
1

An Open Source Laboratory for Operating Systems Projects

Mark Claypool, David Finkel and Craig Wills *

{claypool|dfinkel|cew}@cs.wpi.edu

Computer Science Department
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609

Abstract

Typical undergraduate operating systems projects use services
provided by an operating system via system calls or develop
code in a simulated operating system. However, with the
increasing popularity of operating systems with open source
code such as Linux, there are untapped possibilities for
operating systems projects to modify real operating system code.
We present the hardware and software configuration of an open
source laboratory that promises to provide students that use it
with a better understanding of operating system internals than is
typically gained in a traditional operating systems course. Our
preliminary projects and evaluation suggest that thus far the lab
has achieved its primary goal in that students that used the lab
feel more knowledgeable in operating system and more
confident in their ability to write and modify operating system
code.

1 Introduction

Worcester Polytechnic Institute (WPI) is a private
university with approximately 2800 undergraduate
students and over 400 computer science majors. As part
of its core curriculum the Computer Science Department
offers students an introductory Operating Systems course.
The course covers traditional topics in operating systems,
such as process management, synchronization and
memory management using well-known texts
[SG98,Tan92]. The course has been taught using the
general purpose Unix computing facilities provided by the
Campus Computing Center. Typically, students did
projects to synchronize among a set of Unix processes or
threads, and virtual memory system projects using user-
level simulations. The nature of the projects means that
students get experience with “system programming”
while learning about operating systems concepts. Our
systems courses were successful in providing students a
practical exposure to systems calls through projects that
access the many operating system services from user
programs, but had not been able to provide an adequate
`hands-on' experience with operating system internals.

By using a proprietary Unix operating system, the
students did not get an opportunity to even study, let
alone implement, real operating systems code. We had
considered switching to an operating systems simulation

environment such as Nachos [CPA93] or others
[KS91,GBC+99], but had not moved in that direction because
while students implement operating system code, they do so
in a simulated operating system. We did not believe this was
an improvement over the current approach.

Systems curricula must address the fact that operating
systems with open source code such as Linux [Lin] are not
only available, but becoming serious competitors to
commercial products in the PC market. Using an open source
operating system not only provides students with production-
quality system source code for study, but also one on which
they can experiment with the system if is not designated for
general use.

Courses supporting open source projects must provide a
laboratory allowing unrestricted access to the machines, but
in a safe manner both for students in the class and for
students outside the class. In order for students to modify the
operating system code, they need (or can get) root (or super-
user) permission. Thus, each machine is insecure in that any
file on the machine can be compromised, both in terms of
privacy and integrity. This means that open source project
machines cannot be easily time-shared since they can be
unstable and not private. There must be quick ways to
selectively repair or re-install the software on a machine in
the event that a system is inadvertently compromised.
Moreover, a super-user can infiltrate the network, sniffing
network packets and sending large amounts of data,
intentionally or inadvertently, in a denial-of-service attack.
This requires additional protection outside of the machine
itself to create a productive, yet protected environment.

Laboratories at three institutions along with the associated
curriculum have served as prime influences on our approach.
These laboratories are: a Linux-based lab at Auburn
University developed with NSF support [CC97];
ALAMODE, a lab for distributed environments at Colorado
School of Mines also supported by NSF [CM99]; and an
advanced systems lab at Michigan Technological University
[MK99].

Our approach builds upon this previous work in operating
and distributed systems to enhance our introductory operating
systems course. The primary focus is the development of a
laboratory of machines, the Free/Open Source Laboratory

* This work is partially funded by the National Science
Foundation Course, Curriculum and Laboratory
Improvement Grant DUE9980803.

2

(FOSL, henceforth called the Fossil lab), running the
Linux operating system along with projects to use these
machines. The Fossil lab offers the chance to increase
emphasis on a `hands-on' experience in the design and
implementation of a large piece of systems software that
is practical to modern computing systems. A Linux
machine is assigned entirely to one group of students for
privacy and stability, but is configured such that all
students can use any machine in “guest” mode to increase
productivity. Custom scripts are placed on publicly
available bootable CDs to allow quick re-installation of
client machines in the event of machine crashes. Lastly,
the outside campus is protected from inadvertent network
traffic by a firewall (a high-performance Linux server).

A principal theme in developing the course projects is a
“performance supplement” where we examine
performance issues of different system designs and
implementations. This approach to teaching operating
systems is espoused in a book by Dowdy and Lowery,
which was “commissioned” by the ACM SIGMETRICS
and the Computer Measurement Group (CMG) [DL93].

We believe the development of this dedicated lab will not
only provide students opportunities to use, but also to
experiment with a real system for operating systems
work. These opportunities are not available in a general-
purpose lab where the machines run a commercial
operating system. It is our expectation that the work will
not only have a strong positive effect on WPI and its
students, but also serve as a cost-effective model that can
be replicated at other institutions.

2 Approach

Our approach involves three steps: 1) configure both the
hardware and software in the Fossil lab to support open
source experimentation; 2) develop projects which allow
practical exploration of core operating system concepts
using the Fossil lab; and 3) evaluate the impact of the Lab
in order to disseminate results and tune projects for more
effective impact.

2.1 Configuration

The Fossil lab has 30 Intel Pentium 3 600 MHz desktop
computers and 1 server. We employed a graduate student
for 3 months during the summer to assist in setting up the
lab and in developing the projects to be used in the
courses. This same student then stayed on through the
year as a teaching assistant for the OS course, doubling as
the Fossil system administrator.

The hardware configuration is designed to provide an
acceptable project development environment for each
client machine, while still allowing access to the Internet
via the server. The server and networking equipment are
physically secure. In addition, the clients are configured

so that gaining root access to the machine, and therefore
allowing access to all source code, is very difficult except for
the group assigned to the machine.

The server connects to the clients via an Ethernet link,
connecting to two 24-port hubs. The two hubs are kept in a
physically secure network closet. The choice of having every
client on a hub rather than a switch was made since the
course is an operating systems course, not a networking
course and the software configuration is designed to keep
network traffic at a minimum. If needed, adding switches
instead of hubs, and adding additional network interface
cards to the server can scale the network performance.

The client machines are physically located in the Fossil lab.
In order to not allow root access to the machines via a boot
floppy, the boot sequence of the machines is changed in bios
to first boot from the hard drive, then the CD ROM. This
setting is protected via a BIOS password, which only the
group assigned to the machine knows.

The software configuration is designed to provide as much
local access to the client machines as possible for the students
in order to provide good performance for developing projects
and to reduce network load. Each student group is given the
root password for one client. Modifications to the kernel are
then done directly on their client machine, using root
permissions to install the kernel and reboot the machine.
Each student receives an account on the server, but uses this
account primarily for backups of their project code and
access to their Fossil clients from outside the Fossil lab.

The clients are all on a private subnet while the Fossil server
is on the main WPI network. Remote access to the Fossil
clients from outside the lab (say, from a dorm room) is
available by first connecting to the Fossil server, and from
there to any of the clients.

To reduce the susceptibility of network snooping for
passwords, only secure connections (ssh, slogin, scp)
are enabled to the Fossil server. The server is also configured
to allow clients to browse the Web as if they were on the
main WPI network.

Each Fossil client is configured with three accounts. As
indicated above, there is a ‘root’ account that is given to each
group for the machine to which they are assigned. Each
group then creates a user account for each member of the
group, giving each user account sudo permission to allow
running commands as root. In addition, each client machine
comes configured with a ‘guest’ account, with the same
password for all client machines in the lab and is given out to
each student. The guest account allows student to log into
any idle machine in the lab, even if they are not assigned to it.
This gives the ability to use the machine for browsing the
Web or for document preparation. The third account is an
‘admin’ account which allows access as root for the teaching
assistants, system administrators and course instructors.

3

Lastly, each student is able to start an X session on their
assigned machine from any idle machine, which allows
multiple group members to work on their assigned
machine from multiple Fossil clients.

We developed software scripts to facilitate the initial
installation of each Fossil client as well as support several
different methods for repair and re -installation. The
scripts are put on a bootable CD ROM that runs a
minimal kernel. The script support installation methods
of: full which repartitions and reformats the hard-drive
and re-installs all software from the initial, default
configuration; linux which restores the original Linux file
system but leaves the home directories alone; and kernel
which restores just the Linux source code and re-installs
the original bootable kernel.

3 Projects

The first offering of our Operating System course had 4
projects utilizing the Fossil lab1, some based on [Nut01].
In the projects the students were required to study the
current operating system internals, design and implement
a solution, evaluate the performance of their solution and
answer some short questions regarding extensions to their
project. Students turned in their complete source code so
that the modified kernels could be re-compiled and
rebooted for grading.

The first project was designed to get students familiar
with the Linux system. It included a series of 'cook-book'
type instructions that walked students through the
addition of user accounts, the use of some common Unix
tools such as find and grep, the location of the Linux
source code, instructions on re-compiling and rebooting
the kernel, and saving work to the Fossil server. The set
of commands used was not intended to be exhaustive, but
rather was intended to get students formed into groups
and introduced to some of the Linux fundamentals
required for the later projects.

The second project involved creating a new process
scheduling algorithm. Students studied parts of the Linux
scheduler in depth to understand how it decides on which
process to run. They then modified the Linux scheduler to
implement a new scheduling policy, called fair-share
scheduling, that allocated CPU time based on number of
processes for each user. They evaluated how their new
scheduler performed in terms of fairness and overhead
and wrote up details on their implementation and
evaluation.

The third project, worth twice the points of the other
projects, had students implement a new synchronization

1 Project descriptions online at http://fossil.wpi.edu

primitive, called an event and write code to use it. Students
1) created new system calls to allow users to access their new
events; 2) designed and implemented data structures that
provide the functionality required of the events; 3) added
source code to the Linux build process; and 4) designed and
developed a simple text -based video producer and video
consumers to use the events.

The fourth project had students design and implement a new
device driver, called an mbox (for ‘mail box’ or ‘message
box’) for a FIFO device. The driver was ‘virtual’ in the sense
that it was not tied to a piece of particular hardware. Rather, it
appeared as a device to the operating system and the user by
registering itself with the device independent layer of the
Linux kernel. Students implemented the device driver as a
loadable module, a convenient means of extending Linux
functionality.

4 Evaluation

Thus far, we have used the Fossil lab successfully in one
operating systems course. We evaluate the effectiveness of
the Fossil lab for this course by analyzing feedback from the
Teaching Assistants and through a survey of the students that
used the Fossil lab compared with a survey of students that
took a previous, non-Fossilized Operating systems class.

The operating systems course was primarily composed of CS
majors, but nearly a third of the class is from other
disciplines, especially Electrical Engineering. Most students
had their own PCs in their dorms, but only 1/3 of them ran
Linux on their PCs.

In the primary offering of the course, there were few major
difficulties. One machine crashed for several days due to a
loose motherboard connection. There were 5 or so full re-
installations from students that inadvertently compromised
their hard-drives. There were nearly a dozen linux
installations that restored the original Linux kernel after
students were unable to get their modified kernel to work.

The class surveys allowed students to provide anonymous
responses to about a dozen questions designed to
quantitatively measure the impact of the Fossil lab on student
understanding of operating systems. Students provided
numeric answers to statements based on their agreement,
where a ‘1’ indicated they strongly disagree with the
statement, ‘2’ indicated they disagree, ‘3’ indicated
agreement and ‘4’ indicated strong agreement. 26 of 70
students responded to the survey in a previous course without
the Fossil lab and 49 of 70 students responded to the survey
in the course with the Fossil lab. Due to space constraints, we
only present the results from several key questions below.
“Traditional” represents student agreement in the earlier
offering of the operating systems course, and “Fossil”
represents student agreement in the course that utilized the
Fossil lab.

4

 “I think the course material and projects helped me to gain
a good understanding of operating systems in general.”

Traditional 3.3
Fossil 3.3

From the above results, students feel that both offerings of
the course provide equal understanding of general
operating system knowledge. This indicates that the
addition of the Fossil lab did not detract from the general
concepts taught in the class.

“I think the course material and projects helped me to gain
a good understanding of operating systems in terms of the
services they provide at the system call level.”

Traditional 3.0
Fossil 3.3

From the above response, it appears that students using
the Fossil lab have a perception of better understanding
the system call services that an operating system provides.
This is somewhat surprising since both course offerings
made about equal use of system calls from the user level.
However, the Fossil lab course did have students
implement additional system calls so this may have added
to their understanding.

“I think the course material and projects helped me to gain
a good understanding of operating systems internals.”

Traditional 2.9
Fossil 3.3

 “I think the course material and projects gave me
experience that would help me write or modify portions of
an operating system.”

Traditional 2.6
Fossil 3.1

From the above two responses, it appears that the Fossil
lab achieved a primary goal in helping students in their
understanding of operating system internals.

The surveys also provided space for free-form comments,
which we examined carefully. Here we provide a small
excerpt of some of the comments that we feel summarize
some of the opinions voiced in the use of the Fossil lab:

“Making alterations to the Linux kernel taught me far more than
any other part of the course.”

“When the kernel crashed, we had to manually reboot the
system, which took an awful lot of time.”

“I have seen people take other OS courses and they did not dive
into the material as far as we did because they will not let you
modify the OS on any of the school servers.”

5 Conclusion

The increasing popularity of today’s open source
operating systems provide the opportunity for students in
operating systems courses to design and implement

course projects that modify real, production quality operating
system code. In this work, we have presented the
configuration and evaluation of the Fossil lab, an unrestricted,
yet safe environment for students to gain hands-on experience
with real operating system code.

Thus far, we have only recently completed configuration of
the Fossil lab and have used it to teach one undergraduate
operating systems course. Our preliminary evaluation
suggests that students using the Fossil lab appear to have a
better understanding of operating system internals and feel
more confident in their ability to write and modify operating
system code. Further evaluation will prove critical in
completely assessing impact as we use the Fossil lab to
support additional operating systems courses, including our
offering of an undergraduate Distributed Computer Systems
course.

6 Acknowledgements

We would like to thank Teaching Assistants Hari Kannan and
Jae Chung for their excellent work in setting up and assisting
with Operating Systems in the Fossil lab.

7 References

[CC99] R. Chapman and W. H. Carlisle. A Linux-based Lab for
Operating Systems and Network Courses. Linux Journal, 1997.

[CM99] T. Camp and M. Misra. Alamode: A Laboratory at Mines
offering distributed Environments. Colorado School of Mines. NSF
DUE-CCLI funded proposal, 1999.

[CPA93] W. Christopher, S. Procter, and T. Anderson. The Nachos
Instructional Operating System. Technical Report CSD-93-739,
University of California at Berkeley, 1993. URL:
http://www.cs.berkeley.edu/~tea/nachos/index.html

[DL93] L. Dowdy and C. Lowery. P.S. to Operating Systems.
Prentice-Hall, 1993.

[GBC+99] M. Goldweber, J. Barr, T. Camp, J. Grahm, and S.
Hartley. A Comparison of Operating Systems Courseware. In
Proceedings of the ACM SIGCSE Conference, pages 348-349,
March 1999.

[KS91] M. Kifer and S. A. Smolka. OSP: An Environment for
Operating Systems Projects . Addison-Wesley, 1991.

[Lin] The Linux homepage at Linux online. URL:
http://www.linux.org/

[MK99] J. Mayo and P. Kearns. A Secure Unrestricted Advanced
Systems Laboratory. In Proceedings of the ACM SIGCSE
Conference, pages 165-169, March 1999.

[Nut01] G. Nutt. Kernel Projects for Linux. Addison-Wesley, 2001.

[SG98] A. Silbershatz and P. Galvin. Operating System Concepts.
Addison Wesley, 5th edition, 1998.

[Tan92] A. Tanenbaum. Modern Operating Systems. Prentice-Hall,
1992.

