaking down
communication barriers. This opportunity creates
immense challenges for e-business developers who want
to benefit form this situation. We need tools to help
manage not just the content and structure of a web site but
also enable a web site to be developed, deployed, and
maintained for multiple diverse audiences with different
languages and culture.

We describe our experience in building a web site for
selling term life insurance products over the Internet to an
initial audience located in seven countries and three
languages. We designed and developed a tool to manage
the content of this web site. In Section 2 we describe the
main site, its mission, requirements and challenges. In
Section 3 we describe the features of the Content
Manager. In Section 4, we present the architecture of the
Content Manager. In section 5, we discuss the related
work and close with concluding remarks.

2.1. Context of the project
Our main business objective was to create a new
distribution channel for term life insurance products in
Latin America that would be more effective than the
traditional agent structure. We expected to achieve this
objective by developing a web site with the following
characteristics:

• Highly educational: the website is directed to users

that are often not familiar with life insurance or have
misconceptions about it. Since it is very rich in
content, the site should be well structured, be
comfortable to read, and use an appropriate tone and
wording to reach the target audience.

• Transactional: the user should be able to perform a

needs analysis, get online quotes, have comparison
criteria, apply for a product, complete underwriting
procedures, and buy a policy.

• Trustworthy: to sell life insurance policies on-line,

the web site should engender trust by showing
affiliation with the customer. This is achieved by
providing accurate and clear content, full disclosure
on the terms and conditions of the products that are
offered, simple transactional processes, and security.

Aside from the design of the transactional processes,
which are the core of the business and support the revenue
model, a great effort was put in the development of the
content, which is critical to create an educational site, to
show reliability and affiliation, and to reach potential
customers.

Figure 1.0 describes the process flow of the main site
which is divided into a secured and unsecured portion.
The Content Manager manages the content for both
sections. The unsecured portion of the site contains
informational pages regarding the business. The site’s
secured portion is managed under the umbrella of SSL
(128-bit encryption). The heart of the secured site is the
automated underwriting subsystem which queries
potential consumers about their health history in order to
approve (or disapprove) an online coverage of life
insurance. The main site also contains an identity
verification component that verifies consumer
information and the ePayment component that accepts
online payments when the consumer qualifies for
automated coverage. In this paper, we do not discuss the
life insurance domain, identity verification, or the
ePayment components We are concerned with deploying

 2

and maintaining .a web site that will support multiple
languages and be easily extensible.

2.2. Requirements and challenges
We faced numerous design challenges because of the
international nature of the project and specific
complexities of the insurance industry. The following key
points formed the basis for our design:

• We needed to capture each country’s specific

legislation and business environment concerning the
product’s application and purchase process. The site
should be able to adapt to these particularities
without losing commonalities among countries.

• While many of the countries targeted by the site share

Spanish as a common language, there are many
regional linguistic differences. The site must include
local dialects and characteristics to reach each
country’s audience.

• Cultural non-language differences must be
considered in the design of transactional processes.
Some examples include address and telephone
format, currency and currency formats, hour and date
formats, and height and weight units.

• The site should be able to adapt to other user
preferences. In this particular case, users should have
the option to select between a summarized version
and a detailed version of the educational content.

• The site should enable the purchase of life insurance

coverage in either the local currency or in US
Dollars; therefore the system should handle multiple
currencies and exchange rates.

• Assumptions for economic variables such as interest

rate, inflation rate, salary increase rate, and exchange
rate vary form country to country. Default values
should be considered carefully and the user should be
able to modify them.

Various phases of the design and implementation of the
project were developed by a physically disperse team,
which created a communication and coordination
challenge. Team members were multilingual, had
different professional and cultural backgrounds, and
worked in different countries. The technical infrastructure
of the project had to ensure that proper communication
channels among the countries existed, and tools to share
and transfer all sorts of data were available.

Figure 1.0 – Site Process Diagram

Process Flow Diagram

User verification
(Third Party)

Automated underwriting

system

Collect other/more

 Information

Instructions for how to

obtain off line insurance

Get user information for
validation.

Valid user?
Contact customer

service

Payment process
(Third Party)

N o

Qualif ied by

Automated system?

Yes

Yes

N o

Policy delivery

User Information

- Complete Name
- Date Of Birth

- Document Type
- Document ID
- Address

Medical Information
- Underwriting

Questions And
Answers

Other Personal

Information and
Beneficiaries

$

VISIO
CORPORATION

Automated
underwriting

database

(Identity

Verification)

Secured Site (SSL 128 bits)

(Identity
Verification)

(e-Payment)

Browse educational
content

Needs analysis

Preliminary quote(s)

Search and compare
Products

Select product
Application:

Process explanation

and Warnings

Unsecured Site

 3

By operating in multiple countries, we had to integrate
with local providers for specific transactions such as the
identity verification of the users and credit card payment
authorization and processing.

3. The Content Manager
The tool developed to address most of these challenges is
called Content Manager. As its name suggests, Content
Manager makes it possible to administer the entire site’s
content independent from the source code. Content
developers can input, edit, organize, format, translate and
customize every single word that appears in the web site.

3.1. English Content Manager:
We selected the English Content Manager to be the
primary interface for creating the site’s content. In this
module, all the pages of the site are listed, and when one
of the pages is selected its content is displayed. The
content is divided in small subsections identified by a
unique ID that is referenced from the main code. In this
way, one subsection can have the page’s title, another can
have a sub-title, another the first paragraph, and so on;
from the code each content ID is formatted and placed in
the right place.

The user can modify sections of the content in each page
and, after saving the changes, use the Preview option to
verify how the screen will look. Then, using the Publish
tool, changes are made permanent in the database. In this
way, the content can be easily modified without the
programmer intervention.

The appearance of the content can also be defined using
HTML tags, and basic navigation can be implemented
though using the LINK instruction, which converts a
given text into a link to a specific page, using a particular

style from the site’s CSS. The English Content Manager
also allows the content developer to identify searchable
content accessed using the keyword search engine from
the site.

When new pages are added to the site, they can be
included in the Content Manager through the Add Page
option, and in a similar way pages can be removed from
the site with the Delete Page option. Since content can be
added and deleted for each of the pages, the Content
Manager keeps a history of every page, allowing previous
versions of the selected page to be viewed and restored.

User customization can be achieved through the
Preferences option, where any amount of preferences can
be added to the site. In this particular project, this option
was used to target users who prefer short and summarized
contents as well as users who prefer long and detailed
contents. To achieve this customization, a detailed version
of the content was entered in preference #1 and a
summarized version in preference #2. The user can then
select according to his/her preference, the detailed or the
summarized version from the main site. In future
developments this option will be vital to target specific
needs and tastes of the consumers.

3.2. Language Manager
The Language Manager defines the different languages
used within the site. Through this module we addressed
the issue of customizing the language for the different
countries by considering the local accent of each country
as a separate language: for example, Mexican-Spanish
was the language defined for Mexico while Argentine-
Spanish was used in Argentina.

e n c o d i n g

P K e n c o d i n g _ i d

m s _ c o d e
F K 2 l o c a l e _ i d

c o d e _ n u m b e r
F K 1 l a n g u a g e _ i d

p a g e _ c o n t e n t

P K , F K 2 , I 2 p a g e _ i d
P K c o n t e n t _ i d

P K , F K 3 , I 3 p r e f e r e n c e _ i d
P K , F K 1 , I 1 e n c o d i n g _ i d

u i _ c o n t e n t _ c o d e
c o n t e n t _ t e x t
c o n t e n t _ t y p e

p r e f e r e n c e

P K p r e f e r e n c e _ i d

p r e f e r e n c e _ d e s c
p r e f e r e n c e _ s t a t u s

h i s t o r y _ p a g e _ c o n t e n t

P K h i s t o r y _ i d
P K , F K 2 p a g e _ i d

P K c o n t e n t _ i d
P K , F K 3 p r e f e r e n c e _ i d
P K , F K 1 e n c o d i n g _ i d
P K u i _ c o n t e n t _ c o d e

c o n t e n t _ t e x t
c o n t e n t _ t y p e
h i s t o r y _ d a t e

p r e v i e w _ p a g e _ c o n t e n t

P K , F K 2 p a g e _ i d
P K c o n t e n t _ i d

P K , F K 3 p r e f e r e n c e _ i d
P K , F K 1 e n c o d i n g _ i d

u i _ c o n t e n t _ c o d e
c o n t e n t _ t e x t
c o n t e n t _ t y p e

l a n g u a g e

P K l a n g u a g e _ i d

l a n g u a g e _ c o d e
I 1 l a n g u a g e _ n a m e

l a n g u a g e _ s t a t u s

l o c a l e

P K l o c a l e _ i d

F K 1 c o u n t r y _ i d
l o c a l e _ d e s c
l o c a l e _ c o d e
l o c a l e _ h e x _ v a l u e

Figure 2.0 – The Data Model

 4

3.3. Content Translator

The Content Translator is the module used to translate the
content to different languages. Its layout is very similar to
that of the English Content Manager, except that when a
page is selected, the English content for that page appears
un-editable on the left side with a corresponding editable
field to the right where the translation can be input. It also
has an option to Preview the changes.

The Content Translator can simultaneously manage
multiple languages using the Language control, where
each of the languages defined in the Language Manager is
displayed. When a language is selected, the English
content is displayed with the corresponding fields for the
language’s translation. This multi-lingual capability made
possible and easy to achieve the different “flavors” of
Spanish required for each country.

The different preferences can also be translated in a
similar way to the multiple languages. In this way a
Mexican consumer can view a detailed explanation of life
insurance written using a Mexican accent, (Language:
Mexican-Spanish; Preference #1) while an Argentine
consumer can view the summary of the same page with an
Argentine accent (Language: Argentine-Spanish;
Preference #2). The combination of these two features
allows enormous possibilities for customization.

3.4. Control Manager, Error Manager, and
Help Manager

Since the site is not only textual but also transactional,
controls, help text, and errors are also handled in the
Content Manager. The Control Manager allows the
creation, edition, and elimination of controls, and through
the Control Translator, the elements of each control can
be tailored for each language. This functionality allowed
us to solve many of the cultural differences among
countries. For example, the elements for the “Time”
control for Mexico were defined as 1:00PM, 2:00PM, and
so forth, while the same elements for Argentina were
defined as 13:00, 14:00, etc, with a simple switch of
language. This was extended to many other controls,
which permitted us to tailor the transactional process as
easy as the rest of the content without having to create
different screens and screen flow for each country.

Since errors and help text are also part of the content, the
Error Manager and Site Help Manager modules enables
developers to create and modify the help tips to be
displayed when a user clicks on the help icon or makes a
mistake while conducting an operation in the site. Each
error and help text has a unique id that is used in the code
to reference the proper text. Errors, as well as help text,
can also be easily translated in a similar way as the
general content, through the Error Translator and Help
Translator respectively.

3.5. Site Navigation Manager

In addition to managing the content and making easier the
customization of the transactional process, the Content
Manager centralizes the images used in the site for
navigation and aesthetical purposes through the Site
Navigation Manager. In this module, the navigation bars
and graphical menus of the site are constructed by
including the images that will compose them, and
identifying the page that will be displayed when the user
clicks on each of the images.

This module also includes the Image Manager, which
organizes all images included in the site by categorizing
them in common images such as pictures or icons, and
language specific images such as graphical titles.

4. SYSTEM FRAMEWORK
Our mission was to design an easily extensible, web-
enabled, insurance purchasing system with multi-
language support.

4.1. Technology Overview
We developed this site using Microsoft™ based
technology. In essence, we used SQL Server 7.0 database
on Windows 2000 Server platform using IIS (Internet
Information Server) and ASP (Active Server Pages) and
Visual Studio 6.0. While the data model can be supported
by any relational database vendor, we have used MS SQL
7.0. Our tiered architecture is developed in various
programming languages (Visual Basic, C, C++, Java,
ASP) using component based software solutions. The
majority of the system is composed of ASP code and VB
DLLs running in the IIS environment with a SQL Server
7.0 database. MTS supports transactions across multiple
databases.

4.2. The Data Model
Because of space reasons, Figure 2.0 shows a partial data
model of the main site. The Content Manager is
programmed to populate/manage this data model. To
review the features of the Content Manager, see Section
3.0. The most important table in the entire data model is
the page_content table. It contains the text that is to be
displayed on a given web page in a given language for a
given local and preference. Each page within the web site
has a unique id and is identified by the page_id. A given
country may have several different dialects of the same
language as discussed in Section 2.0. For a given country
and language such dialects may be identified by the locale
table. Encoding_id is the combination of the language and
the locale and is used across the entire data model. User
preferences are coded in the preference table. The Content
Manager provides a capability to keep track of historical
content using the history_page_content table.

 5

4.3. Programming Overview
The overall system consists of ASP files and ActiveX
DLLs. The ASP files are divided into 2 main categories:
display and process. The display files will consist of
HTML/ASP code for creating a UI. Display files include
forms, education pages, user messages, login pages, etc.
The process files will consist of ASP code for processing
the input from a display page. Each process page will be
associated with a specific display page (this is true for
every process page except generic_proc.asp). Every user
request to the IIS server will always request a process
page that will first initialize the system (ie. language,
local, user-state, etc.). The server responds to each request
through some specific processing and eventually a display
page is returned to the user. The request is fulfilled once
the display page is drawn.

4.3.1. Process Flow
Figure 3.0 illustrates the process flow of a web page
within the main site. A web client request always
launches a process (_proc.asp) page. The process page
will do some level of processing and then call a display
page (.asp) which will send HTML back to the user and
end the response. A request always begins with a process
page and ends with a display page. Every process will
begin by including include_main.asp (includes the
system) and calling process_init() (performs system
initialization).

process_init() sets the following global variables:

• timestamp = time when received request

YYYYMMDDHHMMSS

• encoding_id = language encoding id for the

request/response

• preference_id = preference id for the

request/response

• db_manager = DB management object initialized to

NOTHING

• submit = submit value of the request Sets the submit

value of the user request. The submit value is
determined by finding the first variable starting with
‘SUBMIT_’ in the Request.Form or
Request.Querystring object. The part of the name to
the right of ‘_’ (submit_goto results in GOTO,
submit_save results in SAVE, etc.).

• Draws the appropriate display page if the user request

does not require processing (ie.
submit_goto=submit&goto=display1.asp) This
request sent to any processing page will
automatically display the page referenced by the goto
variable, without performing any other processing.

4.3.2. Creating a Web Page

1. Determine the name of the page and create it with an
.ASP extension ie.page1.asp . Make sure to add a
reference for the new page into include_paint.asp .
This page will consist of straight HTML/ASP code.

2. Determine if your web page will require variable
declarations inside it. If yes then you will need an
additional file with the same name as your display
page with _disp extension ie . page1_disp.asp . Make
sure to add a reference for this page into
include_display.asp . This page will consist of
HTML/ASP code wrapped in functions. The page
will have at least one function, the main display
function ie. page1_disp(), and possibly other
functions relevant to that particular display.

3. Determine if your web page requires processing. If
yes then you will need another file with the same
name as your display page with _proc extension ie.
page1_proc.asp .This file will contain ASP script for
processing the results of the display page. Make sure
to restart the IIS application (save Global.asa)
because all _proc.asp files get cached in memory by
the system.

4.3.3. Database Access

All Database (DB) access is done through a centralized
VB DLL, db_manager. This DLL provides a simplified
DB interface through ADO and ODBC. It also manages
DB connections by opening new connections and reusing
active connections. All active connections are
automatically closed upon object destruction. In ASP,
db_manager is called through include_dbconn.asp which
contains functions to provide a simplified interface to
db_manager. These functions should be used to access
db_manager in ASP pages. DLLs that require DB
connectivity should interface to db_manager directly.

5. Conclusion
Using Content Manager made it possible to develop this
multi-country, multi-language, and multi-preference
website. In this project, many of the goals and challenges
were related to the site’s content and therefore the
development and use of this tool was critical to the
project’s success.

Since all the content could easily be managed
independently from the code, the development efforts
could be directed towards the transaction processing and
the complex calculations required of insurance products.
Also, having access to the Content Manager through the
Internet made possible the development, editing, and
management of the content from multiple geographical
locations. From the project management perspective, this
resulted in a more efficient allocation of resources, and
lower development times.

 6

It is clear that the audience that can be reached through
the Internet is not homogeneous and therefore it should
not be treated as such. The Content Manager is a tool that

can be adapted to suit the requirements of many website
development projects that require to reach users at an
individual level.

Figure 3.0. Process Flow
User Interaction in a
display page *.ASP
(URL click or FORM

submit)

System Process Flow

Does *.ASP
page have

*_PROC.ASP?
Yes No

User Interaction goes to
GENERIC_PROC.ASP

User Interaction goes to
*_PROC.ASP

Include file
INCLUDE_MAIN.ASP
(includes the system)

Call function
PROCESS_INIT()

(initialize global vars &
simple page directs)

Is the request
 for a display

page?

Yes
Paint the display page

specified by the request

END

No

Does *.ASP
page have

*_PROC.ASP?
No

In this case
GENERIC_PROC.ASP
is executing and does

nothing more

END

Yes

Check the value of
SUBMIT and perform
specific processing

Paint a display page to
present GUI back to the

user
END

