WPI-CS-TR-00-16 May 2000

Scalable Maintenance in Distributed Data Warehousing
Environment

by
Lingli Ding and Xin Zhang and Elke A. Rundensteiner

Computer Science
Technical Report
Series

.

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Scalable Maintenance in Distributed Data
Warehousing Environment

Lingli Ding, Xin Zhang and Elke A. Rundensteiner

Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609-2280
(lingli | xin | rundenst)@cs.wpi.edu

June 4, 2000

Abstract

The maintenance of data warehouses is becoming an increasingly important topic due to the growing
use, derivation and integration of digital information. Most previous work has dealt with one centralized
data warehouse (DW) only. In this paper, we now focus on environments with multiple data ware-
houses that are possibly derived from other data warehouses. In such a large-scale environment, data
updates from base sources may arrive in individual data warehouses in different orders, thus resulting
in inconsistent data warehouse extents. We propose a registry-based solution strategy that addresses
this problem by employing a registry agent responsible for establishing one unique order for the prop-
agation of updates from the base sources to the data warehouses. With this solution, individual data
warehouse managers can still maintain their respective extents autonomously and independently from
each other, thus allowing them to apply any of the existing incremental maintenance algorithms from the
literature. We demonstrate that this will indeed achieve consistency across all data warehouses. In order
to achieve scalability of this approach, we further optimize this registry solution by partitioning the set
of data warehouse managers into smaller data warehouse groups each equipped with their own registry.
We present a partitioning algorithm for generating such a scalable DW group architecture. Finally, we
analyze the performance of the proposed solutions based on a cost model, and demonstrate that the
partitioned registry approach achieves substantially better performance than the registry solution.

Keywords: Distributed Data Warehousing, View Maintenance, Registry, Partition, Data Update.

1 Introduction

Data warehousing [WB97, GMLWZ98, GM96, ZR99] (DW) is a popular technology to integrate data from
heterogeneous information sources (ISs) in order to provide data to, for example, decision support or data
mining applications [CD97]. Once a DW is established, the problem of maintaining it consistent with
underlying ISs under updates remains a critical issue. It is popular to maintain the DW incrementally
[AASY97, MKK97, KLMR97] instead of recomputing the whole extent of the DW after each IS update, due
to the large size of DWs and the enormous overhead associated with the DW loading process. The majority
of such view maintenance algorithms [AASY97, ZGMW96, ZGMHW95] as of now are based on a centralized
DW system in which materialized views are stored in a single site even if bases may be distributed.

Given the growth of digital on-line information and the distributed nature of sources found on the
Internet, we can expect large collections of interrelated derived repositories instead of just one individual
DW. Such a distributed environment composed of several autonomous data warehouses is emerging as a
design solution for a growing set of applications [SDA99]. In this paper, we focus on the view maintenance
in such distributed environments composed of multiple DWs, in particular, data warehouses that contain

views possibly derived from views residing in other data warehouses.

1.1 Motivation Example

In such a distributed environment, data updates of information sources (ISs) may arrive in different data
warehouses in different orders. Thus data updates from ISs may result in an inconsistency of the data
warehouse extents. This means that the higher level DW built on top of those inconsistent ones couldn’t be
updated correctly by any traditional incremental view maintenance [AASY97, MKK97, KLMR97]. Here is

an example.

Example 1 Suppose there are two base relations By, Bs in two ISs and three views Vo, Vi and Vs at three
DWs that reside on different sites, defined as Vo = Vi X V5, Vi = By X By and Vo = B; X Bs.

Assume there is a data update ot By denoted by AB; and a data update at By denoted by ABy. These
two DUs are then sent to views Vi and Vy. Assume Vy receives DUs in the order of AB, followed by AB;.
V4 receives DUs in the different order of ABy followed by AB;y due to different network traffic.

Both Vi and Vo compute new view extents to reflect base data updates. To distinguish view updates caused
by the different data updates, we use a data update identifier, in short DU-id, to identify DUs from different
ISs. For simplicity, we use an integer to denote DU-id with the first digit of the DU-id the same as the IS
index number 1 and rest of DU-id is the index of DUs from that IS. For example, AV1/11 denotes the AV;
calculated for the first update (AB;) from Bi, and AVi /21 means the AVy calculated for the first update
(AB3) from By. We can also rewrite AB; and ABy into ABy/11 and AB, /21, respectively. In a distributed

system, each IS has an unique index number. Hence, each DU-id is unique for the whole system.

LIf there were a lot of bases, we could use more digits to represent base index number.

In our case, view maintenance for Vi computes and updates Vy with AVy /11 for ABy /11 and then AV; /21
for ABy/21. However, the view manager of Vo computes and updates Va in a reverse order, i.e., AV /21 for
AB>/21 first and then AVa /11 for AB/11. Vi sends its update messages AVy /11, AV /21 and V> sends
AV2 /21 and AV, /11 to Vp.

For both Vi and Va, the above view maintenance steps are correct. Their extents are correctly updated to
reflect the changes in the ISs By and Bs. However, Vy receives inconsistent update messages from Vi and
Vo which are as follows:

AVi/11 = AB; /11 X B,.

AV1/21 = ABy/21 X (By + AB;/11).

AV3/21 = By X ABy/21.

AV2/11 = AB; /11 X (By + AB2/21).

We notice that AV;/11 reflects the new state of By but not By. But AV,/11 reflects both the new state
of By and By. When Vy computes its new extent to reflect the update from base B; based on the update
messages AVy /11 and AV, /11, its new extent incorporates aspects of two different states of Ba, i.e., the By
before and after update ABy/21.

Vo = (Vi +AV/11) X (Va + AV, /11)

= (Vi + AB1/11 X By) X (Vo + AB; /11 X (By + ABy/21)) (1)

The correct view Vi extent should only reflect one state of By. For example:

Vo= (V1 + AB1/11 X By) X (Vi + AB; /11 X By) (2)

From the example, we can see that in this distributed DW environment though V; and V5 can still be
made to be consistent with ISs, the DW (V4) built on top of them will result in an inconsistent state with

respect to the ISs if there is no coordination between the maintenance of V; and V5.

1.2 Related Work

Zhuge et al. [ZWGM97] defined the multiple views consistency (MVC) problem and proposed an architecture
for handling multiple views consistency for multiple views specified in a single data warehouse. Stanoi et
al. [SDA98] proposed a weak consistency maintenance approach that processes cumulative effect of a batch
of updates. In their latter work [SDA99], they defined a distributed multi-view data warehouse model and
proposed an incremental algorithm for maintenance. Their approach requires storage for a stable state with
table of changes. A stable state is a snapshot of a safe state in the view’s history such that the view will
not need to answer update queries based on a state prior to this safe state. The table of changes includes
all the updates following the safe state of the actual materialized view. There is a dependency list appended
to all entries in the table of changes [SDA99]. A materialized view is refreshed only when the new state is

considered safe, i.e., when the respective updates are in sequence, and they have been integrated by all the

corresponding direct descendents, but all its direct descendent need to wait for their corresponding direct
descendents. If a lot of data updates continue to occur at bases and they are in a different sequence when
they arrive at different views due to having been propagated through different derivation chains, it could
take a long time to have a safe time. Hence, this could cause a DW to be updated only after a long delay
especially in a DDWE with long view derivation chains. Hence, in the worst case, some DW state may never
get refreshed. In our approach, we don’t need any DW to keep a safe state table. Also by using the registry,
there is no potential chance of an infinite wait. Our approach can have good performance for both a flat or

a tall topology and hence is scalable.

1.3 Our Approach

In this paper, we propose a registry-based solution strategy that is able to coordinate the maintenance of
multiple data warehouses in a non-intrusive manner by establishing a unique order among base update notifi-
cations for the environment. DW managers in this distributed environment exploit this order synchronization
when determine how and when to process incoming update notifications and to commit their respective ex-
tent update, instead of blindly making use of the order in which the update messages are received from their
parent. We demonstrate that this method, which we call RyCo for agent-based coordination for destination
data warehouse maintenance will indeed achieve consistency across all data warehouses with little overhead.
In our RyCo architecture, all views can be updated independently from one another, i.e., unlike in [SDA99],
there is no need for a safe state. In order to achieve scalability of this approach, we further optimize this
registry solution by partitioning the set of interrelated data warehouse systems into smaller groups each
equipped with its own registry. Thus, in effect, we achieve a partitioned registry approach now responsible
for only a small subset of the notification messages in the system, have called the partition-registry approach
called PyCo. PyCo achieves a scalable DW group architecture that achieves substantially better perfor-
mance than the central registry solution. We study the performance of the proposed solutions based on an
analytical model, confirming our expectations that the partitioning approach PyCo has an overall better
performance than the registry-only approach RyCo.

In summary, this paper offers the following contributions:

e We propose a registry-based approach for coordinating view maintenance in distributed data ware-

housing environments called RyCo. RyCo has the following advantages:

— First, each DW is maintained by a separate mediator from the literature and can be updated

independently from other DWs.
— Second, all the DWs are guaranteed to be maintained consistent with each other and the ISs.

— Third, unlike previous work [SDA99], our approach avoids any requirement for a safe time to

update a view.

e For better scalability of our solution, we propose PyCo, a partitioning algorithm that optimizes the
registry approach for a large distributed data warehousing environment by partitioning the registry

into multiple smaller registry agents. It has the following advantages:

— First, the three advantages of RyCo listed above all still hold for PyCo.
— Second, the system is scalable in terms of the total number of DWs and bases in the environments.

— Third, we prove the uniqueness of the partition composed of atomic DW groups generated by our

proposed algorithm.

e At last, we have done a preliminary evaluation of the two solutions , demonstrating that the partitioning

approach has an overall better performance than the registry approach.

Outline. The rest of the paper is organized as follows. The system definitions, assumptions and view
consistency levels are presented in Section 2. Section 3 presents the architecture and algorithm of the
registry-based solution. The partitioning architecture and a partitioning algorithm are presented in Section

4. We study the performance and define the cost model in Section 5. Finally, we conclude in Section 6.

2 Background: A Distributed Data Warehousing Environment

2.1 View Dependency Graph

A distributed data warehousing environment (DDWE) is composed of multiple possibly interrelated DWs.
Individual DWs are independent processes running possibly on different sites. Each DW has its own views.
Views may be defined on views of its own DW, on other views, on base relations in ISs, or on a combination

of them.

Definition 1 A view V is defined as below.
V=58 XSyM.. XS, 3)

where S; (1 < i < n) could be either a base relation or a view. We say S; is o parent of the view V and
the view V is the direct descendent of S;. If any S; in Equation 3 is a view, then the parent P of S; is
called ancestor of the view V and V is indirect descendent of P. The bases By, ..., By, from which V
is ultimately derived, i.e., all ancestors of V' that are bases, are called base-ancestors of V. If a base B is

a base-ancestor of both a view V and a view V', then we say B is a common base-ancestor of V and V'.

A view-dependency graph [CKL196] represents the hierarchical relationships among the views in DWs

and bases in ISs. The dependency graph shows how a view is derived from bases and/or other views.

Definition 2 The view dependency graph of the view V in a DDWE is a graph G, = (N, E) with
N the set of bases or views that are ancestors of V including V itself and E the set of of directed edges
E;; = (N;, N;) for each Nj that is a direct descendent of N;, where N;, N; € N. All nodes N; are labeled by

the name of the bases or views that they represent.

S—

‘ B1 ‘ ‘ B2 ‘ Ancestor

Figure 1: A Distributed DW System Example

Example 2 Figure 1 depicts the view dependency graph for the view definition in Exzample 1. For example,
views V1 and Vo are parents of the view Vy. By and By are ancestors of Vy. Vj is the direct descendent
of Vi and V5. The base-ancestors of Vj (as well as V1) are By and Bs; while By and B2 are also common-

bases ancestors of V7 and V5.

2.2 Base Consistency and View Consistency

We assume that the execution of IS and DW updates is serialized, i.e., one update at IS or DW at a time

and sequential network.

Definition 3 A state change sequence of a base (view) is defined as the sequence of states of the base

(view) with a snap shot of each state taken after each update commits.

Definition 4 Let a view V be defined by Definition 1 with S; (1 <i <mn) a base or a view and By, ..., B,
be the base-ancestors of V. V is said to be base consistent if each DW state in the state change sequence

of V' corresponds to one single state in the state change sequence of each By, ..., By, respectively.

Based on Definition 4, a view is base consistent if at all times its extent reflects at most one real state of

each of the ISs in DDWE. In other words, the view V' cannot reflect two different states of a base B;.

Definition 5 Views Vi and V2 are said to be view consistent with each other if Vi and V5 are both base
consistent and after committing each data update (DU;) from one of the common bases, the states of Vi and

V5 correspond to the same state in the state change sequence for each common base.

Example 3 In Example 1, assume n data updates happened at By, m data updates at By, the state change

sequence of By is sbiy, sbia, ...sbin, and the state change sequence of Bo is sbay, Sbaa, ...Sbay,. After

committing all base data updates, the state change sequence of Vi is svi1, svia, ...sv1g (k less than n +m)
and the state change sequence of Va is sva1, SUaa, ...8Vap (k' less than n+ m).

In the state change sequence of Vi, if every svi; (i from 1 to k) corresponds to exactly one base state of
By, say sbi;, and of Ba, say sboj, then we say Vy is base consistent.

If after committing a DU of By, the state of V1 and Vs always correspond to the same base state of By,

then Vi and V3 are said to be view consistent with each other.

2.3 View Maintenance Issues in Distributed Data Warehouse Systems

Assume the view V is defined as in Equation 3. Further assume the views S; (for 1 <4 < n) have multiple
common bases Bj. If there is any base data update from By, the views Si, ..., S, and V need to be
maintained view consistent with each other. In the following discussion, we use the notations defined in

Table 1.

| Notation | Meaning

B; Represent a base information source (IS) i.

Vi Represent a view (DW) 3.

Si Represent a base or a view 1.

DU-id Data Update Identifier.

AV/ij A view update based on data update with DU-id 7j that is jth data update
from base 1.

Table 1: Notation for Views, Bases, and Updates

For example, assume one of the data updates that happened at base By, denoted as ABy,/kj, is propagated
up to Si, ..., Sp. Then all AS;/kj (i from 1 to n) are calculated where some of the AS;/kj could be null if
By, is not a base of the view S;, and sent to the view V. If all AS;/kj only contain the effect of the data

update of ABy,/kj for the base By, we can calculate the new view extent V' by the following equation:

V+ AV = (S1 + AS1/kj) M (Sa + ASy/kj) M ... X (S; + AS; /kj) X ... X (S, + AS,/kj) (4)

Hence, the AV expression is shown as follows:
AV = ASi/kjM Sy X .. XS;X..XS,
+ (S1 +AS/kj) X ASy/kj X Sz X oo X S; M. XS, ..
+ (S1+AS1/kj) XX (S;m1 + AS;_1/kj) WM AS; [kj X S;p1 M XS, + .. (5)
+ (S14+ AS1/kj) X (Sa + ASy/kj) X ... X (S; + AS; /kj) X ... X (Sy_1 + AS,_1/kj) X AS,, /kj

In practice, multiple data updates may have happened concurrently at different bases. These DUs may
arrive at different views in a different order. Then it could happen that some of the AS;/kj do not only

contain the effect of ABy,/kj but in addition they may also incorporate the effect of some other DUs. In

other words, S; and S; (i # j) are not view consistent with each other. Hence, view V derived from S;
(1 <14 < n) is not base consistent.

To maintain view V base consistent by Equation 4, we need to update the view V based on the update
messages from all its parents Si, Sz, ... S, that reflect the same state of the same base. That is all the
AS;/kj (i from 1 to n) must reflect the same states of all the bases By, ..., By,

In such a distributed data warehousing environment, we can’t control that S; and S; (i # j) always reflect
the same base extents because S; and S; belong to different DWs. But to maintain a view V' correctly, we
first need to assure all its parents S; to be view consistent with each other. We propose a solution to this

problem in the next section.

2.4 Assumptions

Assumption 1 For simplicity, in the remainder of this paper, we assume each DW only has one view,

though the extension of our work to multiple views per DW is straightforward.

Based on this assumption, we can use the terms DW and view interchangeably in the remainder of our

discussion.
Assumption 2 We assume each information source (IS) has one base relation.
We can use the MRE wrapper proposed in [DZR99] to release this assumption.

Assumption 3 In a distributed environment, the order in which data update (DU) messages from the same
base (or DW) arrive at a direct descendent reflects the order in which they actually happened and have been

sent out from that base (or DW). That is, we assume the point to point network connection is FIFO.

3 The Registry-Based Coordination for Distributed DW Mainte-

nance

3.1 View Maintenance Order and Consistency

If views in our environment are maintained independently from other DWs, then they may not be consistent
with each other. If views are not view consistent with each others, it is difficult to maintain a view that
is defined on top of already inconsistent views to be base consistent. If we could maintain the lower layer
views consistent with each other, we could also correctly maintain descendent views defined on top of these
consistent parents to be consistent. For example, in Figure 1, if we succeed to maintain V; and V5 consistent

with each other 2, then we can also easily maintain V;.

2Tf V4 and V4 are updated according to the same order of base data updates, then Vi and V» are view consistent with each
other by Definition 5.

Definition 6 Given a set of base data updates in a distributed DW system, we call the order in which a DW
receives these data updates receive-message-order. We call the order in which o DW updates its extent

update-message-order.

Lemma 1 Given a set of views V; that are view consistent with each other. Then any descendent view V
defined directly on top of these consistent views V; is base consistent and view consistent with V;, if maintained

by a traditional single-DW algorithm.

In a distributed data warehousing environment, different DWs could have a different receive-message-
order and have no knowledge of the receive-message-order of other DWs. But if DWs were to be maintained
not based on their respective receive-message-order but rather on the same enforced update-message-order,
that means that the DWs are updated and reflect base changes in the same order. Hence DWs are consistent

with each other and thus are base consistent.

Lemma 2 If all DWs in the distributed data warehousing environment are updated by the same update-

message-order, then they are all base consistent by Definition 4.

To generate the unique update-message-order, the key idea we propose is to use the concept of registry
service. All DWs and bases are registered with the registry. The registry generates a unique update-message-
order and sends it to all DWs in the system. All the DW extents are updated by this update-message-order
and hence all DWs are then consistent with each other.

The main purpose of the registry is to generate one unique update-message-order for all DWs. Whenever
there is a data update at any base, it sends this data update message annotated with an unique identifier
DU-id to its direct descendent DWs. It also sends the DU-id only, which is very short message, to the registry
agent. The registry generates one update-message-order based on the order of receiving DU-id from all bases
and sends an ordered sequence of DU-ids as the update-message-order to all DWs that have registered with
it. DWs receive DUs with DU-id from bases and put them into the received-message-queue (RMQ), while
the ordered sequence of DU-id from the registry are put into the update-message-queue (UMQ). All the DWs
in the system are updated by the update-message-order instead of the receive-message-order. We assume

that a DW knows its related base set and all its direct descendents.

3.2 System Architecture of RyCo Approach

A registry-based coordinate data warehousing environment is composed of three types of components as
depicted in Figure 2. First, the registry agent is used to generate a unique update order. Second, one
wrapper at each base sends DU-ids and data updates to related views as well as processes queries. Third,
the mediator of each data warehouse maintains the data warehouse based on the updates in the order decided
by the registry. Figure 2 depicts the relationships between these three components. As we can see there is

one single registry that connects to multiple base wrappers and mediators of different DWs.

Mediator DW1 Descendent

Registry)#-—---» Mediator ﬂ

Wrapper Wrapper Wrapper

] I] I
-— -— -—
[0 prcetr

Figure 2: Overall Architecture of Registry System

Ordered DU-id to DWs To Descendent To Registry Query QR
il 1t
ow SonaUpdaes | SonbUa] Bace Wrapper
iy T
"’ Descendent List ‘ DU-id Generator ‘ ‘ Query Processor ‘
oD FaN AN
Registry Update Get Data
U e —
DU-id from bases
Base
‘ Legend: pgasStorage | Module %@V ‘
Figure 3: Structure of Registry Figure 4: Structure of Base Wrapper

Table 2 gives out all the notations used in the description of detailed architecture of registry agent, base

wrapper, and DW mediator.

| Notation | Meaning

Query Maintenance query.

QR Query result.

RMQ Receive-Message-Queue in DW for buffering DU message from its parent.
UMQ Update-Message-Queue in DW for buffering ordered DU-ids from registry.

Table 2: Notation and Meaning

Figure 3 shows the simple structure of the agent. The registry keeps the information of registered DWs
in the DW list. It can further add or remove a DW from its DW list when a DW is added or removed from
DDWE. It receives DU-id from all bases and orders those IDs based on their receive order and then forwards
those IDs in that unique order to all DWs in the system. The bases only send a DU-id to the registry, as
there is no need to send real update messages. The base will still send data update messages with DU-ids

to o all their direct descendent DWs as before.

To Descendent Views Query QR

o [
L < Get Data
Descendent List I:} SendUpdate ‘ ‘ Query Processor
Update DW
. o Update
RMQ [VM (View Maintainer)
7 TGet Order
UMQ
1T
‘ LogUpdates ‘ ‘ LogOrder ‘ _
T T3 Mediator
L L L
DU from DU-idfrom Query QR
parent Registry

Figure 5: Structure of DW Mediator

Based on Figure 5, we can see that the structure of a DW mediator is more complicated than that of
centralized DW systems. A DW mediator in the distributed data warehousing environment mainly consists
of the VM (View Maintainer) and the Query Processor. The VM (as shown in Figure 5) has the same
function as in centralized DW systems. The VM processes one update at a time and updates the DW
view to be consistent with the base after this update. Any incremental view maintenance algorithm from
the literature, e.g., SWEEP [AASY97] could be employed as VM here with minor modification. One such
modification of VM is that the new extent is computed based on the order from the update-message-order.

A DW mediators (in Figure 5) in the system has two queues, namely the receive-message-queue (RM Q)
and update-message-queue (UM Q). The RMQ is for buffering update messages received from its parents in
the receive-message-order. The UMQ is responsible for buffering ordered DU-id messages from the registry.
Views are maintained and updated in the order of the UMQ as follows. DU-ids coming from the base are
appended to the tail and the registry keeps on taking out DU-id from head of the queue to submit to the
DWs in the system. First, VM removes the next DU-id from the head of the UMQ and checks whether the
DU-id is related to this view. Second, if the DU-id is not related, VM will send a empty update ® with same
DU-id to all direct descendent DWs; otherwise, VM will wait for all updates with this DU-id from all its
parents, then incrementally calculate AV for those data updates. Third, the VM updates the view with AV
and sends it with the same DU-id to all direct descendent DWs.

Because the registry will send out all DU-ids to all the views, some of them may not be related to the
views. When a view manager gets a DU-id that is not from its related base, it simply sends a NULL extent
with the DU-id to its direct descendent. When a DU-id arrives from a base that is related to the view, then
the view manager first calculates AV and then updates the view by V 4+ AV. It also sends AV with the

same DU-id to its direct descendent. The Query Processor component is used to process any query sent

3That means no update for this specific base DU.

10

from its children. Its functionality is similar to an IS query processor in centralized DW systems.

The structure of the IS wrapper is shown in Figure 4. It consists of the Query Processor and the DU-id
generator. The query processor has the same function as the processer of an IS wrapper in centralized DW
systems. The DU-id generator will generate a unique identifier for each data update.

We can observe that, using the registry, all DWs in our distributed data warehousing environment
incorporate the DUs in the same order. Hence they are consistent with each other and all views are base

consistent.

AV0/11 Descendent
AV0/21 A
AVU11 AV2/11
AV1/21 AV2/21
ABUIL |\ /71 o AB2/21
AB2/21 ABl/11
4Bl
Ancestor

Figure 6: Registry is Used for View Maintenance

The example shows how the registry is used to enable view maintenance in distributed data warehousing

environments.

Example 4 Based on Ezxample 1, data updates AB;/11 and ABy/21 arrive at the views Vi and Va in
different orders. If Vi and Vo were updated by this receive-message-order, then the two views would not be
consistent with each other. Now, let’s add the registry into the system as depicted in Figure 6. Whenever a
data update happens, the DU-id of the data update is sent to the registry. Assume that the registry receives
DU-ids in the order of 11 and 21. Then the registry forwards this unique update-message-order to all views,
namely Vi, Vo and Vy. The new view extents of Vi and V5 are calculated and updated in the update-message-
order. Then AV /11, AV1/21, AV, /11, and AV2 /21 are sent to the view Vy in the order of 11, 21. AV;/11
and AV, /11 only have the effect of the data update ABy/11. AV1/21 and AV>/21 have the effect of both
AB;1/11 and AB>/21. The view Vo is then updated in the same update-message-order. That is, it first
incorporates the effect of AB1/11 based on AVy/11 and AV,/11 , then incorporates the effect of ABy/21
based on AV>/21, AV5/21. Because views Vi, Vo and Vo are updated by the same update-message-order

generated by the registry, the views are consistent with each other and thus also are base consistent.

11

3.3 Algorithm of Registry Approach

Based on the previous discussion, we now present an algorithm for incremental view maintenance based on
the registry. In general, there are three modules called BaseWrapper, Registry and Mediator. The pseudo-
code of base wrapper and registry are described in Figures 7 and 8, respectively. The base wrapper has
two functions, i.e., sending data updates and processing queries. The registry agent will order the DU ids

received and broadcast to all the DWs registered in it.

PROCESS ProcessQuery;
BEGIN
LOOP
RECEIVE (AV, DWIndez) FROM DirectDesDWS ;
AV = ComputeJoin(AV, R);
SEND (AV, Baselndex, DWIndex) TO DirectDes-
DWS;
FOREVER;
END ProcessQuery;

MODULE BaseWrapper
CONSTANT
BaseIndex = i;

PROCESS SendUpdates;
BEGIN
LOOP
RECEIVE A R from R;
GenlD for A R;
SEND (A R, DUid) TO AllDirectDesDWS;
SEND (DUid) TO Registry;
FOREVER;
END SendUpdates;

BEGIN /* Initialization */
StartProcess(SendUpdates);
StartProcess(ProcessQuery);

END

Figure 7: Pseudo Code of Module Base Update and Query

PROCESS Sendlds

MODULE Registry BEgg\i’
PROCESS GetUpdatelds REMOVE DU-id from UMQ;
)

Bllijgg\; SEND to all DWs;
RECEIVE DU-id from Base; ElF\]%FgEE:;Y\]%}}dS
APPEND DU-id to UMQ; END .

FOREVER
END GetUpdatelds. BEGIN

StartProcess(GetUpdatelds);
StartProcess(SendlIds);
END

Figure 8: Pseudo Code of Registry Module

Figure 9 depicts the software module that is employed at the DW mediator. At initialization, the Data
Warehouse module will start four processes: LogUpdates, LogUpdatelds, UpdateView and Query Processor.
The LogUpdates and LogUpdatelds processes assign a unique local timestamp to the messages coming into
the DW including data updates and query results. The ViewChange process will be called by the Update View
to calculate the effect of one data update on the view extent. It uses a local compensation technique to
remove concurrent data update effects [AASY97]. Besides view maintenance, a DW needs a Query Processor
to answer queries from its direct descendent DWs in the distributed data warehousing. The query processor
accepts any query coming from its direct descendents and sends back the query result.

The UpdateView process monitors the UMQ to check if there is any DU-id in the UMQ. If there is any,
the UpdateView process will remove the first DU-id from the UMQ), say k7, and then wait for all the update
messages from its parents with DU-id kj, i.e., the AS;/jk (1 < i < n) %. The VM will calculate AV by

4If a Bj; is not a base-ancestor of S;, then AS;/jk will be an empty message

12

adding up every AV; (1 < i < n) that is calculating from every AS;/jk removed from the UMQ. The order
in which we compute the AS;/jk (i from 1 to n) will not affect the correctness of the result, hence we can
compute them in a different order, or even in parallel. After calculated AV, VM will update the DW with
AV and also send it to all its direct descendent DWs if any.

MODULE Mediator PROCESS LogUpdates;

CONSTANT

ViewlIndex = i; n: INTEGER /* Total Number of Parents */

GLOBAL DATA
V: RELATION; /* Initialized to the correct view */
UpdateMessageQueue: QUEUE initially 0;
ReceiveMessageSet: Set initially 0;
TempArray: RELATION /* Array size is n,
used for AS from Parent */;

DeltaAray: RELATION /* Array size is n, used for AV */;

PROCESS ViewChange(AS: Relation; DU-id:INTEGER;

UpdateSource:INTEGER; TimeStamp: INTEGER): RELATION

VAR
AV, TempView: RELATION;
j: INTEGER; /* loop variable */
BEGIN
AV = AS;
/* Compute the left part of the incremental
view resulting for AR */
FOR (j = UpdateSource —1;j > 1; j — —) DO
TempView = AV;
SEND (AV, ViewIndex) TO Parent j;
/* The AV in the next line has
already time stamp assigned by AssignTimeStamp
process */
RECEIVE AV FROM Parent j;
/* Remove the error due to concurrent update

if any (maybe more than one) by local compensation*/

FOR ALL AS from UpdateSource DO
AV = AV - AS X TempView;
ENDFOR;

VAR
t: TIME; /* current system time at the DW */
BEGIN
LOOP
RECEIVE Message FROM ParentSource i
as received order;
IF Message is (AS, ID) THEN
t = getCurrentTime();
APPEND (AS, ID, t) TO ReceiveMessageSet;
ELSE /* it is query result AV
Assign getCurrentTime() to AV
ENDIF
FOREVER;
END LogUpdates;

PROCESS LogUpdatelds;
BEGIN
LOOP
RECEIVE Updateld FROM Registry
as received order;
APPEND UpdateId TO UpdateMessageQueue;
FOREVER;
END LogUpdatelds;

PROCESS UpdateView;
VARIABLE Id:INTEGER;
UpdateSource:INTEGER;
BEGIN
LOOP
GetOrdered Id from UMQ;
FOR (i =1;i < n; i + +) DO
Remove (AS;,Id,t) from RMQ;

ENDFOR;
. . .
/‘ Comput.e the right pn:t to the incremental AV is NULL;
view resulting from AS */ ELSE
FOR (j = UpdateSource + 1; j < n; j + +) DO
~ s BEGIN
TempView = AV; TempArrayli] = (AS,Id);
SEND (AV, ViewIndex) TO Parent j; A i e (A5 14, 1.8);
/* The AV in the next line has j = Viewl aangse it L)

already time stamp assigned by AssignTimeStamp DeltaArray[i] = AV;;

IF (AS,Id) is NULL THEN

process */ END
RECEIVE AV FROM Parent j; IZI;I/DE?:%
=0;

/* Remove the error due to concurrent update
if any (maybe more than one) by local compensation*/
FOR ALL AS from UpdateSource DO
AV = AV - AS X TempView;

ENDFOR;

ENDFOR;

RETURN AV;

END ViewChange;

FOR (i = 1; i < n; i++) DO
AV = DeltaArrayli] + AV;

ENDFOR;
V =V 4+ (AV);
SendUpdate(AV, Id) to AllDirectDesDWS;
Clean TempArray;
Clean DeltaArray;

FOREVER

END;

PROCESS ProcessQuery; END UpdateView;
i

BEGIN
LOOP
RECEIVE (AV, index) FROM DirectDesDWS ;
AV = ComputeJoin(AV, S);
SEND AV TO DirectDesDWS indewx;
FOREVER;
END ProcessQuery;

BEGIN /* Start DataWarehouse Processes */
StartProcess(LogUpdates);
StartProcess(LogUpdatelds);
StartProcess(UpdateView);
StartProcess(ProcessQuery);

END DataWarehouse

Figure 9: Pseudo Code of Data Warehouse Mediator Module

4 Partitioning for Scalable Distributed Data Warehousing Main-
tenance

We may have many bases in a distributed data warehousing environment. In our registry approach, views
are maintained in the update-message-order generated by the registry. The update-message-order orders all
the data updates of all bases even if the bases are not referenced by all the views. If a view only relates
to several but not necessarily all bases, it has to unnecessarily maintain extra information, e.g., update

message from un-related bases, that later turn out to be irrelevant to the view. If most of the views in such

13

a large-scale system depend on only a subset of all possible bases, then a lot of irrelevant DU-id messages
are received from the registry, stored and then checked in the different view mediators. This is likely to lead
to low system performance.

To make the system more scalable in terms of the number of bases and views in the system, we now
propose an optimization technique called PyCo divides the system into different clustered groups, called DW
groups (DWG). Each group then is quipped with its own dedicated registry. Figure 10 shows an example of
the system with a partition into three DW groups. We can see the views in each group are closely related

to each other, while views in different groups are not.

DWG2 DWG3.._... .. Descendent DWG2 .

(T e I | (Row

S L e

3 Ancestor
Figure 10: A Partition Hierarchical DW System Figure 11: A Partition with New Base Notation

4.1 DW Group

A DW group is composed of a subset of the views and bases available in the system with an optional
registry. We call a base which is inside a DW group an internal-base. When one DW (G group has a
parent in another DW G5 group, we treat this parent as a base of the DW (G and call it an external-base
of the DW(G;. We call the bases of a DW group, which include both internal-bases and external-bases,
group-bases. If a group base is not a view, we call it a real-base. If a group base is a view, we call it
virtual-base.

All group-bases need to be registered with its group registry. If a DW group DWG; has n different
parents in other groups then these n parents are treated as n separate external-bases. If a DW group has

two views that have the same parents in another group, then they are treated as one external-base of this

group.

Example 5 Based on our definition, we now present in Figure 11 a variation of Figure 10 using the new
notation. The partition has three DW groups DWG1, DWG2 and DWG3. DWG1 has 4 internal-bases.
DWG2 has one internal-base By and one external-base EB1. The views Vi and V7 in DWG2 both have

parents in DWG1 but they are from the same base By. We treat their parent as one external-base shown

14

as EB1. DWG3 also has one external-base and one internal-base. We notice that there is no registry in
DWG@GS3 because there is only one view in this group. Any group with one view will always be consistent with

its bases.

DW groups are used to help scale the registry solution. Hence all the views in one DW group have to be
consistent with each other. They also have to be consistent with their bases. We call such a group a valid

DW group as defined in Definition 8.

Definition 7 If two views or bases have no common ancestors, then these two views or bases are said to be

independent. Otherwise, they are dependent.

Lemma 3 If the direct parent(s) of two views or bases are independent, then these two views or bases are

independent.
Definition 8 We say a DW group is valid if all group-bases are independent.
Lemma 4 All views in a valid group are base consistent.

If group-bases of a DW group G are independent, the group-bases have no common base-ancestors. Their
updated order from group-bases is the same with that of their base-ancestors. Views in group G are updated
in the same order of the base-ancestors order. Hence, Views in G are base consistent. Theorem 1 can be

easily derived from Lemma, 4.

Theorem 1 Assume a view V has parents Si, ..., S,, which has common bases By, ..., By. Then view V,
parents Sy, ..., Sy, and bases By, ..., By, have to be put into one DW group G in order to make V' base consistent

(necessary condition) but the group G may not be a valid group yet (not necessarily sufficient condition).

4.2 Partition Validation

To make our system more scalable, we propose to decompose our environment into multiple DW groups,
called a partition. With such a partition, we still keep the DWs consistent with each other while we reduce
the unrelated and empty messages sent by the registry and handled in each DW group. To ensure view

consistency, we define the notion of a valid partition.

Definition 9 Given a distributed data warehousing environment composed of bases and DWs, then a par-
tition is a collection of DW groups such that views in different DW groups are disjoint and the union of all
DW groups is covering all bases and DWs. We say a partition of P is valid if all DW groups in P are valid
by Definition 8.

Lemma 5 If a partition is valid, then aoll views in the environment can be maintained base consistent as

defined by Definition 4.

15

All DW groups are valid in a valid partition. Hence, views in each DW group are base consistent by
Definition 8. Hence, all the views in a valid partition are base consistent.
There is no any central registry in the partition, except for those created for a specific DW group. In a

valid partition, DW groups have the following relationships:

1. If a group has multiple external-bases which reside in different groups, these external-bases are inde-

pendent.
2. One group can have multiple direct descendents in other groups.

3. A group DWG; can have only either parent(s) or descendent(s) in another group DWG;, but not
both, because the parent(s) and descendent(s) are dependent by Definition 7.

4. Each group has at least one group-base, which could be either an internal-base or an external-base.

Lemma 6 Assume a group G has parents GBy, ..., GB,, and a subset of parents GBs,, ...,GBs, (here k <=
m) are dependent. If GBs,,...,GBs, are in valid DW groups Gu,...,G; (Here some or all of G1,...,G;
could be the same), the group G and groups G1,...,G; must be merged into one big DW group G' in order
to generate a valid DW group (necessary condition) but the group G' may not be a valid group yet (not

necessarily sufficient condition).

The Lemma 6 can be easily proved by Theorem 1.

4.3 Atomic Group

The notion of a valid partition ensures view consistency in the distributed DW environment. There is not
necessarily one unique valid partition. In this section, we hence introduce the concept of an atomic group

that leads to a unique partition.
Definition 10 An atomic group is a valid DW group that cannot be split into more than one valid group.

Definition 10 states that an atomic group G is the smallest valid DW group. Thus it would no longer be
a valid DW group if we remove any base or DW from G. It can easily be shown that a group which contains
only one real-base is an atomic DW group. And also a group which contains one view defined only on bases

is an atomic DW group.

Lemma 7 If an atomic group G consists of views or bases S1, S2, ..., Sn, we cannot construct another atomic
group by replacing one of the S; (i from 1 to n) with another S’ with S’ being another view or base from the

environment.

Lemma 7 states that no portion of an atomic group is replaceable. For example, if an atomic group G

consists of views V1, V2 and V3, then the bases of V4, V5 and V3 must be dependent. Assume that another

16

atomic group G’ consists of V4, V5 and Vs, then the bases of V1, V2 and Vs must also be dependent. Hence,
the bases of V1, V5, V3 and V; are dependent. Then views Vi, V5, V3 and V5 must be in the same group.

Hence, the group containing V;, V> and V3 was not an atomic group to begin with.

Theorem 2 For a given system, the partition is valid, unique and mazximal in its number of DW groups if

a partition consists of only atomic groups.

Proof

1. The partition is a wvalid partition if it consists of atomic groups.

By Definition 10, all atomic groups are valid DW groups. Then by Definition 9, this partition is valid

because it consists of valid DW groups.

2. This partition is unique by contradiction.
Assume that this partition is not unique. Then there are at least two different partitions P; and P, that
are composed of atomic groups. Because P, and P; are not identical, then there is at least one atomic
group G in P; which is different from any atomic group G' in P,. Hence without loss of generality there
is at least one view in G which is not in G’'. But the atomic group is minimal and not-replaceable by
Definition 10 and Lemma 7. This implies that there is no overlap between two atomic groups. Hence,

either G or G' is not an atomic group. This is contradiction. So, the partition is unique.
group

3. All the DW groups are atomic groups that are smallest valid groups. Hence, this partition has the

mazimal number of DW groups.

4.4 PyCo Algorithm of Atomic Groups in DDWE

Definition 11 Based on the steps involved in a view definition, we assign oll bases and views in the system

a level. A level of a base or views is defined as:

0 : if Sisabase
level(S) =< 1 : 4if Sisaview which is defined only on bases

maz((level(S1)), ..., (level(Sn))) +1 : if Sisdefinedby Equation 3
Before presenting the partitioning algorithm, we define the data structures used in the algorithm:

1. Base Dependency List (BDL) of a base B; includes all views (include the base itself) that are
derived from this real-base. We maintain a base dependency list for each real-base. Hence, if the

system has n real-bases, then we generate n base dependency lists.

2. View Parent List (VPL) of a view V; includes all direct parents of V;. We have one list for each

view. Hence, if the system has m views, then we generate m view parent lists.

17

3. Group-Base Set (GB) of a group G includes all the group bases of a group.
4. Dependent Group-Base Set (DGB) of a group G includes all group bases of G that are dependent.

5. Group Set (GS) of a given distributed DW environment includes all valid groups generated by the

partitioning algorithm.

6. Un-group Set (UGS) of a given distributed DW environment includes all bases and views that have

not yet been partitioned.

We now present the partitioning algorithm (PyCo)in Figure 12. First, the algorithm calls InitProc to
initialize the system. The InitProc generates a base dependency list for each base and a view parent list for
each view in the system based on the view definition. It assigns a level to all the bases and views according
to Definition 11. If the un-group set (UGS) is empty, we are done with the partition. Otherwise, we pick a
view V with the lowest view level from UGS, and then use the CheckGroup and MergeGroup processes to
generate a valid group which has V in it.

CheckGroup process checks whether a given group G is valid group or not by Definition 8. MergeGroup
process will merge a invalid group G' with other groups by Lemma, 6 until the group becomes valid. Because
we generate a valid group starting from the lower level views and moving up to higher level views, all merging

will happen in the group set GS.

Theorem 3 The partitioning algorithm in Figure 12 generates only atomic DW groups.

Proof Assume N is the total number of bases or views in the group set G.S. We use a proof by induction

over N.

Base: With N = 1. The only case is that there is one base. Obviously this is an atomic group.
With N = 2. There are two possibilities: both are bases or one is a base and the other a view in the GS.

They both are atomic groups.

Hypothesis: Assume with N =n bases and/or views in G5, all groups in G'S are atomic groups.

Induction Step: With N =n 4+ 1, we would put one more base and/or view S; from UGS to GS using
the partitioning algorithm depicted in Figure 12, and all the groups in GS are only atomic groups.

Casel: If S; is a base or a view with independent parents then this S; is an atomic group itself. Done.

Case2: If S; is a view, say V, that has dependent parents, we show that GS still continues to contain
only atomic groups after V' has been placed into GS by our algorithm from Figure 12.

Assume the dependent parents of V' are Vi, ..., Vj,. The algorithm forms groups from the lower level to

the higher level. Hence, Vi, ..., V;;, have already been assigned into groups and they all belong to atomic

18

MODULE PartitionGen; FOR (i = 1;i < nj i++)

CONSTANT IF (LV(V;) < 0)
TotalView = m; LV(V;) = ViewLevel(V;)

TotalBase = n;

GLOBAL DATA STRUCTURE
GB: Group Base Set.
DGB: Dependent Group List.
BDL: Base Dependent List.
VPL: View Parent List.
GS: Group Set.

ENDIF
ENDFOR
END AssViewLevel

FUNCTION ViewLevel(V)
BEGIN
temp = VPL(V;)/*get parent list of V;*/
UGS: Ungroup Set. WHILE (temp not empty)
VAR Remove an element S from temp
g = 0; /*total group number*/ IF (LV(S) = -1)
r = n; /*total views left in UGP*/ LV(S) = ViewLevel(S)
LV: View Level. ENDIF
IF (LV(V) < LV(S))

FUNCTION CheckGroup(Group G): Boolean LV(V) = TV(S)

VAR ENDIF
i,j,k,; INTEGER; ENDWHILE
BEGIN LV(V) = LV(V)+1
GB ={GB1,....,GB,,1 }; RETURN LV (V)
FOR (i = 1;j < m; j + +) DO END ViewLevel
i=0;
FOR (k = 1; k < m’; k + +) DO PROCESS InitProc()
IF GB1 belong BDL; BEGIN
THEN j + + /*Initialize BDL and VPL base on the view definition */
IFj2>1 Compute BDL for each base;
THEN dep = 1; Compute VPL for each view;
ENDFOR AssViewLevel();
ENDFOR Put all bases and views into UGP.
IF dep = 0, THEN return TRUE. GP = empty.
ELSE return FALSE. FOR (i = 1; i < m; i++4) /*Move all bases to GP*/
END CheckGroup. Move B; from UGP to GP;
+4;
PROCESS MergeGroup(Group G); EfIDF&)R;
BEGIN FOR (i = 1;i < n; i++) /* Move all view with level 1 to
GB ={GBy,...,GB 1} GP*
Find dependent group base DGB = {GBq,...GB}}. IF (LV(V)==1)
FOR (i = 1;i < k; i + +) Move view V from VGP to GP.
IF GBj belong to Gj r—; /* total view left in UGP */
G = G UNION G, /* merge group */ g++;
GB = GB UNION GB;j ENDIF
ENDIF ENDFOR
ENDFOR END InitProc
IF CheckGroup(Group G) is TRUE o
THEN RETURN /* Get a valid group*/ BEGIN /* Start PartitionGen Processes */
ELSE MergeGroup(Group G) InitProc().
ENDIF i = 2;/*lowest view level in UGP */
END MergeGroup; WHILE (UGP not empty)
FOR (i = 1;i < r; i4++)
PROCESS AssViewLevel() IF (LV(V) == i).
BEGIN THEN Move V from UGP
FOR (i = 1; i < mji++) IF (Checlf(V)::TRUE)
LV(B;) = 0; Put V into GP.
i
ENDFOR. ELSE
FOR (i = 1;i < nj i++) MergeGroup(V).
IF VPL(V;) include only bases ENDIF
LV(V;) = 1; ENDIF
ELSE ENDFOR
LV(V;) = -1 i+
ENDIF ENDWHILE
ENDFOR END PartitionGen

Figure 12: Pseudo Code of Partition Generation Algorithm

groups in GS. When we merge V with some of these groups to generate a valid group, all merging happens
inside GIS. This means the total number of bases and views IV in GS is not changed.

Because the parents of V' are dependent, the partitioning algorithm merges V with V7, ..., V,;, resulting
in a new group G'. Then CheckGroup checks whether G’ is valid or not. If G’ is not a valid group, then
there is another round of merging until we get a valid group G that contains the view V. If G consists of
atomic groups Gy, ..., Gy (Here k <=n), we can show that the group G is an atomic group:

Assume group G is not an atomic group. Then we can split the group G into a set of smaller valid groups.

There are three possible ways to split this group G. We discuss each case below:
o If we take V out of G, then V itself is not a valid group by assumption. Done.

o If we take any view V' from its atomic group G; then called G}, then G} is not valid because an atomic

group is minimal by Definition 10. Done

e If we take any atomic group G; from G, then G becomes G' without containing G;. Obviously, G' is

19

not a valid group because the bases of G’ and G; must be dependent otherwise they would not have

been placed into one group G by the algorithm (see Figure 12). Done.

Based on the above discussion, we cannot divide G into smaller valid groups. Thus G is an atomic group
by Definition 10.

We have proven that the group set contains only atomic groups after the (n + 1)th base or view S, 1 is
put into GS by our partitioning algorithm. Thus the partition generated by PyCo consists of only atomic
groups based on the above proof.

The example below illustrates the main ideas of the PyCo algorithm.

Example 6 We use the view definition from Figure 10.
1. Initialization:

e Base dependency lists:
BDL(By) = {B1,V1,V2,Vs,V5, V7, Vs },BDL(B2) = { B2, V2, V3, V5, Vs, Vs },
BDL(Bs3) = {Bs,V3,V4,Vs,Vs, Vs }, BDL(By) = {B4,V3,V4, Vs, Vs, Vs},
BDL(Bs) = {Bs,V1,V7},BDL(Bs) = {Bs, V3 }-
View parent lists:
VPL(Vy) = {B1,Bs},VPL(V2) = {B1,B2},VPL(V3) = {B2,Bs,Bs}, VPL(Vy) = {Bs, B4},
VPL(Vs) = {V2,Vs},VPL(Ve) = {V3, V4, V5 },VPL(V7) = {B1, Bs,V1}, VPL(Vs) = {Bs, Ve}-
o Assign a level to each view and base. By, ..., Bg have level 0, V1, Va, V3, V4 have level 1, V5, V;
have level 2, Vg has level 3, and Vg has level 4.

After initialization, GS has all bases By, ..., Bg and all views with level 1, namely V1, Va, V3, Vi, with

each base or view in a separate group.

2. Next, PyCo takes out a view, say Vs, with the lowest level 2 from UGS. The parent list V PL(Vs) of Vs
includes Vo and V3, which are in BDL(Bs). Hence, V2 and V3 are dependent. PyCo merges Vs with
the valid groups G2 = {Va} and G3 = {V3}. This results in o new group G' = {V;5,V5,V3}. The new
group-bases GB(G') = {By, B2, B3, B4} are independent. So we get a valid group G' that contains Vs
in GS.

3. Next, PyCo takes out another view with the lowest still available level from UGS (in our case, this is

level 2) and repeats the same steps as in step 2 for Vs until UGS becomes empty.

4. When UGS is empty, then the PyCo algorithm terminates with the result shown in Figure 13

20

@5 (B0 [B7 (B3 (B4 Avesor

Figure 13: A Partition by Using Partition Algorithm

5 Preliminary Evaluation Using a Cost Model

The cost of updating a view is dependent on many factors, such as the VM algorithm employed at each
DW, the communication cost of the network, the size of the data files shipped between DWs, the topology
of the DDWE in terms of the DWs and their inter dependencies. In this paper, we have proposed two
methods: registry and partitioning. The VM algorithm and the size of the view extents are the same for
both the registry and the partitioned-registry approach. We hence focus on the remaining costs which are the
communication cost and the update time cost. To simplify the problem, we assume that the communication
cost between any pair of sites is fixed for a unit of transmission and that there are no capacity constraints

for either the sites or the communication links.

5.1 Message Communication Cost Evaluation

There are four kinds of communication messages in the registry-based distributed data warehousing envi-

ronment, namely:
1. Data update identifiers (DU-ids) send from bases to the registry. The total number is denoted by M,..
2. Ordered DU-ids from the registry to all views. The total number is denoted by M,,.
3. DUs from bases or views to their direct descendents. The total number is denoted by Mj.

4. Queries and query results between views and their parents to compute the new view extent after
receiving the DU-id from the registry and the corresponding DUs from the real-bases through their
parents. The total number is denoted by M,.

So, the total message communication cost M is: M = M, + M, + Mg+ M,.
Mg and M, both are the same for both the registry and partitioning methods. M, and M, may be

different for our two methods. Hence, we focus on those next.

21

Assume a DDWE consists of m bases and n views. We discuss two cases. First, we assume data updates
are distributed evenly and each base has k DUs. Second, we generalize that each base B; has k; data updates.
The total number of data updates is then denoted by K = 7" k;.

Message Cost of RyCo

Case 1: The total message costs are: M, = kxm and M, = k *m *n.

Case 2: The total message costs are: M, = K = 2;’;1 k; and M, = K *n.

Message Cost of PyCo

Assume the system has a valid partition with ¢ DW groups and each DW group has m; real-bases and
n; views. The total real-bases and views are the same as in the registry approach, i.e., m and n. To discuss
the message cost, we further assume that each group has f; DUs that come from external bases.

Case 1: The total message costs are:

M, =ksxmi+..+kxmg+ fi+...+f>=ksm+>7 f;

My =37 (kxm;+ f;) xn;

Case 2: Assume k;; denotes the data update from real-bases j in the group i. The total message cost is:

M, =370 (fi+ 208 kij) >= K + 320, fi

My, =37 (fi + 207 ki) + s
Comparing Message Costs With and Without Partitioning

Comparing the message exchanges for the registry and the partition.

1. Comparing the messages sent from the real-bases to the registry.

With partitioning, there are more messages sent to the registry than for the RyCo approach. If the
groups have no common real-bases, then there is the same amount of messages sent from real-bases to

the registry.
2. Comparing messages sent from the registry to views. We find that there are more messages sent from
the registry to the views for RyCo approach.

If DUs from real-bases are distributed evenly, then the difference of messages, denoted by AM, sent

from the registry to views with our two methods corresponds to:

g
AM = Z(k*mi-l—f,-)*m—k*m*n

i=1
g)
= Z(k*mi+f,~)*ni—k*m*2ni
=1 i=1
g
= Zni*(fi+k*mi_k*m) (6)
i=1

The value of f; + k *x m; — k x m in Formula 6 thus determines AM. f; denotes the number of DUs

22

coming from virtual bases. Because the number of group bases that is not real-bases is at most m —m;,

fi <=k *(m — m;) based on the partition properties. Hence,
9 g
AM:Zn,-*(f,-+k*m,-—k*m) <:Zni*(k*(m—m,~)+k*mi—k*m) =0
i=1 i=1

The difference in message costs being negative means that the total message cost from the registry to

the views is less for algorithm PyCo than algorithm RyCo.

If DUs are not distributed evenly, we still have a result similar to above. Hence this is omitted here.

To summarize, the analysis of the message cost indicates that:

1. For the message cost from bases to the registry, the cost of the PyCo algorithm is larger than the cost
of RyCo. But if every DW group has no virtual bases and no common bases, then the two approaches

have the same costs.

2. For the message cost from the registry to the views, the cost of PyCo is less than the cost of RyCo. In

the worst case when all groups include all the bases of DDWE, both approaches have the same cost.

5.2 Update Time Cost Evaluation

The update time refers to the elapsed time from when a DU was generated by a base and sent out to the
DDWE to the completion of the last DW in DDWE updated to reflect the DU. We assume the transmission
time between any pair of sites is fixed, denoted as t;. The time to compute a AV is denoted as t,. The time
from when a DU arrives at a view until it is processed by VM is denoted by ¢,,. t, and t,, are dependent on
the system speed and how the views are defined, etc. Both of which are not constant.

1. With RyCo method, the update time for views after a data update is:

views at level 1: T} = 2 X t; + ty1 + tw1

views at level 2: To =T + (ty + to2) + twa = (1 + 1) Xty + (f1 + tp2) + (fw1 + tw2)

views at level 4: T; = (1 + 1) x t; + 22:1 tok + 22:1 twk
2. In the PyCo approach, the update time is also affected by the groups. Similar to the idea of level of
views, there is a level of groups as defined as follows:

Definition 12 A level of a group G is:

23

0 : if G has no external-bases

level(G) =
maz((level(G1)), ..., (level (G,))) +1 : if G has external-bases in G1..G,

Hence the update time for a view at level 7 and in group at level j after a data update is:
For a view at level 4 and in group at level 0: T; = (i + 1) * ¢, + ZZZI tok + 2221 twk

For a view at level ¢ and in group at level 1: T; = (i + 1) X t; + 2221 tor + Eizl twr + t

For a view at level 7 and in group at level j: T; = (i + 1) x t; + 22:1 tor + 22:1 twr + 7 Xt

The update time is influenced by t;, t, and t,, and is also dependent on the view level in both RyCo and
PyCo and group level in PyCo. The lower the view level, the less time is needed to update. With or without
partitioning, a view level is the same for a view V', and also ¢, directly depends on the VM algorithm, so
the difference between the update time of RyCo and PyCo is only the the group level, which decides the
delay of the communication between registry and DWs in group at level j, i.e., j x t;. However, the t,
may be less in PyCo than RyCo, for there are no empty update message that must be passed around in the
PyCo approach. When the average group level is low, the PyCo approach is expected to have overall better
performance than the RyCo approach.

Summary Giving the above analysis, the PyCo approach has been shown to have an overall better per-
formance than the RyCo approach if there are less or no common group bases between different DW groups.
Key advantages of the partitioning approach beyond its performance are its increased scalability and its

distributed and robust nature.

6 Conclusion

In this paper, we have primarily concerned with the consistency view maintenance in distributed data
warehouse environment. We proposed two algorithms, namely the RyCo and PyCo approach that both
handle view maintenance efficiently. Using the cost model, we have shown that the partitioning approach
has better performance than registry in terms of the update time and overall message cost from registry to
views. All the views in our system are maintained and updated independently according to the notification
order from the registry. Our registry-based solution does not need any safe time to refresh a materialized
view, as required by the only alternate solution in the literature thus far [SDA99]. With the partitioning
algorithm, our system is more scalable and fault-tolerant in the sense of not relying on one single registry

agent representing a potential bottleneck in the distributed DW environment.

24

References

[AASY97]

[CDY7]

[CKL*96]

[DZR99]

[GMOY6]

[GMLWZ98]

[KLMR97]

[MKK97]

[SDA9S]

[SDA99)

[WB97]

[ZGMHWO5]

[ZGMW96]

[ZR99]

[ZWGM97]

D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient View Maintenance at Data
Warehouses. In Proceedings of SIGMOD, pages 417-427, 1997.

S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Technology.
SIGMOD Record, 26(1):65-74, 1997.

L. Colby, A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Supporting Multiple View
Maintenance Policies. AT T Technical Memo, 1996.

L. Ding, X. Zhang, and E. A. Rundensteiner. The MRE Wrapper Approach : Enabling
Incremental View Maintenance of Data Warehouses Defined On Multi-Relation Information
Sources. In Proceedings of the ACM First International Workshop on Data Warehousing and
OLAP (DOLAP’99), pages 30-35, November 1999.

A. Gupta and I. S. Mumick. What is the data warehousing problem? (Are materialized views
the answer?). In International Conference on Very Large Data Bases, page 602, 1996. Panel.

H. Garcia-Molina, W. Labio, J. L. Wiener, and Y. Zhuge. Distributed and Parallel Computing
Issues in Data Warehousing . In Symposium on Principles of Distributed Computing, page 7,
1998. Abstract.

A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A. Ross. Implementing Incremental View
Maintenance in Nested Data Models. In Workshop on Database Programming Languages,
pages 202-221, 1997.

M. K. Mohania, S. Konomi, and Y. Kambayashi. Incremental Maintenance of Materialized
Views. In Database and Expert Systems Applications (DEXA), pages 551-560, 1997.

I. Stanoi, D.Agrawal, and A. E. Abbadi. Weak Consistency in Distributed Data Warehouses. In
Proceedings of the International Conference of Foundations o f Data Organization, November
1998.

I. Stanoi, D.Agrawal, and A. E. Abbadi. Modeling and Maintaining Multi-View Data Ware-
houses. In Proceedings of the 18th International Conference on Conc eptual Modeling (ER’99),
pages 161-175, November 1999.

M. Wu and A. P. Buchman. Research Issues in Data Warehousing. In Datenbanksysteme in
Biiro, Technik und Wissenschaft, pages 61-82, 1997.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a Warehousing
Environment. In Proceedings of SIGMOD, pages 316-327, May 1995.

Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. The Strobe Algorithms for Multi-Source
Warehouse Consistency. In International Conference on Parallel and Distributed Information
Systems, pages 146-157, December 1996.

X. Zhang and E. A. Rundensteiner. The SDCC Framework for Integrating Existing Algorithms
for Diverse Data Warehouse Maintenance Tasks. In International Database Engineering and
Application Symposium, pages 206214, Montreal, Canada, August, 1999.

Y. Zhuge, J. L. Wiener, and H. Garcia-Molina. Multiple View Consistency for Data Warehous-
ing. In Proceedings of IEEE International Conference on Data Engineering, pages 289-300,
1997.

25

