WPI-CS-TR-00-17 June 2000

The Performance of Distance Education Video in Java

by

Mark Claypool
Tom Coates
Shawn Hooley
Eric Shea
Chris Spellacy

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

The Performance of Distance Education
Video in Java

Mark Claypool, Tom Coates, Shawn Hooley, Eric Shea and Chris Spellacy
{claypool}@cs.wpi.edu

Computer Science Department
Worcester Polytechnic Institute
100 Institute Road, Worcester MA 01609

June 20, 2000

Abstract

The tremendous growth in both Java and multimedia present an opportunity for cross-platform
distance education systems exploiting the power of audio and video to enhance the education
process. However, little research has been done on evaluating Java multimedia performance nor on
assessing its viability as a platform for distance education. In this paper, we present experiments
that measure the multimedia performance of an MPEG-1 client in Java, and evaluate its potential
as a distance education platform considering both video frame rate and jitter. We find Just-In-Time
compilation, local media access and processor choice significantly affect multimedia performance,
while choice of operating system, Java virtual machine and garbage collection have a negligible
effect on multimedia performance. While overall Java still lags considerably behind multimedia
performance in C++, suitable video performance can be achieved in Java, which, if carefully
deployed, promises to enhance distance education systems.

1 Introduction

Traditional education systems are increasingly being challenged with providing education
to students that are not able to travel to the schools themselves. At their heart, these
distance education systems have a teacher and students separated by physical distance and
relying upon technology to support the educational process. While early distance education
efforts relied upon closed-circuit television and telephones to facilitate instruction, the power
of today’s computers and the connectivity of today’s networks present the opportunity for
multimedia from an online teacher, over a network to the desktop of students [19]. These new
streaming multimedia applications promise to enhance the effectiveness of distance education

Figure 1: Java Runtime Environments. This figure depicts the possible runtime environments
for a video application, as well as a C++ application.

programs by allowing interactive sessions between teachers and distant students coupled with
the ability to synchronize online voice and video with the lecture notes and slides.

Java is an equally promising technology for distance education with the potential to
transform application development as we know it. The “write once, run anywhere” nature
of Java bytecode allows distance education providers to deliver a uniform interface, and
hence a uniform education, to each student regardless of computing platform. This becomes
especially true as end-host computing environments that students may be using are becoming
more diversified, from Web TVs and palmtops to PCs and full-featured workstations. The
Java Media APIs are designed to meet the increasing demand for multimedia, supporting
audio, video, animations and telephony [23]. Distance education systems such as SHLL [4]
and CUseeMe [32] that use video along with other presentation media, or distance education
approaches such as through adventure games [3] that support interactive distance, or even
entire distance education systems such as at the Open University [30], will inevitably depend
upon multimedia applications developed in Java.

Before Java can be executed, it must first be compiled from source code into what is
known as bytecode. There are several different ways of executing bytecode as native machine
code: a Java Virtual Machine (JVM) is an interpreter that translates the bytecodes into
machine code one by one, over and over again; a Just in Time (JIT) compiler translates
some the bytecode into machine code just before they are to be used and caches them in
memory for reuse; and a static native compiler translates all the bytecode operations into
native machine code, taking full advantage of traditional compiler optimizations. Figure 1
shows these run-time options along-side the option of compilation of native.

Related work on Java performance has concentrated on the performance of traditional
benchmarks such as Spec95 and the jBY TEmark in Java environments [20, 15]. CaffeineMark
seeks to provide an indicator of Java Applet performance in a Java runtime environment
[27]. Other research has concentrated on achieve optimum perform in Java environments

T ottmotion vido. Above s o benei.
30
’s / ‘ Highest quality for some content. ‘

No longer see individual frames. ‘

/’ Eye starts to blend frames into motion. ‘

3 4—’-‘ Minimum acceptable framerate for many tasks. ‘

‘\‘ Unacceptable for most video tasks. ‘

15
12

Framerate

Figure 2: Frame Rate and Application Quality. The above figure depicts a range of video
frame rates and their affects on the quality of a multimedia application.

[10]. Such research has shown that JIT and static native compilation can provide impressive
performance improvements over purely interpreted Java.

However, traditional benchmarks tend to model traditional application performance.
Multimedia applications have very different performance requirements than traditional appli-
cations. Unlike traditional applications in which response time, such as the time to complete
a compilation, is the basic unit of performance, the basic unit of multimedia performance is
the rate at which frames (either audio or video) are played. Frame rate has a direct impact
on how understandable a distance education lecture will be, how satisfied students will be
with the quality of the educational process and even how attractive the educational subject
will seem [1, 22, 29, 12, 14]. Figure 2 depicts the effects of frame rate on multimedia quality.

Starting from the bottom, rates of 0-2 frames per second are typically unacceptable for
video-based tasks. While the video images may still be useful, the media is perceived more
as a series of still images than as a sequence of video frames. 3 frames per second has been
found to be the minimum acceptable frame rate for many video-based tasks. At about 7
frames per second, the eye starts to blend the individual frames into smooth motion. From
12-15 frames per second the eye stops being able to distinguish the individual frames. At
20 frames per second, maximum video quality is achieved for low-motion or low-resolution
video. 30 frames per second achieves maximum video quality for all videos, as the eye does
not perceive any differences for video sequences played at frame rates higher than 30 frames
per second.

The performance of a distance education multimedia is also influenced by the successful
delivery and timing of the these frames. Although we often think of multimedia as a stream
of data, computer systems handle multimedia in discrete events. An event may be receiving
an update packet or displaying a rendered video frame on the screen. The quantity and
timing of these events give us measures that affect application quality. There are three
measures that determine quality for most multimedia applications [5]: delay, the time it
takes information to move from the server through the client to the user; jitter, the variation

sender sO sl s2 s3 s4

receiver ro rl r2 r3 ra
A Jitter and L oss Free Stream

- i i Sz\i 54\
receiver ro rl r2 r3 ra
A Stream with Jitter
sender i i s\z i s\jl
receiver ro rl r2 r3 ra

A Stream with Packet L oss

Figure 3: Jitter and Loss in a Multimedia Stream. The above figures model packet video
between sender and receiver. Each si is the time at which the sender transmits video frame i. Each
r7 is the time at which the receiver receives frame 1.

in delay, can cause gaps in the playout of a stream such as in an audioconference, or a choppy
appearance to a video display; and loss which can take many forms such as reduced bits of
color, pixel groups, smaller images, dropped frames and lossy compression.

In the absence of jitter and packet loss, video frames can be played as they are received,
resulting in a smooth playout, as depicted in Figure 3-top. However, in the presence of jitter,
interarrival times will vary, as depicted in Figure 3-middle. In Figure 3-middle, the third
frame arrives late at r2. In this scenario, the user would see the frozen image of the most
recently delivered frame (frame two) until the tardy frame (frame three) arrived. The tardy
frame (frame three) would then be played only briefly in order to preserve the timing for
the subsequent frame (frame four). In the presence of packet loss, some frames will not even
arrive at the receiver, as depicted in Figure 3-bottom. In Figure 3-bottom the third and fifth
frames do not arrive at the receiver. In the case of the loss of frame three, the viewer would
see a frozen image of the most recently delivered frame (frame two), and the video stream
would then jump to the next frame that arrived (frame four).

Delay and loss are the primary concerns for traditional text-based applications, while
jitter has been shown to be a fundamental concern for multimedia applications [7]. Since
many network performance studies concentrate on the effects of loss on multimedia quality
[24, 17, 16, 13, 12], we concentrate on jitter, and of course frame rate, as measures of Java
video performance.

In order to understand how Java might impact the performance of distance-based educa-
tion using multimedia, it is important to examine some of the overhead associated with Java
run-time environments. Figure 4 depicts the run-time overheads associated with running

Figure 4: Java Run-time
executing Java programs.

Execution. The above figure depicts the relative run-time spent

Garbage

0,

Collection 15%

55% | Bytecode Thread 15%
Execution Synch. ’

GC frees memory

Free Kb

800 T
700

Low
Memory.

600

Begin GC

2
I

500

400 ~
300 ~
200

iJ
.
.

.
.

~

/
/

100 A

0 T 1
— [s2) wn N~ (o) -~ [s2) (Yo} N~ (o) - (s
- - - - - &N «

(Halfhill *98) Seconds

Figure 5: Garbage Collection. Available memory decreases as objects are created. Low memory
triggers garbage collection which frees up objects that are no longer being used.

Java applications. Roughly half of the time is spent executing bytecode [15]. The other half
of the time is used in doing garbage collection to free up memory that is no longer used,
synchronizing threads and miscellaneous tasks such as class loading and bounds checking.

As to garbage collection, Java, like other object-oriented languages, makes heavy use of
memory. Java removes the burden of memory management from the programmer through
runtime garbage collection. This freedom comes at a performance price, however, as JVMs
often spend 15 percent to 20 percent of their time on garbage collection [15]. Most sig-
nificantly, a chart of the memory usage of a JVM shows a jagged sawtooth pattern (see
Figure 5, from [15]), indicating that garbage collection is intermittent and likely increases
jitter. Moreover, our previous work has Java servers do suffer from increased jitter versus
native-code servers [6].

In addition to the Java runtime options and choice of JVM, JIT compilation and garbage
collection, client applications may be configured in a variety of other ways, as depicted in
Figure 1. The video file can be delivered by a remote server or accessed from the local disk,

the client processor can be upgraded, or the client can choose an application developed in C
or C++.

In this work we investigate how effective a distance education platform Java can be by
measuring the performance of a client Java MPEG-1 player under two different JVMs, using
combinations of JIT compilation and garbage collection. We compare these performance
differences across three different processors, local disk access and two operating systems.
From this data we determine the greatest bottlenecks to high-quality Java multimedia per-
formance, and how best to improve the overall quality. We examine both frame rate and
jitter in determining Java runtime performance. Our results may be useful for distance
education providers in order to decide on appropriate technologies for their students and
computer science researchers in order to focus their energies on the most critical bottlenecks
in Java performance.

The rest of this paper is laid out as follows: Section 2 describes our experiments used
to measure the performance of video in Java; Section 3 analyzes the results from the ex-
periments, including subsections on frame rate and jitter; and Section 4 summarizes our
conclusions as to the effectiveness of Java for distance education video and lists possible
future work.

2 Experiments

In order to measure the performance of a distance education multimedia using Java, we built
a client-server video system designed to simulate a student watching a real-time streaming
lecture. As Java has its greatest potential impact as a client-side architecture, our experi-
ments were designed to isolate the effects of Java on video performance at the client. Thus,
the server was written in C++ in order to achieve optimum performance. The server streams
MPEG-1 frames across a network to the client. The video frames can be read from a file, in
the case of a pre-recorded lecture, or from a video codec if the lecture “live” and, in particu-
lar, if it is interactive. The client, written in Java, receives the video from the server, renders
the frames and plays them on the screen. In the client, we varied the hardware platform,
Java virtual machines, JIT compilation, and garbage collection in order to better understand
the impact of Java on video performance. Since many distance education programs do, in
fact, use a pre-recorded lecture, the client has the option of writing some or all of the video
file to a local disk before beginning playout. Thus, we compare the performance of video
from across the network from a server to that of video from a local hard drive. Lastly,
an additional goal of our experiments is to determine how close video performance in Java
comes to that of native code. Thus, we compare the performance of our client coded in Java
to that of a client coded in C++.

For accessing the video from the server, our client connected to our server with a TCP
connection over a socket. Our server was written in C++ as a Win32 console application to
be as fast as possible and minimize the effects of the server on the performance of the client.
The server accepts the name of the MPEG file to transmit as a command line argument.
It then listens for a connection on socket 1362, and transmits the file. The 64 byte MPEG

header is sent first, followed by the MPEG data which is broken up into separate frames.
This is done by the use of a sliding window which scans the file as it is read from the disk
for the MPEG flag signifying the end of a frame. At the end of the file, the remaining data,
which is the last frame, is sent.

Our client built upon a Java Applet developed by Carlos Hasan of the University of Chili
[18], and was written in Java using Sun’s Java Development Kit (JDK) version 1.2. The
client is a multithreaded application instead of an Applet to control the file transmission,
with the MPEG decompression and display running in a different thread started by the Play
button. The client has timing hooks to record performance data to a file.

All tests were run on a dedicated 10 Mbps Ethernet network. The server ran on a separate
system. The test cases included running the client on Windows 98 and Windows NT 4.0
Workstation with Service Pack 4 installed, running the Sun Java VM version 1.2 (called
Java) and the Microsoft Java VM version 5.0 (called Jview), and running the VMs as JIT
enabled or disabled. We ran tests with garbage collection enabled and disabled. Also, data
was collected with the local disk version for a comparison of local vs. network performance.

We tested several MPEG-1 videos, but report the results from an animation of a lighter
falling through the sky and being lit (1ighter.mpg):

670 320x240 frames, 30 frames/sec, 22 sec

GOP: IPBBPBBPBBPBB, Mean Frame Size: 4554 bytes

Total Compression Rate: 1.98 7% of uncompressed 24 bit images =
0.47 bits per pixel, 1.09 MBits/sec

During each experimental run, four data points were collected per frame: start decom-
pression time, stop decompression time, start display time and stop display time. Also, the
client start and stop times were recorded when the first data packet was received and when
the final frame finished displayed, respectively. This allowed us to measure frame rate and
jitter. Each experiment was run 5 times and the average frame rate and jitter for the 5 runs
was recorded.

Figure 6 presents the frame rate results and Figure 7 presents the jitter results. The next
section analyzes the results, including the metrics themselves and the impact of each video
technology on distance education.

3 Analysis

In this section, we analyze the results from our experiments. Our two primary measures of
performance are frame rate and jitter. As described in Section 1, the frame rate has a direct
impact on the effectiveness of distance education video. A frame rate of 3 frames per second
is considered the minimal acceptable frame rate and a frame rate of 20-30 frames per second
is a the maximum target. Jitter will determine how smooth the video frames appear to the
student. Jitter shown to the student may be perceived as is loss [7] and video that is buffered
by the client, a popular technique for reducing jitter, will result in increased latency making

Frame Rate
= = N N w
o o o o o

o

0
NoJIT SysB Win98 SysC JVM Base NoGC Local C++

Figure 6: Video Frame Rate. This figure depicts the frame rate results from all experiments.
The vertical axis is in frames per second. The horizontal axis depicts the runtime environments
for the video client. Base is a Pentium II 300 MHz Intel PC running Windows N'T and Microsoft’s
Jview with JIT and garbage collection enabled, receiving the video from the server over a network.
NolJit is the Base with Just-In-Time compilation disabled. SysB is the Base with a Pentium 233
MHz processor. Win98 is the Base running Windows 98. SysC is the Base with a Pentium Pro
200 MHz processor. JVM is the Base running Sun’s Java Virtual Machine. NoGC is the Base with
garbage collection disabled. Local is the Base reading video data from the local IDE hard-drive.
C++ is the Base with a compiled C++ player.

interactive lectures more difficult and making the distance education system less effective for
student devices with low memory such as palmtops or Web TV’s.

3.1 Frame Rate

The frame rate was determined by counting the number of frames in the video sequence and
dividing that by the total time required to play the entire video.

3.1.1 Java Runtime

We tested Sun’s JVM version 1.2 and Microsoft’s Jview version 5.0. As seen in Figure 6-JVM,
Sun’s JVM was only 7% faster. However, we found that there were subtle differences between
the two. For instance, Jview performs slightly better under Windows N'T', whereas Java runs
better under Windows 98. This suggests that the choice of the Java Virtual Machine does
not have a critical bearing on the video performance.

Figure 6-NoJIT shows Java performance using Microsoft’s Jview with JIT disabled,
instead of enabled as in the Base system. The use of JIT compilation makes a huge difference
in performance. When JIT is enabled, the frame rate is almost 7 frames per second. However,
with JIT disabled the frame rate drops to slightly over 1 frame per second. We found similar
results for Sun’s JVM. This enormous impact on performance suggests that student devices,

Maximum Jitter Event (ms)

SysB NoJIT SysC Base JVM NoGC Local C++

Figure 7: Video Jitter. This figure depicts the jitter, measured as the maximum time between
consecutive frame playouts, from all experiments. The vertical axis is in milliseconds. The horizon-
tal axis depicts the runtime environments for the video client. Base is a Pentium 1T 300 MHz Intel
PC running Windows NT and Microsoft’s Jview with JIT and garbage collection enabled, receiving
the video from the server over a network. SysB is the Base with a Pentium 233 MHz processor.
NodJit is the Base with Just-In-Time compilation disabled. SysC is the Base with a Pentium Pro
200 MHz processor. JVM is the Base running Sun’s Java Virtual Machine. NoG(C is the Base with
garbage collection disabled. Local is the Base reading video data from the local IDE hard-drive.
C++ is the Base with a compiled C++ player.

whether a palmtop, laptop or desktop, must be JIT enabled in order to achieve acceptable
video performance. Fortunately, the latest versions of Netscape Navigator and Microsoft’s
Internet Explorer all come with built in JIT compilers.

Figure 6-NoGC(C' depicts Java performance with garbage collection disabled instead of
enabled as is the usual case. With garbage collection disabled the frame rate is 7.2 frames
per second. When garbage collection is enabled the frame rate is 6.8 frames per second.
As shown, garbage collection does not make much of a difference in performance. This is
fortunate since disabling garbage collection is rarely an option in Java programs, but it also
indicates that efforts spent improving the performance of garbage collection routines will not
enhance video performance significantly.

3.1.2 Operating System

Figure 6- Win98 depicts the Java performance under Windows 98 instead of Windows N'T
(v.4.0 service pack 4) in the Base system. Windows 98 provides 4.9 frames per second while
Windows NT provides 6.8 frames per second. The performance of Windows NT was also
better than that of Windows 98 on the other two systems systems. Thus, the choice of
operating system on a student device, from a palmtop to a desktop computer, may have a
have significant effect on the performance, and hence the effectiveness, of the educational
video.

3.1.3 Processor

Figure 6 depicts the Java performance under three different processor environments, the Base
system, a Pentium II 300MHz (SysA), a Pentium 233 MHz (SysB) and a Pentium Pro 200
MHz (SysC). The processor that the tests were run on made a large difference on frame rate.
We find that the fastest system, a Pentium II 300MHz shown by Figure 6-Base, has twice
as high a frame rate as the slowest system, a Pentium 233MHz shown by Figure 6-SysB.
The benefits from the hardware on the student’s machine will definitely affect the impact
of the distance education material. Distance education providers will want to explicitly
provide minimum client-side hardware requirements in order to ensure that their students
are receiving effective educational video.

3.1.4 Video Location

Figure 6-Local shows the impact on framerate of the location of the video to be played out.
The client doing local playback read the file from an IDE hard drive. The client doing remote
playback connected to a server on a different workstation on the same LAN. Surprisingly,
local playback is over 2.5 times faster than remote playback. This suggests that Java will
be more effective for lectures that are pre-recorded since, as they do not have an interactive
component where the instructor talks to the students in real-time, they can be downloaded
ahead of time and played out by the students.

3.1.5 Native

We ran our test video on a MPEG player written in C++ and compiled into native code. The
C++ player was able to play the video at full-motion video speed of 30 frames per second, as
depicted in Figure 6-C++. Moreover, the C++ player used approximately 15% of the CPU,
allowing a possible maximum playback of 200 frames per second. This enormous increase in
performance means that if high-quality, full-motion video is required for the education, only
a C+4 compiler will suffice. Fortunately, very few distance education systems require this
level of performance.

3.2 Jitter

In playing out our video, we recorded the playout time of each frame at the client. The “raw”
jitter data, then, is the interarrival time between each frame playout. Figure 8 depicts the
raw jitter from one experimental run. A jitter-free playout would appear as a flat-line. Notice
that the playout in Figure 8 has enormous “spikes” that are as much as 200 milliseconds
throughout the sequence.

Quantitative measurements of jitter used by past researchers have included co-variance
(ratio of the standard deviation over the mean) [9], absolute deviation (does not square the
distance from the mean) [26], and number of gaps (that occur in the video playout after
buffering) [28, 11], and variance or standard deviation [8, 25, 21, 2].

10

ms) w
8
3
—
—
——

Y

Interarrvial Time

.

Figure 8: Java Jitters. This figure depicts the interarrival times between playout of video frames at the
client. The vertical axis is the time between frame playout in milliseconds. The horizontal axis is the frame
number. The system is an Intel PC running Windows NT and Microsoft’s Jview with JIT and garbage
collection enabled, receiving the video from the server over a network.

In addition, one useful measure of jitter is range (the maximum delay between any two
consecutive frames) [31] since it provides the maximum delay needed for complete buffering
of jitter events and also represents the largest jitter event that will be seen by the user in
the event of unbuffered video. For example, the maximum jitter event in Figure 8 is about
250 milliseconds (between frames 15 and 16).

If all jitter events are removed due to client-side buffering, it is important to understand
the implications of end-to-end delay on interactive multimedia. Human perception of delay
is around 100 milliseconds, so jitter events less than 100 milliseconds are too small to be
noticed. The maximum acceptable delay for interactive multimedia, such as in an interactive
classroom experience, is around 250 milliseconds. Delays of 500 milliseconds and above are
generally too large for an interactive session.

3.2.1 Java Runtime

As seen in Figure 7-JVM, Sun’s JVM had a slight effect on jitter, requiring about 75 fewer
milliseconds of delay buffering to remove the jitter events. This difference is less than would
normally perceived by students watching a video lecture, even if it was interactive.

Figure 7-NoJIT shows that JIT compilation makes a significant difference in jitter perfor-
mance, as the non-JIT video player required over 100 milliseconds more buffering to remove
the jitter events. The delay buffering required by video players without JIT compilation is
large enough that any interactive distance classroom session will likely be severely degraded.

We hypothesized that the periodic nature of garbage collection were causing the large
“spikes” in the interarrival time, seen in Figure 8. Thus, disabling garbage collection should
greatly reduce jitter. Figure 9 depicts video jitter with garbage collection disabled compared
with video jitter with garbage collection enabled. The mean interarrival time is a bit higher

11

o)
™y
g 3

InteraLW|al Time
Q
3

Frame

Figure 9: Garbage Collection Jitter. This figure depicts jitter, seen by the interarrival times, due to
garbage collection. The vertical axis is the time between frame playout in milliseconds. The horizontal axis
is the frame number. The top line depicts jitter with garbage collection enabled. The bottom line depicts
jitter with garbage collection disabled.

when garbage collection is disabled (seen also as a higher frame rate in Section 3.1.1), but
the “spikes” occur at the same locations. The spike size is a bit less with garbage collection
disabled, but not to the extent that we expected.

3.2.2 Processor

Figure 7 indicates that the processor speed made an enormous difference on the amount of
jitter. The slowest processor (SysB) had unacceptable jitter performance, nearly such that
an interactive sessions was unusable. SysC had marginal, but acceptable, performance. This
again emphasizes that the hardware on the student’s machine will definitely affect the impact
of the distance education material. Distance education providers will want to explicitly
provide minimum client-side hardware, both for acceptable frame rate performance and
jitter performance, in order to ensure that their students are receiving effective educational
video.

3.2.3 Video Location

Upon seeing the periodic nature of the jitter “spikes” in Figure 8, we formed an additional
hypothesis that the jitter may be due to the network effects, notably the TCP/IP stack.
Figure 10 depicts jitter when the video is received over the network compared to the jitter
when the video is read from the local hard drive. The local video has a maximum jitter
event of around 40 milliseconds, which is much less than the nearly 250 milliseconds of
jitter from the network video. However, the periodic nature of the jitter is similar, as both
video streams have their “spikes” at about the same places. Still, local video would require
less buffering than is perceivable by human perception, while the buffering required for the

12

(ms)

Interarrvial Time

Figure 10: Network Jitter. This figure depicts jitter, seen by the interarrival times, due to effects in
the network. The vertical axis is the time between frame playout in milliseconds. The horizontal axis is the
frame number. The top line depicts jitter when the video is received over the network. The bottom line
depicts jitter when the video is read from the local hard drive.

networked video is borderline unacceptable.

3.2.4 Native

Once again the native video player written in C++ performed much better than the Java
video player, as seen in Figure 7-C++. The C++ player had jitter events on the order
of 10 milliseconds and even this jitter was likely do to the clock granularity of around 10
milliseconds and the actual jitter could be less than that if the system supported a higher
resolution clock. A native C++ player should definitely be considered for any interactive
distance education video as it will immensely reduce the delay requirement to achieve a
smooth video stream.

4 Conclusions

The use of distance education to expand the reach of education providers promises to provide
opportunities to many who may be otherwise unable to attend school. Java, with its portable
nature and toolkits for building user-interfaces, promises to help the reach of distance educa-
tion institutions by enabling students on a variety of end-user devices that support a variety
of operating systems to partake in the education system. Java can provide a mechanism for
students to receive multimedia lectures, support interactive on-line help sessions and provide
interactive working environments.

Despite this potential, any detailed understanding of multimedia performance in Java has
not been undertaken. To the best of our knowledge, we are the first to provide experiment-
based Java performance for MPEG-1 video. Moreover, our study provides performance num-

13

bers using a typical multimedia server and client under a number of runtime configurations,
allowing us to detect the bottlenecks in Java performance.

Of the variables that we tested we found that Just-In-Time compilation, local access to
the MPEG-1 video, and the client workstation processor type influence multimedia perfor-
mance the most. Other variables that we tested extensively and found to make a minimal
difference were operating system, the Java Virtual Machine being used, and disabling garbage
collection.

After identifying which variables had the greatest impact, we then measured the level
of Java performance that we could achieve under ideal circumstances. The best frame rate
that we found with our streaming Java MPEG-1 player was 7.45 frames per second, using
JIT on the Pentium II 300MHz, Windows NT system. This performance falls far below
the full-motion video 30 frames per second. Moreover, native compiled C++ code could
theoretically achieve over 200 frames per second on the same system.

Our identification of performance bottlenecks is useful for distance education providers
as they can decide upon the necessary Java runtime configurations required to support their
instructional systems. Computer science researchers can also use this information to focus
their energies on improving Java based multimedia in the areas that will have the greatest
impact on performance.

5 Future Work

A great deal of work still remains to be done in this area of study. First most, a Java-
based education system should be deployed, following the configuration guidelines mentioned
above, to verify that the effects on users are as indicated by video used in prior user studies.
Often, actual limits of acceptable performance, such as for frame rate and jitter, are task-
specific. Distance education video may well carry its own set of acceptable performance
criteria.

As the network appears to be a significant bottleneck to smooth video performance, and
most distance education based systems will require a networking component, future work
should do an in-depth study of the effects of different kinds networking on video performance,
especially jitter. For example, a client-server combination can use Remote Method Invocation
(RMI) or CORBA to have “pull” technology, possibly achieving better throughput. Or, the
Java-to-Native Interface (JNI) can be used to access compiled code that handles networking
possibly achieving better networking performance. UDP, rather than TCP, is often the
preferred network protocol of choice for multimedia applications. Therefore, further studies
detailing the effects of UDP, RMI or JNI may yield better networking performance for Java
based distance education.

Java technology continues to evolve. Detailed experiments on the performance of new
technologies such as Sun’s Hotspot, the JavaCPU and JavaOS may provide further insight as
to the most effective ways of providing Java-based distance education tools. Similarly, new
multimedia technologies such as MPEG-4 may provide a better forum for distance education
instruction.

14

6 Notes

The complete source code used in this research can be downloaded from the Perform Web
page at:

http://perform.wpi.edu/

References

[1] Ronnie T. Apteker, James A. Fisher, Valentin S. Kisimov, and Hanoch Neishlos. Video
Acceptability and Frame Rate. IEEE Multimedia, pages 32 — 40, Fall 1995.

[2] Barberis and Pazzaglia. Analysis and Optimal Design of a Packet Voice Receiver. IEEE
Transactions on Communication, February 1980.

[3] L. Carswell and D. Benyon. An Adventure Game Approach to Multimedia Distance
Education. In Integrating Technology into Computer Supported Education, pages 122 —
124, June 1996.

[4] H. Chen, Y. Chia, G. Chen, and J. Hong. An RTP-based Syncrhonized Hypermedia
Live Lecture System for Distance Education. In Proceedings of the ACM Multimedia
Conference, volume 1, pages 91 — 99, November 1999.

[6] Mark Claypool and John Riedl. End-to-End Quality in Multimedia Applications (Ch
40). CRC Press, Boca Raton, FL, 1999.

[6] Mark Claypool and Jonathan Tanner. The Effects of Java on Jitter in a Continuous Me-

dia Stream. In Proceedings of IEEE Multimedia Technology and Applications (MTAC)
Conference, September 1998.

[7] Mark Claypool and Jonathan Tanner. The Effects of Jitter on the Perceptual Quality of
Video. In Proceedings of the ACM Multimedia Conference, volume 2, November 1999.

[8] Domenico Ferrari. Delay Jitter Control Scheme for Packet-Switching Internetworks.
Computer Communications, 15(6):367 — 373, July 1992.

[9] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer. Equation-Based Con-
gestion Control for Unicast Applications. In Proceedings of ACM SIGCOMM Confer-
ence, 2000. To appear.

[10] M. Fraenkel, B. Nguyen, J. Nguyen, R. Redpath, and S. Singhal. Building High-
Performance Applications and Services in Java: An Experimental Study. In Object-
oriented Programming, Systems, Languages and Applications (Addendum) (OOPSLA),
pages 16 — 20, 1997.

[11] Daniel Frankowski and John Riedl. Hiding Jitter in an Audio Stream. Technical Report
TR-93-50, University of Minnesota Department of Computer Science, 1993.

[12] G. Ghineas and J.P. Thomas. QoS Impact on User Perception and Understanding of
Multimedia Video Clips. In Proceedings of ACM Multimedia Conference, Bristol, UK,
September 1998.

15

[13] Steven Gringeri, Ghumip Khasnabish, Arianne Lewis, Khaled Shuaib, Roman Egorov,
and Bert Basch. Transmission of MPEG-2 Video Streams over ATM. IEEE Multimedia,
5(1):58 — 71, Jan-Mar 1998.

[14] X. Guo and C. Pattinson. Quality of Service Requirements for Multimedia Communi-
cations. In Proceedings of Time and the Web Workshop, June 1997.

[15] T. Halfhill and A. Gallant. How to Soup Up Java. Byte Magazine, May 1998.

[16] V. Hardman, M. A. Sasse, and I. Kouvelas. Successful Multi-party Audio Communica-
tion over the Internet. Communications of the ACM, 41(5):74 — 80, 1998.

[17] Vicky Hardman, Martina Angela Sasse, Mark Handley, and Anna Watson. Reliable
Audio for Use over the Internet. In Proceedings of Internet Society’s International
Networking Conference (INET), 1995.

[18] Carlos Hasan. n MPEG-1 Video Stream Decoder Applet, 1998. [Online| at
http://www.dcc.uchile.cl/"chasan/MPEGPlayer.zip.

[19] Starr Roxanne Hiltz. Teaching in a Virtual Classroom. In Proceedings of
the International Conference on Computer Assisted Instruction, 1995. URL:
http://www.njit.edu/CCCC/VC/Papers/Teaching.html.

[20] C. Hsieh, M. Conte, T. Johnson, J. Gyllenhaal, and W. Hwu. Optimizing NET Com-
pilers for Improved Java Performance. IEEE Computer, June 1997.

[21] Saimin Jin, Dhadesugoor R. Vaman, and Divyendu Sina. A Performance Mangement
Framework to Provide Bounded Packet Delay and Variance in Packet Switched Net-
works. Computer Networks and ISDN Sytems, pages 249 — 264, September 1991.

[22] Michael J. Massimino and Thomas B. Sheridan. Teleoperator performance with varying
force and visual feedback. In Human Factors, pages 145 — 157, March 1994.

[23] Sun Microsystems. Java Media Application Programming Interfaces (APIs), May 1999.
[Online| at http://java.sun.com/products/java-media.

[24] C. Perkins, O. Hodson, and V. Hardman. A Survey of Packet-Loss Recovery Techniques
for Streaming Audio. IEEE Network Magazine, Sep/Oct 1998.

[25] Ramachandran Ramjee, Jim Kurose, Don Towsley, and Henning Schulzrinne. Adaptive
Playout Mechanisms for Packetized Audio Applications in Wide-Area Networks. In
Proceedings of the 13th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies on Networking for Global Communciation, volume 2, pages 680 — 688,
June 1994.

[26] Henning Schulzrinne. Voice Communications across the Internet: A Network Voice
Terminal. Technical report, University of Massachussetts Department of Electrical En-
gineering, August 1992.

[27] Pendragon Software. CaffeineMark 3.0: The Industry Standard Java Benchmark, 1999.
[Online] at http://www.webfayre.com/pendragon/cm3/index.html.

16

[28] D. Stone and K. Jeffay. An Empirical Study of Delay Jitter Management Policies. ACM
Multimedia Systems, 2(6):267 — 279, January 1995.

[29] Merryanna Swartz and Daniel Wallace. Effects of Frame Rate and Resolution Reduction
on Human Performance. In Proceedings of ISE&T’s 46th Annual Conference, Munich,
Germany, 1993.

[30] P. Thomas, L. Carswell, J. Emms, M. Petre, B. Poniatowska, and B. Price. Distance
Education over the Internet. In Integrating Technology into Computer Supported Edu-
cation, pages 147 — 149, June 1996.

[31] Dinesh C. Verma, Hui Zhang, and Domenico Ferrari. Delay Jitter Control for Real-Time
Communication in a Packet Switching Network. IEEE Computer, pages 35 — 43, 1991.

[32] Individual.com via NewsEdge Corporation. OneNet and CUseeMe Networks Show First
Web-Based E-Learning Demo With Live Interactive Video and Integrated Content, June
2000.

17

