
Drop Tail (FIFO)

FREDCBQ ……

Class-Based
Threshold (CBT) Dynamic-CBT

ChIPS

Resource Reservation

RED

Active Queue Mgmt

Dynamic-CBT and ChIPS – Router Support for
Improved Multimedia Performance on the Internet

Mark Claypool and Jae Chung
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609
1-508-831-5357

{claypool|goos}@cs.wpi.edu

ABSTRACT
The explosive increase in the volume and variety of Internet
traffic has placed a growing emphasis on congestion control and
fairness in Internet routers. Approaches to the problem of
congestion, such as active queue management schemes like
Random Early Detection (RED) use congestion avoidance
techniques and are successful with TCP flows. Approaches to the
problem of fairness, such as Fair Random Early Drop (FRED),
punish misbehaved, non-TCP flows. Unfortunately, these
punishment mechanisms also result in a significant performance
drop for multimedia flows that use flow control. We extend Class-
Based Threshold (CBT) [4], and propose a new active queue
management mechanism as an extension to RED called Dynamic
Class-Based Threshold (D-CBT) to improve multimedia
performance on the Internet. Also, as an effort to further improve
multimedia performance especially on jitter, we propose a
lightweight packet scheduling called Cut-In Packet Scheduling
(ChIPS) as an alternative to FIFO packet scheduling. The
performance of our proposed mechanisms is measured, analyzed
and compared with other mechanisms (RED and CBT) in terms of
throughput, fairness and multimedia jitter through simulation
using NS. The study shows that D-CBT improves fairness among
different classes of flows and ChIPS improves multimedia jitter
without degrading fairness.
Keywords
Multimedia, Router, Queue management, Congestion, Fairness,
Jitter

1. INTRODUCTION
The Internet has moved from a data communication network for a
few privileged professions to an essential part of public life
similar to the public telephone networks, while assuming the role
of the underlying communication network for multimedia
applications such as Internet phone, video conferencing and video
on demand (VOD). As a consequence, the volume of traffic and
the number of simultaneous active flows that an Internet router
handles has increased dramatically, placing new emphasis on

congestion control and traffic fairness. Complicating traditional
congestion control is the presence of multimedia traffic that has
strict timing constraints, specifically delay constraints and
variance in delay, or jitter constraints [1,2]. This paper presents a
router queue management mechanism that addresses the problem
of congestion and fairness, and improves multimedia performance
on the Internet. Figure 1 shows some of the current and the
proposed router queue mechanisms.

Figure 1: Router Queue Mechanisms (shaded are proposed)

There have been two major approaches suggested to handle
congestion by means other than traditional drop-tail FIFO
queuing. The first approach uses packet or link scheduling on
multiple logical or physical queues to explicitly reserve and
allocate output bandwidth to each class of traffic, where a class
can be a single flow or a group of similar flows. This is the basic
idea of various Fair Queuing (FQ) disciplines and the Class-Based
Queuing (CBQ) algorithm [3]. When coupled with admission
control, the mechanism not only suggests a solution to the
problem of congestion but also offers potential performance
guarantees for the multimedia traffic class. However, this explicit
resource reservation approach would change the “best effort”
nature of the current Internet, and the fairness definition of the
traditional Internet may no longer be preserved. Adopting this
mechanism would require a change in the network management
and billing practices. Also, the algorithmic complexity and state
requirements of scheduling make its deployment difficult [4].
The second approach, called Active Queue Management, uses
advanced packet queuing disciplines other than traditional FIFO
drop-tail queuing on an outbound queue of a router to actively
handle (or avoid) congestion with the help of cooperative traffic
sources. In the Internet, TCP recognizes packet loss as an
indicator of network congestion, and its back-off algorithm
reduces transmission load when network congestion is detected
[5]. One of the earliest and well-known active queue management
mechanism is Random Early Detection (RED), which prevents
congestion through monitoring outbound buffers to detect

impending congestion, and randomly chooses and notifies senders
of network congestion so that they can reduce their transmission
rate [6]. While fairly handling congestion for TCP flows, RED
reveals the critical problem that non-TCP flows that are
unresponsive or have greedier flow-control mechanisms than TCP
can take more share of the output bandwidth than TCP flows
[4,7]. In the worst case, it is possible for non-TCP flows,
especially for unresponsive ones, to monopolize the output
bandwidth while TCP connections are forced to transmit at their
minimum rates. This unfairness occurs because non-TCP flows
reduce transmission load relatively less than TCP flows or do not
reduce at all, and the same drop rate is applied to every flow.
This unfairness could be a serious problem in a near future as the
number of Internet multimedia flows increases. Delay sensitive
multimedia applications typically use UDP rather than TCP
because they require in-time packet delivery and can tolerate some
loss, rather than the guaranteed packet delivery with potentially
large end-to-end delay that TCP produces. Also, they prefer the
periodic packet transmission characteristics of UDP rather than
the bursty packet transmission characteristics of TCP that can
introduce higher receiver side jitter. Multimedia UDP applications
either do not use any flow-control mechanism or use their own
application-level flow control mechanisms that are rate-based
rather than window based and hence tend to be greedier than that
of TCP taking the multimedia Quality of Service (QoS)
requirements into account.
In addressing the problem of fairness, there have been strong
arguments that unresponsive or misbehaving flows should be
penalized to protect well-behaved TCP flows1 [8]. Fair Random
Early Drop (FRED) is an active queue management approach that
incorporates this argument [7]. FRED adds per-active-flow
accounting to RED, isolating each flow from the effects of others.
It enforces fairness in terms of output buffer space by strictly
penalizing unresponsive or misbehaving flows to have an equal
fair share while assuring packets from flows that do not consume
their fair share are transmitted without loss. FRED achieves its
purpose not only in protecting TCP flows from unresponsive and
misbehaving flows but also in protecting fragile TCP connections
from robust TCP connections. However, the per-active-flow
accounting is expensive and might not scale well. FRED also has
a potential problem that its TCP favored per-flow punishment
could unnecessarily discourage flow-controlled interactive
multimedia flows. Under FRED, incoming packets for a well-
behaved TCP flow consuming more than their fair share are
randomly dropped applying RED’s drop rate. However, once a
flow, although flow-controlled, is marked as a non-TCP friendly
flow, it is regarded as an unresponsive flow and all incoming
packets of the flow are dropped when it is using more than its fair
share. As a result, a flow-controlled multimedia UDP flow, which
may have a higher chance to be marked, will experience more
packet loss than a TCP flow and be forced to have less than its
fair share of bandwidth.
Jeffay et al., [4] propose a new active queue management scheme
called Class-Based Threshold (CBT), which releases UDP flows

1 A well-behaved flow (or TCP friendly) is defined as a flow that

behaves like a TCP flow with a correct congestion avoidance
implementation. A flow-controlled flow that acts different (or
greedier) than well-behaved flow is a misbehaving flow.

from strict per-flow punishment while protecting TCP flows by
adding a simple class-based static bandwidth reservation
mechanism to RED. In fact, CBT implements an explicit resource
reservation feature of CBQ on a single queue that is fully or
partially managed by RED without using packet scheduling.
Instead, it uses class thresholds that determine ratios between the
number of queue elements that each class may use during
congestion. CBT defines three classes: tagged (multimedia) UDP2,
untagged (other) UDP and TCP. For each of the two UDP classes,
CBT assigns a pre-determined static threshold and maintains a
weighted-average number of enqueued packets that belong to the
class, and drops the incoming class’ packets when the class
average exceeds the class threshold. By applying a threshold test
to each UDP class, CBT protects TCP flows from unresponsive or
misbehaving UDP flows, and also protects multimedia UDP flows
from the effect of other UDP flows. CBT avoids congestion as
well as RED, has less overhead and improves multimedia
throughput and packet drop rates compared to FRED. However,
as in the case of CBQ, the static resource reservation mechanism
of CBT could result in poor performance for rapidly changing
traffic mixes and is arguably unfair since it changes the best effort
nature of the Internet.
To eliminate the limitations due to the explicit resource
reservation of CBT while preserving its good features from class-
based isolation, we propose Dynamic-CBT (D-CBT). D-CBT
fairly allocates the bandwidth of a congested link to the traffic
classes by dynamically assigning the UDP thresholds such that the
sum of the fair share of flows in each class is assigned to the class
at any given time. In addition, as a means to improve multimedia
jitter, we propose a lightweight multimedia-favored packet
scheduling mechanism, Cut-In Packet Scheduling (ChIPS), as an
alternative to FIFO packet scheduling under D-CBT and possibly
under other RED like active queue management mechanisms.
ChIPS monitors average enqueue rates of tagged and the other
flows, and is invoked when the tagged flows are using a relatively
smaller fraction of bandwidth than the TCP flows. On transient
congestion in which the queue length is greater than the average
queue length, ChIPS awards well-behaved (flow-controlled)
multimedia flows by allowing their packets to “cut” in the queue
to the average queue length.
To evaluate the proposed mechanisms, we use an event driven
network simulator called NS (version 2) that simulates a variety of
IP networks [9]. NS implements most of common IP network
components including RED. We implement CBT in NS, extend it
to D-CBT, add ChIPS into D-CBT, and compare the performance
of D-CBT and D-CBT with ChIPS with that of RED and CBT. In
the evaluation, our primary focus is on the effect of
heterogeneously flow-controlled traffic on the behavior of the
queue management mechanisms especially on fairness, and the
effect of queue management on the performance of well-behaved
(flow-controlled) multimedia flows.
Section 2 presents related work, and Section 3 presents D-CBT
and ChIPS. Section 4 presents the performance measurement
metrics and Section 5 describes our simulation setup. Section 6

2 Tagged (multimedia) UDP flows can be distinguished from other

(untagged) UDP flows by setting an unused bit of the Type of
Service field in the IP header (Version 4).

analyzes and evaluates D-CBT and ChIPS, and Section 7
concludes our research.

2. RELATED WORK
We omit router queue management mechanisms from this section
since they are introduced in Section 1 and also are discussed
throughout the paper. Here we present media scaling and
perceptual quality of multimedia.
Luca Delgrossi et al., presented a media scaling mechanism that
is proposed to make the Heidelberg Transport System (HeiTS), a
multimedia communication system for real-time delivery of digital
audio and video, work with networks with no reservation
mechanisms such as Ethernet [10]. Media scaling, which refers to
a mechanism in which media encoding is modified according to
the bandwidth available in the underlying networks, is essentially
a rate-based flow control mechanism. However, in their study,
media scaling was not used as congestion control mechanism. In
designing the flow controlled multimedia traffic generator, we
used media scaling with “cut scale by half at frame loss, up scale
by one at RTT” congestion-responsive scale adjustment
mechanism, which is motivated by TCP Reno’s fast
retransmission algorithm. See [11] for more details.
Mark Handley measured Mbone multicast performance in which
he examined routing tables to monitor route stability, and
observed traffic as it arrived at sites (to which they had access) to
look at individual packet losses [12]. The research showed that
50% of receivers had a mean loss rate of about 10% or lower,
while 80% reported a loss rate less than 20%. Around 80% of
receivers have some interval during the day when no loss was
observed. On the other hand, 80% of sites reported some interval
during the way when the loss rate was greater than 20%. About
30% of sites reported at least one interval where the loss rate was
above 95% at some time during the day. The research also shows
that although not as dominant as single loss, packet losses tend to
occur in a bursty manner.
Vicky Hardman, Martina Angela Sasse and Isidor Kouvelas
presented an audio redundancy method in which a low quality
version of an audio frame is piggybacked onto the next frame so
that it can be played when its high quality version of frame is lost
[13]. This study (a user study) shows that, using this method, a
single copy of redundancy is good enough to provide packet loss
protection for loss rates of up to 20-30%, assuming that packet
loss follows a random pattern. Similarly, Yanlin Liu and Mark
Claypool showed that video (MPEG-1) redundancy, which has
about 10% overhead, is a reasonable repair method when the loss
rate is under 20% [14].
For our work, Handley’s research results can be used as a
reference to real-world multimedia packet drop rates, and the
results of the audio and video redundancy studies are used as a
rough guide as to what is the maximum packet drop rate that does
not affect multimedia perceptual quality. We can use these results
to see whether the multimedia packet drop rate that D-CBT gives
is reasonable, although the drop rate is also largely determined by
multimedia traffic source behaviors and the amount of network
traffic load.
Mark Claypool and Jonathan Tanner compared the effect of jitter
to packet loss on perceptual quality [2]. In this study, packet loss
(8%) and residual jitter (from the same trace) were induced into
video clips based on Internet traces, and perceptual quality was

measured through a user study. The study showed that the effect
of jitter on perceptual quality could be nearly as important as that
of packet loss. The purpose of our approach to reduce multimedia
jitter at network routers using ChIPS originates from and is
supported by this user study.

3. PROPOSED MECHANISMS
This section presents the design and implementation of Dynamic-
CBT (D-CBT) and Cut-In Packet Scheduling (ChIPS) in detail.
Before describing D-CBT and ChIPS, we present the design of
Class-Based Threshold (CBT) [4] which D-CBT extends. As
discussed briefly in Section 1, the main idea behind the design of
CBT is to apply class-based isolation on a single queue that is
fully or partially managed by RED without using packet
scheduling. Instead of using packet scheduling on multiple
logical queues, CBT regulates congestion-time output bandwidth
for n classes of flows using a RED queue management mechanism
and a threshold for each of the n-1 classes of flows, which is the
average number of queue units that a class may use. The
conceptual view of the first CBT design is shown in Figure 2.

Figure 2: CBT (with RED for all) Conceptual View

CBT categorizes flows into three classes, which are TCP, tagged
(multimedia) UDP and untagged (other) UDP, and assigns a pre-
determined static threshold for each of the two UDP classes,
assuming that UDP flows are mostly unresponsive or misbehaving
and need to be regulated. When a UDP packet arrives, the
weighted-average for the appropriate class is updated and
compared against the threshold for the class to decide whether to
drop the packet before passing it to the RED algorithm. For the
TCP class, CBT does not apply a threshold test but directly passes
incoming packets to the RED test unit. This is the first design of
CBT, called “CBT with RED for all”. In the second design,
called “CBT with RED for TCP”, only TCP packets are subjected
to RED’s early drop test, and UDP packets that survive a
threshold test are directly enqueued to the outbound queue that is
managed by RED. Another difference from the first design is that
RED’s average queue size is calculated only using the number of
enqueued TCP packets. CBT with RED for TCP is based on the
assumption that tagged (multimedia) UDP flows as well as
untagged (other) UDP flows are mostly unresponsive, and it is of
no use to notify these traffic sources of congestion earlier. D-CBT
is extended from CBT with RED for all. In the rest of this paper,
CBT refers to CBT with RED for all.

3.1 Dynamic-CBT (D-CBT)
D-CBT enforces fairness among classes of flows, and gives UDP
classes better queuing resource utilization. Figure 3 shows the

RED

TCP

Untagged
UDP

Tagged
UDP

Count
Active
Flows

In

Each
Class

Update

Class
Avgs

&

RED
Avgs

Calc
Thrsh

Thrsh*

Test

Calc
Thrsh

Thrsh*

Test

c
l
a
s
s
i
f
y

Early
Drop
Test

Queue
Manager

* Threshold Test is activated when red_avg > red_min

design of D-CBT. The key difference from CBT is (1) the
dynamically moving fair thresholds and (2) the UDP class
threshold test that actively monitors and responds to RED
indicated congestion. To be more specific, by dynamically
assigning the UDP thresholds such that the sum of the fair average
queue resource share of flows in each class3 is assigned to the
class at any given time, D-CBT fairly allocates the bandwidth of a
congested link to the traffic classes. Also, the threshold test units,
which are activated when RED declares impending congestion
(i.e. red_avg > red_min), coupled with the fair class thresholds,
allow the UDP classes to use the available queue resources more
effectively than in CBT, in which each UDP class uses the queue
elements an average of no more than its fixed threshold at any
time. Looking at it from a different view, D-CBT can be thought
of a Class-Based FRED-like mechanism that does per-class-
accounting on the three classes of flows.

Figure 3: Design of Dynamic-CBT (D-CBT)

As in CBT, D-CBT categorizes flows into TCP, tagged UDP and
untagged UDP classes. However, unlike the class categorization
of CBT in which flow-controlled multimedia flows are not
distinguished from unresponsive multimedia flows (all tagged),
D-CBT classifies UDP flows into flow-controlled multimedia
(tagged) UDP and other (untagged) UDP. The objective behind
this classification is to protect flow-controlled multimedia flows
from unresponsive multimedia flows, and encourage multimedia
applications to use congestion avoidance mechanisms, which may
be different than those of TCP. We believe that there are
advantages in categorizing UDP traffic in this way for the
following reasons: first, multimedia applications are the primary
flows that use high bandwidth UDP; second, by categorizing
flows by their congestion responsiveness characteristic (i.e. TCP
friendly, flow-controlled but misbehaving multimedia and
unresponsive flows), different management can be applied to the
classes of differently flow-controlled flows.
In fact, in determining the fair UDP thresholds, D-CBT calculates
the fair average output buffer share of the tagged UDP class from
the average queue length that is maintained by RED, and that of
untagged UDP class from the RED’s minimum threshold (plus a
small allowance). This is based on the assumption that tagged
flows (or flow-controlled multimedia) can respond to network
congestion and will actively try to lower the average length of a
congested queue on notification of congestion. Therefore, they
are allowed to use the impending congestion state queue buffers

3 Fair class shares are calculated based on the ratio between the

number of active flows in each class.

(i.e. red_avg – red_min when red_avg > red_min) up to their fair
share of the average. However, unresponsive (untagged) flows,
which have no ability to respond to network congestion, are not
allowed to use the impending state queue buffers at impending
congestion. Actually, we allow the unresponsive UDP class to
use a small fraction of the impending state queue buffers, which is
10% of (red_max – red_min) * untagged_UDP_share when the
maximum early drop rate is 0.1, to compensate for the effect of
needless additional early drops for the class.
In the design of D-CBT, the existence of the active flow counting
unit is a big structural difference from CBT. In order to calculate
a fair threshold (or average queue resource share) for each class,
D-CBT needs class state information, and therefore keeps track of
the number of active flows in each class. Generally, as in FRED,
active flows are defined as ones whose packets are in the
outbound queue [7]. However, we took slightly different approach
in detecting active flows, in that an active flow is one whose
packet has entered the outbound queue unit during a certain
predefined interval since the last time checked. In D-CBT, an
active flow counting unit that comes right after the classifier
maintains a sorted linked list, which contains a flow descriptor
and its last packet reception time, and a flow counter for each
class. Currently, the flow descriptor consists of a destination IP
address and the flow ID (IPv6). However, assuming IPv4, this
could be replaced by source and destination address, although this
would redefine a flow as per source-destination pair.
For an incoming packet after the classification, the counting unit
updates an appropriate data structure by inserting or updating the
flow information and the current local time. When inserting new
flow information, the flow counter of the class is also increased by
one. The counting unit, at a given interval (set to 300ms in our
implementation), traverses each class’ linked list, deletes the old
flow information and decreases the flow counter. The objective
behind this probabilistic active flow counting approach is
twofold: First, D-CBT does not necessarily require an exact count
of active flows as do other queue mechanisms that are based on
flow-based-accounting, although a more exact count is better for
exercising fairness among flow classes. Second, it might be
possible to improve the mechanism’s packet processing delay by
localizing the counting unit with the help of router’s operating
system and/or device. For example, the traversing delete is a
garbage collection-like operation that could be performed during
the router’s idle time or possibly processed by a dedicated
processor in a multiprocessor environment. In our simulator
implementation, we used a sorted linked list data structure that has
the inserting and updating complexity of O(n), and the traversing
complexity of O(n), where n is the number of flows of a class.
Assuming that a simple hash table is used instead, the complexity
of inserting and updating operation drops to O(1), while the
complexity of the traverse delete will remain O(n).
When an incoming packet is updated or inserted according to its
flow identification to its class data structure at the counting unit,
D-CBT updates the RED queue average, the tagged UDP average
and the untagged UDP average, and passes the packet to an
appropriate test unit as shown in Figure 3. Note that for every
incoming packet all of the averages are updated using the same
weight. This is to apply the same updating ratio to the weighted-
averages, so that a snapshot in time at any state gives the correct
average usage ratio among the classes. Using the three averages
and the active flow count for each class, the UDP threshold test

units calculate the fair thresholds for the tagged and untagged
UDP classes, and apply the threshold test to incoming packets of
the class when the RED queue indicates impending congestion.
UDP packets that survive an appropriate threshold test are passed
to the RED unit along with the TCP flows as in CBT.
Thus, D-CBT is designed to provide traditional fairness between
flows of different characteristics by classifying and applying
different enqueue policies to them, and restrict each UDP class to
use the queue buffer space up to their share in average. We
hypothesize that the advantages of D-CBT are the following:
First, D-CBT avoids congestion as well as RED with the help of
responsive traffic sources. Second, assuming that the flows in a
class (especially the tagged UDP flows) use flow control
mechanisms of which the congestion responsiveness characteristics
are almost the same, D-CBT will fairly assign bandwidth to each
flow with much less overhead than FRED, which requires per-
flow state information. Even if the tagged flows do not use their
fair share, D-CBT will still successfully assign bandwidth fairly to
each class of flows, protecting TCP from the effect of
misbehaving and unresponsive flows and also protecting the
misbehaving (flow-controlled multimedia) flows from the effect
of unresponsive flows. Lastly, D-CBT gives tagged (flow-
controlled multimedia) flows a better chance to fairly consume the
output bandwidth than under FRED by performing per-class
punishments instead of the strict per-flow punishment.

3.2 Cut-In Packet Scheduling (ChIPS)
ChIPS is a light-weight multimedia favored packet scheduling
mechanism that can replace the FCFS enqueue style packet
scheduling of a RED-managed queue for CBT, D-CBT and
possibly other RED-like mechanisms, which is specifically
targeted to improve multimedia jitter. ChIPS monitors the average
enqueue rates of tagged and the other flows, and is activated when
the tagged flows are using a relatively smaller fraction of
bandwidth than the TCP flows. On transient congestion in which
the queue length is greater than the average queue length, ChIPS
awards tagged (flow-controlled multimedia) flows by allowing
their packets to “cut” in the line of queue to the average queue
length. Figure 4 shows the design of ChIPS.

Figure 4: Design of ChIPS (Tagged Packet
Insertion on Transient Congestion)

By inserting tagged UDP packets at the average queue length on
transient congestion, ChIPS improves flow-controlled multimedia
jitter. However, this could harm the TCP flows and even make
them time out by introducing a large extra delay when the
multimedia traffic is taking a considerable portion of the output
bandwidth. Under the normal RED queue mechanism that has no
means to regulate the queue buffer usage among the classes of

flows, it is essential for ChIPS to monitor the average enqueue
ratio between the tagged and other flows and turn on its function
only when the ratio is small. However, under CBT, in which the
tagged threshold can be explicitly set to use a small fraction of the
available queue buffer, this automatic turn on/off function is not
really necessary. When used with D-CBT, the ratio that turns off
ChIPS could be set relatively large (tested for up to 50% in our
simulations with the RED minimum threshold of 5 and the
maximum of 15) without degrading the fairness because of the
“self-adjusting” ability of D-CBT. When a relatively large
number of tagged flows compete for the bandwidth with TCP
flows, ChIPS could instantly lower the throughput of the TCP
flows. However, this will also lower the average queue length of
the queue, and therefore the fair threshold for the tagged class will
be reduced and the tagged class throughput will be reduced as
well. Thus, ChIPS may cause the average queue length to
fluctuate a bit more but should not reduce fairness significantly.
Section 6 has detailed results.
Another issue in implementing ChIPS is that the increment of the
tagged packet dequeue rate caused by the insertion could degrade
the fairness when the packet enqueue decision makes use of each
class’ buffer usage as in CBT and D-CBT. This faster tagged
packet drain rate is not an issue for RED since it enqueue decision
has nothing to do with the drain rate. However, in CBT and D-
CBT, the faster drain rate lowers the average number of enqueued
packets for the tagged class, which could result in the tagged class
getting more bandwidth than its fair share. To prevent this effect,
we used a virtual FIFO queue for counting the number of
enqueued packets for the UDP classes, in which the class
information of an enqueuing packet is always enqueued at the
end, even though ChIPS cuts a tagged packet in the line of the
real queue. In this way, the virtual queue can help more fairly
count the class averages by telling if the tagged packets that have
been transmitted already are still in the queue. Thus, the actual
tagged packet drain rate does not affect the calculation of the
average number of enqueued packets for the tagged class.
Looking at the complexity of the design, ChIPS has O(1)
behavior, since the insertion complexity is O(1) and the virtual
queue maintenance complexity is also O(1). We believe that
ChIPS, which noticeably improves tagged flow (flow-controlled
multimedia) jitter, along with D-CBT would further encourage
multimedia applications to use a flow control mechanism. An
important issue that is not addressed in this paper is how to
monitor and tag the flow-controlled multimedia flows. We believe
that this job has to be done in the low level Internet Service
Provider (ISP) level or the local network management level at the
gateways to the public networks, and leave the routers of the
public networks free from this issue. The next section presents
the methods we used to evaluate D-CBT and ChIPS.

4. PERFORMANCE METRICS
This section presents the fairness and jitter measurement metrics
used to evaluate our proposed mechanism. To measure the
fairness among the three different classes of flows and also to
visualize the system’s fairness on individual flows, we use the
following two metrics. The first one, which is used as an
indicator of how fairly the output bandwidth is assigned to each
class considering the number of flows in the class, is the direct
comparison of the average per-flow throughput in each class.
This is an average aggregated class throughput divided by the

number of flows in the class. As the second fairness measurement
metric, Jain’s fairness index is used to visualize the fairness
among individual flows [15]. Figure 5 shows the formula that
calculates Jain’s fairness, which gets the average throughputs of
the flows (xi) of which the fairness is measured as an input, and
produces a normalized number between 0 and 1, where 0 indicates
the greatest unfairness and 1 indicates the greatest fairness.

()
∑

∑

=

=







= n

i
i

n

i
i

n

xn

x
xxxxf

0

2

2

0
210 ,,,, !

Figure 5: Jain’s Fairness Index Equation

Another network performance factor we measure is multimedia
stream jitter (Figure 6). Jitter can be measured in two ways:
variance in inter-frame arrival time at the receiver, and variance
in end-to-end delay. While the former is a receiver-oriented
observation on the variance, the latter is a more network-oriented
observation of the variance. Measuring jitter as variance in inter-
frame arrival time (ex, r2 – r1) is useful when a traffic source’s
frame transmission interval is fixed. However, it may not be a
good measure of jitter when the transmission interval varies as in
the case of flow-controlled multimedia applications which may
not transmit a frame in response to congestion. Measuring jitter
in terms of end-to-end delay (ex, r2 – s2) is more direct indicator
of a system’s performance on multimedia streams, since it
eliminates the inter-frame transmission periods of the source.

Figure 6: Multimedia Jitter – si is the time at
which the sender transmits frame i. ri is the
time at which the receiver receives frame i.

In real environments, it is hard to measure jitter in terms of
variance in end-to-end delay because of asynchronized clocks at
the source and destination. However, in our simulation
environment where only one logical clock is used for the whole
system, it is easy to measure the variance in the end-to-end delay.
Moreover, this method can even visualize the effect of queuing
delays of a single router on jitter well. Therefore, we measured
jitter in terms of variance in end-to-end delay.

5. SIMULATION
We ran a simulation for each of RED, CBT, D-CBT and D-CBT
with ChIPS. Every simulation had the exactly same settings
except for the network routers, each of which was set to use one
of the above four outbound queue management mechanisms. The
network topology and the traffic source schedules are shown in
Figure 7.

Figure 7: Simulation Scenario and Network Setup

In each simulation, we had 67 source nodes connected to one
router and 67 destination nodes connected to the other router,
which are interconnected by a link with 25Mbps bandwidth and
20ms of delay. Each link that connects a source (or destination)
node and a router was set to have 25Mbps of bandwidth and 5ms
of delay. For traffic sources, 55 FTP, 10 flow-controlled
multimedia traffic generator called MM_APP [11] (tagged) and 2
CBR (untagged) traffic generators were used, where FTP used
TCP Reno and the others used UDP as the underlying transport
agent. All the TCP agents were set to have a maximum
congestion window size of 20 packets and maximum packet size
of 1Kbyte. The UDP agents were also set to have maximum
packet size of 1Kbyte, so that all the packets in the network were
the same size. The MM_APP traffic generators, which react to
congestion using 5 discrete media scales with a “cut scale by half
at frame loss, up scale by one at RTT” flow control mechanism,
used 300, 500, 700, 900 and 1,100Kbps for scale 0 to 4
transmission rates, with a fixed packet size of 1Kbyte. The CBR
sources were set to generate 1Kbyte packets at a rate of 5Mbps.
We scheduled the traffic sources such that 25 TCP flows and 10
MM_APP flows were competing for the bandwidth during 0 to 10
seconds. At this period the fair bandwidth share for each
connection was about 714Kbps (25Mbps / 35 flows). In the next
period (10 to 20 seconds), the two high bandwidth CBR blasts
joined trying to aggressively use the output bandwidth of which
the average fair share was about 675Kbps (25Mbps / 37 flows).
Later at 20 seconds, 30 more TCP flows came into the network
lowering the average fair share during the last 10 seconds to about
373Kbps (25Mbps / 67 flows).
Network routers were assigned a 60-packet long physical
outbound queue. The RED parameters, which are shown in Figure
7, were chosen from one of the sets that are recommended by
Floyd and Jacobson [16]. For CBT, besides the RED parameters,
the tagged and untagged class thresholds (denoted as mmu_th and
udp_th in the figure) were set to 2.9 packets and 0.6 packets to
force each UDP flows to get about their fair bandwidth shares
during 0 to 20 seconds. Assuming the average queue size is 10
packets, by reserving an average of a 2.9-packet space, the tagged
class could get an average bandwidth of 7,250Kbps (25Mbps *
2.9 / 10) at congestion, which is about 10 times (10 tagged flows)
the fair flow share during 0 to 10 seconds. Likewise, by reserving
0.6-packet space in the queue, the untagged class could get an
average of 1,500Kbps, that is little bit more than 2 times (2
untagged flows) the fair flow share during 10 to 20 seconds.

s1

n1

s2

s66

s67

n2

r2

r2

r66

r67

25M bps, 20m s

25M bps, 5m s25M bps, 5m s

0 10 20 30

25 FTP-TCP

30 FTP-TCP

2 C BR-UDP
(5M bps each)

10 M M-UDP

(Second)

 n1-n2: q_size = 60

 RED: max_th = 15
 min_th = 5
 qweight = 0.002
 max_prb = 0.1

 CBT: mmu_th = 2.9
 udp_th = 0.6

sender s0 s1 s2 s3 s4

receiver r0 r1 r2 r3 r4

A Stream with Jitter

sender s0 s1 s2 s3 s4

receiver r0 r1 r2 r3 r4

A Jitter Free Stream

D-CBT also shares the RED settings, but since each threshold is
assigned dynamically to the fair share of each class, no threshold
setup was necessary. Finally, ChIPS was set to turn off its cut-in
scheduling feature when the ratio between the number of tagged
flows and the other flows are greater than 50%. However, under
our simulation, ChIPS was always on since the ratio was always
under 50%.
Thus, the simulations were designed to give an environment under
which all three queue management mechanism manage output
bandwidth fairness during the first 10 seconds, RED fails during
the second 10 seconds, and CBT fails during the last 10 seconds.
Then, we examine if D-CBT dynamically offers fair bandwidth
allocation in every situation. Also, by comparing the results
(fairness and jitter) of D-CBT with ChIPS with basic D-CBT, we
examine the effect of ChIPS on fairness and multimedia jitter.

6. RESULTS AND ANALYSIS
We measured the performance of RED, CBT, D-CBT, and D-CBT
with ChIPS in terms of fairness and multimedia jitter. We also
compared TCP throughput under ChIPS and basic D-CBT as well
as packet drop percentages.

6.1 Class’ Average Per-Flow Throughput
Figure 8 (a) through (d) compares the periodic (i.e., 0-10, 10-20
and 20-30 seconds) average per-flow throughput for each class
under the four queue mechanisms.

Figure 8
UDP an
CBT and

As shown
bandwidth f
two high ba
join transmi
bandwidth.
(flow-contro
bandwidth,
average of 3
able to man

UDP blast came into the system, RED was totally unable to
manage bandwidth. The 2 untagged UDP flows got most of the
bandwidth they needed (average of 4.68Mbps out of 5Mbps), and
the remaining flows used the leftover bandwidth. Especially, the
25 TCP flows got severely punished and transmitted at an average
of 293Kbps per flow as they often went back to slow start and
even timed out. Fairness got worse as 30 more TCP flows joined
at 20 seconds and experienced starvation.
Figure 8 (b) shows that CBT can avoid the great unfairness of
RED using fixed thresholds for the UDP classes. However, CBT
was not assigning the output bandwidth to each class as expected.
When designing the simulation, we set the UDP thresholds such
that during 0-10 seconds each tagged UDP flow should get about
725Kbps in average. During 10-20 seconds, we expected that
each tagged flow’s average bandwidth would remain the same and
each untagged UDP flow would get an average of 750Kbps.
Also, we expected that during 20-30 seconds, the tagged and
untagged flows would get a large portion of the bandwidth same
as during 10-20 seconds and the TCP flows would get much less
than the fair share during this period. However, the simulation
result shows that the tagged UDP class got more bandwidth than
the expected values especially during the last period, while the
untagged UDP class got much less bandwidth than expected.
We found that this is mainly due to how and when CBT updates
each UDP class threshold and RED queue average. CBT updates
each UDP class average only for incoming packets that belong to
the class, and the RED unit updates its queue average for all
incoming TCP packets and for UDP packets that passed an
appropriate threshold test. Therefore, the class averages and the
RED queue average are almost independently updated at different
speeds that are closely related the number of incoming packets
that belong to the class. In addition, the RED average has a
higher chance of being updated faster than the UDP class
averages. In this situation, which we call unsynchronized
weighted-average updates, whoever (i.e. a class) updates its
weighted-average more often will get less bandwidth by having a
larger weighted-average than the average of others for the same
amount of class output bandwidth, and the output bandwidth is
controlled using the averages at the UDP threshold test units.
Figure 9 shows this effect by comparing two situations where a
UDP class that has an initial class weighted-average of 1, a weight
of 0.1 and a class threshold of 1.02, is experiencing two different
incoming packet rates. Figure 9 (a) is the case when the incoming
packet rate is 0.5 packets per packet transmission delay, and
Figure 9 (b) is the case when the class is receiving packets at the

RED: Class Average Per-Flow Throughput

537
293 161

851 720 601

4681 4503

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 ~ 10 Sec 10 ~ 20 Sec 20 ~ 30 Sec

Kb
ps

TCP
TAG_UDP
UTAG_UDP

D-CBT: Class Average Per-Flow Throughput

622 659

356

653 660

378

637

313

0

100

200

300

400
500

600

700

800

900
1000

0 ~ 10 Sec 10 ~ 20 Sec 20 ~ 30 Sec

Kb
ps

TCP
TAG_UDP
UTAG_UDP

D-CBT with ChIPS: Class Average Per-Flow Throughput

608
666

355

673 664

384

563

297

0

100

200
300

400
500

600

700
800

900
1000

0 ~ 10 Sec 10 ~ 20 Sec 20 ~ 30 Sec

Kb
ps

TCP
TAG_UDP
UTAG_UDP

CBT: Class Average Per-Flow Throughput

587 613

305

760 739
657624

318

0

100

200
300

400
500

600

700
800

900
1000

0 ~ 10 Sec 10 ~ 20 Sec 20 ~ 30 Sec

Kb
ps

TCP
TAG_UDP
UTAG_UDP

(S

D (T
(c) D-CBT
: Average Per-Flow Thro
d Untagged UDP Classe
 D-CBT with ChIPS

in Figure 8 (a), RED a
airly to each class of flows
ndwidth untagged UDP
tting at a total of 10Mb
 During 0-10 seconds, wh
lled MM_APP) flows
it was somewhat unfair
7% more bandwidth than
age the bandwidth. Ho
d) D-CBT with ChIP
(a) RE
ughput f
s under

bsolutel
 from 1
flows (
ps, abou
en 25 T
were c
as a ta

 a TCP
wever,
b) CB
or TCP, Tagged
RED, CBT, D-

y failed to assign
0 seconds when the
unresponsive CBR)
t 40% of the link
CP and 10 tagged

ompeting for the
gged flow got an
flow, but RED was
when the untagged

rate of 1.0 packets per packet transmission delay. In this example,
it is assumed that the traffic sources are unresponsive CBR
applications. One thing to note in the figure is that the class
average shown at the left bottom of each queue in each state is its
value before making the enqueue admission decision for an
incoming packet at that state. As you can see in the figure, as the
number of incoming packets for a class increases, packets are
enqueued in a bursty manner, and more importantly, its class
average gets larger. As the average is updated more frequently,
not only is a newly enqueued packet added to the average (with
the weight of 0.1), but also the existence of the other already
enqueued packet are added to the average. For example, the
existence of the first packet is added to the average 2 times more
for the second situation than for the first situation. Note that
Figure 9 (a) enqueues more packets but has a lower class average.

0.90 0.91 0.92 0.93 0.93

Weighted
Average
1.0 (Init)

(a) Incoming Packet Rate = 0.5 pkts / pkt-transmission-delay

Weight = 0.1 Class Threshold = 0.1 Enqueued Packets

0.90 1.02 - 1.30 1.14 1.02 +0.91 1.22 1.27 1.03

Weighted
Average
1.0 (Init)

(b) Incoming Packet Rate = 1.0 pkts / pkt-transmission-delay
(Dropped packets are not shown)

Weight = 0.1 Class Threshold = 0.1 Enqueued Packets

Figure 9: A CBT Class’s Weighted Average under
Two Different Incoming Packet Rates

The weighted-average calculation method works fine when the
purpose of measuring an average queue size is to detect
impending congestion as in RED. However, when the method is
used to assign bandwidth to different classes of flows by
comparing each class’ weighted-average number of enqueued
packets, we have determined that all the weighted-averages should
be updated at the same time and at an equal frequency to give a
correct output bandwidth utilization ratio among the classes. In
the case of CBT, by measuring each UDP class average and the
RED average independently, the classes’ bandwidth utilization
could not measured correctly by comparing the class averages.
By comparing the fairness measurement in Figure 8 (b) and
CBT’s outbound queue averages in Figure 10, especially for 20-
30 seconds, one can easily see that CBT’s attempt of using
unsynchronously updated weighted-averages to regulate class
bandwidth was misleading. Figure 10 indicates that during 20-30
seconds, 10 tagged flows used an average of about 2.5 packet-
spaces in the queue that is 0.25 packet-spaces per each flow, and
the 2 untagged flow used an average of about 0.6 packet-spaces
that is 0.3 packet-spaces per each flow. However, as shown in
Figure 8 (b), each tagged flow used about 657 Kbps of bandwidth
and each untagged flow used about 318 Kbps, about one half of
the per-flow bandwidth of a tagged flow.

Figure 10: CBT Queue Averages – The top line is
the RED avgerage, the middle is the tagged UDP
average and the lower is the untagged average.

From the above observation, we conclude that the current CBT
design can only prevent a great unfairness caused by unresponsive
or misbehaving flows, and it needs some adjustment on weighted-
average calculation. Indeed, we tried the average calculation
method that is used in D-CBT in CBT and got a much better
result, that is the ratio between the three averages indicates the
ratio between the actual classes’ bandwidth utilization. However,
we did not include the result in this paper, since the method is
used in only D-CBT and we are presenting D-CBT in the next
paragraph.
Figure 8 (c) shows the D-CBT results, which indicates that D-
CBT fairly managed bandwidth during all periods by dynamically
allocating the right amount of output queue space to each flow
class. It also shows that by updating each class and RED average
at the same time in a synchronized manner, the ratio between the
averages is a good indicator of the ratios between each class’
bandwidth utilization. One thing to note in the figure is that
although we strictly regulate the untagged class by assigning a fair
threshold calculated from RED’s minimum threshold, the
untagged class did get most of its share. This is because the high
bandwidth untagged (unresponsive) packets were allowed to enter
the queue without a threshold test, when RED indicated no
congestion.
Figure 8 (d) shows the result of D-CBT with ChIPS. The result
confirms that ChIPS, when used with D-CBT, does not affect
fairness between each class of flows, due to the virtual queue and
D-CBT’s self adjusting capability described in Section 3.2. In the
simulation, the ratio between tagged flows and all flows was about
28% during 0-20 seconds, and was about 15% during the last 10
seconds.

6.2 Jain’s Fairness Measurement
Figure 11 visualizes the simulated systems’ fairness on individual
flows using Jain’s Fairness Index, where the periodic (0-10, 10-20
and 20-30) average throughput of each individual flow was given
as input to Jain’s equation. Jain’s fairness measurement shows
that the simulated system that uses RED queue management fails
to fairly assign bandwidth to each individual flow from 10
seconds when the unresponsive flows join in the system. The low
Jain’s index value for the RED system indicates that some flows
are experiencing severe starvation during 10-20 seconds and even
more severe starvation during 20-30 seconds when 30 extra TCP
flows join.

Figure 11: Jain’s Fairness Comparison

The system that uses the CBT queue management mechanism was
fair overall in distributing bandwidth to each flow. However,

Jain's Fairness

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 ~ 10 Sec 10 ~ 20 Sec 20 ~ 30 Sec

RED
CBT
D-CBT
D-CBT-ChIPS

during 20-30 seconds, the system’s fairness was degraded because
the 10 tagged (multimedia) flows got about twice as much
bandwidth as the other flows. One thing to note is that CBT’s
fairness was pre-engineered. In a circumstance where traffic mixes
change a lot, CBT might show more degraded fairness.
On the other hand, the systems that use D-CBT or D-CBT with
ChIPS were dynamically adjusting to changing flow mixes, and
were very fair not only to the classes of flows but also to
individual flows as Jain’s index numbers indicate. Jain’s fairness
measurement results on D-CBT and D-CBT with ChIPS also
reconfirmed that ChIPS did not degrade the system’s fairness.

6.3 Analysis of ChIPS
Now that we have shown that D-CBT outperforms RED and CBT
in managing bandwidth, and that the use of ChIPS does not
degrade the performance of D-CBT, this section presents the
performance of ChIPS on multimedia jitter and TCP throughput.
Figure 12 shows tagged UDP (or multimedia) jitter by comparing
a MM_APP application’s end-to-end frame delay under D-CBT
and D-CBT with ChIPS.

The resu
by insert
RED ave
maximum
it was ab
that the m
gives ab
ChIPS w
around th
We belie
be very
what we
Assumin
similarly
routers t
threshold
almost co
using a d
difficult
under th
simulatio
that of a
occurs in
uses fram
into mult
ChIPS c

packets have a better chance to be transmitted close to each other
at routers. Thus, we believe that the potential for ChIPS to
improve multimedia jitter is larger than shown in our experiments.

TCP Packets
Delivered

TCP Packet
Drop Rate

TCP
Throughput

D-CBT 66,648 pkts 4.46 % 17,773 Kbps

D-CBT w/
ChIPS 66,386 pkts 4.44 % 17,703 Kbps

Table 1: TCP Packet Accounting (0 ~ 30 Seconds)

Tagged Packets
Delivered

Tagged Packet
Drop Rate

D-CBT 21,126 pkts 11.85 %

D-CBT w/
ChIPS 21,519 pkts 12.95 %

Table 2: Tagged (MM) Packet Accounting (0 ~ 30 Seconds)

Lastly, we present TCP packet accounting and tagged packet
accounting for the simulation in Table 1 and Table 2. Table 1
shows the TCP packet drop rate and throughput under ChIPS is
very compatible with those of basic D-CBT. The TCP throughput
under ChIPS was about 99.6% of the throughput under basic D-
CBT. This indicates that ChIPS, when used along with D-CBT,
may not significantly affect the TCP throughput. Comparing the
TCP throughput loss with the multimedia jitter gain, ChIPS
compensates 14.3% ((42ms - 36ms) / 42ms * 100) of multimedia
jitter gain for 0.4% of TCP throughput loss for the simulation.

MM_APP Frame Delay under Basic D-CBT

30

32

34

36

38

40

42

44

0 5 10 15 20 25 30
Simulation Time (Seconds)

D
el

ay
 (m

ill
is

ec
on

ds
)

D-CBT

MM_APP Frame Delay under D-CBT with ChIPS

30

32

34

36

38

40

42

44

0 5 10 15 20 25 30

Simulation Time (Seconds)

D
el

ay
 (m

ill
is

ec
on

ds
)

D-CBT-ChIPS

T (S
(a) Basic D-CB
Figure 12: ChIPS Effect on M

lt indicates that ChIPS does im
ing tagged packets into the line
rage points on transient cong
 tagged-UDP jitter was about

out 12ms (43ms – 31ms) unde
aximum threshold of RED wa

out 3ms (15pkts * 8Kbits / 2
as able to regulate the maxi
e queuing delay of the RED’s
ve that ChIPS effect on improv
significant because of the foll
show in Figure 14 is the jitter
g that a multimedia conne
 to our multimedia traffic gene
hat use D-CBT with ChIPS
 of RED to 15. In this enviro
mpletely remove the jitter effe
elay buffer of only 50ms, wh
to determine the optimal am
e traditional Internet enviro
n, we used multimedia frames
 network packet, meaning tha
 the IP layer. Assuming that
es that are larger than a netwo
iple packets in the network, the
ould be even more significa
b) D-CBT w/ ChIP
ultimedia Jitter

prove tagged stream jitter
 of the queue to which the

estion. Under ChIPS, the
 5ms (36ms – 31ms) while
r normal D-CBT. Noting
s set to 15 packets, which

5Mbps) of queuing delay,
mum tagged stream jitter
maximum threshold.
ed multimedia jitter could

owing two reasons. First,
gain due to a single router.
ction that is configured
rator has to go through 10
 and set the maximum

nment, the application can
ct on perceptual quality by
ile it would be extremely

ount of the playout delay
nment. Second, in the
 that are the same size as
t no frame fragmentation
 a multimedia application
rk packet and are chopped
 jitter improvement due to
nt, since the multimedia

Table 2 shows the multimedia packet drop rate of the system that
used ChIPS is very compatible with that of the system that used
basic D-CBT. This result shows that ChIPS has a high potential
to improve end-user multimedia performance (perceptual quality)
on the Internet by improving jitter without increasing the
multimedia packet drop rate, which is another important factor in
multimedia perceptual quality and for congestion control and
system utilization.

7. CONCLUSION
In this paper, we have presented the design and evaluation of our
proposed router queue mechanisms, Dynamic Class-Based
Threshold (D-CBT) and Cut-In Packet Scheduling (ChIPS), by
comparing their performance with that of RED and CBT. D-CBT
is a new active queue management mechanism that addresses the
problem of fairness by grouping flows into TCP, tagged (flow-
controlled multimedia) UDP and untagged (other) UDP classes
and regulating the average queue usage of the UDP classes to
their fair shares. ChIPS is a multimedia-favored lightweight
packet scheduling mechanism that can substitute the FCFS
enqueue style packet scheduling part of a RED-managed queue
for D-CBT and possibly for other RED-like queue mechanisms.
As expected, RED, previously shown to be fair among TCP flows,
showed an extreme unfairness with mixed traffic. CBT that uses a
fixed threshold on UDP classes was able to avoid extreme
unfairness. However, during the analysis, we found that CBT
suffers from “unsynchronized weighted-average updates”. That is,
the ratio between independently updated UDP class averages and
RED average does not correctly indicate the actual class

bandwidth utilization ratio, since whichever flows update the
average more frequently will have higher weighted-average than
the others will, although they all use the same amount of
bandwidth.
D-CBT fixes CBT’s problem by synchronizing all the average
updates, and better manages bandwidth by dynamically
determining the UDP thresholds to cooperate with RED by fairly
assigning the output bandwidth to each class for all traffic mixes.
That is, through class-based accounting, D-CBT fairly protects
TCP from the effect of UDP flows and also fairly protects tagged
UDP flows from untagged flows. We have also shown that
ChIPS, when used with D-CBT, can improve multimedia jitter
without degrading fairness.
There exist many possible areas for future work and still remain
many performance aspects to be evaluated. A possible future
project would be to extend this study to evaluate the limitation of
ChIPS on the fairness and the link utilization offered by D-CBT.
As noted in Section 3.2, ChIPS introduces an additional delay to
other traffic which may affect TCP throughput. Therefore, in
order for the use of ChIPS to be more practical, future work
suggests an extended study to determine the maximum average
ChIPS enqueue ratio between tagged and the other classes of
flows without degrading fairness or link utilization. An additional
project would be to evaluate D-CBT and ChIPS under the
environment where fragile and robust TCP connections as well as
multimedia connections with different end-to-end delays coexist
in the system. Another study that we could not do due to the lack
of time but suggest as a future work is to compare the
performance of the D-CBT with that of FRED. We expect that D-
CBT could give better throughput performance for tagged UDP
flows than FRED, since it frees flow-controlled multimedia flows
from the strict per-flow punishment.
Another area for future work is the measure of D-CBT and ChIPS
on jitter, packet and/or frame drop rates and the drop patterns for
current Internet multimedia applications in order to evaluate the
effect on perceptual quality. This work would involve a user
study as well as a network performance study, and could be
carried out in two ways. The first approach would be through
simulations using NS, which could require implementing behavior
of applications such as MPEG-2 or H.261 into NS. The second
approach would be through experiments. This could require
implementing D-CBT and ChIPS into an operating system’s
kernel. We are currently implementing Dynamic-CBT into the
Linux kernel.

8. REFERENCES
[1] Multimedia Communications Forum, Inc. “Multimedia

Communications Quality of Service”, MMCF/95-010,
Approved Rev 1.0, 1995, URL:
http://www.luxcom.com/library/2000/mm_qos/qos.htm

[2] Claypool, M. and Tanner, J., “The Effects of Jitter on
the Perceptual Quality of Video”, ACM Multimedia
Conference, Volume 2, Orlando, FL, October 30 -
November 5, 1999

[3] Floyd, S. and Jacobson, V., “Link-sharing and
Resource management Models for Packet Networks”,
IEEE/ACM Transactions on Networking, Vol. 3 No. 4,
August 1995

[4] Parris, M., Jeffay, K. and Smith, F. D., “Lightweight
Active Router-Queue Management for Multimedia
Networking”, Multimedia Computing and Networking,
SPIE Proceedings Series, Vol. 3020, San Jose, CA,
January 1999

[5] Floyd, S., “TCP and Explicit Congestion Notification”,
Computer Communication Review, October 1994

[6] Floyd, S. and Jacobson, V., “Random Early Detection
Gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Networking, August 1993

[7] Lin, D. and Morris R., “Dynamics of Random Early
Detection”, In Proceedings of SIGCOMM ’97, Cannes,
France, September 1997

[8] Floyd, S. and Fall, K., “Promoting the Use of End-to-
End Congestion Control in the Internet”, IEEE/ACM
Transactions on Networking, February 1998

[9] VINT, “Virtual InterNetwork Testbed, A Collaboration
among USC/ISI, Xerox PARC, LBNL, and UCB”,
URL: http://netweb.usc.edu/vint

[10]Delgrossi, L., Halstrick, C., Hehmann, D., Herrtwich,
R. G., Krone, O., Sandvoss, J. and Vogt, C., “Media
Scaling for Audiovisual Communication with the
Heidelberg Transport System”, In Proceedings of the
conference on Multimedia ’93, Anaheim, CA, August
1993

[11]Chung, J. and Claypool, M., “Better-Behaved, Better-
Performing Multimedia Networking”, SCS Euromedia
Conference, Antwerp, Belgium, May 8-10, 2000

[12]Handley, M., “An Examination of Mbone
Performance”, USC Information of Science Institute
Research Report: ISI/RR-97-450, 1997

[13]Hardman, V., Sasse, M. A. and Kouvelas, I.,
“Successful Multiparty Audio Communication”,
Communications of the ACM, vol. 41, No. 5, May
1998

[14]Liu, Y. and Claypool, M., “Using Redundancy to
Repair Video Damaged by Network Data Loss”, In
Proceedings of IS&T/ACM/SPIE Multimedia
Computing and Networking 2000 (MMCN00) San
Jose, California, USA, January 25-27, 2000

[15] Jain, R., “The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling”, John Wiley
& Sons, Inc., New York, NY, 1991

[16] Raghavendra, A. M. and Kinicki, R. E., “A Simulation
Performance Study of TCP Vegas and Random Early
Detection”, IEEE International Performance,
Computing, and Communications Conference 1999
(IPCCC99), February 1999

	INTRODUCTION
	RELATED WORK
	PROPOSED MECHANISMS
	Dynamic-CBT (D-CBT)
	Cut-In Packet Scheduling (ChIPS)

	PERFORMANCE METRICS
	SIMULATION
	RESULTS AND ANALYSIS
	Class’ Average Per-Flow Throughput
	Jain’s Fairness Measurement
	Analysis of ChIPS

	CONCLUSION
	REFERENCES

