
WPI-CS-TR-99-15 March 1999

Extending Schema Evolution to Handle Object Models

with Relationships

by

Kajal T. Claypool

Elke A. Rundensteiner and George T. Heineman

Computer Science

Technical Report

Series

 ��

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

Extending Schema Evolution to Handle Object Models

with Relationships

�

Kajal T. Claypool, Elke A. Rundensteiner and George T. Heineman

Department of Computer Science

Worcester Polytechnic Institute

Worcester, MA 01609{2280

fkajaljrundenstjheinemang@cs.wpi.edu

Abstract

Relationships have been repeatedly identi�ed as an important object-oriented modeling con-

struct for advanced applications. Today most emerging modeling standards such as the ODMG

object model and UML hence have some support for relationships. Similarly, current OODB

systems are begining to support structural de�nition of relationships as well as object level man-

agement. However, no work has been done on schema evolution of an object model that has

relationships. In this paper, we present the evolution taxonomy required for evolving relation-

ships. We also examine the e�ect of relationships on the pre-existing taxonomy of evolution

primitives that is supported by current commercial OODB systems. We provide a comprehen-

sive contract-based solution within the SERF framework to handle the problem externally, i.e.,

in a layer outside the OODB system. Also as part of our work, we extend SERF to now allow

for exible evolution of relationships with user-de�ned semantics. Lastly, we show that SERF is

powerful in that it can provide extended schema evolution support in an OODB after its object

model has been extended. In some cases, such as in aggregate relationships we can use SERF to

provide the basic evolution support for the object model extension.

�

This work was supported in part by the NSF NYI grant #IRI 94-57609. We would also like to thank our industrial sponsors,

in particular, IBM for the IBM partnership award and Informix for software contribution. Special thanks also goes to the PSE

Team speci�cally, Gordon Landis, Sam Haradhvala, Pat O'Brien and Breman Thuraising at Object Design Inc. for not only

software contributions but also for providing us with a customized patch of the PSE Pro2.0 system that exposed schema-related

APIs needed to develop our tool.

1 Introduction

Object modeling is a critical technology with much industry and research focused on it. Relationships are

one class of modeling constructs that have been studied for a long period of time, both in the form of

composite objects [KGBW90] and of associations between objects [Boo94]. Today, most OODB systems

provide some implicit relationship support in the form of reference attributes as well as explicit relationship

support [Obj93, Tec92, Obj94]. Work is also ongoing to provide more speci�c modeling constructs such as

aggregation at the OODB system level [BG98]. All work thus far has primarily focused on providing support

for the de�nition of relationships at the schema level [Cea97] and for managing them at the object level

[BG98].

Schema Evolution of Relationships. At the same time, changing application requirements have made

schema evolution a critical task [Sjo93]. Today, most OODB systems recognize this and provide some basic

evolution support [Tec94, Tec92, BMO

+

89, Obj93, BKKK87, Inc93]. However, while some OODB systems

provide object level management for relationships, evolution support for the same is lacking. To address this

gap, in this paper we present a set of evolution primitives for relationships. However, we �nd that this support

alone is not su�cient. We need to analyze and address the repercussions of adding relationships to an object

model on the existing taxonomy of schema evolution primitives. We demonstrate that in current OODB

systems, where relationships are often implemented as reference attributes, a myriad of problems related to

the consistency of a system can arise. For example, a simple delete-class primitive may leave dangling

references both at the schema level and the object level when deleting a class involved in relationships with

other classes. Towards that end, in this paper we characterize evolution related problems that can occur

when the object model is extended to support relationships. We also propose a comprehensive solution based

on software contracts for maintaining consistency while providing evolution of relationships.

Flexible Schema Evolution of Relationships. Furthermore, providing basic schema evolution support

for relationships does not necessarily cover all the changes that a user might potentially want to make to

an object schema that contains relationships. It is hard, if not impossible, to provide a set of pre-de�ned

changes that would meet every users need. In our previous work, we have proposed a framework, SERF, for

allowing users to safely customize semantics of transformations in a exible and re-usable manner [CJR98].

While our previous work on SERF was limited to a simple object model without relationships, we �nd that a

large number of transformations involving relationships can still be de�ned using the current SERF system.

However, we have also identi�ed some interesting ones that cannot be addressed. For example, building

a bi-directional relationship between two disjoint classes Employee and Department cannot be achieved by

the current SERF technology. The reason for this is that it requires information speci�c to the instantiated

classes, which it makes it hard to generalize it. Thus, in this work, we also address this problem and propose

user functions, a named transformation that can be invoked from within a SERF template, as key step of

our solution. In this paper we present the complete system extensions needed to support user functions in

SERF.

Extending the Object Model Easily. The last part of this paper presents a major step forward, even

beyond evolution support for relationship constructs. We investigate the feasibility of using the SERF

framework as a mechanism to simplify the process of o�ering evolution support to an OODB as it is extended

by additional semantic constructs, such as relationships, aggregation relationships, key constraints, etc. In

general, when the object model in the underlying OODB system is extended, the OODB system must

accomplish two tasks: (1) provide new schema evolution primitives for the extension and (2) update its

existing taxonomy of schema evolution primitives. This is a tedious and extremely expensive process. In

Section 8, we show that under some scenarios this costly endeavour can be circumvented by using SERF to

provide the schema evolution for the extensions.

Contributions. In this work we bring together and extend techniques from several existing areas to develop

a framework for the schema evolution of relationships. In summary in this paper:

1

� We identify the problem that OODBs which o�er relationship support in their object models do not

handle evolution of such relationships. We characterize the consistency problems that arise from the

use of the existing evolution primitives.

� We present a comprehensive solution, called Contracts in SERF, to the above problems that to the

best of our knowledge represents the �rst evolution system handling relationships in OODB systems.

As part of this solution we present here:

{ The minimal set of new evolution primitives needed for supporting the evolution of uni-directional

and bi-directional relationships.

{ The analyses of the e�ect of relationships in the object model on the existing taxonomy of schema

evolution primitives supported by most current OODB systems.

{ The development of a contract model for the speci�cation of schema constraints and for describing

the behavior of schema evolution primitives.

{ The integration of the contracts into SERF templates enabling us to provide pre-execution analysis

as well as post-execution veri�cation of the evolution primitives.

� Driven by our work on relationships we extend the power of the SERF system to e�ectively sup-

port exible evolution of relationships in particular and more powerful transformations in general by

supporting:

{ User functions that allow for user-speci�c transformations in a generalized template,

{ Embedded SERF templates and

{ Typing for SERF templates.

� We show SERF can be used to minimize development e�ort for upgrading a schema evolution system

of an OODB system in the face of an extension of its underlying object model.

Overview of Rest of the Paper. Sections 2 and 3 gives the object model extended with relationships and

introduces the readers to the SERF framework. In Section 4 we present the basic evolution of relationships

that must be provided by an OODB system and in Section 5 we analyse the consistency problems at the

evolution level that are introduced by extending the object model with relationships. Section 6 shows how we

can use an extended SERF system to resolve the consistency problem. In Section 7 we present the extensions

that are needed to now enable us to do relationship transformations beyond the basic primitives provided

by the system. Section 8 goes beyond relationship support (basic and exible) by demonstrating how SERF

can be exploited to make it easy to extend an object model. Section 9 talks about some related work and

Section 10 gives our conclusions and some possible extensions for the future.

2 Object Model with Relationships

In this section, we thus introduce a formal treatment of relationships as de�ned by ODMG [Cea97] using the

formal model presented by Abiteboul et al. [AHV95]. Paralleling the concept of foreign keys in relational

databases, object models almost always have support for the association between two classes. Most models

support the notion of a reference attribute which de�nes a one-way association between two classes. The

ODMG object model also de�nes the notion of a bi-directional association wherein if class A refers to class B

then class B must refer to class A. The user can de�ne the cardinality of these references as one-to-one, one-

to-many or many-to-many. To capture this notion of association, we use the referential relationship (�!)

that speci�es when one type refers to another type; and a bi-directional relationship (!) that speci�es a

referential relationship and its inverse.

In general, we de�ne a class association list as a �ve tuple (C, �, R, �), where C is a �nite set of class

names, � is a mapping from C to types, R is a �nite set of relation names, and � is a mapping from R to

an ordered pair of types.

2

De�nition 1 (Referential Relationship.) Two elements c

1

, c

2

2 �(C) are in referential relationship if 9

r 2 R : �(r) = <c

1

,c

2

>. r is the name of the referential relationship. The referential relationship is denoted

as c

1

�!

r

c

2

.

De�nition 2 (Bi-directional Relationship.) Two elements c

1

, c

2

2 �(C) are in bi-directional relation-

ship if 9 r

1

, r

2

2 R: �(r

1

) = <c

1

,c

2

> ^ �(r

2

) = <c

2

,c

1

>. r

1

and r

2

are the names of the relationships and

are termed as a pair. r

1

is also termed as the inverse-of r

2

and vice versa. The bi-directional relationship is

denoted as c

1

r

1

=r

2

 ! c

2

.

2.1 Invariants for the ODMG Object Model

A schema update can cause inconsistencies in the structure of the schema, referred to as structural incon-

sistency. An important property imposed on schema operations is thus that their application always results

in a consistent new schema [BKKK87]. The consistency of a schema is de�ned by a set of so called schema

invariants of the given object data model [Br�e96]. In this section, we present a summary of the invariants

for the ODMG object model.

Term Description

types(C) All the types in the system

s, t, T, ? elements of types(C)

super(t) The set of all direct supertypes of type t

sub(t) The set of all direct subtypes of type t

super

�

(t) The set of all direct supertypes of type t

sub

�

(t) The set of all direct subtypes of type t

in-paths(t) The set of all paths <t,r> referring to type t

in-degree(t) The count of all paths referring to type t

out-paths(t) The set of all paths <t,r> going out of type t

H-out-paths(t) The set of all inherited out-paths of type t

out-degree(t) The count of all paths going out of typet

self-degree(t) The count of all self paths of typet

H-out-degree (t) The count of all H-out-paths(t) that are not self-referential

T-IN(t) The total in-degree: in-degree(t) + self-degree(t)

T-OUT(t) The total out-degree: out-degree(t) + self-degree(t) + H-out-degree(t)

R The set of all relations in the system

N(t) The native(local) properties of type t

H(t) The inherited properties of type t

Table 1: Notation for Axiomatization of Schema Changes

Table 1 shows the notation we use for describing the axiomatic model. In the table, native properties

N(t) refer to the properties of a type t that are de�ned locally in the type. Inherited properties of a type t

refer to the union of all the properties de�ned by all the supertypes of type t. The in-paths and the out-paths

are a set of pairs of <type, name>, i.e., each in-path and out-path is represented as a pair < c

1

, r

1

>

where c

1

is the name of the class referring to t or the class being referred to by t and r

1

is the name of the

reference attribute. The in-degree and the out-degree of a type is given by the count of all the types other

than itself referring to the type and vice versa. The self-degree is the count of self-references for a type. Thus

the total in-degree, T-IN of a type is given by the sum of the in-degree and the self-degree. Similarly, the

total out-degree, T-OUT is the sum of the out-degree, the self-degree and the inherited out-degree.

Axiom of Rootedness. There is a single type T in C that is the supertype of all types in C. The type T

is called the root

1

.

1

ODMG de�nes this root as an object.

3

Axiom of Closure. Types in C, excluding root, have supertypes in C, giving closure to C.

Axiom of Pointedness. There are many types ? in C such that ? has no subtypes in C. ? is termed a

leaf.

Axiom of Nativeness. The native properties

2

of a type T, N(t), is the set of properties that are locally

de�ned within a type.

Axiom of Inheritance. The inherited properties of a type T, H(t), is the union of the inherited and native

properties of its immediate supertype P(t) .

Axiom of Distinction. All types T in C have distinct names. Every property p for a type T has a distinct

name. All relationships r in R have a distinct name.

Axiom of Degree. The ratio of total in-degree, T-IN of the schema , to the total out-degree, T-OUT of

the schema is an invariant.

3 Review of the SERF Framework

In this section we now present a brief overview of the SERF framework [CJR98]. The concepts introduced here

form a basis for the discussion in the following sections. Schema evolution support today does not necessarily

cover all the changes that a user might potentially want to make to an object schema. It is hard, if not

impossible, to provide a set of pre-de�ned changes that would meet every users' needs. In SERF we address

this limitation and allow users to safely customize semantics of transformations in a exible and re-usable

manner [CJR98]. Our approach is based on the hypothesis that complex schema evolution transformations

can be decomposed into a sequence of basic evolution primitives, where each basic primitive is an invariant-

preserving atomic operation with �xed semantics provided by the underlying OODB system. To e�ectively

combine these primitives and perform arbitrary transformations on objects within a complex transformation,

we rely on a standard query language, namely OQL [Cea97]. In our work, we have demonstrated that a

language such as OQL is su�cient for accomplishing schema evolution, thereby re-using existing technology

and showing its adaptability for our system. The SERF system is proposed as a value-added re-structuring

layer on top of existing database systems.

A SERF transformation exibly allows a user to de�ne di�erent semantics for any type of schema transfor-

mation (see Figure 1). However, these transformations are not re-usable across di�erent classes or di�erent

schemas. To address this, we have introduced the notion of templates in the SERF framework [CJR98].

A template uses the query language's ability to query over the meta data (as stated in the ODMG Stan-

dard) and is augmented by a name and a set of parameters to make transformations generic and re-usable

(Figures 2). Thus, when the example SERF template in Figure 2 is instantiated with actual schema ele-

ments it results in the SERF transformation shown in Figure 1. A template is thus an arbitrarily complex

transformation that has been encapsulated and parameterized.

An implementation of the SERF framework, called OQL-SERF, is currently being developed at Worcester

Polytechnic Institute. It is based on the ODMG standard and uses the ODMG object model, the ODMG

Schema Repository de�nition, and OQL. The system is being implemented entirely in Java and uses Object

Design's Persistent Storage Engine (PSE) for Java as its back-end database [O'B97]. The system is being

demonstrated at SIGMOD'99 [RCL

+

99] in May 1999 and will be released to public domain in the summer

of 1999.

4 Minimal Primitives for Relationship Evolution

In any OODB system, when an object model is extended as in the case of relationships, the schema evolution

support for those extensions must also be provided. In this section we present the essential set of evolution

primitives that are needed for the evolution of uni-directional (unary) relationships as well as for bi-directional

2

As per ODMG de�nition, the set of properties includes all the set of relationships and attributes.

4

add_atomic_attribute (Person, Street

 String," ");

add_atomic_attribute (Person, City

 String," ");

add_atomic_attribute (Person, State

 String," ");

define extents() as

 select c

 from Person c;

for all obj in extents():

 for all AA in AddressAttrs ()

 obj.set (obj.AA, valueOf(obj.address.AA))

delete_attribute (Person, address);

Figure 1: Inline Transformation Expressed in OQL

with Embedded Evolution Primitives.

begin template inline (className, refAttrName)

{

 refClass = element (

 select a.attrType

 from MetaAttribute a

 where a.attrName = $refAttrName

 and a.classDefinedIn = $className;)

 define localAttrs(cName) as

 select c.localAttrList

 from MetaClass c

 where c.metaClassName = cName;

 // get all attributes in refAttrName and add to className

 for all attrs in localAttrs(refClass)

 add_atomic_attribute ($className, attrs.attrName,

 attrs.attrType, attrs.attrValue);

 // get all the extent

 define extents(cName) as

 select c

 from cName c;

 // set: className.Attr = className.refAttrName.Attr

 for all obj in extents($className):

 for all Attr in localAttrs(refClass)

 obj.set (obj.Attr, valueOf(obj.refAttrName.Attr))

 delete_attribute ($className, $refAttrName);

}

end template

Legend: cName: OQL variables
$className: template variables
refClass: user variables

Figure 2: The Inline Template.

(binary) relationships beyond the basic primitives required for the ODMG object model. The primitives

presented here are essential and minimal in that they cannot be decomposed into a sequence of any other

evolution primitives. They can however be composed together with other primitives

3

.

4.1 Evolution of Unary Relationships

As per the ODMG object model as well as most other common object models such as O

2

, IQL, Orion, etc.

[Tec94, AS95, KGBW90], unary relationships are generally modeled via the use of a reference attribute.

For example, Figure 4 shows an unary relationship between classes Teacher and Course via the reference

attribute teaches. Given that unary relationships are modeled as reference attributes we have two evolution

primitives add-reference-attribute and delete-reference-attribute that allow us to add and delete a unary

relationship.

Teacher Course

Figure 3: Graphical Schema Description of the

Uni-Directional teaches Relationship

class Teacher

{

Course teaches;

}

Figure 4: A Uni-Directional Relationship be-

tween Two Classes Teacher and Course.

The add-reference-attribute Primitive. This primitive allows us to add a uni-directional relationship

between two types. For example, the primitive add-reference-attribute(Teacher, teaches, Course, null) adds

a complex attribute teaches of the type Course to the class Teacher. Its default value is set to null as

3

The complete taxonomy of schema evolution primitives can be found in Appendix A.

5

shown in Figure 4. Figure 5 shows the primitive as a SERF template with contracts (refer Section 6) used

to describe its behavior and the pre-conditions that must be satis�ed prior to its execution.

add-reference-attribute (C

s

, r, C

d

, default)

f

requires:

C

s

, C

d

2 C ^

�(C

s

), �(C

s

) 2 types(C) ^

r =2 N(C

s

)

add-reference-attribute-primitive

(C

s

, r, C

d

, default)

ensures:

r 2 N(C

s

) ^

<C

s

,r> 2 in-path(C

d

) ^

<C

d

,r> 2 out-path(C

s

) ^

8 x 2 sub

�

(C

s

)

<C

d

,r> 2 out-path(x)

g

Figure 5: Add-Reference-Attribute Primitive

Template with Contracts

delete-reference-attribute (C

s

, r)

f

requires:

C

s

2 C ^

�(C

s

) 2 types(C) ^

r 2 N(C

s

) ^

domain(r) 2 C ^

�(domain(r))2 types(C) ^

�(r) 2 types(C) � types(C)

delete-reference-attribute-primitive

(C

s

, r, C

d

, default)

ensures:

r =2 N(C

s

) ^

<C

s

,r> =2 in-path(domain(r)) ^

<domain(r),r> 2 out-path(C

s

) ^

8 x 2 sub

�

(C

s

)

<domain(r),r> =2 out-path(x) ^

�(r) =2 types(C) � types(C)

g

Figure 6: Delete-Reference-Attribute Primitive

Template with Contracts.

The delete-reference-attribute Primitive. The delete-reference-attribute as depicted in Figure 6 allows

the deletion of an existing uni-directional relationship between two types. This primitive is an inverse

operation of the add-reference-attribute and so removes the traversal paths from the in-paths() and the out-

paths() respectively. Similar to the add-reference-attribute we use contracts to specify the constraints for the

primitive as shown in Figure 6.

4.2 Evolution of Bi-directional Relationships

Bi-directional relationships on the other hand are modeled as an explicit declaration of an inverse relationship

in both the involved classes. A binary relationship is de�ned by the declaration of traversal paths that enable

applications to use the logical connections between the objects participating in the relationship. These

traversal paths are declared in pairs, one for each direction of traversal of the binary relationship. Thus, a

relationship pair is denoted as relationship X inverse Y

4

.

For example, the relationship syntax for the classes in Figure 7 is given in Figure 8. In the class

Teacher, the attribute teaches is a reference attribute of type Course and the inverse of this relationship

is given by attribute is-taught-by in class Course. A binary relationship thus is modeled by the following

characteristics: a source-class (Teacher), inverse-class (Course), the source-relationship-name (teaches),

the inverse-relationship-name (is-taught-by), cardinality of the relationship in the source class referred to

as source-card (many), cardinality of the relationship in the inverse class referred to as inverse-card (one),

type of storage (class or collection) for the source relationship source-type (set), and type of storage for the

inverse relationship inverse-type (Teacher).

Note that a bi-directional relationship can be broken down into a pair of uni-directional relationships

between the two types and hence we propose that the only two primitives needed for the manipulation

of bi-directional relationships are: form-relationship and drop-relationship. The primitive form-relationship

4

Not all the parameters of a relationship are shown.

6

Teacher Cou rse
teaches

is-taught-by

Figure 7: Graphical Schema Description of the

teaches - is-taught-by Relationship.

class Teacher

{

relationship Course teaches

inverse Course::is-taught-by;

}

class Course

{

relationship Teacher is-taught-by

inverse Teacher::teaches;

}

Figure 8: ODMG Syntax for Specifying a Bi-

Directional Relationship.

elevates the status of two already existing uni-directional relationships between two types. This primitive

also ensures the referential integrity of all the objects that are elements of the extent of the two involved

classes (see Section 4.1 for details). The drop-relationship deprecates a bi-directional relationship to a pair

of uni-directional relationships. Figures 9 and 10 show the two primitives with the contracts in place

respectively.

5 E�ects of Relationships on Existing Evolution Primitives: The

Consistency Problem

When an object model is extended, it is not su�cient to simply provide extra evolution support for the

extensions (as done in Section 4 but also to closely re-examine the basic evolution primitives for the given

object model (as listed in Figure 3) to determine how they are impacted. In this section we describe the

e�ects of relationships on the existing taxonomy of primitives.

While the core functionality of existing evolution primitives is una�ected, the constraints that need to

be checked to determine when they can be applied may have greatly changed. Consider for example the

delete-class(C

i

) evolution primitive [PS87]. This primitive can only be applied when the class C

i

is a leaf

class (refer to Figure 11), i.e:

sub(C

i

) = ;: (1)

However, while this is a necessary and su�cient constraint for the delete of the HomeAddress class

speci�ed in the schema depicted in Figure 12, it is no longer a su�cient stipulation for a schema that

contains relationships as in Figure 13.

For example, the delete of the leaf class Address in the schema in Figure 13 is a valid evolution operation

as per the constraints speci�ed in Figure 11 and Equation 1. This however causes dangling references and

hence compromises the consistency of the system by violating both the structural integrity (schema-level)

and the referential integrity (object-level) of the system. It therefore becomes essential to re-implement the

delete-class primitive and introduce a constraint such that a class cannot be deleted if it has other classes

referring to it. Using the notation in Table 1 this could be expressed as:

in � degree(C

i

) = 0 (2)

However, while the conditions in Equations 1 and 2 ensure the structural integrity of the schema, they still

cannot ensure the referential integrity. Consider for example the schema shown in Figure 14. In this example,

the class Person has a direct relationship with the class Address, while the class Home-Address is inherited

from the class Address. The class Person and all its subclasses Student and Teaching-Assistant inherit

7

form-relationship (C

s

, r

s

, C

d

, r

d

)

f

requires:

C

s

, C

d

2 C ^

�(C

s

), �(C

d

) 2 types(C) ^

r

s

2 N(C

s

) ^

r

d

2 N(C

d

) ^

<C

s

, r

s

> 2 in-path(C

d

) ^

<C

d

, r

d

> 2 in-path(C

s

) ^

�(r

s

) 2 types(C) � types(C) ^

�(r

d

) 2 types(C) � types(C)

form-relationship-primitive

(C

s

, r

s

, C

d

, r

d

);

ensures:

�(r

s

) =< C

s

; C

d

> ^

�(r

d

) =< C

d

; C

s

>

g

Figure 9: Form-Relationship Primitive Template

with Contracts

drop-relationship (C

s

, r

s

, C

d

, r

d

)

f

requires:

C

s

, C

d

2 C ^

�(C

s

), �(C

d

) 2 types(C) ^

r

s

2 N(C

s

) ^

r

d

2 N(C

d

) ^

<C

s

, r

s

> 2 in-path(C

d

) ^

<C

d

, r

d

> 2 in-path(C

s

) ^

�(r

s

) 2 types(C) � types(C) ^

�(r

d

) 2 types(C) � types(C) ^

�

�1

(r

d

) = r

s

and �(r

s

) = r

d

drop-relationship-primitive

(C

s

, r

s

, C

d

, r

d

);

ensures:

:(�(r

s

) =< C

s

; C

d

> ^

�(r

d

) =< C

d

; C

s

>)

g

Figure 10: Drop-Relationship Primitive Tem-

plate with Contracts

the relationship to the class Address. However, when instantiating the class Person or any of its subclasses

it is possible at the object level to instantiate a relationship with an object of the type Home-Address

rather than an object of type Address

5

. Thus, while under the conditions in Equations 1 and 2, a delete-

class(Home-Address) would be allowed and the structural integrity of the system would not be violated, we

could potentially violate the referential integrity of the system.

To capture consistency violations at the object level, we now extend the notation presented in Table 1

and introduce the notion of in-degree() and out-degree() at the object level as follows:

� obj-in-degree(o

i

): The number of objects referring to the object o

i

.

� obj-out-degree(o

i

): The number of objects being referred to by the object o

i

.

5

Type casting is allowed in most object-oriented languages.

boolean delete-class (Class c)
{
 if (c.subclasses().count() == 0)

 destroy the class c

 delete all objects of c
{

}

return true;

else return false;

}

Figure 11: Pseudo-Code for delete-class Primi-

tive

Address

HomeAddress

Figure 12: An Example Schema Showing No Re-

lationships

8

Address

Person

Teacher

Department

my-address

my-address

my-address

Figure 13: An Example Schema Showing Rela-

tionships

Person Address

Student

TeachingAssist.

Hom eAddr ess

my-add ress

my-add ress

my-add ress

Figure 14: A Sample Schema Containing Rela-

tionships via Inheritance

We thus de�ne a third constraint for the delete-class primitive that must hold before the deletion of a

class can occur:

8o

i

2 extent(t) : obj � in � degree(o

i

) = 0 for t = type(C

i

) (3)

The constraints expressed in Equations 1, 2 and 3 ensure the consistency of the database both in terms

of the structural as well as the referential integrity.

6 Contract-Based Solution for Consistent Relationship Evolution

Adding hard-coded constraints as they are thought of or as the object model is updated to support more

expressive modeling constructs is not only tedious but also a very expensive process. This entails the database

vendors updating their OODB and releasing a new version on the market. While not all the cost of the

process can be removed, we present a solution here which would enable us to greatly trim these costs and in

some scenarios even completely eliminate them.

Our approach is based on the hypothesis (as shown in Section 5) that the actual functionality of these

primitives is not being changed. Rather, the change is in the constraints under which these primitives can

be applied caused by the presence of additional semantic constructs in the model. Furthermore we present

the extensions that need to be added to the base SERF framework to support this solution.

Our Approach. We use the SERF template to provide the externally updatable view of an evolution

primitive. However, the existing SERF system as presented in Section 3 is not powerful enough to express

the constraints in Equations 1, 2 and 3. For this purpose we now introduce the notion of software contracts

for SERF templates [Mey92]. These contracts provide a declarative description of the behavior of a primitive

as well as a mechanism for expressing the constraints that must be satis�ed prior to the execution of the

actual evolution primitive.

Pre-Conditions for a Contract Template. The constraints, termed pre-conditions, occur prior to any

code (OQL statement) in a template. Figure 15 shows the constraints for the delete-class primitive as

pre-conditions

6

.

The pre-conditions are separated from the actual OQL statements by means of the keyword requires

and are expressed using set notation shown in Table 1. This mechanism allows the SERF system to verify

the truth of each of the listed pre-conditions against the system dictionary

7

. If all of the pre-conditions

are satis�ed, the actual primitive code can be executed using the OODB interface provided for the schema

evolution primitive.

6

The notation used in here is not the �nal contract language but an easy to understand set-theoretic notation. While the

�nal contract language we are employing will have a more OQL-like avor as it is assumed that the template developer will be

well-versed in a declarative languages such as OQL.

7

We require the OODB system to give us access to the system-dictionary. This is listed as part of the system requirements

for SERF [CJR98].

9

delete-class (C

i

)

f

requires:

C

i

2 C ^

�(C

i

) 2 types(C) ^

sub(C

i

) = 0 ^

in-degree(C

i

) = 0 ^

8 o

i

2 extent(t)

obj-in-degree(o

i

) = 0

template body here

g

Figure 15: Pre-Conditions for Delete-Class Prim-

itive in Contractual Form

delete-class (C

i

)

f template body here

ensures:

C

i

=2 C ^

�(C

i

) =2 types(C) ^

8 <C

x

, r

x

> 2 out-paths(C

i

) ^

<C

i

> =2 in-paths(C

x

)

8 C

x

2 super(C

i

)

C

i

=2 sub(C

x

)

g

Figure 16: Post-Conditions for the Delete-Class

Primitive Template

Post-Conditions. The behavior of the primitives is declared by post-conditions, a set of contracts that

occur after the execution of the actual schema evolution operation. These post-conditions describe the exact

changes that are made to the schema by the evolution primitive and hence its behavior. We extend the pre-

condition veri�cation process to do the post-condition veri�cation and validate that the primitive actually

accomplished what it set out to do. Figure 16 shows the post-conditions of the delete-class primitive.

Thus, together the pre-conditions and the post-conditions declaratively de�ne both the constraints of the

schema evolution primitives that must be satis�ed prior to execution of the primitive as well as the behavior

of the evolution primitive itself. However, as the schema evolution primitives are OODB system dependent,

it is not possible to have a generic template library of all the evolution primitives. Instead a user of the SERF

system would have to provide a basic library of the schema evolution primitives for their OODB system and

describe the contracts for each of the primitives.

Advantages of Contracts. SERF templates with contracts provide faster updates to the OODB system

when the underlying object model is updated for example with relationships as we would simply now add

additional declarative constraints and behavior to the schema evolution primitive template rather than

updating code. Moreover these contracts can detect erroneous conditions prior to the execution of the

schema evolution primitives. This would help avoid the cost of roll-backs in cases of failure. The post-

conditions help verify the truth of the execution of the primitive and hence aid in the veri�cation process.

With embedded templates (refer to Section 8) this advantage has even bigger bene�ts beyond the evolution

primitive templates.

7 SERF Extensions for Flexible Evolution of Relationships

The primary advantage of the basic SERF framework is the ability for users to specify transformation

semantics that go far beyond the �xed set provided by a given OODB system. Once we added relationships

to the underlying object model, the SERF framework allows users to specify additional transformations now

involving relationships. Figure 17 shows a template that creates a bi-directional relationship between two

classes when at least one referential relationship exists between the classes. This shows how we can take

advantage of the single referential relationship and perform the object transformations for maintaining the

correctness of the bi-directional relationship all within our template structure (Appendix C shows some more

examples of such templates).

User Functions. However, in our case study of exploring complex transformations for relationship evolu-

tion, we found that we were unable to design several complex transformations such as building a bi-directional

relationship between two disjoint classes within the current SERF framework. While at the schema level it

is easy to add these relationships, at the object level it is impossible to achieve a variety of desired semantics

in a general manner and hence by a SERF template. In order to accomplish this, we now propose to extend

10

// This template adds a relationship between two partially disjoint

// classes i.e., one class has a one-sided relationship to the

// other. Object transformations in this scenario are very possible.

// A One-to-many relationship => source has many of inverse

begin template add_1m_relationship (source-Class,

source-attrib-Name,

inverse-Class,

inverse-attrib-Name,

inverse-attrib-Type,

inverse-attib-Value)

{

// Add the inverse-attrib-Name to inverse-Class

add_atomic_attribute ($inverse-Class, $inverse-attrib-Name,

$inverse-attrib-Type, $inverse-attrib-Value);

// Fix up the objects

// Get the extent of the source-Class

define extents ($cName) as

select c

from $cName c;

// set: inverse-class.inverse-attrib-Name = source-Object

for all source-Object in extents ($source-Class):

for all obj in $source-Object.source-attrib-Name

obj.set(obj.inverse-attrib-Name, source-Object)

// promote to relationship

promote_to_relationship ($source-Class, $source-class-Name,

$inverse-Class, $inverse-class-Name);

}

Figure 17: Converting a Uni-directional Relation-

ship to a Bi-directional Relationship

// This template adds a relationship between two completely disjoint

// classes. No object transformations are performed at this point.

begin template add_relationship (Class source-Class,

Attribute source-attrib-Name,

String source-attrib-Type,

String source-attrib-Value,

Class inverse-Class,

Attribute inverse-attrib-Name,

String inverse-attrib-Type,

String inverse-attrib-Value,

String transformer)

{

// Add the two uni-directional relationships

add_reference_attribute ($source-Class, $source-attrib-Name,

$source-attrib-Type, $source-attrib-Value);

add_reference_attribute ($inverse-Class, $inverse-attrib-Name,

$inverse-attrib-Type, $inverse-attrib-Value);

// transform objects by invoking a user function

$transformer ();

// promote to relationship

form_relationship ($source-Class, $source-class-Name,

$inverse-Class, $inverse-class-Name);

}

Figure 18: Adding a Relationship between two

Disjoint Classes

the SERF Framework to also o�er User Functions. User functions are de�ned to be SERF transformations

that allow us in general to store and invoke at a later date SERF transformations. In the context of exible

evolution of relationships, user functions allow us to invoke a SERF transformation, a very speci�c piece of

code, from within a SERF template, a general piece of code. In this manner we can build the relationship

at the schema level in a generalized manner, but can invoke the speci�c user function to do the object level

transformations in a customized manner.

However the current SERF system is limited, in that it does not allow embedded templates, i.e., it does

not have any support for invoking a user function from within a template. Moreover, as a user function may

return an output that could be used in the next step of the template, we �nd it necessary to also support

a more sophisticated type system than the current, i.e., String. Thus, to fully support user functions we

have further enhanced the SERF system to support embedded templates and a typed system. A list of the

supported types in SERF templates can be found in Appendix B. As a part of this typed system we also

allow the user to pass in the name of a user function that is to be executed from within the template.

Figure 18 shows an example of a template that builds a bi-directional relationship between two disjoint

classes now using typed parameters. Thus, a variable of the type Method speci�es that the variable is a user

function. In this example, $transformer speci�es the user function and must be provided by the user during

the instantiation process and must be bound to a user function in the template library at run-time. While the

template builds a bi-directional relationship between two arbitrary classes sourceClass and inverseClass,

the user function provided by the user is speci�c and hence might do object transformations for two classes

Person and Address. Thus, this user function is speci�c to a set of parameters and is valid and correct only

for the speci�c set. Thus, user functions allow us to to have a disjoint relationship template which in their

absence would not be possible.

8 SERF: Making Extending the Object Model Easy!

In the previous section, we have shown how with basic evolution support (Section 4) for relationships and

some extensions in the SERF framework (Section 7) we can achieve schema evolution transformations beyond

the primitives that may be supplied by the system. In this section we show how SERF can help us achieve

the primitive schema evolution for extensions to the object model such as aggregate relationships, keys, Java's

implements relation etc. (Figure 19). The SERF system thus helps us bridge the gap between the design

methodologies, the support for such models at the database level, and the impact of these new features on

11

schema evolution. It allows us to de�ne basic evolution support for a certain class of object extensions.

Object Model Object Model
with Extension

Evolution
Schema

Manager

SERF Framework

Handles Basic Schema Evolution For
Extensions.

Figure 19: Using SERF to Provide Schema Evolution for the Extended Features of an OODB Model

As an example, in Section 8.1 we present an extension of the object model by aggregation relationships

and list the support needed by SERF from the OODB system. In Section 8.2 based on the extensions

presented in Section 7 we show how SERF can help provide extended schema evolution support without

re-writing the existing schema evolution support for a system.

8.1 System Requirements

In order for the SERF system to handle the evolution of such an aggregation relationship, including the

creation of these relationships, we expect the underlying OODB system to provide us with:

1. An updated object model with the desired semantic constructs,

2. System functions that maintain the desired semantics at the object level,

3. System functions to maintain referential integrity,

4. System functions to maintain and update the system dictionary.

The features 1 through 3 are obvious features that any system would provide when they extend their object

model. The fourth feature, providing access to the system dictionary and functions for the maintenance of

the same, is a requirement set forth by the SERF system. This enables the SERF system to directly update

the system dictionary such that any changes made externally can be still registered with the system and the

system dictionary is kept in sync.

Extending the Object Model. An aggregation relationship denotes a whole/part hierarchy, with the

ability to navigate from the whole (aggregate) to its parts (attributes) such that if the aggregate object is

deleted then its attribute objects also need to be deleted. To capture this notion in our object model, we use

the symbol \�| "

8

to specify that one type aggregates another type. Thus, we extend our basic de�nition

of referential relationship \�!" to now encompass the semantics of an aggregation relationship.

De�nition 3 The aggregation relationship r 2 R on �(C) is a specialized referential relationship C

1

, denoted

by C

1

r

�| C

2

, implies that the existence of C

2

is dependent on the existence of C

1

, where C

1

, C

2

2 �(C).

Extending the System Dictionary. Using the above we now expect the system dictionary to be extended

such that it provides support for the features listed in Table 2. In addition, the OODB system also needs to

provide a public interface for updating and maintaining these paths such that they are accessible

9

.

8

This symbol is UML notation for aggregation.

9

[CJR98] lists the system requirements that must be met for SERF by a query language, namely OQL.

12

Term Description

agg-paths(t) The set of all aggregation paths going out of type t

agg-degree(t) The count of all aggregation paths outgoing from type t

self-agg-paths(t) The set of all self-referential aggregation paths going out of type t

self-out-degree(t) The count of all self-referential paths going out of type t

Table 2: Notation for Aggregation Relationships

Assuming that the system already has support for referential relationships, we expect the following

functionality to be provided:

� upgrade-to-aggregation(C

d

, r). This upgrades a referential relationship to an aggregation rela-

tionship. The path (C

d

, r) is removed from the set of out-paths and added to the set of agg-paths.

No object level manipulations are required by this function.

� downgrade-aggregation(C

d

, r). This is an inverse function of upgrade-to-aggregation(C

d

, r)

and downgrades an aggregation relationship to a referential relationship. The path (C

d

, r) is removed

from the set of agg-paths and added to the set of out-paths. No object level manipulations are

required by this function.

8.2 SERF Wrapper for Schema Evolution of an Extended Object Model

In this section we show how we can provide the basic schema evolution primitives for the aggregate relationship

at the SERF level rather than at the system level. Figure 20 shows an aggregation relationship between two

classes Person and Address where the Person contains the Address

10

. In order to provide evolution of the

aggregation relationship, we need to supply primitives to add, delete and modify it.

Person Address

Figure 20: A Sample Schema Showing Aggregate

Relationship.

form-aggregation-relation (C

s

, r, C

d

, default)

f requires:

C

s

, C

d

2 C ^

�(C

s

), �(C

s

) 2 types(C) ^

r =2 N(C

s

)

add-reference-attribute-primitive

(C

s

, r, C

d

, default);

upgrade-to-aggregation (C

d

, r);

ensures:

r 2 N(C

s

) ^

<C

s

,r> 2 in-path(C

d

) ^

<C

d

,r> 2 agg-path(C

s

) ^

8 x 2 sub

�

(C

s

)

<C

d

,r> 2 agg-path(x)

g

Figure 21: A Template For Creating an Aggre-

gate Relationship Between Two Classes

SERF Extensibility - Basic Evolution Primitives are not Needed. Figure 21 shows an example of

the aggregation SERF template that creates an aggregation relationship between two classes. Here, we use

10

We use the UML methodology in the �gure to show the aggregation.

13

the evolution primitive add-reference-attribute (Section 4.1) to �rst create a uni-directional relationship

between the two classes. We then use the system dictionary function upgrade-to-aggregation to inform

the OODB system that we would like to apply the aggregation semantics for this relationship

11

. Similarly

we can write templates for doing the deletion and the modi�cation of the aggregation relationship.

delete-aggregator (C

i

)

f requires:

C

i

2 C ^

�(C

i

) 2 types(C) ^

sub(C

i

) = 0 ^

in-degree(C

i

) = 0 ^

8 o

i

2 extent(t)

obj-in-degree(o

i

) = 0 ^

self-agg-degree(C

i

) = 0

agg-List = select c.agg-paths from c in MetaClass where c.name = C

i

for all X in agg-List

downgrade-aggregation(X);

delete-reference-attribute (C

i

, X.refAttr);

delete-class(X.className);

delete-class(C

i

);

ensures:

8 <C

x

, r

x

> 2 out-paths(C

i

)

<C

i

> =2 in-paths(C

x

) ^

8 <C

x

, r

x

> 2 agg-paths(C

i

)

<C

i

> =2 in-paths(C

x

) ^

8 C

x

2 super(C

i

)

C

i

=2 sub(C

x

) ^

C

i

=2 C ^

�(C

i

) =2 types(C)

g

Figure 22: Template for Handling the Deletion of an Aggregator.

SERF Flexibility - Update to Existing Taxonomy Not Needed. As we have shown in Section 5

with an updated object model providing evolution support for the extensions is not su�cient. We also now

need to consider its impact on the existing taxonomy of schema evolution primitives. For example, the

delete-class primitive template that we introduced in Section 6 is no longer su�cient for handling the

deletion of a class C

i

that has an aggregation relationship with another class C

j

. The delete-class primitive

now needs to be able to handle the propagation of the delete of an aggregator to all of the aggregated classes.

In Figure 22 we show a delete template that can handle the propagation of the delete to the aggregated

classes. In this template, we �rst downgrade the aggregation relationship to a referential relationship using

the system provided function downgrade-aggregation. The evolution primitive delete-reference-attribute

deletes all the downgraded aggregation relationships and the delete-class template then deletes all of ag-

gregated classes themselves

12

. The �nal step to delete the aggregator itself is accomplished by the last

invocation of the delete-class template. In all of these cases we make use of the delete-class template

rather than directly invoking the delete-class-primitive as all of the consistency violations that could

have occured before can also occur in this scenario.

11

Note that this function is very di�erent from a schema evolution function, as we are really not doing any object

manipulations.

12

There is a possibility of failure of the delete-class template for an aggregated class as it is possible that the aggregated

class participates in a relationship with some other class. However for simplicity we ignore this situation.

14

SERF Contracts - Maintaining Consistency. Moreover, using contracts in these templates we can

now add safe-guards so that we can maintain schema consistency at a level higher than that of the primitive

templates. For example, in the delete-aggregator template in Figure 22 we add a new constraint that in

order for the deletion of the aggregator to occur it is required that there be no self-referential aggregation.

Without this constraint the failure of the �nal delete-class template i.e., the delete of the aggregator itself,

would fail as it would presumably be deleted prior to the last delete-class template invocation. Thus,

contracts in SERF templates also aid in preventing failures which might otherwise result in either a corrupt

database or massive amounts of recovery neither of which is very desirable!

9 Related Work

Relationships. Semantic modeling research has looked into the modeling of relationships and the di�erent

semantics that can be applied for these relationships [Boo94]. In object databases, Kim, Bertino and others

[KBG89] have examined the part-whole relationship (composite objects). The composite objects in Orion

[KBG89] however do not include the notion of referential integrity constraints. Thus, an object may be

deleted even if it is a component of another object. Bertino et al. [BG98] have presented a formal composite

object model that now supports referential integrity constraints in the framework of the ODMG object model.

However, we �nd that their work is limited in several ways. One, they focus only on the composite object

relationships rather than dealing with the general issues involved with uni-directional and bi-directional

relationships. Two, they do not consider structural integrity, i.e., the consistency of the schema itself.

Lastly, they do not study the issue of schema evolution on a now extended object model.

Basic Schema Evolution. The goal of schema evolution research is to allow schema evolution mechanisms

to change not only the schema but also the underlying objects to have them conform to the modi�ed schema.

One key issue in schema evolution is understanding the di�erent ways of changing a schema. The �rst

taxonomy of primitive schema evolution operations was de�ned by Banerjee et al. [BKKK87]. They de�ned

consistency and correctness of these primitives in the context of the Orion system. Until now, current

commercial OODBs such as Itasca [Inc93], GemStone [BMO

+

89], ObjectStore [Obj93], and O

2

[Tec94] all

essentially handle a similar set of �xed evolution primitives; though based on their own respective object

models.

However, evolution of relationships (uni-directional relationships) has been so far dealt in an implicit

manner by treating these as reference/complex attributes and treating their evolution in a manner similar

to that of basic attributes (such as integers, string etc.). Such treatment of evolution of relationships can

potentially lead to violations of system consistency both at the structural and the referential level. They

also do not examine the e�ects of the relationships in the object model on the existing set of schema

evolution primitives. Thus, the evolution of relationships, uni-directional and bi-directional, and the e�ects

of relationships on other evolution primitives to the best of our knowledge has not been explicitly addressed

by any current research or commercial OODB system.

Advanced Schema Evolution. In recent years, the advent of more advanced applications has led to

the need for support of complex schema evolution operations. Both Breche and Lerner [Br�e96, Ler96] have

investigated the issue of more complex operations. Lerner [Ler96] has introduced compound type changes

in a software environment, i.e., focusing on the type and not on the object instance changes. She provides

compound type changes like Inline, Encapsulate, Merge, etc..

Breche [Br�e96] proposed a similar list of complex evolution operations for O

2

, i.e., now considering both

schema as well as object changes. [Br�e96] claims that these advanced primitives can be formulated by com-

posing the basic primitives that are provided by the O

2

system. He shows the consistency of these advanced

primitives. Like other previous work, the paper however still provides a �xed taxonomy of primitives to the

users, instead of giving them the exibility and extensibility as o�ered by our approach. Also for object

changes, the user is limited to using the object migration functions written in the programming language of

O

2

.

The SERF framework [CJR98] addresses the problem of having a �xed taxonomy of schema evolution

primitives. In SERF, we present a exible way of doing transformations. We have also shown how a SERF

15

transformation can be generalized to a re-usable, parameterized SERF template. In this work we now present

some extensions to this system.

Consistency Management. Part of our work focused on declaratively describing the behavior of our

primitives and our templates. We have also used this mechanism to update and mainatin the schema

de�nition during the schema evolution process. Much of our work in this area has been inspired by the work

of Bertrand Meyer [Mey92]. He has coined the phrase Design by Contract to denote a software development

style which emphasises the importance of formal speci�cations and interleaves them with actual code. This

mechanism has in turn been enhanced and used by other researchers [TC98] to do consistency management

of applications in terms of detecting violations and doing veri�cation.

Both relational and object databases support some implicit forms of consistency de�nition. These con-

straints are a pre-de�ned set and their enforcement is out of control of the application. These constraints are

generally used for transaction rollbacks. Some object models now have some support for referential integrity

constraints. These are again implicit constraints.

Object Model. Our work is based on the ODMG object model [Cea97]. This object model supports the

core features of an object data model in terms of the basic concepts such as object, obejct identity, class and

hierarchy. In addition, it also provides the general framework for specifying relationships. As per ODMG

standard relationships much like regular attributes are not treated as �rst-class citizens i.e., they do not

have an object identity associated with them. In our work, we have followed this description of the object

model.

Abiteboul et al. have in [AHV95] have presented a formal description of a schema. We have used this

de�nition and much of their formalism in our work. We have extended their schema de�nition to now

explicitly include the concept of relationships.

Peters and Ozsu [PO95] have introduced a sound axiomatic model to formalize and compare schema

evolution modules of OODBs. We utilize their notations with our extensions for the description of our

invariants and primitives.

10 Conclusion

In this work, we have addressed the issue of evolving relationships. Within that context we have analyzed the

e�ects of relationships on other elements of the primitive change taxonomy. We have also shown that having

hard-coded constraints embedded in the object model can be problematic when the requirements change.

Thus, in order to make the upgrading of the primitives themselves possible, we incorporate the notion of

contracts into our SERF templates. We furthermore extended the SERF system needs to fully support

exible transformations involving relationships. Moreover, we have shown that the SERF system can be

used as a wrapper for extended schema evolution support when the underlying object model is extended.

We are currently working on de�ning a �rst-order predicate language for the contracts and are doing

further case studies to apply SERF to provide evolution support for other semantic extensions of an object

model beyond relationships.

References

[AHV95] S. Abiteboul, R. Hull, and Vianu V. Foundations of Databases. Addison-Wesley Publishing

Company, 1995.

[AS95] S. Abiteboul and Cassio Souza Santos. IQL(2): A Model with Ubiquitous Objects. InWorkshop

on Database Programming Language, page 10, 1995.

[BG98] E. Bertino and G. Guerrini. Extending the ODMG Object Model with Composite Objects. In

OOPSLA, pages 259{270, 1998.

16

[BKKK87] J. Banerjee, W. Kim, H. J. Kim, and H. F. Korth. Semantics and Implementation of Schema

Evolution in Object-Oriented Databases. SIGMOD, pages 311{322, 1987.

[BMO

+

89] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams, and M. Williams.

The GemStone Data Management System. In Object-Oriented Concepts, Databases and Appli-

cations, pages 283{308. ACM Press, 1989.

[Boo94] G. Booch. Object-Oriented Analysis and Design. Benjamin Cummings Publications, 1994.

[Br�e96] P. Br�eche. Advanced Primitives for Changing Schemas of Object Databases. In Conference on

Advanced Information Systems Engineering, pages 476{495, 1996.

[Cea97] R.G.G Cattell and et al. The Object Database Standard: ODMG 2.0. Morgan Kaufmann

Publishers, Inc., 1997.

[CJR98] K.T. Claypool, J. Jin, and E.A. Rundensteiner. SERF: Schema Evolution through an Extensible,

Re-usable and Flexible Framework. In Int. Conf. on Information and Knowledge Management,

pages 314{321, November 1998.

[Inc93] Itasca Systems Inc. Itasca Systems Technical Report. Technical Report TM-92-001, OODBMS

Feature Checklist. Rev 1.1, Itasca Systems, Inc., December 1993.

[KBG89] W. Kim, E. Bertino, and J. F. Garza. Composite objects revisited. SIGMOD, pages 337{347,

1989.

[KGBW90] W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architecture of the orion next-generation

database system. IEEE Transactions on Knowledge and Data Engineering, 2(1), March 1990.

[Ler96] B.S. Lerner. A Model for Compound Type Changes Encountered in Schema Evolution. Technical

Report UM-CS-96-044, University of Massachusetts, Amherst, Computer Science Department,

1996.

[Mey92] B. Meyer. Applying "Design By Contract". IEEE Computer, 25(10):20{32, 1992.

[O'B97] P. O'Brien. Making Java Objects Persistent. Java Report, 1(1):49{60, 1997.

[Obj93] Object Design Inc. ObjectStore - User Guide: DML. ObjectStore Release 3.0 for UNIX Systems.

Object Design Inc., December 1993.

[Obj94] Objectivity Inc. White Paper, Schema Evolution in Objectivity, February 1994.

[PO95] R.J. Peters and M.T. Ozsu. Axiomatization of Dynamic Schema Evolution in Objectbases. In

IEEE Int. Conf. on Data Engineering, pages 156{164, 1995.

[PS87] D. J. Penney and J. Stein. Class modi�cation in the GemStone object-oriented DBMS. In

OOPSLA, pages 111{117, 1987.

[RCL

+

99] E.A. Rundensteiner, K.T. Claypool, M. Li, L. Chen, X. Zhang, C. Natarajan, J. Jin, S. De Lima,

and S. Weiner. SERF: ODMG-Based Generic Re-structuring Facility. In Demo Session Proceed-

ings of SIGMOD'99, 1999.

[Sjo93] D. Sjoberg. Quantifying Schema Evolution. Information and Software Technology, 35(1):35{54,

January 1993.

17

[TC98] P. Tarr and L. Clarke. Consistency management for complex applications. In International

Conference on Software Engineering, pages 230{239, 1998.

[Tec92] Versant Object Technology. Versant User Manual. Versant Object Technology, 1992.

[Tec94] O

2

Technology. O

2

Reference Manual, Version 4.5, Release November 1994. O

2

Technology,

Versailles, France, November 1994.

18

A Taxonomy of Schema Evolution Operations

In this section we give a table of the current schema evolution operations that are supported for the ODMG

object model our system. This is the minimal functionality that we expect an underlying system to provide

in order to achieve the exibility of evolution as stated here. Any subset of this taxonomy would result in

reduced exibility of the SERF system. Table 3 gives this essential taxonomy. We also present here the

contract-serf templates for each of the primitives that we present here.

Term Description

add-class(c, C) Adds new class c to C in the schema S

delete-class(c) Deletes class c from C in the schema S

add-ISA-edge(c

x

, c

y

) Adds an inheritance edge from c

x

to c

y

delete-ISA-edge(c

x

, c

y

) Deletes the inheritance edge from c

x

to c

y

form-relationship(c

x

, r

x

, c

y

, r

y

) Promotes the speci�ed two unary relationships to a binary relationship

drop-relationship(c

x

, r

x

, c

y

, r

y

) Demotes the speci�ed binary relationship to two unary relationships

add-attribute(c

x

, a

x

, t, d) Add attribute a

x

of type t and default value d to class c

x

delete-attribute(c

x

, a

x

) Deletes the attribute a

x

from the class c

x

add-reference-attribute(c

x

, r

x

, c

y

, d) Add unary relationship from class c

x

to class c

y

named r

x

delete-reference-attribute(c

x

, r

x

, c

y

) Delete unary relationship from class c

x

to class c

y

named r

x

Table 3: Taxonomy of Schema Evolution Primitives

add-class (C

i

, C)

f

requires:

C

i

=2 C ^

�(C

i

) =2 types(C)

add-class-primitive (C

i

, C)

ensures:

C

i

2 C ^

�(C

i

) 2 types(C)

C

i

2 sub(root) ^

g

Figure 23: Add-Class Primitive Template with

Contracts

delete-class (C

i

)

f

requires:

C

i

2 C ^

�(C

i

) 2 types(C) ^

sub(C

i

) = 0 ^

in-degree(C

i

) = 0 ^

8 o

i

2 extent(t)

obj-in-degree(o

i

) = 0 ^

delete-class-primitive (C

i

)

ensures:

8 <C

x

, r

x

> 2 out-paths(C

i

)

<C

i

> =2 in-paths(C

x

) ^

8 C

x

2 super(C

i

)

C

i

=2 sub(C

x

) ^

C

i

=2 C ^

�(C

i

) =2 types(C)

g

Figure 24: Delete-Class Primitive Template with

Contracts

1

add-ISA-edge (C

i

, C

j

)

f

requires:

C

i

2 C ^

C

j

2 C ^

�(C

i

) 2 types(C) ^

�(C

j

) 2 types(C) ^

super(C

i

) = ;

add-ISA-edge-primitive (C

i

, C

j

)

ensures:

C

i

2 sub(C

j

) ^

C

j

2 super(C

i

) ^

C

i

=2 sub(root) ^

H(C

i

) = N(C

j

)

S

H(C

j

) ^

in-paths(C

j

) � in-paths(C

i

)

g

Figure 25: Add-ISA-Edge Primitive Template

with Contracts

delete-ISA-edge (C

i

, C

j

)

f

requires:

C

i

2 C ^

C

j

2 C ^

�(C

i

) 2 types(C) ^

�(C

j

) 2 types(C) ^

C

j

2 super(C

i

) ^

C

i

2 sub(C

j

)

delete-ISA-edge-primitive (C

i

, C

j

)

ensures:

C

i

=2 sub(C

j

) ^

C

j

=2 super(C

i

) ^

C

i

2 sub(root) ^

H(C

i

) 6= N(C

j

)

S

H(C

j

) ^

in-paths(C

j

) 6� in-paths(C

i

)

g

Figure 26: Delete-ISA-Edge Primitive Template

with Contracts

form-relationship (C

s

, r

s

, C

d

, r

d

)

f

requires:

C

s

, C

d

2 C ^

�(C

s

), �(C

d

) 2 types(C) ^

r

s

2 N(C

s

) ^

r

d

2 N(C

d

) ^

<C

s

, r

s

> 2 in-path(C

d

) ^

<C

d

, r

d

> 2 in-path(C

s

) ^

�(r

s

) 2 types(C) � types(C) ^

�(r

d

) 2 types(C) � types(C)

delete-reference-attribute-primitive (C

s

, r,

C

d

, default)

ensures:

�

�1

(r

d

) = r

s

and �(r

s

) = r

d

g

Figure 27: Form-Relationship Primitive Tem-

plate with Contracts

drop-relationship (C

s

, r

s

, C

d

, r

d

)

f

requires:

C

s

, C

d

2 C ^

�(C

s

), �(C

d

) 2 types(C) ^

r

s

2 N(C

s

) ^

r

d

2 N(C

d

) ^

<C

s

, r

s

> 2 in-path(C

d

) ^

<C

d

, r

d

> 2 in-path(C

s

) ^

�(r

s

) 2 types(C) � types(C) ^

�(r

d

) 2 types(C) � types(C) ^

�

�1

(r

d

) = r

s

and �(r

s

) = r

d

delete-reference-attribute-primitive (C

s

, r,

C

d

, default)

ensures:

:(�

�1

(r

d

) = r

s

and �(r

s

) = r

d

)

g

Figure 28: Drop-Relationship Primitive Tem-

plate with Contracts

2

add-attribute (C

s

, a

x

, t, default)

f

requires:

C

s

2 C ^

�(C

s

) 2 types(C) ^

a

x

=2 N(C

s

)

add-attribute-primitive (C

s

, a

x

, t, default)

ensures:

a

x

2 N(C

s

) ^

8 x 2 sub

�

(C

s

)

a

x

2 H(x)

g

Figure 29: Add-Attribute Primitive Template

with Contracts

delete-attribute (C

s

, a

x

)

f

requires:

C

s

2 C ^

�(C

s

) 2 types(C) ^

a

x

2 N(C

s

)

delete-attribute-primitive (C

s

, a

x

, t, de-

fault)

ensures:

a

x

=2 N(C

s

) ^

8 x 2 sub

�

(C

s

)

a

x

=2 H(x)

g

Figure 30: Add-Attribute Primitive Template

with Contracts

add-reference-attribute (C

s

, r, C

d

, de-

fault)

f

requires:

C

s

, C

d

2 C ^

�(C

s

), �(C

s

) 2 types(C) ^

r =2 N(C

s

)

add-reference-attribute-primitive (C

s

, r,

C

d

, default)

ensures:

r 2 N(C

s

) ^

<C

s

,r> 2 in-path(C

d

) ^

<C

d

,r> 2 out-path(C

s

) ^

8 x 2 sub

�

(C

s

)

<C

d

,r> 2 out-path(x)

g

Figure 31: Add-Reference-Attribute Primitive

Template with Contracts

delete-reference-attribute (C

s

, r)

f

requires:

C

s

2 C ^

�(C

s

) 2 types(C) ^

r 2 N(C

s

) ^

domain(r) 2 C ^

�(domain(r))2 types(C) ^

�(r) 2 types(C) � types(C)

delete-reference-attribute-primitive (C

s

, r,

C

d

, default)

ensures:

r =2 N(C

s

) ^

<C

s

,r> =2 in-path(domain(r)) ^

<domain(r),r> 2 out-path(C

s

) ^

8 x 2 sub

�

(C

s

)

<domain(r),r> =2 out-path(x) ^

�(r) =2 types(C) � types(C)

g

Figure 32: Delete-Reference-Attribute Primitive

Template with Contracts

3

B Type Hierarchy

Figure 33 shows the types that are supported for the SERF templates.

Interface

Method

Relationship

MetaObject

Type Class Collection

ConstructedType Property

Enumeration Union Structure Attribute

Figure 33: The SERF Template Type Hierarchy

The BNF for the SERF template extended with the these types is given as follows:

template ::= begin� template template name

([parameter]

�

)

template statements

end � template;

template statements ::= template statement j

template statement

template statements

template statement ::= de�ne query j queryj

template

de�ne query ::= de�ne identi�er as query

query ::= query

restricted query

restricted query ::= query([function]

�

) j

�

function ::= system function(basic query

�

) j

schema primitive(parameter

�

)

parameter ::= p type string literal

basic query ::= nil j true j false j literal

p type ::= metaobject j meta classj

meta collection j meta structure

meta property ::= meta attribute j meta

r

elationship

4

C The Relationship Templates

In this section we present some example of relationship templates that can be written using the SERF system.

These templates show the exibility with which we can achieve the building of relationships between two

classes.

Add Many to One Relationship

// This template adds a relationship between two partially disjoint

// classes i.e., one class has a one-sided relationship to the

// other. Object transformations in this scenario are very possible.

// A many-to-one relationship => source has one of inverse and inverse

// has many of source

begin template add_m1_relationship (Class source-Class,

Attribute source-attrib-Name,

Class inverse-Class,

Attribute inverse-attrib-Name,

String inverse-attrib-Type,

String inverse-attrib-Value)

{

// Add the inverse-attrib-Name to inverse-Class

add_atomic_attribute ($inverse-Class, $inverse-attrib-Name,

$inverse-attrib-Type, $inverse-attrib-Value);

// Fix up the objects

// Get the extent of the source-Class

define extents ($cName) as

select c

from $cName c;

// insertElement: inverse-attrib-Name is a collection so insert the

// source-Object into the inverse-attrib-Name

for all source-Object in extents $source-Class:

source-Object.$source-attrib-Name.$inverse-attrib-Name.

insertElement(source-Object);

// promote to relationship

form_relationship ($source-Class, $source-class-Name,

$inverse-Class, $inverse-class-Name);

}

5

Add Many to Many Relationship Template

// This template adds a relationship between two partially disjoint

// classes i.e., one class has a one-sided relationship to the

// other. Object transformations in this scenario are very possible.

// A many-to-many relationship => source has many of inverse and vice versa

begin template add_mm_relationship (Class source-Class,

Attribute source-attrib-Name,

Class inverse-Class,

Attribute inverse-attrib-Name,

String inverse-attrib-Type,

String inverse-attrib-Value)

{

// Add the inverse-attrib-Name to inverse-Class

add_atomic_attribute ($inverse-Class, $inverse-attrib-Name,

$inverse-attrib-Type, $inverse-attrib-Value);

// Fix up the objects

// Get the extent of the source-Class

define extents ($cName) as

select c

from $cName c;

// insertElement: inverse-attrib-Name is a collection so insert the

// source-Object into the inverse-attrib-Name

for all source-Object in extents ($source-Class):

for all obj in source-Object.$source-attrib-Name:

obj.$(inverse-attrib-Name).insertElement (source-Object);

// promote to relationship

form_relationship ($source-Class, $source-class-Name,

$inverse-Class, $inverse-class-Name);

}

6

