
WPI-CS-TR-99-11 January1999

PThreads Performance

by

Bhupesh Kothari and Mark Claypool

Computer Science

Technical Report

Series

 ��

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

PThreads Performance

Bhupesh Kothari

Mark Claypool

fbhupesh,claypoolg@cs.wpi.edu

Computer Science Department

Worcester Polytechnic Institute

Abstract

Threads are very small compared with processes, thread creation is relatively cheap in

terms of CPU costs. Threads are a powerful tool for designing multi-tasking applications.

Multithreading (MT) is a modern programming paradigm which enables applications to

move from strictly serial processing as in traditional heavy weight servers to concurrent

processing. Especially, network-based information servers are often candidates for multi-

threading where the individual operations are short, most operations are I/O bound,and a

large number of logical copies of the server are operational at once; Database servers are

a good candidates for multithreading for example. Typical operations involving threads in

such an application environment include: thread creation, context switch between threads

and synchronization, via mutexes and/or signals, between threads. This paper discusses

the performance characteristics of Pthreads and gives Client Server Model as an example

of application that can bene�t from its use.

1 Introduction

1.1 Motivation

Just as multitasking operating systems can do more than one thing concurrently by running

more than a single process, a process can do the same by running more than a single thread.

Each thread is a di�erent stream of control that can execute its instructions independently,

allowing a multithreaded process to perform numerous tasks concurrently. One thread can run

the GUI, while a second thread does some I/O, while a third one performs calculations. Threads

are often called lightweight processes. Multiple threads share the same address space and its

resources and communication can be achieved through shared data. Processes are heavy weight

and do not share resources. Any communication between processes must be achieved through

1

some kind of interprocess communication . Switching between processes is also expensive

when compared to threads switching. Threads can increase performance in applications which

performs operations that are likely to block or cause delays, such �le or socket I/O.

1.2 Approach

As mentioned earlier, typical operations involving threads in such an application environment

include: thread creation, context switch between threads and synchronization, via mutexes

and/or signals, between threads. I have developed a number of micro-benchmarks involving

threads to make timing estimates of the above basic operations. A Client Server Model is also

developed to give a more realistic application to depict the bene�ts of using threads. In this

model, one thread listens for new clients to attach, then creates a new thread to handle each

client. The thread is dedicated to its client, doing work only for that client.

I provide a brief description of the POSIX thread features.

� Thread Creation: A single threaded program has a single thread running main(). In a MT

program one of the libraries linked is the threads library. At creation time the operating

system associates a single thread, the initial thread, to a process. The initial thread

can create one or more new threads by calling the pthread create() system service; the

creator thread tells the operating system the starting address of the new thread and how

much stack it will require. Threads create other threads, like UNIX processes create other

processes via fork and exec. A simple call to create POSIX threads is pthread create(&tid,

NULL, start fun, arg);

� Thread Exit: A thread is exited by calling the appropriate thread exit function or

simply returning from the initial function. A simple call to exit POSIX threads is

pthread exit(status);

� POSIX Mutexes: A mutex is a system tool providing mutual exclusion: only one thread

may hold a mutex at a time. To enter the mutex, a thread calls pthread mutex lock, to

exit a mutex pthread mutex unlock is used. A thread trying to acquire a mutex held by

another thread will be blocked until the mutex is unlocked. A typical use for mutexes is

for protecting critical sections.

� Thread Yielding: To make an explicit call, sched yield is used which causes a thread to

yield its execution in favor of another thread with the same priority.

2 Related Work

There is a small number of high-level design strategies which have been discussed in several

books. Few of them are

� Master/Slave: One thread does the main work of the program, creating other threads to

help on some portion of the work.

2

� Client/Server (Thread per Request): One thread listens for requests, then creates a new

thread to handle each request.

� Client/Server (Thread per Client): One thread listens for new clients to attach, then

creates a new thread to handle each client. The thread is dedicated to its client, doing

work only for that client.

� Client/Server (Producer/Consumer): Some threads create work requests and put them

on the queue. Other threads take the work requests o� the queue and execute them.

Bil Lewis and Daniel J. Berg have given the implementation of Client/Server(Threads per

Request) model in their book Multithreading Programming With PThreads. This book also

has the Producer/Consumer Version for Socket Server. While the Client/Server(Threads per

Request) design has some positive aspects to it e.g., simplicity and directness, it also admits

to some drawbacks. The cost of thread creation is not going to be signi�cant unless the task

itself is very short (< 10 ms). Of more signi�cance is that the programmer has no simple

control over the number of threads running at any one time. Should there be a sudden increase

in the incoming number of requests, there will be an equal spike in the number of threads,

causing performance degradation due to excess number of threads competing for the same

CPUs, memory, locks and other resources.

My implementation of Client/Server (Thread per Client) have a thread devoted to each

client. The advantage of having a thread devoted to an individual client is that the thread can

maintain state for that client implicitly by what's on the stack and in thread speci�c data.

Micro-benchmarks involving threads to make timing estimates of some of the basic opera-

tions are at the site http://atddoc.cern.ch/Atlas/Notes/006/Note006-18.html. This is the only

site I could locate which says about the timing measurements of few operations like thread cre-

ation, mutex lock and context switch.All the measurements were performed on the RTPC/604

board with LynxOS 2.3.1. It gives the performance evaluation of PowerPC VME Boards Run-

ning a Real-Time UNIX System. A more comprehensive timing numbers and the best I could

�nd is in the book Multithreading Programming With PThreads by Bil Lewis and Daniel J.

Berg. My timing measurements di�ered very slightly from the numbers given in the book.

3 Implementation

Pthreads is the POSIX 1003.1c thread standard put out by the IEEE standards committee.

This standard passed international Standards Organization (ISO) Committee Document (CD)

balloting in February 1995 and got the IEEE Standards Board approval in June 1995.

A standard traditional server listens on a socket port and, when a message arrives, forks

a process to service the request. Since a fork() system call is used in a non-threaded program,

any communication between the parent and the child must be done through some sort of

interprocess communication, something my program avoids.All measurements were done on

3

SunOS 5.6. Generic sun4u sparc SUNW,Ultra-1. The libraries which I used are lpthread,

lthread, lposix4, lsocket.

3.1 Thread/Process Creation Time

The program for Thread creation takes the number of threads to be created as an argu-

ment from the command line. The program repeatedly creates the threads in a loop. The

pthread create(&tid, NULL, start func, arg) creates a thread with a function to run and an

argument to the function to run on. The thread goes in that function which does nothing but

exits by executing the pthread exit(). After each thread creation I do a join on the thread by

using pthread join(tid, NULL) so as to wait till the present thread exits before creating another

one.

The program for Process creation works almost the same way as the thread creation pro-

gram. The number of times the loop is to be run to create a child process is passed as an

argument to the program. The system call fork() creates a child process. The child process

runs a function which does nothing but exit by executing the exit() system call. The parent

process waits for the child process by executing the wait() system call to exit before going again

in the loop to create a child process.

For measuring the thread and process creation time I used the gettimeofday(&p,NULL)

system call. The gettimeofday() function gets the system's notion of the current time. The

current time is expressed in elapsed seconds and microseconds since 00:00 Universal Coordinated

Time, January 1, 1970. The resolution of the system clock is hardware dependent; the time

may be updated continuously or in clock ticks. The p argument points to a timeval structure,

which includes the following members:

long tv sec; /* seconds since Jan. 1, 1970 */

long tv usec; /* and microseconds */

3.2 Thread/Process Destruction Time

The program for thread destruction takes the number of threads to be killed as an argument.

In the thread function I calculate the time before it executes pthread exit(). After the thread

exits I again calculate the time. Since this is in a loop I add up the di�erence between these

two times in each iteration.

The program for process destruction involved a lot more to do for measuring time since the

processes do not share the same memory. I created a shared memory segment to store the time

before the child process executes exit() system call. After measuring the time when it returns

I calculate the di�erence between these two times and add this in each iterative loop. The call

for creating a shared memory is:

(char *) shmcreate(key, 6*sizeof(char)))

which returns a pointer to this memory. To avoid mutual exclusion problem I used semaphores.

4

The function semcreate(SEMKEY, 1)) creates a semaphore and returns a integer. The calls

semwait(sem); and semsignal(sem); are used to guard the critical region.

3.3 Locking

A single program executes N times the sequence pthread mutex lock and pthread mutex unlock

: the total elapsed time T is recorded.

To calculate the semaphore post wait time, sem post(&sem) and sem wait(&sem) was executed

N times and the total elapsed time T is recorded.

3.4 Context Switching

There are two ways of scheduling threads: process local scheduling also known as as Process

Contention Scope, or Unbound Threads and system global scheduling known as Global Con-

tention Scope, or Bound Threads. Both are de�ned only in POSIX. Two threads are created

and call repeatedly sched yield which forces the currently running thread to relinquish the

CPU. The scheduler looks to see if there is another thread of the same priority. By default the

threads are created of the same priority. So every time , the other thread gets scheduled. The

time measured includes the execution of the yield routine and the time to switch the context.

To set the contention scope of the threads the following two functions are used:

pthread attr setscope(&attr, PTHREAD SCOPE PROCESS); /* unbound thread */

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM); /* bound thread */

A direct measurement of the context switch for processes was performed by using the

sched yield system routine. This system call allows the calling process to relinquish the CPU.

Both the child process and parent process call this yield routine repeatedly for N times.

3.5 Shared Memory

Anything that can be done with threads, one can also do with processes sharing memory. Only

thing is that it won't be as easy or run as fast. Programs that use two or more processes to

access common data through are e�ectively applying more than one thread of control. However

such process must maintain a complete process structure. The cost of creating and maintaining

this large amount of state makes each process much more expensive, in both time and space,

than a thread.

To calculate the time to access a shared global memory between threads is quite straight

forward. A global bu�er is created. The main thread writes data in that bu�er and the creates

a thread. The thread created reads the data from the bu�er. The timing measurements are

done before and after the read in the child thread. The measurement is done in a loop and the

average value is calculated.

Calculation of the time to access the shared memory among processes required a lot more work.

A shared memory is created and then a child process is created. The child process reads the

5

data from the shared memory written by the parent process. As before, the measurement is

done in a loop and the average value is calculated.

4 Performance Analysis

The bene�ts and cost need to be weighed before proposing the class of applications that can

bene�t from multi-threading. Bene�ts include performance gains increased throughput, respon-

siveness, e�cient use of system resources just to name a few. I looked at the general thread

performance issues.

4.1 Creation Time

The thread creation time was measured iteratively from 1 to 100,000 times. The result are as

shown in the Figure 1

From 1000 point onwards in the graph, the creation time is almost constant. I got the same

output line for other threads timings measurements. Thus the time numbers I give is measured

form 1000 times onwards iteratively and then taking the average of it. The thread creation

time was measured at 67.9 �s. The process creation time was measured to be around 11000 �s.

which is almost 150 times the creation time of a thread

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

T
im

e
In

 M
ic

ro
se

c.

Number of Threads (in 100s)

Single Thread Time

Figure 1: Microbenchmark Results-Average Creation Time of a Thread.

6

Test num runs time

Thread Creation 10 67.8961 �s.

Process Creation 10 11604.4 �s.

Table 1: Creation Time of Thread and Process.

4.2 Destruction Time

The destruction time microbenchmark for thread, creates 1000 to 100,000 threads and measures

the average time for killing a thread. The time was measured at 49.779068 �s. The destruction

time for processes required a lot more to do. The shared memory is updated before killing

the process in each iterative loop.The loop was run 100 times. The time was measured at

5229.938030 �s.

Test num runs time

Thread 10 49.779 �s.

Process 10 5229.938 �s.

Table 2: Micro-benchmark Results-Destruction Time of Thread and Process.

4.3 Locking

Synchronization performance is critical in Multithreaded systems. The locking micro-benchmark

repeatedly acquires and releases a single lock. The loop is run 10,000 to 100,000 times. The

time required for each lock/unlock pair using pthread mutex lock/pthread mutex unlock was

measured at 0.699 �s. Semaphore performance measurement was measured in the same way.

The lock was acquired and released repeatedly. The loop was run 10,00 to 100,100 times. The

time required for each lock/unlock pair using sem post/sem wait was measured at 2.898 �s.

The result obtained are summarized in Table 3.

Test num runs time

Mutex Lock 10 0.699 �s.

Semaphore lock 10 2.898 �s.

Table 3: Microbenchmark Results-Lock/Unlock.

4.4 Context Switching

A thread context switch is very light weight. The yielding thread saves its register state and

then the new thread loads its register status and continues. Process context switch is much

more expensive, requiring all the current registers to be stored in the process structure for the

7

yielding process and then storing all the register values from the process structure for the new

process to be loaded into CPU's registers.

The thread context switch microbenchmark creates two threads which call repeatedly

sched yield which forces the currently running thread to relinquish the CPU. The time mea-

sured for unbound threads was measured at 23.954 �s. The time measured for bound threads

was measured to be 17.925 �s. which is a little less than the unbound threads.

The process context switch microbenchmark gave the time for context switching between two

processes to be 21.624613 �s.

Test num runs time

Bound threads 10 17.925 �s.

Unbound threads 10 23.954 �s.

Process 10 21.62 �s.

Table 4: Microbenchmark Results-Yield.

4.5 Shared Memory

The shared memory microbenchmark for threads creates a child thread which reads the data

written by parent thread from the global bu�er. The access time for di�erent data sizes was

measured.

The shared memory microbenchmark for process calculates the access time for di�erent data

sizes in the same way. The Figure 2 shows the result obtained. To access the global bu�er

between processes was found to be more than that of between threads. In addition, the inherent

separation between processes requires a much greater e�ort in implementing to communicate

among the di�erent processes. By using threads for communication instead of processes, the

program will be easier to debug and can run faster.

5 Client/Server Model

A server needs to handle numerous overlapping requests simultaneously. For e.g., DBMS servers

require large number of requests that require the server to do some I/O, then process the results

and return answers. Completing one request at a time would be very slow.

The traditional server which forks a process for each client request or connection can handle

more than one client request simultaneously but the cost and bene�t of this needs to be evalu-

ated.

The Client/Server(Thread per Client) model listens for new clients to attach, then creates a

new thread to handle each client such as in Figure 3. The thread is dedicated to its client, doing

work only for that client. Where the traditional server would need to communicate among its

8

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

T
im

e
In

 M
ic

ro
se

c.

Data Size (in Kbytes)

Accessing Global Memory

For Threads
 For Processes

Figure 2: Access Time for shared memory between threads and processes.

processes through traditional interprocess communications facilities(e.g., pipes or sockets), the

threaded application can communicate via the inherently shared memory of the process. The

threads in the MT process can maintain separate connections while sharing data in the same

address space.

A standard socket server listens on a socket port and, when a message arrives, forks a

process to service the connection. The Multi-threaded server �rst sets up all the needed socket

information. The server then enters a loop, waiting to service a socket port. When a message

is sent to the socket port, the server creates a new thread to handle the connection on this �le

descriptor. That thread remains dedicated to the client as long as the client wants to have.

The newly created thread listener thread receives requests on this �le descriptor until the

string \Cntrl-C" come across. For each connection request, the listener thread creates a new

thread to handle it. The worker thread process the request in the function server(), and then

sends a reply back across the �le descriptor.

The overall scenario works as follows. The client opens a connection to the server. The

client reads from standard input and writes the data to the server. The server in turn reads the

data from the connection, adds some transaction information and writes the resulting data back

to the client. The client reads the resulting data (from the server) and writes it onto standard

output. The same client program interacts with the multi-threaded server and the traditional

heavy weight server. No changes were needed to make to the client program to make it interact

with the two servers.

9

T3

T2

T1 Client 1

Client 2

Client 3

Figure 3: Clients being handled by di�erent Threads.

The client side program sends data to the server for each data size and �le descriptor I request

on the command line. It waits for each reply from the server. The client code can also be run

from di�erent machines by multiple users.

I measured the time it takes to send a data from the client side and to receive it back from

the server. My request on the command line is of the type: client 1000 6565 crane , where 1000

is the data size of 1000 bytes, 6565 is the socket number and 'crane' is the host-name where

the server program is running. The client could be running on a di�erent machine or on the

same machine. I ran the client and server on di�erent machines in the experiment.

It is quite possible that client makes a connection with the server for a very short duration.

In cases like this , the time would be a lot di�erent than if the connection had been for a long

time. I measured the time for both short and long connections.The results when the client

sends the data to Multi-threaded server and Traditional Heavy Weight server and makes a

short connection, are shown in Figure 4.

It is clear from the Figure 4 that it took more time when the client send the data to Heavy

Weight server. The results for long term connections are as shown in Figure 5. The results

shows that for long term connections the low level measurements doesn't matter. In-fact the

line in the Figure 5 for Heavy Weight server drops down a little below the line for the MT

server. For long term connections the client sends the data to the server 50 times and then

the average value is calculated. The time drops down very fast in the beginning but then it

10

0

2

4

6

8

10

12

14

0 5 10 15 20

T
im

e
In

 M
ill

is
ec

on
ds

.

Data Size (in Kbytes)

MT Server
Heavy Weight Server

Figure 4: Response Time for Short-Term Connections.

0

2

4

6

8

10

0 5 10 15 20

T
im

e
In

 M
ill

is
ec

on
ds

.

Data Size (in Kbytes)

MT Server
Heavy Weight Server

Figure 5: Response Time for Long-Term Connections.

11

becomes almost constant after a while. For e.g., time taken to send a 10K data from the same

machine(server and client both running on same machine)took 1.469 �s �rst time, but then

after a while it became almost stable around 0.45 �s. Thus for response time issue, MT server

has the bene�t only if the clients makes connections for very short duration. From Figure 4,

the time to send and receive a 1K bytes to a Heavy Weight Server takes around 4.7 milliseconds

whereas to a Multi-threaded server takes around 4.0 milliseconds. The di�erence is not of the

same magnitude as the di�erence between thread and process creation time but still the time

in case of Heavy Weight server is more. In addition this di�erence was almost constant for

the whole experiment as is clear from the Figure 4. For long term connections the di�erence

was almost negligible. Thus it looks that for long term connections the low-level measurements

does not matter, only network overhead matters.

6 Conclusions

The performance characteristics of Multi-threaded server (Thread per Client) are well suited

for Client/Server applications where the client makes short connections most of the times.WEB

servers could be such application where this model could bene�t. In addition, the major

conclusions I drew from my low-level measurements are:

� Process creation time is of the order of 150 times magnitude more than the Thread

creation time.

� Process destruction time is of the order of 100 times magnitude more than the Thread

destruction time.

� Mutexes are faster than Semaphore

� Thread context switch is faster than Process context switch.

� To access the shared memory between processes required a lot more work then that of

threads. In addition it took more time to access the shared memory between processes

then among threads

7 Future Work

A lot more cost and bene�t issues need to be evaluated for both Multi-threaded and Traditional

servers so that the class of applications that can bene�t for their use can be categorized.

Irrespective of the connection, whether short or long, the cost of creating and maintaining the

large amount of space, as each process must maintain a complete process structure, will be a

lot expensive in terms of space , than a Multi-threaded server. If a lot of clients are connected

to the server for a long time, the machine could become slow over the time and could degrade

the performance. Issues like this needs to be evaluated. In addition the Client/Server model

could be extended to the applications like WEB servers or a Rating server ,which is used in

Collaborating Filtering Technique,where it just sends back the requested data and then closes

the connection.

12

References

[1] M. Seltzer, Scheduler Activations on BSD: Sharing Thread Management Between Kernel

and Application, Technical Report TR-31-95, 1995

[2] B.D. Marsh, M.L. Scott, T.J. LeBlanc, and E.P. Markatos: First-Class User-Level Threads,

13th ACM Symposium on Operating Systems Principles, October 1991

[3] David Keppel, Tools and Techniques for Building Fast Portable Threads Packages, Uni-

versity of Washington, Technical Report UW-CSE-93-05-06.

[4] Comparison of POSIX pthreads and Solaris threads, SunSoft,

http://www.sun.com/workshop/threads/posix.html

[5] Tom Wagner, Don Towsley, Getting Started With POSIX Threads, University of Mas-

sachusetts at Amherst, http://128.119.41.247/~wagner/threads html/tutorial.html

[6] A.D. Birrell, An Introduction to Programming with Threads, SRC Research Report 35,

DEC,January 1989

[7] Bil Lewis, Daniel J. Berg, Multithreading Programming with Pthreads, Sun Microsystem

Press, A Printice Hall Title

13

