
An Evaluation of Component Adaptation Techniques

�

George T. Heineman Helgo M. Ohlenbusch

Computer Science Department

Worcester Polytechnic Institute

Worcester, MA 01609, USA

fheineman,helgog@cs.wpi.edu

WPI-CS-TR-98-20

March 4, 1999

Abstract

Adapting existing code to include additional functionality or behavior is a common theme

in software engineering. These e�orts are complicated because the developer adapting the

code will rarely be the designer of the code. As object-oriented and component-based software

development achieve greater widespread use, there will be a distinct need to support such

third-party adaptation. This paper describes the issues and challenges surrounding component

adaptation and surveys various approaches in the literature. We evaluate these adaptation

techniques by comparing their use in adapting an existing component in a sample application.

Our experience leads us to a better understanding of the similarities and di�erences between

existing adaptation techniques.

1 Introduction

A driving force behind component-based software development is the idea of \plug-and-play" pro-

gramming. Components, it appears, combine the best features of object-oriented technology and

reusable software. We must admit, however, that the promise of building software systems from

highly-reusable software components has not yet been achieved. The primary di�culty for this lack

of success is the inherent con
ict between designing a �xed reusable component and the bottom-up

construction of software systems from pre-built components. Some might argue that no code should

be written before a software system is designed but there are many reasons why this occurs in

practice. First, if a system is designed to incorporate pre-existing components, the system builder

might have to modify or work around an existing component. Second, systems are often divided

into individual subproblems that typically can be implemented independently (for example, using

a Recursive Parallel life cycle [6]) and implementation may occur in stages. Third, requirements

can change after signi�cant parts of a software system have been implemented. Thus, software

engineering practice forces us to �nd strategies for adapting existing code.

Even before component adaptation, however, there are many obstacles to simply reusing indepen-

dently developed software components. It is often di�cult to locate a component with the speci�ed

functionality; then, once a component is found that (perhaps only closely) matches the desired need,

there may be incompatible interfaces. Finally, it is a technical challenge to use a software component

in a di�erent manner than for which it was designed and documented. For this paper, we assume

that an application builder has somehow located a component developed by a third party.

We believe component-based software will only become widespread when third-party application

builders can adapt components as needed. Most components are released with a documented Ap-

plication Programming Interface (API). This interface, however, only describes the functionality of

�

This paper is based on work sponsored in part by National Science Foundation grant CCR-9733660.

the component and provides no insights for adapting the component. Sometimes, a component is

released with a special source code license allowing code modi�cations and the application builder

is responsible for compiling the component. The Hot Java Component from javasoft.com [16], for

example, is released with this intriguing message:

A source code license allows developers to view and modify the source code. You might

want this extra
exibility to custom-�t the HTML Component to very small devices or

to add or integrate functionality to the product.

This is hardly adequate support for adapting this component. We suggest that components be

deployed with a speci�cation describing its composition and behavior. Then, when an application

builder speci�es a desired adaptation, the component shows how to incorporate the new code.

Designing for change is an established concept in software engineering that requires the designer to

consider future extensions when designing a component. However, there is an understanding that

the original design team will be extending the component. Designing for adaptation suggests that

the designer should provide extra mechanisms so that the component can be adapted by third-party

application builders.

When an application builder adapts a component, the goal is to integrate the adapted component

into a working system that satis�es some system requirements. When designers evolve their own

software, they seek to change the code so as to maintain the integrity of the original design and

minimize costs of future maintenance. These di�ering goals, revealing the gap between designers

and adapters, show the two perspectives we must consider when considering adaptation techniques.

1.1 Adaptation, Evolution, and Customization

We make the distinction between software evolution and adaptation. Evolution occurs when a

software component is modi�ed by the original component design team or by programmers hired to

maintain and extend the component. It is assumed that the software engineers can freely modify the

source code of the component. Another feature of evolution is that the newly evolved component

will become available for purchase and reuse. In contrast, adaptation occurs when an application

builder acquires a third-party component and creates a new component C

A

to use within the target

application. Adapted components, as a rule, will not be released for public use, and reuse of C

A

will

typically occur only within the company that adapted component C.

To further emphasize the di�erence between evolution and adaptation, assume that the source

code is available and that the component design team and the application builder wish to extend the

component with the exact same behavioral change. When the design team performs the extension,

they typically have a full understanding of the component's design and will likely select the optimal

changes to make. The application builder, in contrast, does not have the time to comprehensively

understand the source code and seeks to learn just enough to make the desired changes. The

application builder may be unable to overcome the many obstacles to component adaptation without

a suitable adaptation technique.

We also need to di�erentiate adaptation from customization. End-users customize a software

component by choosing from a �xed set of options that are already pre-packaged inside the software

component. End-users adapt a software component for a new use by writing new code to alter

existing functionality; customization, thus, has a limited range.

Figure 1 presents our perspective on component adaptation. Given a software component (rep-

resented by a small black square), the large oval represents the space of possible evolution paths

for a component, one of which is shown by an arrow. The distance between the two components is

proportional to the di�erence between the components. The component has a pre-packaged set of

options that enables customization, as represented by the small dark-gray circle; the apparent dif-

ference between a customized component and its original is very small. The oddly shaped light-gray

region represents the possible adaptations that can be performed by an application builder. The

area for each region is proportional to the situations in which the component can be reused. We

2

Component

EvolutionAdaptation Customization

Figure 1: Perspective on Adaptation, Customization, and Evolution

need to understand the types of allowable adaptations to better understand the relationship between

these three areas.

1.2 The Role of Software Architecture

We view the research and results in software architecture as essential to any techniques for component

adaptation. Software architecture is commonly de�ned as a level of design that speci�es the overall

system structure of a software application [9]. These structural issues include system organization,

global control structure, communication protocols, and composition of design elements. Because a

component is adapted to operate within the context of a larger application, there needs to be a global

understanding of the interaction between the component and the application as well as a detailed

understanding of the adaptations to the component. An Architectural Description Language (ADL)

should be used for both purposes.

Early work in Software Architecture focused on categorizing di�erent architectural styles, sets

of design rules for composing an application from inter-connected components [1]. Many ADLs

have been proposed that can describe, model, and analyze the speci�c architecture for a software

systems [2, 20, 21]. Implicitly, however, the target audience for an ADL speci�cation has been

the designers and developers of the original system. We believe that an ADL speci�cation for a

component must describe the �xed and extensible features of a component and provide a guide for

its adaptation. This is a responsibility that has not yet been addressed by the software architecture

community. The active interface technique is a step in this direction.

Component adaptation is strongly related to Architectural Evolution, a research area concerned

with the addition, removal, or replacement of components or connectors that comprise a component-

based application [26]. The adaptation techniques in this paper, however, are focused on creating

an adapted component C

A

from an existing component C. Whether dynamic [3, 26] or static [15],

architectural evolution is not a competing technology, but one that should be used in conjunction

with component adaptation techniques.

In Section 2 we discuss and analyze various adaptation techniques from the literature. Section 3

describes our success at applying �ve of these techniques to solve a component adaptation problem.

We close the paper with a summary of lessons learned and comparison with related work. There are

several contributions of this paper. First, we compile together and evaluate various requirements

from papers discussing component adaptation techniques. Second, we describe active interfaces [12],

a speci�c adaptation technique that increases the reusability of software components. Third, we

compare and evaluate various techniques for component adaptation in the literature.

2 Component Adaptation Techniques

We �rst evaluate various requirements for component adaptation drawn from articles in the lit-

erature. In Section 2.2 we brie
y describe six component adaptation techniques we selected for

evaluation. Section 2.3 presents a comparison matrix summarizing the adaptation techniques and

3

how they compare with our consolidated set of requirements. Some of the conclusions shown in this

table are based on our experience in using four of these adaptation techniques to adapt a simple

component-based application as described in Section 3.

2.1 Requirements

To set the context for our comparison, consider an application builder that acquires a component

C from a third-party. The application builder employs an adaptation technique to construct a new

component C

A

from the original component C. The technique may rely only on ad-hoc solutions

or it may provide some speci�c adaptation mechanism. C

A

is then used as a component within the

target application. If C already exists as a component in an application, we classify the situation as

adaptive evolution. Contrast this with a standard integration problem where the application builder

must modify the application so that component C can be used as is.

We compiled a list of requirements from [7, 12, 17]. We considered three additional requirements

for this paper and have consolidated the total list to a set of eleven possible requirements which

we have divided into requirements on C and C

A

, requirements on the adaptation technique, and

requirements on the adaptation mechanism. In Section 2.1.4 we evaluate these requirements to

determine inconsistencies and compatibilities.

2.1.1 Adapted component C

A

and original component C

1. Homogeneous { the code that uses C

A

should use C

A

in the same manner as it would have

used C ([12], was transparent in [7]).

2. Conservative { aspects of C there were not adapted should be accessible without explicit e�ort

by C

A

(was included as transparent in [7]).

3. Ignorant { C should have no knowledge of its adaptations (was included as transparent in [7]).

4. Identity { C should continue to retain its own identity as a separate entity; this eases the way

in which future updates of the component will be handled [17].

5. Composable { C

A

should itself be open to future adaptations; it should be straightforward to

compose together a set of desired adaptations [7].

2.1.2 Adaptation technique

6. Con�gurable { the adaptation technique should be able to parameterize and apply a particular

adaptation (the generic part) to many di�erent components (the speci�c part) [7].

7. Black-box { the adaptation technique should have no knowledge of the internal implementation

of C [7, 17].

8. Architectural focus { There should be a global description of the architecture of the target

application together with a speci�cation of C and a modi�ed description of C

A

[11]; the

speci�cations of C and C

A

must be di�erent. This will enable the application builder to

specify the adaptation(s) at an architectural level.

9. Framework independent { the adaptation technique must not be dependent upon the compo-

nent framework to which C belongs. For example, the technique must function equally well

on COM [22], CORBA [10], and JavaBeans [23] components.

2.1.3 Adaptation mechanism

10. Embedded { the adaptation mechanism must exist within C before C can be adapted into

C

A

[12].

11. Language independent { the adaptation mechanism must not be dependent upon the language

used to implement C [12]; this requirement also pertains to the adaptation technique.

4

2.1.4 Evaluation

As a general rule, these requirements help to decrease coupling. For example, if a component is

not ignorant of its adaptations, then coupling increases between the original component C and its

adaptations. If an adaptation mechanism is dependent upon a particular language, there is an

increased coupling between the component and the mechanism. Other requirements ensure that the

basic properties of components are retained, namely that the adapted component continues to be

composable and reusable. It is not necessary for a particular adaptation mechanism to satisfy all of

these requirements.

Some adaptation mechanisms require a component to be designed in a speci�c way for adap-

tation to occur (consider customizable black-box adapters [5]) and are thus inapplicable in most

cases. We feel it is still reasonable for an adaptation mechanism to suggest minor extensions to the

implementation of a component.

We considered and discarded some requirements for this paper. A component technique is

reusable if either a generic adaptation can be reused, or a speci�c modi�cation can be applied

to multiple components [7]. We feel that this is simply an extension of being con�gurable. We also

considered that a technique should be reversible, that is, it should be possible to always revert to an

earlier adaptation, or in fact, to the original component instance itself. We decided that this should

be supported not by the adaptation technique, but by a suitable con�guration control mechanism.

2.2 Adaptation Techniques

This section brie
y describes six adaptation techniques we evaluated for this paper. We were un-

able to e�ectively evaluate certain adaptation techniques such as Superimposition [7] because the

corresponding adaptation mechanisms was unavailable for download. We chose not to pursue the

in-place modi�cation because this was clearly the least desirable of all the adaptation techniques.

2.2.1 Active Interfaces

A component interface is de�ned by a set of ports; in [12] we argue that this interface must play a

greater role in helping application builders adapt the component. An active interface for a component

can be programmed to take action when a method is invoked. A port is associated with a set of

methods, so each method request is a port request as well. There are two phases to a port request:

the before-phase occurs before the component performs any steps towards executing the request; the

after-phase occurs when the component has completed all execution steps for the request

1

. We also

consider the internal component interface consisting of private and protected methods. Although

private to the component, these internal methods are able to support an active interface and can

have their own before-phase and after-phase. Revealing the internal interface of a component in this

way does not reveal its implementation.

An active interface allows user-de�ned callback methods to be invoked at each phase for a method

and thus may augment, replace, or even deny a method request. Brie
y, each component has

an associated component arbitrator that maintains the callback methods installed for the active

interface. The arbitrator and the component communicate through a special Adaptable port. An

adaptation to a component is speci�ed at an architectural level and is translated into lower level

adaptations. This approach is more general than the standard means of interposing proxies or

wrappers [8] between components to intercept method requests.

The active interface mechanism, as described, is limited to adapting the behavior of a component

at the standard interface boundaries. In general, a component designer can create special ports that

allow policy decisions of the component to be adapted. In this way, the interface for the component is

augmented, as in Open Implementation [18], to enable key decisions to be adapted. The adaptation

technique of active interfaces is supported by the internal adaptation mechanism of a component

arbitrator. Such an arbitrator can easily be integrated into any component as shown in [13].

1

For this paper we limit discussions to method ports; see [25] for further discussion of other port types.

5

2.2.2 Binary Component Adaptation

Binary Component Adaptation (BCA) is an adaptation technique that applies adaptations to com-

ponent binaries without requiring any source code access [17]. Component adaptation occurs after

the component has been deployed and the internal structure of the component is modi�ed in place.

The BCA system is currently implemented to work with Java [4], an object-oriented language that

is compiled into bytecode binaries that are executed within a Java Virtual Machine (JVM). An ap-

plication builder wishing to adapt a Java component constructs a delta �le speci�cation containing

information about the desired changes to a class; this includes adding or renaming an interface,

method, �eld, or method reference. One can even alter the superclass for a component. A Delta

File Compiler (DFC) creates a binary delta �le containing the necessary bytecode adjustments to

the component being adapted.

Once a component is adapted, other classes that refer to the adapted component must be recom-

piled using a modi�ed javac Java compiler. The ClassLoader for javac merges bytecode streams

from the original Component.class �le and the extra bytecode stored in the binary delta �le. The

newly adapted component must then execute within a JVM (version 1.1.5) that has similarly been

modi�ed to include the extended ClassLoader; see [17] for further details. The BCA adaptation

technique is supported by such adaptation mechanisms as a modi�ed ClassLoader and the DFC.

2.2.3 Inheritance

Inheritance is a mechanism that allows an object to acquire characteristics from one or more ob-

jects [6]. Essential inheritance relates to the inheritance of behavior and other externally visible

characteristics of an object while incidental inheritance emphasizes the inheritance of part or all

of the underlying implementation of a general object. Essential inheritance is a way of mapping

real-world relationships into classes and is used mostly during the analysis and design phase of an

object-oriented project. Incidental inheritance often is a vehicle for simply reusing or sharing code

that already exists within another class.

Inheritance is both an adaptation technique and mechanism. It is automatically built-in to

any component written using an object-oriented language like Java or C++. Inheritance has the

bene�t that newly created subclasses are separate from the original component being adapted.

However, component adaptation through inheritance often reverts to incidental inheritance since the

adapter must have detailed understanding of the internal behavior and functionality of a superclass

to implement a successful change.

2.2.4 In-place modi�cation

In-place modi�cation occurs when the application builder applies the necessary changes directly to

the source code for a component. Naturally, such an approach is possible only if the source code

is available and if the application builder is capable of understanding the component's code well

enough to make the desired changes. There are no supporting mechanisms for this technique, and

we include this technique solely as a baseline for comparison.

2.2.5 Superimposition

Superimposition is an adaptation technique that allows an application builder to adapt a component

using prede�ned and con�gurable adaptation types [7]. These adaptation types are much more

expressive than BCA and are thus more complex. The principle behind superimposition is that

a component and the functionality adapting the component should be decoupled from each other.

Superimposition has been implemented using a layered object model (LayOM) which was unavailable

for download; please refer to [7] for further details.

6

Fra
m

ew
or

k−in
dep

en
den

t

B
la

ck
−B

ox

C
on

se
rv

at
iv

e

Ig
nor

an
t

C
om

pos
ab

le

C
on

fig
ura

ble

Id
en

tit
y

Active Interfaces

Inheritance

Binary Component
 Adaptation

H
om

og
en

eo
us

A
rc

hite
ct

ura
l f

oc
us

L
an

gu
ag

e−
in

dep
en

den
t

E
m

bed
ded

In−place
 modification

Wrapping

Superimposition

yy

yy

y

y

y

yyy

yy

1

2 3

4

5

6

7

8

9

10

y

yy yy

y

yy y

y

yy

y

y

y

y

yy

y

y

y y

y

y

y

y

y

y

y

y

y

y
9

11

1. The callback methods can themselves be composed together

2. Must execute component within modified Java 1.1.5 virtual machine

3. One can extend a delta class file appropriately

4. Since active interface changes are made in the specification, one could design a separate layer that

can configure the same adaptation to multiple components

5. One could design a pre-processing layer that applies a particular change to multiple delta files

6. One could design a flexible wrapper generator that generates unique wrappers for use with multiple

components

7. We show in Section 3.3.4 how to insert an active interface into certain components if the source code

is unavailable

8. BCA theoretically can be applied to object code from any high-level language, but there are serious

obstacles to such efforts; the current system operates only with JDK 1.1.5

9. Applicable only for components written in an object-oriented language

10. Can be integrated with architectural focus as shown in Section 3.3.4

11. Over time, may become impossible to further adapt a class through inheritance as class hierarchies

become increasingly tangled

Figure 2: Comparison matrix

2.2.6 Wrapping

As an adaptation technique, wrapping can be used to alter the behavior of an existing component

C. A wrapper is a container object that wholly encapsulates C and provides an interface that

can augment or extend C's functionality. Bosch separates wrapping, whereby the behavior of C

is adapted, from aggregation where new functionality is composed from existing components [7].

H�olzle argues that wrapping leads to poor performance as well as an excessive amount of adaptation

code [31]. The Adapter and Decorator patterns from [8] are useful ways in which to coordinate

the controlled extension of classes, but it is typically very hard to impose a design pattern onto an

existing class hierarchy. The Wrapping technique typically has no supporting adaptation mechanism.

2.3 Comparison Matrix

As seen in Figure 2 there is complete agreement on the homogeneous, composable, and framework-

independent requirements. This is likely because component technology supports these core features.

There are some requirements (con�gurable, architectural-focus) that only one technique satis�es.

This is likely because the adaptation technique considers the particular requirement as a discrim-

inating factor when comparing itself against other adaptation techniques. Consider architectural-

focus and active interfaces: there is no reason why the other approaches cannot incorporate an

architectural focus into their technique. Similarly, if con�gurable adaptation is important, as super-

imposition believes, then the other approaches can rapidly improve to meet this new requirement.

7

3 Description of the Evaluation

A suitable evaluation of these adaptation techniques would compare their e�ectiveness at solving a

real situation; for a fair evaluation, we tried to minimize the variability. We thus chose to apply all

techniques to components written in Java, and we decided to apply the same adaptation to a single

application. The C2 architectural style provided such a demonstration component [29]. We rate the

amount of e�ort needed (low, medium, or high) according to three measures: how challenging was

the actual programming task? how much knowledge of the class hierarchy was needed? how much

knowledge of C2 was needed?

We plan to carry out controlled experiments to extend the early �ndings presented in this paper.

Our current results should be viewed as a fact-�nding mission to determine the scope of future

experiments.

3.1 Sample Application

Figure 3b contains the architecture of the StackVisualization application (SV)

2

. The building blocks

of the C2 architectural style are components (white boxes) and connectors (thin gray rectangles) [30].

An application is constructed from a layer of components and each component is unaware of the

components that reside \beneath" it at a lower layer. Messages sent \up" the layered hierarchy are

requests while messages sent \down" are noti�cations. The top (bottom) of a component can be

welded to the bottom (top) of only one connector. A connector can have more than one component

welded to its top and bottom. Messages are sent and received in �rst-in/�rst-out fashion.

We model the C2 architectural style using our Component Speci�cation Language (CSL) [12].

C2-components have four port types: RequestOut, NotifyOut (sub-typed from OutgoingMethod)

and RequestIn, NotifyIn (sub-typed from IncomingMethod). These port types can be combined

to create four new port types: RequestInRequestOut, RequestInNotifyOut, NotifyInNotifyOut,

NotifyInRequestOut. For example, a NotifyInRequestOut port type generates a request in re-

sponse to receiving a noti�cation. It is invalid to have a port type RequestInNotifyIn in C2 because

noti�cation and request messages are sent in opposite directions. It appears rare in C2 to have a

component that only generates requests without receiving noti�cations, or a component that spon-

taneously generates noti�cations without a previous request. The Java implementation of C2 relies

upon C2-port objects that are associated with C2-components. In C2, the abstract design elements

of ports are instantiated and become part of the implementation; thus there is an object tp (bp)

for the top (bottom) port of a C2-component. Contrast this, for example, with the implicit nature

of JavaBeans [23].

Figure 3a contains a sample screenshot of SV in action. Using the buttons, a user can push (pop)

an integer on (o�) a stack; top places the topmost element of the stack into a text�eld and quit

exits. SV is constructed from three components: StackADT maintains the stack state, StackArtist

visualizes the stack in an abstract \viewport", and GraphicsBinding realizes the viewport using

Java's Abstract Windowing Toolkit (AWT). MainBus and BindingBus are connectors that transmit

requests and noti�cations through the component hierarchy.

3.2 Methodology

We �rst selected a sample adaptation to apply to a particular component that would change both

its behavior and functionality. We chose to extend SV so that pushing an n-ary operator onto the

stack applies the operator to the n topmost elements of the stack; for example, in Figure 3a, pushing

*" should result in a stack of two elements: f 1683, 18 g. We decided against modifying StackADT

since this would require either (1) the basic stack type to allow non-integer elements; or (2) new

methods in the interface to process elements on the stack. Both of these choices reduce the cohesion

of the StackADT component. We chose instead to adapt StackArtist.

2

SV is distributed with the C2 Java distribution [29].

8

 ��

MainBus

BindingBus

StackADT

StackArtist

Graphics
 Binding

(a) (b)

Figure 3: StackVisualization application with conceptual C2 architecture

port type NotifyOut extends OutgoingMethod f

void send (Notification n);

g

port type RequestOut extends OutgoingMethod f

void send (Request r);

g

port type NotifyIn extends IncomingMethod f

void handle (Notification n);

g

port type RequestIn extends IncomingMethod f

void handle (Request r);

g

port type NotifyInRequestOut f

NotifyIn Incoming;

RequestOut Outgoing;

g

port type RequestInNotifyOut f

RequestIn Incoming;

NotifyOut Outgoing;

g

component type C2-Component f

port Top extends NotifyInRequestOut f

C2-port topPort (); // Returns tp

g

port Bottom extends RequestInNotifyOut f

C2-port bottomPort (); Returns bp

g

g

component type C2-Connector f

port Top extends NotifyInRequestOut f

void addTopPort (C2-port p);

void removeTopPort (C2-port p);

Vector topPorts ();

C2-port topPortAt (int n);

g

port Bottom extends RequestInNotifyOut f

void addBottomPort (C2-port p);

void removeBottomPort (C2-port p);

Vector bottomPorts ();

C2-port bottomPortAt (int n);

g

g

component StackADT extends C2-Component f

// push (value), pop, top, get state

g implemented by f

StackADT ST;

C2-Port bp;

Map (Bottom, bp);

g

// BindingBus is identical to this description

component MainBus extends C2-Connector implemented by f

C2-Port t, b;

Map (Top, t);

Map (Bottom, b);

g

component StackArtist extends C2-Component f

// AcceptEvent (button), AcceptEvent (text field)

port Bottom.Incoming f

void handleUserInput (Request r); // helper function

g

// pushed (value), popped (value), top (value), state (stack), empty

g implemented by f

StackArtist SA;

C2-Port tp, bp;

Map (Top, tp);

Map (Bottom, bp);

g

component GraphicsBinding extends C2-Component f

// ViewportCreated, ApplicationTerminated, ViewportDestroyed,

// ViewportCleared, PanelAdded, PanelCleared, ButtonAdded,

// TextFieldAdded, TextFieldSet, TextFieldCleared, c2Grectangle

// c2Gline, c2Garc, c2Goval, c2Gtext

g implemented by f

GraphicsBinding GB;

C2-Port tp;

Map (Top, tp);

g

bp

ST SA
tp bp tp

GB
b

t

b

t

MainBus BindingBusStackADT StackArtist Graphics
 Binding

Figure 4: C2 de�nition in CSL

9

Subclass

bp

ST

tp bp tp

GB
b

t

b

t

MainBus BindingBusStackADT StackArtist Graphics
 Binding

CA

Wrapping

Wrapper

SA

Wr

b

t

MainBus

b

t

BindingBus

bp

bptp

tp
object

binding

component

port

Active

bp

ST SA
tp bp tp

GB
b

t

b

t

MainBus BindingBusStackADT StackArtist Graphics
 Binding

sg ad

Figure 5: Modi�ed architectures

The adaptations were carried out by one of the authors over a four day period in the following

order: Inheritance, Wrapping, and Active Interfaces. The BCA adaptation was added after a few

weeks and was completed in several hours. We do not consider this a robust experiment; nonetheless,

this experience has proven useful in qualitatively comparing the di�erent adaptation techniques.

The CSL de�nitions for C2 and the SV application are shown in Figure 4. The details in the

upcoming sections are relevant since they show the level of e�ort required by various adaptation tech-

niques; certain conclusions in the comparison matrix shown in Figure 2 are based on this experience.

We include modi�ed CSL speci�cations as they occur.

3.3 Results

We now apply the alternatives from Figure 2 to adapt the StackArtist component. The adapted

software architectures for various adaptation techniques are shown in Figure 5.

3.3.1 Inheritance

When using inheritance as the adaptation technique, we de�ne a new subclass CalculatorArtist

from the existing class StackArtist and thus replace the internal object SA with a new object

CA instantiated from CalculatorArtist; note that inheritance operates within the component

being adapted. CA implements the same interface as StackArtist, invoking original methods with

super.handle (Request) and super.handle (Notification) when the behavior is unchanged.

To implement the stack-based arithmetic, CA intercepts push messages (from GraphicsBinding)

that contain n-ary operators, enters calculator mode, and sends n pop requests up to StackADT.CA

then receives these pop requests, calculates the function, issues a push request with the new value,

and exits calculator mode. Note that the CSL speci�cation for this adapted system is unchanged

because C2 hides internal implementation details behind a standardized component interface; this

makes speci�cation of the adaptation di�cult.

3.3.2 Wrapping

Wrapping results in a more complicated component because C2-components are constructed to com-

municate only with C2-connectors. To wrap StackArtist, we create a component Wrapper that

is inserted into the architecture where StackArtist used to be. When Wrapper receives origi-

nal noti�cations (or requests) needed by StackArtist, Wrapper passes them in, using the handle

10

component StackArtist extends C2-Component f

port Adapt f

void setAdapter (ComponentAdapter ca);

ComponentAdapter getAdapter ();

g

port Bottom f

port Incoming f

void handleUserInput (Request r) f

before sg.beforeRequestIn

after sg.afterRequestIn

g;

g

port Outgoing f

void send (Noti�cation n) f

after sg.afterNotifyOut

g;

g

g

port Top f

port Incoming f

void handle (Noti�cation n) f

before sg.beforeNotifyIn

after sg.afterNotifyIn

g;

g

g

g implemented by f

StackArtist SA;

StackArtistGlue sg;

C2-Port tp, bp;

ComponentAdapter ad;

Map (Top, tp);

Map (Bottom, bp);

g

Figure 6: CSL speci�cation for application and adapted component

(Notification) (or handle (Request)) methods provided by StackArtist. Wrapper implements

stack-based arithmetic in the same manner as above. One tricky business was processing the noti�-

cations and requests coming out of the original StackArtist. Since C2 does not allow StackArtist

to be connected to multiple C2-connectors, we use the functionality provided by C2-port objects

and we link StackArtist.tp to deliver messages to Wrapper.bp (and similarly StackArtist.bp

to Wrapper.tp). Now, when internal StackArtist sends requests up, they are received by the

bottom port of Wrapper and sent up to higher components; the reverse occurs for noti�cations.

These details show the impractical side of using wrapping as an adaptation technique.

3.3.3 Active interface

Integrating an active interface into a component results in an architecture that preserves the original

integrity of the StackArtist class and extends the component speci�cation to incorporate the new

functionality. StackArtist includes a new port that associates a component adapter ad with the

StackArtist component. Figure 6 shows the modi�ed CSL of the StackArtist component.

Active interfaces are realized by a small set of helper objects that manage the adaptations for

a component. ad allows before- and after- callback functions to be inserted for the methods that

the designer of StackArtist has designated to be adaptable. This is accomplished by altering the

CSL description for StackArtist to insert these callback functions with the appropriate methods.

Once active interfaces are installed in a component C, a third-party can simply insert new code to be

invoked at the selected phases; in our example, this code is placed into a StackArtistGlue object sg.

Because the callback functions are associated with the component being adapted, two components of

the same type can have di�erent adaptations. Alternatively, the same callback method can be used to

11

(1) (2) (3)

active interfaces low low medium

BCA low low medium

in-place adaptation low low medium

inheritance low medium medium

wrapping medium low high

Table 1: Comparison of results (lower is better)

adapt multiple components. We had to manually construct the initiation code that instantiated the

StackArtist component and installed the adaptations; we are currently working on a pre-processor

to automatically generate such code.

3.3.4 Binary Component Adaptation

After completing the active interface adaptation, we observed that BCA and active interfaces are

supporting technologies. In particular, we found that we could insert an active interface onto an

existing Java component using BCA. We reused the StackArtistGlue class created for the active

interface adaptation and in less than one hour had completed the BCA adaptation. This partnership

was an unexpected bene�t of carrying out this evaluation.

4 Summary

We successfully adapted the SV application to become a stack-based calculator using the four adap-

tation techniques described in previous sections. In Table 1, we compare the results by rating the

following: (1) di�culty in programming; (2) di�culty in understanding class hierarchy; (3) di�culty

in understanding component model.

Although in-place adaptation requires low e�ort, it is clearly not the preferred technique. One

important reason is that it will be impossible to incorporate new versions of the component if the

adaptations are made directly to the component's source code. Also, if all adaptations are embedded

within the original component, there may be no way to restore the original component (unless version

control is applied). Lastly, multiple adaptations made to the same component will quickly interfere

with each other unless the adapter is aware of the di�erence between original code and added code.

BCA and active interfaces are preferred next since they are both supported by adaptation mech-

anisms. Although they di�er when compared by the requirements in Figure 2, they can be used in

conjunction to overcome each other's weaknesses. For example, if source code is unavailable, BCA

can be used to instrument active interfaces onto a Java component; also, if one requires an archi-

tectural focus, active interfaces can be speci�ed using CSL and this speci�cation can be converted

into the appropriate delta �les for use by BCA.

The inheritance option is preferred next because it follows good design practice; its di�culty

naturally arises from having to thoroughly understand the object-oriented class hierarchy. Lastly,

and somewhat surprising, we determined that although wrapping is a simple concept, its realization

can be complicated. Composability within a component framework is useful, but not su�cient, for

adaptation to occur. When combining the results of [31] with our results, it is clear that wrapping

is not su�cient for component adaptation.

From the perspective of the application builder, wrapping and active interfaces are most easily

expressed in CSL. The CSL speci�cations reveals the micro-architecture of the components that

are used to construct the �nal software system, thus increasing opportunities for adaptation. BCA,

however, can easily be extended to include more of an architectural focus.

12

5 Related work

This paper presents a framework for comparing adaptation techniques for software components. This

work is closely related to several areas of prior research. The �rst area is the software architecture

community. There are many ADLs de�ned (such as [20, 21, 2]) and they have been used to describe

and analyze speci�c software architectures to detect race conditions and deadlock situations. Our

work is perhaps the �rst in the community to target the use of ADLs as a vehicle for specifying and

instrumenting adaptations for software components; by doing so, we will be able to take advantage

of the powerful analyses o�ered by the community. Recent work proposed by Medvidovic and

Rosenblum [24] identi�es various domains of concern in software architecture to better understand

the requirements for future ADLs. Component adaptation is directly related to the domain of

architectural evolution, as well as others in their framework, and not enough ADLs support it.

The second related area is research in software evolution in general. Much emphasis has been

placed on the role that adaptive maintenance plays in increasing the functionality of existing sys-

tems [15]. The evolver of the system, however, has direct knowledge of how the system was origi-

nally designed and constructed. The closest related work is the research by Peyman on decentral-

ized software evolution [27]. Peyman analyzes the di�erent ways in which software can be evolved

\post-deployment" by a third-party, but the focus has been on adding components into an existing

architecture, not on adapting existing components. Ben-Shaul has de�ned a framework for increas-

ing the functionality of mobile code through dynamic update re
ection [14]. This project de�nes

both a component model and a powerful mechanism for adding or replacing existing functionality

in a component. We are currently investigating how to use our CSL approach to help de�ne and

specify these dynamic adaptations.

Lieberherr's Demeter project [19] promotes adaptive programming as a technique for increasing

the evolvability of a program by creating
exible interactions among objects. It is not speci�cally

targeted towards adapting third-party components, but it is clear that components developed using

Demeter would have a greater chance of being adapted. This further supports our argument that

the adaptation mechanism must be built into a component for application builders to adapt the

component. Techniques such as component adaptors [32] that overcome syntactic incompatibilities

between components, however, do not address the need to adapt software components.

Lastly, we distinguish our work from the many e�orts in de�ning component frameworks. Com-

ponent frameworks o�er a standardized platform in which components can communicate and inter-

operate, seemingly \plug-and-play". However, these frameworks require all components to adhere

to a strict standard and set of assumptions, requiring existing components to be re-tooled to the

standard. Also, there will continue to be a need for application builders to adapt components to

work. A good component framework o�ers
exibility and tailorability, but this in no way satis�es

the need to adapt existing components to meet additional requirements.

6 Conclusion

This paper has compared various approaches to adapting software components. We believe this

area of research needs much investigation since current state-of-the-practice of component-based

software engineering is unable to achieve its promised goals. To summarize, we have shown that

third-party application builders will bene�t by having ADL-level speci�cations of reusable software

components. But more importantly, the application builder needs mechanisms that will help adapt

software components for their own special needs.

We surveyed various approaches for component adaptation and collected together a set of require-

ments by which we compared the techniques. We carried out an evaluation of several techniques by

adapting an existing component within a sample application. We plan to carry out more controlled

experiments to further judge and compare the various adaptation techniques.

We showed how active interfaces mechanism should help increase the reusability of any software

component, regardless of the underlying programming language. We showed how to combine active

interfaces together with Binary Component Adaptation (BCA), to produce a powerful technique

that satis�es many requirements for adaptation techniques.

13

Component designers should be aware that they cannot hope to produce software components

that satisfy all needs, so they should �nd ways in which their components can be adapted as needed.

Parnas observed that software should be designed to be easily extended and contracted [28]; the

di�culty, of course, lies in foreseeing exactly what features will be adapted. The insight to active

interfaces is that a component can be
exible enough to handle unforeseen situations. Our work is

a step towards realizing the goal of having a marketplace of software components with supporting

technologies aiding both application builders and component designers.

References

[1] Gregory D. Abowd, Robert Allen, and David Garlan. Formalizing Style to Understand Descrip-

tions of Software Architecture. ACM Transactions on Software Engineering and Methodology,

4(4):319{364, October 1995.

[2] Robert J. Allen, David Garlan, and James Ivers. Formal Modeling and Analysis of the HLA

Component Integration Standard. In Sixth International Symposium on the Foundations of

Software Engineering, November 1998. to appear.

[3] Jesper Andersson. Reactive Dynamic Architectures. In 3rd International Workshop on Software

Architecture, pages 1{3, Orlando, FL, November 1998.

[4] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley, Reading, MA,

1996.

[5] B. K�uc�uk and M. N. Alpdemir and R. N. Zobel. Customizable Adapters for Blackbox Com-

ponents. In O. Nierstrasz, editor, Third International Workshop on Component-Oriented Pro-

gramming (WCOP'98), Brussels, Belgium, July 1998.

[6] Edward V. Berard. Essays on Object-Oriented Software Engineering. Prentice-Hall, Englewood

Cli�s, New Jersey, 1993.

[7] Jan Bosch. Superimposition: A component adaptation technique. Technical Report TR, Depart-

ment of Computer Science and Business Administration, University of Karlskrona/Ronneby,

September 1997.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements

of Reusable Software. Addison-Wesley, Reading, MA, 1995.

[9] David Garlan and Mary Shaw. An Introduction to Software Architecture, volume I of Advances

in Software Engineering and Knowledge Engineering. World Scienti�c Publishing Company,

New Jersey, 1993.

[10] Object Management Group. CORBA standard. Internet site (http://www.omg.org).

[11] George T. Heineman. Adaptation and Software Architecture. In 3rd International Workshop

on Software Architecture, pages 61{64, Orlando, FL, November 1998.

[12] George T. Heineman. A Model for Designing Adaptable Software Components. In 22nd Annual

International Computer Software and Applications Conference, pages 121{127, Vienna, Austria,

August 1998.

[13] George T. Heineman and Gail E. Kaiser. An Architecture for Integrating Concurrency Control

into Environment Frameworks. In 17th International Conference on Software Engineering,

pages 305{313, Seattle, WA, April 1995.

[14] O. Holder and I. Ben-Shaul. A Re
ective Model for Mobile Software Objects. In Proceedings of

the 17th International Conference on Distributed Computing Systems (ICDCS98), pages 339{

346, Baltimore, Maryland, May 1997.

14

[15] Catherine Blake Jaktman. Understanding the Evolution/Maintenance Relationship in Soft-

ware Architectures. In International Workshop on Empirical Studies of Software Maintenance

WESS'97, Bari, Italy, October 1997.

[16] Javasoft. http://java.sun.com/products/hotjava/bean/index.html.

[17] Ralph Keller and Urs H�olzle. Binary Component Adaptation. Technical Report TRCS97-20,

Department of Computer Science, University of California, Santa Barbara, December 1997.

[18] Gregor Kiczales, John Lamping, Cristina Lopes, Chris Maeda, Anurag Mendherkar, and Gail

Murphy. Open Implementation Design Guidelines. In 19th International Conference on Software

Engineering, pages 481{490, May 1997.

[19] Karl Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Propagation

Patterns. PWS Publishing Company, 1996.

[20] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera, D. Bryan, and W. Mann. Speci�cation

and Analysis of System Architecture using Rapide. IEEE Transactions on Software Engineering,

April 1995.

[21] Je� Magee, Naranker Dulay, Susan Eisenbach, and Je� Kramer. Specifying Distributed Software

Architectures. In Fifth European Software Engineering Conference, Barcelona, Spain, 1995.

[22] Microsoft Corporation and Digital Equipment Corporation. The Component Object Model

Speci�cation: Draft Version 0.9, October 24, 1995.

Internet publication (http://www.microsoft.com/oledev/olecom/title.htm).

[23] Sun Microsystems, Inc. JavaBeans 1.0 API Speci�cation.

Internet site (http://www.javasoft.com/beans), December 4, 1996.

[24] Nenad Medvidovic and Richard N. Taylor. A Framework for Classifying and Comparing Ar-

chitectural Description Languages. In Proceedings of the 6th European Software Engineering

Conference ESEC '97, 1997.

[25] Helgo M. Ohlenbusch and George T. Heineman. Composition and Interfaces within Software

Architecture. In 1998 CASCON Conference, Toronto, Ontario, November 1998. CD media.

[26] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime software evolution. In

International Conference on Software Engineering, Kyoto, Japan, April 1998.

[27] Peyman Oreizy. Decentralized Software Evolution. In Proceedings of the International Confer-

ence on the Principles of Software Evolution (IWPSE 1), Kyoto, Japan, April 1998.

[28] David L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE Transactions

on Software Engineering, 5(6):310{320, March 1979.

[29] Richard Taylor et al. http://www.ics.uci.edu/pub/arch/c2.html.

[30] Richard Taylor, Nenad Medvidovic, Kenneth Anderson, James Whitehead, and Jason Robbins.

A Component- and Message-Based Architectural Style for GUI Software. In 17th International

Conference on Software Engineering, pages 295{304, Seattle, WA, April 1995.

[31] Urs H�olzle. Integrating Independently-Developed Components in Object-Oriented Languages.

In O. Nierstrasz, editor, ECOOP '93 Conference Proceedings, LNCS 707, pages 36{56, Kaiser-

slautern, Germany, July 1993. Springer-Verlag.

[32] Daniel M. Yellin and Robert E. Strom. Protocol Speci�cation and Component Adaptors. ACM

Transactions on Programming Languages and Systems, 19(2):292{333, March 1997.

15

