
1

Better-Behaved, Better-Performing Multimedia Networking

Jae Chung and Mark Claypool

Computer Science Department
100 Institute Road

Worcester Polytechnic Institute
Worcester, MA 01609

Email: {goos|claypool}@cs.wpi.edu

ABSTRACT

The power and connectivity of today's Internet presents the
opportunity for interactive multimedia applications across the
world. However, today's Internet has been predominantly
designed for TCP traffic, wherein the end hosts recognize lost
packets as congestion and reduce their transmission rates
appropriately. Unfortunately, TCP is not the protocol of
choice for multimedia applications, because TCP's lossless
transmission is stricter than required by multimedia flows and
TCP adds considerable network jitter, greatly decreasing
multimedia quality. UDP, the alternate transport protocol to
TCP, does not respond to packet loss as a measure of
congestion, often resulting in UDP flows that get an unfair
share of their network bandwidth. In this work, we
demonstrate that a proper network protocol can be built on
top of UDP, providing well-behaved performance in the face
of congestion. Moreover, we demonstrate such protocols
provide far better multimedia performance than does TCP.

1. INTRODUCTION

The Internet is moving from a traditional data
communication network for transferring text-based
messages such as email and web traffic, to an
underlying communication network for multimedia
applications such as Internet phone, video conferencing
and video on demand. The volume of traffic from both
traditional and multimedia applications is increasing
tremendously, placing renewed emphasis on congestion
control and traffic fairness.

A major approach to avoiding congestion is through the
use of active queue management, wherein a router
signals impending congestion by dropping packets.
The most well-known active queue management
mechanism is Random Early Detection (RED). RED
uses a weighted-average queue size and thresholds to
detect impending congestion, and randomly drops
incoming packets as the average queue size exceeds a
minimum threshold [FJ93, FF97]. Active queue
management requires that the end-hosts recognize
dropped packets and respond by reducing their rate of

transmission. In the Internet, TCP recognizes packet
loss as an indicator of network congestion, and reduces
transmission rate [Fl94]. To date, active queue
management appears promising since by far the
predominant transport protocol on the Internet is TCP
[two99].

However, multimedia applications have different
performance constraints than do traditional applications
[CR99]. Traditional applications are very sensitive to
lost packets, hence use TCP to guarantee that lost
packets are retransmitted [BRS99]. Multimedia
applications, on the other hand, can tolerate some data
loss, but are very sensitive to variance in packet
delivery, called jitter [CT99]. In the absence of jitter
and packet loss, video frames can be played as they are
received, resulting in a smooth playout, as depicted in
Figure 1-top. However, in the presence of jitter,
interarrival times will vary, as depicted in Figure 1-
bottom. In Figure 1-bottom, the third frame arrives late
at r2. In this scenario, the user would see the frozen
image of the most recently delivered frame (frame two)
until the tardy frame (frame three) arrived. The tardy
frame (frame three) would then be played only briefly
in order to preserve the timing for the subsequent frame
(frame four). Detecting and retransmitting lost packets
causes considerable jitter, making TCP unattractive to
multimedia applications.

Figure 1. The above figures model packet video between
sender and receiver. Each si is the time at which the

2

sender transmits video frame i. Each ri is the time at
which the receiver receives frame i .

Unfortunately, most non-TCP flows (often termed
misbehaved flows) use UDP and get an unfair share of
network bandwidth when there is congestion. This
unfairness occurs because non-TCP flows do not
reduce transmission rates while the TCP flows are
forced to transmit data at their minimum rates [PSJ99].
Even worse, typical active queue management policies
apply the same drop rate to each flow. This has led to
new active queue management mechanisms such as
Fair Random Early Drop (FRED) [LM97], that add
per-active-flow accounting to RED, isolating each flow
from the negative effects of others. FRED strictly
punishes unresponsive or misbehaving flows to have an
equal share of output bandwidth, while assuring that
packets from flows that consume less than their fair
share are transmitted without loss.

However, per-active-flow accounting is expensive in
terms of router load and may slow down the routing
speed as the number of flows increases. Even worse
for multimedia applications, FRED punishes all non-
TCP-like flows, which discourages multimedia
applications from using any transport protocol besides
TCP, despite the severe degradation TCP can cause to
multimedia quality.

In this paper, we demonstrate that a well-behaved rate-
based flow control mechanism can be built on top of
UDP, providing significantly better quality for the
multimedia application than does TCP while ensuring
fairness to the TCP application. We demonstrate this
for a generic rate-based streaming media application as
well as for an MPEG-1 video client-server application.
In addition, we demonstrate how a rate-based UDP
flow can provide much better multimedia performance
than does TCP.

Our design and implementation are carried out in NS, a
popular Wide Area Network simulator developed at the
University of California, Berkeley but used by many
others for a wide variety of network research [ns2]. NS
supports most of the common IP network components,
including TCP (Tahoe, Reno and Vegas) and UDP
transport agents, and several queue management
mechanisms, including RED. Unfortunately, NS
considerably lacks support for multimedia applications,
only providing a basic mechanism to build Constant Bit
Rate (CBR) media streams. NS does not support
streaming Variable Bit Rate (VBR) multimedia, such as
an MPEG client-server or Real Video. VBR
applications are required for responsive multimedia
applications that must maintain their strict timing
constraints. Thus, a further contribution of this work is

the NS-compatible source code for two flow-controlled
multimedia applications1.

The rest of this paper is laid out as follows: Section 2
describes our approach in the design and
implementation of flow-controlled multimedia; Section
3 details experiments examining the behavior of our
protocol and applications when running with other TCP
flows; Section 3 also presents a simulation result
showing that TCP is not the transport agent of choice
for multimedia applications because it results in poor
performance; and Section 4 summarizes our
conclusions and lists some possible future work.

2. RESEARCH APPROACH

We designed and implemented two slightly different
multimedia traffic generators (or multimedia
applications) that respond to network congestion,
extended from media scaling techniques proposed in
[DHH93]. The two traffic generators have the same
congestion control and avoidance (or flow control)
mechanism, while the traffic they generate in response
to congestion notification from the network is different.
The first one, MM-APP, reduces or increases
transmission rate by decreasing or increasing the
transmission interval with fixed frame size. The
second one, MPEG-APP, changes the transmission rate
by selecting frames to transmit from an input MPEG
trace file, where the frame sizes vary while the
transmission interval of frames in the file are fixed in
terms of frames per second.

The multimedia applications use sender and receiver
behavior. Before transmitting the actual data, the
sender and the receiver agree on five scale values (0 to
4), each of which is assigned to a different media
encoding method and transmission policy (i.e. which
frame to transmit) pair. The scale value 0 is assigned to
a set from which a predetermined minimum sustainable
media quality can be achieved, the next value is
assigned to sets from which a better media quality can
be achieved, and so on. It is assumed that the media
encoding and transmission policy sets are carefully
chosen so that the transmission rates resulting from the
sets increase linearly as the scale value increases.
Table 1 shows an example assignment.

Scale
Value

Media Encoding and
Transmission Policy Set

Avg. Transmission
Rate (Kbps)

4 A 1100

3 B 900

1 The source code will be available at
http://perform.wpi.edu/ by the time of publication.

3

2 C 700

2 D 500

1 E 300

Table 1. Example Media Scale Assignment

Thus, having five discrete and linearly increasing
transmission rates assigned to the scale values, the
sender starts from scale 0 transmitting at the lowest
rate. The receiver detects congestion, determines the
next transmission rate of the sender in terms of scale
value, and notifies the sender of this scale value. The
sender, being notified of the scale value, simply
changes the transmission rate by using media encoding
and transmission policy assigned to the scale value.

In detecting congestion, the receiver uses frame loss as
the network congestion indicator. There are two
circumstances where the receiver claims frame loss.
The first is when the receiver gets a frame whose
sequence number is greater than the expected sequence
number. The second is when the receiver does not
receive any frames within a timeout interval.

Proper setting of the timeout interval is critical. A
timeout interval that is set too short will claim false
frame losses, which will make the sender reduce the
transmission rate needlessly. On the other hand, a
timeout interval that is set too long will fail to detect
multiple sequential frame loss effectively such that the
sender reduces transmission rate later than other
competing connections, which could result in an unfair
portion of bandwidth. In our implementation, the
Round Trip Time (RTT) of the connection is greater
than the longest possible frame transmission interval:

RTT > Max_Intrvl: TOI = RTT

RTT ≤ Max_Intrvl: TOI = Max_Intrvl + α

(where 0 < α < RTT)

The receiver, when detecting congestion, reduces its
scale value to half (integer division) and notifies the
sender of this value by sending a small packet. When
the receiver detects no network congestion within a
RTT from the last checkpoint, it increases the scale
value by one and notifies the sender of this value. This
design of drop scale to half at congestion, and increase
one scale up at a RTT is motivated by fast recovery
algorithm that is found in Reno TCP implementations
[FF96] and the TCP-friendly definition [FF98].

Now that the congestion control part of the multimedia
traffic generators has been described, we next present

the specifics of how MM_APP and MPEG_APP
generate traffic associated with scales.

As briefly mentioned earlier, MM_APP directly
associates transmission rates to scale values without
targeting a specific media encoding and transmission
policy. It assumes that every media encoding and
transmission policy pair associated to the scale values
generates traffic with a fixed frame size. In other
words, it assumes that the transmission intervals are the
only factors that cause the rate changes. Therefore, the
resulting traffic can be characterized by CBR traffic of
a fixed frame size and various transmission intervals
associated with the scale values. Although MM_APP
is not tied to a specific multimedia application, it is
useful in that it is easy to change the transmission rate
associated to each scale value and then test the media
scaling scheme, thus eliminating the effect of a specific
traffic characteristic of a particular application.

MPEG_APP, on the other hand, simulates a very
specific client-server video application that is based on
the MPEG-1 encoding scheme [MPFG97]. It
implements five sets of MPEG-1 encoding and
transmission policies and associates them with scale
vales - in fact, it only changes the frame transmission
policy leaving the encoding scheme unchanged.
MPEG-1 encodes video at a given framerate and
picture quality, generating a stream of frame types I, P
and B, associated with a typical Group of Pictures
(GOP), such as IBBPBBPBB. Among the three frame
types, only I-frames can be decoded on their own. The
decoding of a B-frame relies on a pair of I-frames
and/or P-frames that come before and after the B-frame
and the decoding of a P-frame relies on an I-frame or P-
frame that comes before the P-frame. MPEG_APP
supports MPEG-1 streams using the common GOP
patterns IBBPBBPBB and IBBPBBPBBPBB. Table 2
shows the transmission policies on the two stream
patterns, which is carefully selected keeping the
dependencies in mind [WCK97].

Scale Transmission Policy (Pattern 1)

4 I B B P B B P B B I

3 I B P B P B I

2 I P P I

1 I P I

0 I I

Scale Transmission Policy (Pattern 2)

4

4 I B B P B B P B B P B B I

3 I B P B P B P B I

2 I P P P I

1 I P I

0 I I

Table 2. MPEG Transmission Policy Associated with
Scale Values

MPEG_APP reads in an MPEG-1 trace file that
contains frame information for a stream with the
maximum frame rate (scale 4) as input along with the
maximum frame rate and the longest possible frame
transmission interval that is used for congestion
detection at the receiver side. At every scale 4
transmission interval, MPEG_APP reads the frame
information from the input file, and determines whether
or not to transmit this frame using the current scale
value and the transmission policy associated with the
scale value. Figure 2(a) shows an example input file
that contains frame information for a 30 frames per
second IBBPBBPBB pattern stream in which the sizes
of the I-, P- and B-frames are 11 KB, 8 KB and 2 KB,
respectively. The frame sizes used in this example are
the mean frame size of each type obtained while
playing a short high quality MPEG-1 news clip. Figure
2(b) shows each transmission policy assigned to scale
values with the estimated average transmission rate for
the input trace file.

I 11000
B 2000
B 2000
P 8000
B 2000
B 2000
P 8000
B 2000
B 2000
I 11000
. .
. .
. .

Figure 2(a). Input Trace File (bytes)

Maximum Frame Rate (Scale 4) = 30 frame/sec

Scale

Transmission Policy

(Pattern 1)

Estimated Average
Trans. Rate (Kbps)

4 I B B P B B P B B I 1056

3 I B P B P B I 896

2 I P P I 736

1 I P I 544

0 I I 352

Figure 2(b). Transmission Policies and Associated Rates

Figure 3 visualizes the estimated transmission rate in
Figure 2(b). The almost linearly growing estimated
average transmission rates shows that the assignment of
the transmission policies to the scale values works well
with the given example MPEG-1 stream. This is
because the linear increment of scale results in linear
increment of transmission rate and the exponential
decrement of scale results in exponential decrement of
transmission rate.

Estimated Average Transmisson Rate

0

200

400

600

800

1000

1200

0 1 2 3 4
Scale

K
b

p
s

Figure 3. Estimated Average Transmission Rate of
the Example in Figure 2.

5

Figure 4. SIM_MM Scenario and Topology

3. EXPERIMENTS

We ran a series of simulations to validate the NS
implementation of MM_APP and MPEG_APP, and to
measure their fairness when competing for bandwidth
with TCP flows under RED queue management. Here,
we present the results of a simulation that exhibits the
behavior of MM_APP and MPEG_APP. The
simulation, referred to as SIM_MM, is designed to
show the effect of available bandwidth and end-to-end
delay on fairness. Figure 4 shows the network
topology and the simulation scenario used for the
simulation.

Each link that connected a source or destination node
and a network node had a 10 Mbps link capacity and 5
ms of delay. The link that connected the two network
nodes has 6 Mbps of link capacity and 20ms of delay.
The network node n1 used RED queue management,
for which the parameter set used was chosen from one
of the sets that are recommended by Floyd and
Jacobson [RK99].

For traffic sources, 6 FTP, 2 MM_APP and 2
MPEG_APP traffic generators were used, where FTP
used TCP Reno and the others used UDP as the
underlying transport agent. All the TCP agents were
set to have a maximum congestion window size of 20
packets and maximum packet size of 1500 bytes. The

UDP agents were also set to have maximum packet size
of 1500 bytes. The MM_APP traffic generators used
the transmission rates shown in Table 1, that is 300,
500, 700, 900, 1100 Kbps, for scale 0 to 4 transmission
rates, respectively. The MPEG_APP traffic generators
used the transmission policies and the trace file shown
in Figure 2, which generated traffic rates of 352 Kbps
to 1056 Kbps.

Both simulations started with five FTP applications, 1
MM_APP and 1 MPEG_APP, and after 15 seconds the
remaining traffic sources joined. For the first 15
seconds, the available bandwidth share for each
connection was about 857 Kbps, and for the next 10
seconds, the share went down to 600 Kbps. Figure 5
shows the results of SIM_MM. For the throughput
measurements, we omitted the first 5 seconds to
eliminate the startup effect of unstable TCP and RED
behaviors on the fairness at the initial stage.

6

Figure 5. SIM_MM – Simulation Test of MM_APP and
MPEG_APP

This simulation is set to have the FTP applications over
TCP and the flow-controlled multimedia applications to
fairly share the output bandwidth for the first 10
seconds (5 to 15 seconds). For the next 10 seconds
when three more sources join decreasing the available
bandwidth.

5 – 15 (Sec) 15 – 25 (Sec)

FTP-TCP1 733.2 505.2

FTP-TCP2 888.0 464.4

FTP-TCP3 717.6 552.0

FTP-TCP4 958.8 412.8

FTP-TCP5 841.2 428.4

FTP-TCP6 367.2

MM-UDP1 868.8 669.6

MM-UDP2 727.8

MPEG-UDP1 809.6 826.8

MPEG-UDP2 647.2

Fair Share 857.1 600.0

Average Per-flow Throughput

827.8

455.0

868.8

698.4

809.6
737.0

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

5 - 15 (Sec) 15 - 25 (Sec)

K
b

p
s

FTP-TCP

MM-UDP

MPEG-UDP

7

In SIM_MM, one can see that all types of traffic
receive a fair share of network bandwidth. Even during
the second part of the simulation, seconds 15-25, the
multimedia streams do become noticeably greedier, but
still do not completely starve out the TCP flows. The
existing unfairness is mainly caused by the in average
reduction of TCP's congestion window size, and the
widely fluctuating and higher RED's average queue
length. When there is extreme congestion, RED drops
packets from all flows, and the TCP flow's window-
based mechanisms will only transmit packets on
timeout, while the rate-based mechanism of MM_APP
and MPEG_APP, will transmit more frequently.

SIM_MM shows that multimedia applications that use
a rate-based flow control mechanism can be greedier
than TCP agents that use window-based flow control
mechanism under conditions of extreme congestion.
Despite this drawback, there are very strong reasons
that interactive multimedia applications today do not
want to use TCP as underlying transport agent.

Figure 6 that shows the TCP and MM_APP jitter, as
measured by the inter-packet arrival time. TCP's bursty
transmission policy that transmits data packets up to the
minimum of congestion and receiver side window at a
time without using any particular transmission
scheduling introduces high jitter compared to the
continuous transmission policy. Furthermore, from
time to time, TCP's timeouts add huge jitter peaks.
Delay sensitive interactive multimedia application may
not stand for the high jitter, since they need to play out
the multimedia data at a specific time interval. They
could use relatively large buffers to ameliorate the
effect of jitter, however this gives extra delays that
might not satisfy the users of the application. In
addition, the fact that TCP does not separate flow
control from loss recovery discourages multimedia
applications from using it [BRS99], since this gives
possibly unbounded transmission delays for a
multimedia packet that is useless after a specific period
due to the retransmission attempts for the previous
packets.

4. CONCLUSION

In this paper, we have presented the design and
evaluation of flow-controlled multimedia over UDP.
Our well-behaved applications use a rate-based flow
control mechanism based on media scaling, but still
result in fair bandwidth allocation, as does TCP. We
also demonstrated that TCP is not the transport agent of
choice for multimedia applications by showing its poor
performance on jitter and delay that is due to its
transmission policy.

There exist many possible areas for future work,
including building NS applications that support other
media encoding types, such as H.261 or MPEG2.
Implementing MM_APP and MPEG_APP in code and
experimenting on the real Internet may provide
additional insight as to application behavior. User
studies carefully measuring the impact of flow-
controlled multimedia on top of UDP versus TCP may
provide additional evidence as to the merits of our
approach, as well as indicate additional means by
which the network mechanism may be improved.

REFERENCES

[BRS99] Balakrishnan, H., Rahul, H. S. and Seshan, S.,
“An Integrated Congestion Management Architecture
for Internet Hosts”, In Proceedings of SIGCOMM '99,
Cambridge, MA, September 1999

[CR99] Mark Claypool and John Riedl, “End-to-End
Quality in Multimedia Applications”, Chapter 40 in

Figure 6. FTP-TCP and MM-UDP Jitter (Inter-Packet
Arrival Time)

8

Handbook on Multimedia Computing, CRC Press, Boca
Raton, Florida, 1999

[CT99] Mark Claypool and Jonathan Tanner, “The
Effects of Jitter on the Perceptual Quality of Video”,
ACM Multimedia Conference, Volume 2, Orlando, FL,
October 30 - November 5, 1999

[DHH93] Delgrossi, L., Halstrick, C., Hehmann, D.,
Herrtwich, R. G., Krone, O., Sandvoss, J. and Vogt, C.,
“Media Scaling for Audiovisual Communication with
the Heidelberg Transport System”, In Proceedings of
the Conference on Multimedia '93, Anaheim, CA,
August 1993

[FF96] Floyd, S. and Fall, K., “Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP”,
Computer Communication Review, V.26 N.3, July
1996, pp. 5-21

[FF97] Floyd, S. and Fall, K., “NS Simulator Tests for
Random Early Detection (RED) Queue Management”,
Lawrence Berkeley Laboratory, One Cyclotron Road,
Berkeley, CA 94704, April 29, 1997

[FF98] Floyd, S. and Fall, K., “Promoting the Use of
End-to-End Congestion Control in the Internet”,
IEEE/ACM Transactions on Networking, February
1998

[FJ93] Floyd, S. and Jacobson, V., “Random Early
Detection Gateways for Congestion Avoidance”,
IEEE/ACM Transactions on Networking, August 1993

[Fl94] Floyd, S., “TCP and Explicit Congestion
Notification”, Computer Communication Review,
October 1994

[MPFG97] Mitchell, J.L., Pennebaker, W.B., Fogg,
C.E. and LeGall, D.J., “MPEG Video Compression
Standard”, In Digital Multimedia Standards Series,
Chapman & Hall, New York, NY, 1997

[ns2] VINT, “Virtual InterNetwork Testbed, A
Collaboration among USC/ISI, Xerox PARC, LBNL,
and UCB”, URL: http://netweb.usc.edu/vint/

[RK99] Raghavendra, A. M. and Kinicki, R. E., “A
Simulation Performance Study of TCP Vegas and
Random Early Detection”, IPCCC99, February 1999

[two99] Traffic Workload Overview, caida, 1999
[Online] at http://www.caida.org/Learn/Flow/tcpudp.-
html

[WKC97] Walpole, J., Koster R., Cen, S., Cowan, C.,
Maier, D., McNamee, D., Pu, C., Steere, D. and Yu, L.,
“A Player for Adaptive MPEG Video Streaming over
the Internet”, In Proceedings 26th Applied Imagery
Pattern Recognition Workshop AIPR-97, SPIE,
Washington DC, October 1997

