
WPI-CS-TR-99-39 December 1999

S-Expressiveness and

the Abstractive Power of

Programming Languages

by

John N. Shutt

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

S-Expressiveness and

the Abstractive Power of

Programming Languages

John N. Shutt

jshutt@cs.wpi.edu

Computer Science Department

Worcester Polytechnic Institute

Worcester, MA 01609

December 1999

Abstract

This paper investigates possible approaches to developing a mathematical

model of the process of abstraction in programming. In particular, two for-

mal measures are considered for comparing the relative abstractive power of

programming languages. A measure called expressiveness, proposed elsewhere

by M. Felleisen, is found insu�cient for the current task because it is con-

cerned with expression only of runtime semantics. A second measure called

S-expressiveness, de�ned here, doesn't fully capture abstractive power either,

but its shortcomings are di�erent from those of Felleisen's measure. Implica-

tions for future research are discussed.

Contents

1 Introduction 1

2 T-Expressiveness 1

2.1 The criterion . 1

2.2 Properties . 3

3 S-expressiveness 5

3.1 The criterion . 6

3.2 Properties . 6

i

4 Conclusion 8

Bibliography 8

List of De�nitions

T.1 Programming language . 1

T.2 Conservative extension . 2

T.3 Polynomial . 2

T.4 T-Expressibility . 2

T.5 Weak T-Expressibility . 3

S.1 Language . 6

S.2 Semantics . 6

S.3 S-expressibility . 6

List of Theorems

T.6 Call-by-name �-calculus weakly T-expresses call-by-value 3

T.7 T-expressiveness does not capture encapsulation 5

S.4 S-expressibility captures encapsulation 6

S.5 Universal S-expressing language . 7

ii

1 Introduction

This paper is the second step in a program to develop a mathematical model of the

process of abstraction in programming. An informal model of the mechanical process

of abstraction was developed in [Shut99b]. Building on that work, this paper investi-

gates what kind of mathematical model could capture the qualitative phenomenon.

The approach taken is experimental. Two di�erent formal measures are considered

for comparing the relative abstractive power of programming languages (that is, for

comparing how e�ectively they support the expression of abstractions); and the merits

and demerits of both measures are analyzed.

The �rst measure considered is T-expressiveness, proposed (under the namemacro

expressiveness) by M. Felleisen in [Fell91]. Felleisen's model is intended to capture

the relative facility with which programming languages express computations (as

opposed to mere ability as captured by the criterion of Turing-equivalence). However,

abstractive features | facility, or even ability, to express abstractions | are often

invisible to Felleisen's measure, because they have no computational consequences

of the kind that his measure can distinguish. x2 de�nes Felleisen's measure, and

demonstrates its failure to encompass abstractive power.

A formal measure called S-expressiveness is developed in x3. S-expressiveness

doesn't fully capture abstractive power either; but it does detect some features that

Felleisen's measure overlooks.

Finally, x4 recaps the strengths and weaknesses of the two measures, and suggests

how an improved measure of abstractive power might be developed.

The reader is assumed to have passing familiarity with the rudiments of many-

sorted algebra.

2 T-Expressiveness

Felleisen called his formal criterionmacro expressiveness [Fell91]. It is referred to here

as T-expressiveness (T being mnemonic for Term-based, because Felleisen models a

program as a term over an algebra.)

2.1 The criterion

De�nition T.1 (Programming language) A programming language L consists

of the following parts.

� A signature �

L

. The domain of all �

L

-terms is T

�

L

. To simplify our explana-

tion, we assume that the signature is one-sorted, and that each operator in it

has a unique arity.

� A (usually in�nite) set P

L

� T

�

L

of L-programs.

1

� A recursively enumerable predicate eval

L

:P

L

! B called the semantics of L.

Program p 2 P

L

terminates i� eval

L

(p).

2

By \recursively enumerable predicate", presumably Felleisen means that the set of

programs fp 2 P

L

j eval

L

(p)g may be any recursively enumerable subset of P

L

.

De�nition T.2 (Conservative extension) A programming language L is a

conservative extension of a programming language L

0

, and L

0

is a conservative

restriction of L, i�

� �

L

0

� �

L

;

� P

L

0

= P

L

\ T

�

L

0

; and

� for all p 2 P

L

0

, eval

L

0

(p) i� eval

L

(p).

If S = �

L

��

L

0

is the di�erence between the signatures, the conservative restriction

may be denoted L

0

= LnS, and the conservative extension, L = L

0

+ S. 2

The following de�nition of T-expressiveness involves the notion of polynomials

over a signature. Felleisen actually calls them syntactic abstractions, and remarks

that they are also referred to variously in the literature as polynomials, notational

abbreviations, macros, and derived operators. In the interest of completeness, here is

a formal de�nition.

De�nition T.3 (Polynomial) Suppose � is a signature. A variable set over �

is an ordered set of symbols V , disjoint from � and having a least element.

Suppose V = fv

1

; v

2

; � � �g is a variable set over �. A polynomial over � in

variables V is a term over the following signature �(V).

�(V)

j

=

(

�

j

[V if j = 0

�

j

otherwise

The arity of a polynomial � 2 T

�(V)

is the smallest integer ar(�) 2 N such that for

all v

k

in �, k � ar(�). Note, in particular, that if � 2 T

�

then ar(�) = 0.

Suppose � 2 T

�(V)

is a polynomial, ar(�) � n, and t

1

; � � � t

n

2 T

�

are terms over

�. Then �(t

1

; � � � ; t

n

) denotes a term over �, as follows.

� If � = v

k

, then �(t

1

; � � � t

n

) = t

k

.

� If � = �(�

1

; � � � ; �

m

), then �(t

1

; � � � ; t

n

) = �(�

1

(t

1

; � � � ; t

n

); � � � ; �

m

(t

1

; � � � ; t

n

)).

2

De�nition T.4 (T-Expressibility) Suppose L is a programming language, S �

�

L

, and L

0

= LnS. Then L

0

can T-express S with respect to L i� there is a recursive

mapping ':T

�

L

! T

�

L

0

with the following properties E1{E4.

2

E1 e 2 P

L

implies '(e) 2 P

L

0

;

E2 ' is homomorphic in all operators of �

L

0

;

E3 For all e 2 P

L

, eval

L

(e) i� eval

L

0

('(e)); and

E4 ' is polynomial in every operator in S. That is, for each operator s 2 S of

arity a there exists a polynomial �

s

of arity a over �

L

0

such that

'(s(e

1

; : : : ; e

a

)) = �

s

('(e

1

); : : : ; '(e

a

))

2

De�nition T.5 (Weak T-Expressibility) Suppose L

0

= LnS. Then L

0

can

weakly T-express S with respect to L i� there is a recursive mapping ':T

�

L

! T

�

L

0

with properties E1, E2, and E4 from De�nition T.4, and the following property

E3

0

.

E3

0

For all e 2 P

L

, eval

L

(e) implies eval

L

0

('(e)).

2

2.2 Properties

Example T.6 As a simple illustration of how these de�nitions can be applied,

consider a variant on the ordinary lambda calculus. (For a vastly more extensive

treatment of this example, see [Fell91].) Instead of the usual � operator, let us

have two function constructors, �

n

and �

v

. The �

n

operator takes its parameters

by name | which is the way the ordinary lambda calculus works | while �

v

takes

its parameters by value. The complete variant lambda calculus with both operators

will be called �; with only call-by-name, �

n

= �n�

v

; and with only call-by-value,

�

v

= �n�

n

.

Theorem T.6 (Call-by-name and call-by-value)

� �

v

cannot T-express �

n

with respect to �.

� �

n

cannot T-express �

v

with respect to �.

� �

n

can weakly T-express �

v

with respect to �.

�

Without getting into gory detail (see, again, [Fell91]), note that �

v

always waits

until its argument is completely evaluated, whereas �

n

may sometimes converge

when evaluation of its argument would diverge. Neither operator can precisely

simulate the behavior of the other. However, when �

v

does converge it always

yields the same result as �

n

, so replacing �

n

with �

v

satis�es criterion E3

0

for weak

T-expressiveness.

These results might at �rst appear to contradict the folk theorem that \call-by-

value is more powerful than call-by-name". On closer examination, however, the

folk theorem has its origin in the problem of exchanging the contents of variables

3

hprogrami ! hmodulesi

hmodulesi ! hmodulei j hmodulei;hmodulesi

hmodulei ! module hidenti�eri; hdeclarationsi; end

hdeclarationsi ! hprivatei j hdeclarationi j hdeclarationsi;hdeclarationsi

hprivatei ! private hdeclarationi

hdeclarationi ! hmodulei j hotheri

hotheri ! hidenti�eri=hatomi

hatomi ! hliterali j hidenti�eri

Figure T.7: Syntax of a toy language

in ALGOL 60; and that is a uniquely imperative problem, whereas Theorem T.6

concerns a strictly declarative language. (Lambda calculus, no less.) 2

Felleisen's approach to expressiveness is based on the familiar notion of syntactic

sugar [Land66] | a language feature whose removal from the language would require

only \syntactically local" transformation of any given program. Felleisen's de�nition

of programming language (De�nition T.1) is ideally suited to this approach.

� \Language features" are the operators of a many-sorted signature, providing a

conveniently �nite description of language syntax, and compatibility with an

extensive literature that uses many-sorted algebra to describe abstract data

types.

� A \program" is a syntax tree, providing a convenient characterization of poly-

nomial substitution (De�nition T.3).

Because he proceeds from the notion of syntactic sugar, he can directly compare

two languages only if one is a sublanguage of the other; arbitrary languages are not

commensurate. When two languages are fairly similar, this limitation can often be

worked around by relating them to a larger language containing all the features of

both, as in Theorem T.6.

Felleisen's work elegantly captures the relative capacity of programming language

features to express computational capabilities. However, it fundamentally fails to

capture capacity to express abstractional capabilities, as in the following example.

Example T.7 An important part of abstraction support in most modern pro-

gramming languages is modular encapsulation. Let L be a toy programming lan-

guage whose concrete syntax is given by Figure T.7. (The syntax productions for

hidenti�eri and hliterali are omitted, as they are not important for this example.)

Let the visibility rules of L be as follows.

4

� Within a module, each object is visible anywhere to the right of its declaration.

� Outside a module, if the module is visible then its public (i.e., non-private)

objects are visible.

� An identi�er on the right side of a declaration must name an object that is

visible at that point in the program.

� An identi�er on the left side of a declaration must not name any object vis-

ible at that point in the program; thus there is no question of object name

shadowing.

We will make the pragmatically obvious (but mathematically important) assump-

tion that deleting a private keyword from a valid program doesn't change its se-

mantics.

Consider the language L

0

= Lnprivate. In L

0

, every object of every module is

public. From the perspective of abstraction support, something important has been

lost. Computationally, however, encapsulation is pure syntactic sugar.

Theorem T.7 (T-expressiveness does not capture encapsulation) L

0

can

T-express private with respect to L. �

Proof. Let ':T

�

L

! T

�

L

0

be the transformation that simply makes everything

public by stripping o� all the private keywords. That is, ' is homomorphic on all

operators of �

L

0

, and '(private v) = v. By construction, ' satis�es E2 and E4.

Making everything public won't invalidate any valid program, so ' satis�es E1; and

by assumption it won't change the semantics of any program either, so ' satis�es

E3. By De�nition T.4, L

0

can T-express private with respect to L. �

Taken as complete L-programs, p and '(p) can only be distinguished by their

semantics; i.e., by their runtime behavior. However, a careful examination of

Figure T.7 will show that every L-program p is also a proper pre�x of in�nitely

many other L-programs. This suggests a way to distinguishing p from '(p): Let

su�x (p) = f! j p ! 2 P

L

g be the set of possible su�xes of p. Then for all p 2 P

L

,

su�x (p) � su�x ('(p)); moreover, su�x (p) = su�x ('(p)) if and only if p 2 P

L

0

.

This observation forms the basis for the alternative expressiveness criterion consid-

ered in x3. 2

3 S-expressiveness

T-expressiveness (x2) addresses only the conventionally semantic (i.e., runtime) con-

sequences of a program. Naturally, it is unable to distinguish programs that have

the same runtime semantics. From the observations at the end of Example T.7 it is

evident that, in order to capture abstraction, a formal criterion must also address the

syntactic consequences of a program fragment.

5

This section describes a criterion called S-expressiveness, which attempts to cap-

ture abstraction through a purely syntactic analysis of the consequences of program

texts. Program fragments are treated as arbitrary symbol strings with no context-

free structure. (The letter S is mnemonic for Set-based, in di�erence to Felleisen's

Term-based approach.)

3.1 The criterion

S-expressiveness is essentially a containment relation, similar in the broad organiza-

tion of its de�nitions to Felleisen's criterion.

De�nition S.1 (Language) An alphabet is a �nite set of atomic symbols. Sup-

pose � is an alphabet. The set of strings over � is �

�

, the empty string is � 2 �

�

,

the set of nonempty strings over � is �

+

= �

�

� f�g. A language over � is any

subset of �

�

. 2

If L is a language over � and � � S, then L is a language over S.

De�nition S.2 (Semantics) Suppose L is a language over �, and x 2 �

�

. The

semantics of x in L, denoted [][x][]

L

, is the set of all strings y such that xy 2 L. That

is,

[][x][]

L

= fy j xy 2 Lg

2

If L is a language over �, and x 2 �

�

, then � 2 [][x][]

L

i� x 2 L. Also, [][�][]

L

= L; but

there may also exist x 6= � with [][x][]

L

= L.

De�nition S.3 (S-expressibility) Suppose L and L

0

are languages over �. L

0

can S-express L i� there exists x 2 �

�

such that [][x][]

L

0

= L. 2

Trivially from the de�nition, S-expressibility is transitive; that is, if L

00

can S-express

L

0

and L

0

can S-express L, then L

00

can S-express L.

3.2 Properties

Recall the languages L and L

0

= Lnprivate from Example T.7. It was shown that L

0

can T-express private with respect to L, even though L

0

clearly lacks the abstractive

power of private. S-expressibility resolves this di�culty.

Theorem S.4 (S-expressibility captures encapsulation) Let L and L

0

=

Lnprivate be the languages de�ned in Example T.7. Then L

0

cannot S-express L,

and L cannot S-express L

0

. 2

6

At �rst glance, this is not what we had in mind. The private operator would seem

to make L abstractionally more powerful than L

0

; but under S-expressibility, the two

languages are simply incomparable.

There is a way around this problem. The reason that L cannot S-express L

0

is

that private, though used in L for abstraction, is not itself within the purview of the

abstraction facilities of L. That is, there is no way of \turning o�" private; so for

all valid program pre�xes x of L, there exist y 2 [][x][]

L

that use private, and thus

y 62 L

0

. So suppose we de�ne a third language, L

00

, in which the syntax production

for hprogrami in Figure T.7 is replaced with

hprogrami ! hmodulesi j disable private; hmodulesi

with the `visibility' rule that if a program begins with \disable private;", then

keyword private cannot occur at all in the rest of the program. In L

00

, private can

itself be hidden. It follows immediately that

[][�][]

L

0

= [][disable private;][]

L

00

and thus, L

00

can S-express L

0

.

Of course, this example is trivial | it's like having a switch at the top of a

program that indicates whether the ensuing code will be in C or Pascal | but it does

suggest an interesting general principle. Apparently, S-expressiveness isn't applicable

to abstractive operators unless those operators are also subject to abstraction. The

reader may ponder whether or not this is a reasonable property for a measure of

abstractive power.

Unfortunately, S-expressiveness itself is not a reasonable measure of abstractive

power, as will now be demonstrated.

Theorem S.5 (Universal S-expressing language) Suppose � is an alphabet.

Then there exists a recursively enumerable language L that can S-express every

recursively enumerable language over �. 2

Proof. Let Y be the alphabet f0; 1; $g; it doesn't matter whether or not Y and �

are disjoint. Let L be the set of all strings n$w such that n is the binary representation

of the G�odel number of a Turing machine M (under a suitable G�odelization �xed for

given �) and w is accepted by M . Then L is recursively enumerable.

Suppose A is a recursively enumerable language over �. Let M be a Turing

machine that accepts exactly A, and let n be the binary representation of the G�odel

number of M . Then [][�][]

A

= [][n$][]

L

, so L can S-express A. 2

In itself, Theorem S.5 seems like a favorable development; the existence of uni-

versal languages under various criteria is always of interest. However, the proof of

the theorem illustrates a serious drawback of S-expressibility as a measure of abstrac-

tion support. Language L in the above proof is a universally S-expressive language;

7

but its use of G�odel numbering is a singularly opaque way to represent programs, so

that while L provides ability to express arbitrary abstractions, it does not do so with

facility.

4 Conclusion

T-expressiveness exploited the internal (context-free) structure of programs in order

to capture facility of expression, in addition to mere ability. However, it addressed

only the expression of computation, i.e., runtime semantics, and so was inapplicable

to the expression of abstraction, which is basically a syntactic phenomenon.

S-expressiveness was based on a purely syntactic treatment of programs; even the

runtime semantics, if needed, would be modeled using syntax (as for example in the

proof of Theorem S.5). Because it took into account the syntactic as well as tradi-

tionally semantic consequences of program code, it was able to address the expression

of abstractive features that had eluded T-expressiveness. However, because it ignored

program structure, it was only able to capture ability to express abstractions; facility

of expression was beyond it.

Based on these observations, it appears likely that a more e�ective criterion for

comparing facility of expression of abstractions might combine the purely syntactic

approach of S-expressiveness, and the explicit use of program structure as in T-

expressiveness.

The RAG formalism [Shut99a] is well suited for the task. It a�ords a �nite, purely

syntactic description of arbitrary Turing-powerful computations, making essential use

of explicit hierarchical (\context-free") phrase structure (as opposed to cosmetic use

as in traditional attribute grammars).

The probable next step in the development of a mathematical model of abstrac-

tion, therefore, will be to formulate a fresh criterion for abstractive power based on

RAGs.

References

[Fell91] Matthias Felleisen, \On the Expressive Power of Programming Languages",

Science of Computer Programming 17 nos. 1{3 (December 1991) [Selected

Papers of ESOP '90, the 3rd European Symposium on Programming],

pp. 35{75.

Available on the Web. See URL

"http://www.cs.rice.edu/CS/PLT/Publications/".

An earlier version of the paper appeared in Neil D. Jones, editor, ESOP

'90: 3rd European Symposium on Programming [Copenhagen, Denmark,

8

May 15{18, 1990, Proceedings] [Lecture Notes in Computer Science 432],

New York: Springer-Verlag, 1990, pp. 134{151.

[Land66] P. J. Landin, \The Next 700 Programming Languages", Communications

of the ACM 9 no. 3 (March 1966) [Proceedings of the ACM Programming

Languages and Pragmatics Conference, San Dimas, California, August 8{12,

1965], pp. 157{166.

[Shut99a] John N. Shutt, \Recursive Adaptable Grammars", technical report WPI-

CS-TR-99-03, Worcester Polytechnic Institute, Worcester, MA, January

1999.

[Shut99b] John N. Shutt, \Abstraction in Programming | working de�nition", tech-

nical report WPI-CS-TR-99-38, Worcester Polytechnic Institute, Worcester,

MA, December 1999.

9

