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Abstract. In this paper we propose a new approach for mining associa-
tion rules of classification type particularly suited for use in collaborative
recommender systems. Such systems rely on information about relation-
ships between different users’ preferences in order to recommend items
of potential interest to the target user. Despite their successful applica-
tion to other domains, existing association rule mining techniques are
not suitable for the recommendation domain because they mine many
rules that are not relevant to a given user. Also, they require that the
minimum support (also known as the significance) of the mined rules be
specified in advance, often leading to too many or too few rules. In con-
trast, our approach adjusts the minimum support so that the number of
rules obtained is within a specified range, thus avoiding excessive compu-
tation time while guaranteeing that enough rules are provided to allow
good classification performance. This paper describes our approach. The
results of an experimental evaluation of our approach are also described.
These results show that the rules mined by our approach allow excellent
recommendation performance.



1 Introduction

Collaborative recommender systems are of great current interest, largely because
of their impact on electronic commerce. Such systems rely on identifying sim-
ilarities and dissimilarities between the preferences of different users in order
to suggest items of potential interest to such users (see e.g. [13], [12], [3], [4])-
Despite this interest, both the number of available published techniques and in-
formation about their performance are quite limited. It is of great importance
to explore more techniques for this domain. In the present paper we describe an
association rule mining technique specially designed for use in collaborative rec-
ommender systems. We include experimental results that show that very good
results may be obtained using this technique.

1.1 Association Rules

Association rules were independently introduced by P. Héjek et al. [6,8] and
by Agrawal et al. [1]. While [6] and [8] introduce association rule mining as
a machine learning approach to the logic of discovery, [1] concentrates on the
mining of associations over sales data.

Given a set of transactions, where each transaction is a set of items, an
association rule is a rule of the form X = Y, where X and Y are sets of items.
An example of an association rule in the basket market analysis domain is:
“90% of transactions that contain bread and butter also contain milk; 30% of all
transactions contain the three of them”. Here, X = {bread, butter}, Y = {milk},
90% is called the confidence of the rule, and 30% the support of the rule. X and
Y are respectively called the body and the head of the rule.

Given a set of transactions, where each transaction is a set of items, and user-
specified minimum support and minimum confidence, the standard problem of
mining association rules is to find all association rules that are above the user-
specified minimum support and minimum confidence. We propose a variant of
this problem in section 2 of the present paper.

1.2 Scope and advantages of our approach

We have designed and implemented an algorithm to mine association rules which
is adapted from the Apriori algorithm [2] and CBA-RG [9] and is particularly
tailored to collaborative recommender systems. Our motivation to mine associa-
tion rules for recommender systems comes from the following observation: Rules
like “90% of users who like article A and article B also like article C, 30% of all
users like all of them” and “90% of articles liked by user A and user B are also
liked by user C, 30% of all articles are liked by all of them” are very useful for rec-
ommendation purposes. We refer to rules of the first kind as article associations
and rules of the second kind as user associations. Article associations represent
relationships among articles and user associations represent relationships among
users that are useful for recommendation. We explore article associations and
user associations on two levels (like and dislike) by using extensions of the basic



association rules. One example of two level user associations is “90% of articles
liked by user A and disliked by user B are liked by user C, 30% of all articles
are liked by user A and C and disliked by user B”.

Our new mining algorithm focuses on mining rules for only one target user/article
at a time. This has the following advantages:

1. Since we are only interested in predicting articles that a target user would
like, in user associations, we only need rules with that user in the rule head.
Such rules could be mined more efficiently than the rules with arbitrary
heads. Since we need to mine user associations online, the efficiency of the
process is of great importance.

2. By mining article associations for one article at a time we are able to ob-
tain rules for articles that have only received a limited number of ratings,
for example a new movie. This would not be possible if we mined article
associations for all articles at once, because rules for new articles would fail
to have the necessary support.

3. A significant amount of runtime is saved by mining rules only over the subset
of the transaction data that is related to the target user/article instead of
over the whole data.

A main feature and advantage of our algorithm in comparison with existing
mining methods is that it automatically selects the minimum support so that the
mining process produces an appropriate number of rules for each target item.
This property of our algorithm allows recommender systems that rely on the rules
mined by it to achieve very good performance both in terms of response time
and accuracy of the predictions. Instead of the minimum support, our algorithm
is given a range for the desired number of rules before the mining process.

1.3 Relation to other work

A large variety of association rule frameworks and algorithms have been pub-
lished in the literature, including GUHA [6,8,7,11], Apriori [2], and DIS [5].
One extension of the basic binary association rules, called quantitative associ-
ation rules [14], finds associations between attributes with categorical values.
Quantitative association rules have the potential to extend association rules to
general classification domains. Some results of adapting those rules to classifi-
cation tasks are shown in [9,8]. [9] presents the CBA-RG algorithm (which is
based on the Apriori algorithm) and a good framework to perform the so-called
associative classification.

However, previously proposed association rule mining algorithms are not suit-
able for collaborative recommender systems. Two significant reasons for this are:

— Previous algorithms do not provide a mechanism to choose a proper mini-
mum support for the given minimum confidence and the desired range for
the number of rules. This often leads to either too many or too few rules,
and thus to either excessive computation time or else poor recommendation
performance.



— Most existing algorithms do not allow the heads of the rules to be specified
in advance. Although CBA-RG has addressed the problem of mining rules
for a single target class, the recommendation problem is even more focussed
since we need to mine rules for only one target class value.

2  Our Association Rule Mining Algorithm

In this section we describe our algorithm to mine association rules (AR-CRS).
This algorithm adjusts the minimum support of the rules during mining in order
to obtain an appropriate number of significant rules for the target predicate.

Problem Definition Given a transaction dataset, a target item, a specified
minimum confidence and a desired range [minRulenum,maxRulenum] for the
number of rules, find association rules with the target item in the heads of the
rules such that the number of rules is in the given range, the rules have the high-
est possible support, and the rules satisfy the minimum confidence constraint.

Note. Since we use the same algorithm to mine user associations as well as article
associations, we use the term target item to denote “target user” in the case of
user associations and “target article” in the case of article associations.

2.1 Algorithm Description

Our AR-CRS algorithm solves the above problem. AR-CRS consists of two parts:
AR-CRS-1 and AR-CRS-2.

AR-CRS-1 In order to mine only a given number of most promising rules for
each target item, we use AR-CRS-1 to control the minimum support count and
find the rules with the highest supports. The minimum support count is the
minimum number of transactions that satisfy a rule in order to make that rule
frequent, i.e., it is the multiplication of the minimum support and the whole
number of transactions. The overall process is shown in detail in Figure 1. It
consists of three parts:

1. AR-CRS-1 initializes the minimum support count according to the frequency
of the target predicate and calls AR-CRS-2 to mine rules.

2. When AR-CRS-2’s output is returned, AR-CRS-1 will check first if the num-
ber of rules returned is equal to maxRulenum (as we describe below, AR-
CRS-2 terminates the mining process when the number of rules generated
is equal to maxRulenum). If it is, that means the minimum support count
is low which results in more than maxRulenum rules, so the AR-CRS-1 will
keep increasing the minimum support count and calling AR-CRS-2 until the
number of rules is less than maxRulenum.



Input: Transactions, target!/tem mnConfidence, ninRul enum naxRul enum
Qutput: mined association rules

1) Set initia minsupportQunt based on target|tenslikerato
2) R =AR-CRS-();
3) while (Rulenum=  naxRul enun) do

4) ni nsuppor t Gount ++,

5) R =AR-CRS2();

6) if Rmlenum>  minRuU enumthen R= R;
7) else return R,

8) end

9 whil e (Rulenum<  ninRUl enun) do
10) m nsuppor t Gunt —;

11) R =AR-CRS-2();

12) end

13) return R

Fig.1. The AR-CRS-1 Algorithm

3. Finally, AR-CRS-1 will check if the number of rules is less than minRulenum;
if it is, it will keep decreasing the minimum support count until the rule
number is greater than or equal to minRulenum.

Within a given support, rules with shorter bodies are mined first. Hence, if
with minimum support count say 15 there is no rule available, but with minimum
support count 16 there are at least maxRulenum rules, then AR-CRS-1 will
return the shortest maxRulenum rules with support count of at least 16.

AR-CRS-2 AR-CRS-2 is a variant of CBA-RG [9] and therefore of the Apriori
algorithm [2] as well. AR-CRS-2 is a variant of CBA-RG in the sense that instead
of mining rules for all target classes, it only mines rules for one target item. It
differs from CBA-RG in that it will only mine a number of rules within a certain
range. When it tries to generate a new rule after having obtained maxRulenum
rules already then it simply terminates its execution and returns the rules it has
mined so far.

Here we use k-condset to denote a set of items (or itemset) of size k which
could form a rule: k-condset = target-item. The support count of the k-condset
(called condsupCount) is the number of transactions that contain the k-condset.
The support count of the corresponding rule (also called rulesupCount of this
k-condset) is the number of transactions that contain the condset as well as the
target item.

AR-CRS-2 is very similar to CBA-RG as mentioned above. We describe the
process here in order to make our paper self-contained. Association rules are
generated by making multiple passes over the transaction data. The first pass
counts the rulesupCounts and the condsupCounts of all the single items and
finds the frequent 1-condsets. For pass k > 1, it generates the candidate frequent
k-condsets by using the frequent (k—1) —condsets; then it scans all transactions



to count the rulesupCounts and the condsupCounts of all the candidate k-
condsets; finally, it will go over all candidate k-condsets, selecting those whose
rulesup is above the minimum support as frequent k-condsets and at the same
time generating rules k-condset = target-item, if the confidence of the rule is
above the minimum confidence. The algorithm is presented in Figure 2.

Input: Transactions, targetltem mnConfidence, naxRul enum m nsupport Qount
Qutput: nmined association rul es

1) F, ={ frequent1- condsets} ;
2) R =genRules(F,);

3) if Rrulenum= naxRulenumthen return R ;

4) for (k=2,F_ #0;k++) do Begin

5) C, = candidateGen( F, _,);

6) for each transaction tOTransactions do Begin

7) Ct =all candidate condsetsof C, containedint ;

8) for each candidate cOC, do Begin

9) c. condsupCount ++;

10) if t contains target/temthen c.rul esupCount ++;
11) end

12) end

13) Fk = ic O Ck\ c.rulesupCount = mi nsupportCount};
14) R =R UgenRules(F,);

15) if Rrulenum= naxRul enumthen return R ;

16) end
17 return R:

Fig. 2. The AR-CRS-2 Algorithm

2.2 Real-time recommendation

A requirement of many recommender systems is the realtime response. Our
algorithm can satisfy the real time constraint for the following reasons:

We mine rules offline for article associations;

The training data to mine rules for one target user is only a small subset of
all the ratings, i.e., the ratings from training users and the target user for
the articles that the target user has rated. So the training data size is small;
The mining process AR-CRS-2 will stop after it mines maz Rulenum rules.
If the max Rulenum is small, it is very fast;

In the main process, we choose an initial minimum support count according
to users’ like ratios. For most users, the main process only need to call the
mining process two or three times. We can switch to article associations for
users who need more iterations.

2.3 Algorithm Implementation

We have implemented our algorithm in C++. In order to speed up the mining
process, we have chosen data structures that efficiently support the key opera-



tions of our algorithm: (1) subset test: how to find all candidate condsets that
are contained in one transaction; (2) candidate generation - join step: how to
find frequent condsets that could be joined together; (3) candidate generation -
prune step: how to test if any (k-1)-subset of a candidate k-condset is a frequent
(k-1)-condset. As described in [2], using a hash-tree to store candidate itemsets
and a bitmap to store a transaction could speed up the support counting process.
In addition to using bitmaps and hash—trees, we use a new data structure that
we call set—tree, which we have designed and implemented to facilitate the join
and prune operations on candidate itemsets.

3 Experimental Evaluation

In this section, we describe an experimental evaluation of our algorithm in the
context of collaborative recommendation based on associations between users.

3.1 Training and Test Data

We use the EachMovie Dataset as the test-bed of our approaches. The EachMovie
data set is an online data source provided by DEC’s Systems Research Center
[10]. It contains ratings from 72,916 users for 1,628 movies. User ratings were
recorded on a numeric six—point scale (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). We use 1,000
training users and 100 test users from the EachMovie dataset, all of who have
rated more than 100 movies each.

3.2 Recommendation Using the Mined Association Rules

The same mining process may be used to mine a certain number of rules for
each user/article for both user associations and article associations. The main
difference between the implementation of these two association types is that we
use different training data to mine the association rules. In the current paper
we restrict our attention to user associations. Further information about item
associations and a combination of the two types of associations is provided in
an upcoming paper.

Mapping Ratings to Transactions The conversion from item ratings avail-
able for recommendation tasks to “transactions” as required for association rule
mining is determined by what kind of associations and how many levels of asso-
clations we want to discover. We map the numeric ratings for an item into two
categories: like and dislike according to whether the rating for the item is greater
than or less than some chosen threshold value. Then we convert the chosen like
and dislike ratings into transactions. In order to mine like and dislike associ-
ations among users, we extend each user, say userg, to two “items”, one item
corresponding to [usery: like] and another item corresponding to [usery: dislike].
If usery, likes an article, then the corresponding transaction contains the item



[usery: like]; If usery, dislikes the article, the corresponding transaction contains
the item [usery: dislike]; If user) did not rate the article, the corresponding
transaction does not contain either of these two items.

Recommendation Strategy The rules mined are akin to [training_user; :
like] AND [training_users : dislike] = [target_user : like]. For a test article of
the target user, if the training-user; likes this article and the training_users
dislikes this article, then we say this rule fires for this article. We associate each
rule with a score, which is the product of the support and the confidence of the
rule. We also assign a score to each article, which is the sum of the scores of
all the rules that fire for that article. If scoreq ticre; is greater than a threshold,
then we recommend article; to the target user.

3.3 Performance Measurement

We use the accuracy, a commonly used performance measure in machine learn-
ing, together with two standard information retrieval measures, precision and
recall. Accuracy is the percentage of correctly classified articles among all those
classified by the system; Precision is the percentage of articles recommended to
a user that the user likes; Recall is the percentage of articles liked by a user
that are recommended to him /her. For recommendation tasks, precision is per-
haps most significant because we are more concerned about making high quality
recommendations than about recommending a large number of items.

For all the experiments, we employed a 4-fold cross-validation approach when
evaluating the performance for each test user, and we report the averaged per-
formance over the 100 test users.

3.4 Parameters

The main parameters for our system are listed below:

the like and dislike threshold for the ratings;

— the maximum length of rules.

— the minimum confidence of the association rules;
— minRulenum and maxRulenum.

Results for different parameter values are described in the next section. Cur-
rently, we set 0.7 as the like threshold, i.e., if a user’s rating for an article
is greater than 0.7, then we assume that user likes the article. With this like
threshold, the ratio of the number of movies liked over the total number of
movies rated among all the test users is 0.45.

3.5 Performance Results

Maximum Rule Length We use rule length to refer to the number of the
items present in the body of a rule. Table 1 lists the performance for different



Rule Length 2 4 6 8 10

Accuracy  [0.693712|0.696117/0.695676| 0.69759 |0.694547
Precision  [0.704357|0.724006/|0.733482|0.737896(0.736086
Recall 0.572606|0.545425(0.528625(0.528411|0.520813
Table 1. Performance for Different Maximum Rule Length

maximum rule lengths. Here we choose minimum confidence as 100%, and the
number of rules in the range [5,100].

From Table 1 we could see that when the maximum rule length is around 8,
we get the best performance. Given these results and the fact that longer rules are
in more danger of overfitting the data, we have chosen the maximum rule length
to be 8. We use this maximum rule length for all the following experiments.

Minimum Confidence We tested the performance when varying the minimum
confidence. The results are shown in Figure 3 and summarized below.

N =
o e
i E————
0.5 /

/

0.4
1 0.95 0.9 0.85 0.8 0.75
—e—Accuracy | 0.683552 | 0.704511 | 0.723359 | 0.727041 | 0.729348 | 0.676991
-m- Precision | 0.764803 | 0.76103 | 0.743149 | 0.718678 | 0.693465 0.625
—&—Recall 0.447833 | 0.518673 | 0.606528 | 0.665383 | 0.734724 | 0.855856
Minimum Confidence

Fig. 3. Performance for Different Minimum Confidence Values

— The minimum confidence has a significant impact on the performance: the
higher the minimum confidence, the higher the precision but the lower the
recall. We achieve the highest precision of 0.76 with a recall of 0.45 for the
minimum confidence of 100%.

— When the minimum confidence is varied, a tradeoff between the precision
and the recall becomes evident. If we take accuracy as a measure that re-
flects both the precision and the recall, we achieve the best combination of
the precision and the recall not with minimum confidence 100% but with
minimum confidence from 80% to 90%. This is because more liked articles
are identified as like, i.e., we have higher recalls.

Although we think the precision is the most important measure for a rec-
ommender system, it is important to obtain a good combination of very high



precision with a reasonably high recall. Taking this into account, we use a min-
imum confidence of 0.9 for the remaining experiments.

Range for the Number of Rules In order to decide what is the appropriate
range of number of rules, we ran experiments with different ranges. As shown
in Figure 4, we achieve quite similar performance for ranges [10,100], [20,200],
and [50,500]. Our experiments verify that a limited number of rules is desir-
able for making recommendations to a user. Too many rules do not improve
recommendation performance and lead to an unnecessarily large run time.

0.8
0.75 -
0.7 - M hd
0.65
-,
06
0.55
05
10~100 20~200 50~500
e Accuracy 0.722869 0.723654 0.720807
- Precision 0.74224 0.736896 0.73676
& Recall 0.606421 0.618299 0.608882

The Number of Rules

Fig. 4. Performance for Different Rule Set Sizes

Like and Dsislike Associations In order to obtain both like and dislike
associations, we map ratings into like and dislike by using two thresholds: the
like threshold and the dislike threshold. The like associations we discussed before
correspond to choosing the dislike threshold as 0. Figure 2 gives the comparison
of the performance for different dislike thresholds.

Dislike Threshold 0 0.3 0.7

Accuracy 0.721936(0.724341(0.718549
Precision 0.725214(0.726137|0.717452
Recall 0.634029(0.640663(0.637453

Table 2. Performance for Like and Dislike Associations. like_threshold = 0.7

There is no significant difference between the performance for different dis-
like thresholds. So employing like and dislike associations does not outperform
employing like associations only.
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4 Conclusions

We have presented a new algorithm for mining association rules with a specific
target predicate in the heads of the rules. Such rules are needed in applications
such as recommender systems, which are important for electronic commerce.
Unlike most existing association rule mining algorithms, which require that the
minimum support of the rules to be mined be specified in advance, our algorithm
adjusts the minimum support during the mining process so that the number of
rules generated lies within a specified range. This keeps the running time under
control, and ensures that enough rules are available for the target predicate.
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