Putting PANTS on Linux:
Transparent Process Migration in a Beowulf
Cluster *

Kevin Dickson, Chuck Homic, Bryan Villamin,
Mark Claypool, and David Finkel

Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609 USA

April 17, 2000

Introduction

PANTS is the PANTS Application Node Transparency System. It provides au-
tomatic and transparent load sharing on a Beowulf cluster of Linux computers.
PANTS manages the resources of the cluster for the user and executes processes
remotely to share the computation load among the nodes in the cluster.

The benefits of cluster computing are well known. A large class of compu-
tations can be broken into smaller pieces and executed by the various nodes in
a cluster. Sometimes, however, it can be beneficial to run an application on a
Beowulf cluster that was not designed to be cluster-aware. This is one of the
main goals of PANTS.

PANTS was designed to be transparent to the application as well as the
programmer. This transparency allows an increased range of applications to
benefit from process migration. Under PANTS, existing multi-process applica-
tions, not built with cluster computing in mind, can now run on multiple nodes
by invisibly migrating the individual processes of the application. As far as
the application is concerned, it is running on a single computer, while PANTS
controls what resources it is using.

The PANTS design also contains a method for minimal inter-node commu-
nication and fault tolerance. In a Beowulf system, the network is most often
the performance bottleneck. With this in mind, PANTS keeps the number of

*This research has been supported by equipment grants from Alpha Processor, Inc. and
from Compaq Computer Corporation.

message that move between machines low and also uses a protocol which does
not exchange messages with nodes busy with computation. Built-in fault tol-
erance allows the cluster to continue functioning even in the event that a node
fails. In the same way, nodes can be added or removed from a cluster without
dramatic consequences.

Beowulf and Distributed Applications

A Beowulf is a collection or cluster of personal computers that are connected
to each other via Ethernet. The main idea behind the Beowulf project was to
build low cost but scalable parallel computer system using relatively inexpensive
personal computers.

There are many libraries designed to simplify the creation of parallel applica-
tions for Beowulf. PVM, Parallel Virtual Machine, is a runtime message-passing
system which is easy to use, portable, and widely popular on parallel systems.
It has been designed so that users without system-administration privileges
could install the software and run parallel jobs from their shell accounts. MPI,
Message Passing Interface, provides a complete library specification for message-
passing primitives and has been widely accepted by vendors, programmers, and
users. DIPC, Distributed IPC, provides distributed program developers with
semaphores, messages and transparent distributed shared memory. BPROC,
Beowulf Distributed Process Space, allows a node to run processes which ap-
pear in its process tree even though the processes are not physically on the node
itself.

While these libraries are very effective for writing distributed applications,
they also require that applications be written for a specific library. The goal of
PANTS is to overcome this limitation, by creating an environment where load
sharing of multi-process applications can take place automatically, without the
need to think about the details of working in a cluster environment.

The first version of PANTS, created by Jeff Moyer [4], also provided a tool
for distributed applications, through process migration. It successfully demon-
strated transparent preemptive migration, by making changes to the Linux ker-
nel. It was able to migrate running processes through the use of EPCKPT, a
process checkpointing utility by Eduardo Pinheiro [5]. Thus processes at a busy
node could be stopped in mid-computation and moved to another, less busy,
node, without intervention or even the knowledge of the user.

The current project is directed at continuing the development of PANTS. In
particular, there were two issues we wanted to address. First, the use of kernel
modifications meant that the PANTS software might have to be modified with
each new kernel release. To avoid this version chasing, we wanted to eliminate
the need for kernel modifications. Second, the use of the EPCKPT utility
restricted the use of the system to Intel systems, since there were many Intel-
specific aspects to EPCKPT. In order to make PANTS platform-independent,
we removed the dependency on EPCKPT, and developed a system that would
only migrate processes at the time of process initiation.

PANTS Concept

PANTS is composed of two major components, the PANTS daemon and PREX.
The PANTS daemon is responsible for coordinating the available resources in the
cluster. It communicates among nodes to determine which nodes are available
to receive processes. PREX intercepts the execution of a process, queries the
daemon for an available node and remotely executes the process to distribute
load among the nodes in the cluster.

PANTS Daemon

An instance of the PANTS daemon runs on each node, and collects and shares
load information. This information is made available to PREX when it is needed.
Our implementation of the PANTS daemon is based on the daemon developed
in [4]. See Figure 1 for a representation of a PANTS communication.

One of the nodes is required to be the leader. The leader can be any node
in the cluster, and is chosen randomly among all of the nodes. It has three
basic responsibilities: accept load information from each of the nodes in the
cluster, use that information to maintain a list of available nodes, and return
an available node to any client that requests it.

An available node is one that is not busy working on a computation. When
any node in the cluster becomes available, it sends a message to the leader,
indicating that it is free to accept new work. If a node becomes unavailable,
for example if it begins a new computation, it sends another message to the
leader. Thus, the leader always knows which nodes are available at any time.
If a node wants to offload work onto another node, it need only ask the leader
for an available node, then send the process to that node.

The actual implementation is a variation of the multicast leader policy de-
scribed in [6], and implemented in [4]. This policy was designed to minimize the
number of “busy machine messages,” that is the number of messages that need
to be handled by a node busy with computation. We modified the Wills-Finkel
policy [6] to simplify the implementation and improve fault tolerance, at the
cost of a small increase in the amount of network traffic.

In PANTS, there are two multicast addresses. One of the addresses is only
used by the leader. Because the leader is contacted via multicast, the leader
can be any node in the cluster, and leadership can change at any time, without
needing to update the clients. The other multicast address is for available
nodes. This address is only used when the leader needs to discover, for the first
time, which nodes are available. Because multicast is used to communicate with
available nodes, busy nodes are not even aware of the traffic.

Using this multicast policy, the PANTS daemon can respond quickly to a
request from PREX for an available node.

Leader Multicast Address

B L eader C

Free Node Multicast Address

Figure 1: PANTS Multicast Communication. The above figure depicts
the multicast communication among PANTS daemons. There are
four nodes in this Beowulf cluster, one of which is the leader. Nodes
A and C are ”free” nodes, having little computation load and Node
B is a ”busy” node. All Nodes can communicate with the leader by
sending to the leader multicast address. The leader communicates
with all free nodes, A and C in this example, by sending to the free
node multicast address. Node B is not ”bothered” by messages to
the free nodes since it is not subscribed to that multicast address.

PREX

PREX, which stands for PANTS remote execute, is made up of a library object
called libprex.o and a remote execution program called prex. The library
object is designed to intercept programs when they are initially executed and
then send them to the prex program. When prex receives the pathname of an
executable binary, the binary is first checked for its ability to be migrated. If
deemed migratable, it is executed remotely via rsh, after a query to the PANTS
daemon returns the address of the node to which the process will be sent. The
flow of execution using PREX is shown in Figure 2.

The way libprex works with the C library allows it to intercept processes
transparently. To enable 1libprex, the environment variable LD_PRELOAD
is set to reference the libprex library object. Doing this causes the library
functions in libprex to override the usual C library functions. When programs
call the execve function, our version of execve is used instead of the original
one. Inside of our execve function, the real C library execve is invoked to
execute prex, whose arguments are the process name, followed by the original
arguments for that process. prex can then use rsh to remotely execute the
process.

When prex is invoked for a process, the process is checked for migratability,
which is determined by flags set within the binary. Several user-defined bits

within the flag area of the binary’s header signal whether the process should be
migrated. If the binary is migratable, prex queries the local PANTS daemon to
determine if the local machine is busy with other computations. If the process
isn’t migratable, or the local machine isn’t busy, the binary is executed on the
local machine by calling the original version of execve. If the local machine is
busy, prex queries the local PANTS daemon for an available node. If a node is
returned, prex calls rsh to execute the process on that node. If all nodes are
busy, the process is executed locally.

User Process
foo migratable pr ex
Lo ; >
‘execve(foo)
i bprex.o
LD_PRELOAD? :

L

libc.o |

foo not migratable

Figure 2: PREX Functionality. The above figure depicts the function-
ality of PREX. When a process calls execve() and the environment
variable LD _PRELODAD is set, libprex.o intercepts the 1libc.o version of
execve(). If the executable file is migratable, 1ibprex.o invokes prex
to communicate with the PANTS daemon to find a free node and
migrate the process. If the executable is not migratable, 1ibprex.o
invokes the normal libc.o version of execve().

Results and Future Work

The PANTS system has been fully implemented, and is running on our Beowulf
cluster of Alpha processor workstations. The system has been thoroughly tested,
and is functionally correct. Although we have not yet performed extensive
performance tests, small scale testing has shown nearly linear speed-up with
PANTS with a computationally-intensive numerical application.

Although PANTS shows significant potential in distributed processing, there
are a number of ways that we see PANTS growing into a more mature cluster
environment.

One of the more difficult responsibilities of PANTS is determining whether
or not each node is busy with a computation or available to receive a task.
Currently, PANTS uses a periodic check of the percentage of CPU utilization to
make this decision. A threshold is chosen, and any node with CPU utilization
greater than the threshold is considered “busy.” Others are “free.” However,
changing this threshold, or changing how often load is measured, can have a sig-
nificant impact on the overall performance of the cluster. Choosing the correct

threshold and testing period, then, will be an important goal to maximize the
effectiveness of a PANTS cluster. However, CPU load is not the only kind of
“load” possible. A process can also require large amounts of memory, or I/O ac-
tivity, which can limit its performance. A study of which variables to measure,
and how to evaluate them may also be important to maximize performance.

Preemptive migration is the act of moving a process from one node to an-
other when it is already running. It has been shown in [1] that there are sit-
uations where preemptive process migration can give a significant performance
benefit over a simple remote execution scheme. Specifically, when distributed
applications are executed on a shared network of workstations, rather than on a
single-user cluster of dedicated nodes, preemptive migration allows more flexible
use of idle workstations. As discussed above, the original version of PANTS im-
plemented preemptive migration for the Intel platform only, and in the current
version we decided to implement the non-preemptive, but platform independent,
PREX. BPROC, the Beowulf Distributed Process Space, supports preemptive
process migration on many platforms [2]. Thus, the capability for preemptive
migration could be added back to PANTS, without affecting platform indepen-
dence, by borrowing generously from BPROC.

The current PANTS implementation uses rsh to execute processes remotely.
Therefore, the only method of communication to a remote process is through
stdin/stdout. Often, this is sufficient, but to be truly transparent, PANTS will
have to offer distributed IPC services, such as shared memory, semaphores, and
message queues. DIPC, Distributed Inter-Process Communication, provides
these capabilities [3]. Integrating DIPC into PANTS will allow a much wider
range of distributed applications to benefit from executing on a PANTS cluster.

Conclusion

Distributed computation has grown in popularity recently, earning attention
from scientists and even corporations. Accompanied with the dramatic growth
of Linux, Beowulf systems provide a cost effective solution to today’s large com-
putation needs. PANTS and its use of transparent load sharing makes another
step in the direction of ever more powerful cluster technology. PANTS is de-
signed to run on any system running a modern distribution of Linux regardless
of the underlying architecture. Transparency, reduced busy node communica-
tion, and fault tolerance make PANTS a viable solution for more effective use
of a Beowulf system.

References

[1] Amnon Barak, Avner Braverman, Ilia Gilderman and Oren Laden. “Perfor-
mance of PVM with the MOSIX Preemptive Process Migration Scheme.”
Proc. Tth Israeli Conf. on Computer Systems and Software Engineering,
June 1996.

[2] Erik Hendriks. = BPROC: Beowulf Distributed Process Space.
http://www.beowulf.org/software/bproc.html

[3] Kamran Karimi. “DIPC.” http://www.gpg.com/DIPC/

[4] Jeffrey Moyer. PANTS Application Node Transparency System.
http://segfault.dhs.org/ProcessMigration/

[5] Eduardo Pinheiro. EPCKPT - A Checkpoint Utility for Linuz Kernel.
http://www.cs.rochester.edu/u/edpin/epckpt/ (Mirror site)

[6] Craig E. Wills and David Finkel. “Scalable Approaches to Load Sharing in
the Presence of Multicasting.” Computer Communications, 18(9):620-630,
September 1995.

