
WPI-CS-TR-98-16 July 1998

Touchstone { A Lightweight Processor Benchmark

by

Mark Claypool

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

Touchstone { A Lightweight Processor Benchmark

Mark Claypool

claypool@cs.wpi.edu

Worcester Polytechnic Institute

Computer Science Department

August 11, 1998

Abstract

Benchmarks are valuable for comparing processor performance. However, porting and run-

ning processor benchmarks on new platforms can be di�cult. Touchstone, a simple addition

benchmark, is designed to overcome portability problems, while retaining performance measure-

ment accuracy. In this paper, we present experimental results that show Touchstone correlates

strongly with processor performance under other benchmarks. Equally important, we present a

measure of portability that demonstrates Touchstone is easier to port and run than other bench-

marks. We conclude that while Touchstone is not a replacement for more extensive processor

benchmarks, it can be used for quick, reasonably accurate estimations of processor performance.

Keywords: benchmark, processor performance, measurement

1 Introduction

benchmark v. trans - to subject (a system) to a series of tests in order to obtain prear-

ranged results not available on competitive systems. { S. Kelly-Bootle, \The Devil's DP

Dictionary"

Standard measures of performance for computers systems provide a basis for comparison, which

can lead to system improvements and predictions of e�ectiveness under other applications. If

computer users ran the same programs day in and day out, performance comparisons would be

straight-forward. As this will never be the case, systems must rely on other methods to predict

performance under estimated workloads. The process of performance comparison for two or more

systems by measurements is called benchmarking, and the workloads used in the measurements are

called benchmarks. Broadly, there are four types of benchmarks [10, 11]:

Real programs. Real programs are applications that users will actually run on the system. Observ-

ing a system running such programs may be a good indication of performance under normal

operations. Examples are language compilers such as gcc, acc and f77, text-processing tools

like TeX and Framemaker, and computer-aided design tools like Spice.

1

Kernels. Kernels are small, key pieces from real programs. Unlike real programs, no user runs

kernel programs, for they exist only for performance measurements. They are best used to

isolate performance of key system features. Examples are LINPACK (see Section 2 for more

information) and the Livermore Loops [14].

Synthetic benchmarks. Synthetic benchmarks have characteristics similar to those of a set of real

programs and can be applied repeatedly in a controlled manner. They require no real-world

data �les (that may be large and contain sensitive data), and can be easily ported without

a�ecting their basic operation. They often have built-in measurement capabilities. Examples

are Spec (see Section 2 for more information), Whetstone [7] and Dhrystone [15].

Toy benchmarks. Toy benchmarks are small pieces of code that produce results known before

hand. They are small, easy to implement, and can be run on almost any computer. They may

be used in some real programs, but often are not. Examples are the Sieve of Eratosthenes

and Quicksort (see Section 2 for more information).

Although the above benchmarks may provide valuable system performance information, they are

often di�cult to run properly. Determining the correct mix of real programs is di�cult and in-

stalling real programs can be time-consuming and resource intensive. Gcc, for example, required

more disk space than we had available and demanded a signifcant amount of compilation time (see

Section 3.2 for more details). Running kernels can be di�cult without the necessary compilers

and often small changes are required to port kernels between platforms. LINPACK, for example,

requires a Fortran compiler and a user-supplied second() function, that caused us porting dif-

�culties (see Section 3.2 for more details). Coding toy benchmarks can be surprisingly di�cult.

Many computer professionals �nd it di�cult to accurately code a Mergesort correctly, despite un-

derstanding the algorithm. Obtaining reputed synthetic programs can be equally challenging. For

instance, although SPEC is non-pro�t, they charge a support and development fee for use of their

benchmarks. Prices in 1995 were [6]:

Benchmark Type Price

CPU intensive integer benchmarks) $ 425

CPU intensive oating point benchmarks $ 575

Integer and oating point benchmarks $ 900

System level �le server (NFS) workload $ 1200

UNIX software development workloads $ 1450

Even the basic integer or oating point benchmarks are far too much for the average graduate

student wishing to simply explore workstation performance.

To overcome some of the di�culties in running standard benchmarks, we present Touchstone, a

lightweight benchmark for processor performance. Touchstone is process that increments a variable

in a tight loop for a �xed period of time. The value that it reports represents the power of the

processor; the higher the number, the more powerful the processor while the lower the number,

the less powerful the processor. Touchstone's beauty is its simplicity. At its core, Touchstone uses

only 2 lines of high-level code, a branch and an add. These commands are found on all systems

and in all languages. Its simplicity makes it easy to port while its basic functionality provides a

surprisingly accurate measure of system performance.

2

Increment instruction benchmarks, such as Touchstone, are not new. Historically, processors were

the most expensive and the most used system components. Initially, computers had very few

instructions, the most frequent of which was addition. Thus, the computer that added faster was

considered a better performer. As the number and complexity of instructions grew, the addition

benchmark was no longer su�cient as the only means of measuring processor performance. This

remains true today, and so Touchstone should not replace existing benchmarks. However, rather

than being abandoned, Touchstone should be used as a quick, easy way to give an approximate

estimate of processor performance.

We have two hypotheses about the usefulness of Touchstone:

Hypothesis: Touchstone is a good indicator of processor performance under other bench-

marks.

Hypothesis: Touchstone is easier to port than other benchmarks.

The rest of this paper is laid out as follows: Section 2 describes experiments we ran to test our

hypotheses; Section 3 analyzes our experimental data and tests our hypotheses; and Section 4

summarizes our conclusions and presents other possible uses for Touchstone.

2 Experiments

touchstone noun - a test or criterion for determining the quality or genuineness of a

thing. { Webster's 7th dictionary, on-line.

In order to test our �rst hypothesis, Touchstone is a good indicator of processor performance under

other benchmarks, we need to correlate Touchstone with one benchmark from each of the four

categories presented in Section 1. This Section describes our experiments to gather data for these

correlation computations.

The four benchmarks we selected are: gcc, LINPACK, SPEC (int and fp) and quicksort. To

strengthen our results, we perform correlations on nine di�erent computer workstations. The

workstations are: SGI Crimson, SGI Indigo 2 Extreme, Sun Sparc 10, Sun IPX, Sun Sparc 2, Intel

80486-33, SGI Personal Iris, Sun Sparc 1 and Intel 80386-20. Table 1 summarizes the systems.

The next 5 subsections describe the experiments involving Touchstone and each benchmark.

2.1 Touchstone

We ran Touchstone on the 9 platforms listed above. Since the count Touchstone reports is sensitive

to other processes running concurrently, we postulate that lightly loaded machines a must for

accurate measurements. We performed the experiments on machines with a minimum of other

processes. In order to facilitate �nding when time-shared machines are little used, we developed

a network script to monitor processor load. Figure 1 depicts the sample output from one of our

script runs. In this case, the script helped us avoid running Touchstone during the 3 a.m. system

3

Workstation Operating System Processor Speed RAM

SGI Crimson Irix 5.2 100 Mhz 160 Mbytes

SGI Indigo 2 Extreme Irix 5.2 100 Mhz 32 Mbytes

Sun Sparc 10 SunOs 4.1.4 33 Mhz 64 Mbytes

SGI Personal Iris Irix 4.01 20 Mhz 32 Mbytes

Sun IPX SunOs 4.1.4 40 Mhz 40 Mbytes

Sun Sparc 2 SunOs 4.1.4 40 Mhz 30 Mbytes

Sun Sparc 1 SunOs 4.0.2 20 Mhz 20 Mbytes

Intel 80486 Linux 1.2.13 33 Mhz 8 Mbytes

Intel 80386 Linux 1.2.13 20 Mhz 8 Mbytes

Table 1: Experimental platforms. Nine di�erent systems from three di�erent manufacturers were used for the

experiments. The 386, 486 and Sparc 1 machines represent low-end workstations. The Iris, IPX and Sparc 2

represent mid-range workstations. The Crimson, Indigo and Sparc 10 represent high-end workstations.

backups. Verifying that the Unix system load after the Touchstone runs was 1 assured us that no

other processes had been running.

We ran Touchstone for 200 seconds to amortize start-up costs. To determine the number 200, we

ran Touchstone for increasing times and recorded the standard deviation of its counts. Figure 2

depicts the standard deviation of a series of Touchstone runs versus the length of the run. The

standard deviations level out just before 200 seconds. At this point, the standard deviation is

only 0.001% of the mean. Thus, we chose one 200 second Touchstone run as one iteration. Pilot

tests indicated that �ve iterations for each machine were needed to achieve reasonable con�dence

intervals.

Touchstone can increment a oating point variable or an integer variable. We call Touchstone

with a oating point variable TouchFp and Touchstone with an integer variable TouchInt. The

Touchstone values we measured are presented in Table 2.

2.2 Quicksort

We implemented a standard quicksort algorithm, as found in most typical computer algorithms

books. To ensure that poor choices for the partitioning pivot did not inuence sorting times, we

sorted the same sequence of randomly generated numbers on each platform. We measured only the

sorting time, not the time to read in the numbers, using the wall-clock. The pseudo-code follows:

load(array, array_size)

start_time = gettime()

quicksort(array, 1, array_size)

end_time = gettime()

Since wall-clock times are sensitive to other running processes, we ran the quicksort experiments

on lightly loaded machines, as described in Section 2.1.

The Quicksort times we measured are presented in Table 2.

4

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8

Lo
ad

Hours Since Midnight

Figure 1: Processor Load at Night. The horizontal axis is hours since midnight. The vertical axis is the number of

processes in the ready queue. From this graph, it appears that backups are sometime around 3 a.m. for this system.

This time should be avoided for running Touchstone experiments.

2.3 GCC

The Gnu C compiler (gcc) is a product of the Free Software Foundation. For reasons not related to

its price, it is often preferred by many for system development. The latest gcc source code is avail-

able from any of the gnu ftp sites, such as anonymous@prep.ai.mit.edu:pub/gnu/gcc-*.tar.gz

and anonymous@ftp.uu.net:packages/gnu/gcc-*.tar.gz.

We ran experiments on lightly loaded machines as we described in Section 2.1. The input for gcc

was the LaTeX source. The LaTeX document preparation system is a special version of Donald

Knuth's TeX program. LaTeX adds to TeX a collection of commands that simplify typesetting by

letting the user concentrate on the structure of the text rather than on formatting commands [12].

LaTeX is available for most workstation platforms. Compilation time was measured using the Unix

time command.

The gcc times we measured are presented in Table 2.

2.4 LINPACK

LINPACK was developed by Jack Dongarra of Argonne National Laboratory in 1983 [9]. It con-

sists of a number of programs that solve dense systems of linear equations. LINPACK attempts to

represent mechanical engineering applications on workstations. LINPACK programs can be charac-

terized as having a high percentage of oating-point additions and multiplications. The benchmark

5

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300

S
ta

nd
ar

d
C

ou
nt

 D
ev

ia
tio

n

Time Counter Ran (in seconds)

Deviation of Counts for Counter Process

Figure 2: Standard Deviation of Touchstone Values. The horizontal axis is the number of seconds that Touchstone

ran. The vertical axis is the standard deviation of the runs. The standard deviation appears to reach a steady state

just before 200 seconds. At this point, it is 0.001% of the mean.

results are reported in Millions of Floating Point Operations Per Second (MFLOPS) [11].

The LINPACK benchmark consists of three parts:

1. LINPACK Benchmark. The standard LINPACK benchmark is written entirely in Fortran and

must be run with no changes to the source code. The problem size is 100x100. It uses an old

algorithm that has low compute intensity and is not optimized in terms of memory bandwidth.

2. Towards Peak Performance, Best E�ort. The best e�ort benchmark seeks to achieve the

maximum performance on the workstation by allowing modi�cations to the benchmark code.

The problem size is 1000x1000. The best implementations currently use blocked solvers that

make e�cient use of memory with high compute intensity. However, there are limits on

algorithm selection and use of assembly language to improve performance. The LINPACK

documentation provides examples of this type of solution.

3. A Look at Parallel Processing. The parallel benchmark uses a problem size of NxN with N

selected by the user. The best implementations use high compute intensity algorithms scaled

to a size where interprocessor communication cost is minimal compared to the computation

cost.

The LINPACK benchmark results as reported in [9] are presented in Table 2.

6

Machine TouchInt TouchFp Mops SPECint SPECfp Quicksort Gcc

Crimson 9008886 5479664 16 58.3 63.4 0.84 -

Indigo 8802542 5367132 15.0 57.6 60.3 0.84 50.5

Sparc10 7044849 3445895 8.9 40.0 41.1 1.87 209.1

IPX 3506958 1702699 4.1 21.8 21.5 3.78 279.8

Sparc2 3580454 1709879 4.0 21.8 18.2 4.48 278.3

486 4096334 1230640 3.0 17.5 15.5 5.17 695.6

Iris 3721732 1331571 2.1 22.4 24.4 3.51 199.8

Sparc1 1737108 663700 1.4 9.5 7.5 9.31 530.7

386 638547 1730

1

0.16 2.15 2.15 23.89 1590.1

Table 2: Experiment results. TouchInt and TouchFp are 200 second Touchstone values we measured when the

increment variable is an integer variable or a oating point variable, respectively. Mops are Millions of Floating

Point Operations Per Second, as recorded by LINPACK. SPECint and SPECfp are integer and oating point intensive

benchmarks recorded by the SPEC benchmark suite. Quicksort and Gcc are the run times in seconds for our Quicksort

and Gcc experiments.

2.5 SPEC

The Systems Performance Evaluation Cooperative (SPEC) is a nonpro�t corporation formed by

leading computer vendors to develop a standardized set of benchmarks. Founders, including

Apollo/Hewlett-Packard, DEC, MIPS and Sun, have agreed on a set of real programs and in-

puts that all will run. The founders of this organization believe that the user community will

bene�t greatly from an objective series of application-oriented tests, which can serve as common

reference points and be considered during the evaluation process. The benchmarks are meant for

comparing processor speeds. The spec numbers are the ratio of the time to run the benchmarks on

a reference system and the system under test [6].

There are currently two suites of compute-intensive SPEC benchmarks, measuring the performance

of processor, memory system, and compiler code generation. SPECint and SPECfp represent results

from integer intensive and oating point intensive benchmarks, respectively. They normally use

UNIX as the portability vehicle, but they have been ported to other operating systems as well. The

percentage of time spent in operating system and I/O functions is generally negligible.

The SPEC benchmark results as reported in [1] are presented in Table 2.

3 Analysis

In this section we analyze our experimental data from Section 2 and test the hypotheses presented

in Section 1.

3.1 Touchstone as an Indicator of Processor Performance

To test our �rst hypothesis, Touchstone is a good indicator of processor performance under other

benchmarks, we determine the correlation between Touchstone and each benchmark. LINPACK

7

Con�dence Con�dence

Benchmark A Interval B Interval R

2

LINPACK 2.94e-06 [2.74e-06, 3.15e-06] -7.75e-01 [-1.39e+00, -1.55e-01] 0.99

SPECint 6.64e-06 [5.93e-06, 7.35e-06] -3.21e+00 [-7.07e+00, 6.56e-01] 0.98

SPECfp 1.10e-05 [9.91e-06, 1.20e-05] 2.73e+00 [-3.99e-01, 5.86e+00] 0.98

Quicksort 1.41e-07 [1.06e-07, 1.76e-07] -2.12e-01 [-4.02e-01, -2.22e-02] 0.89

Gcc 1.89e-09 [8.56e-10, 2.93e-09] -2.76e-03 [-7.77e-03, 2.25e-03] 0.67

Table 3: Touchstone linear regression parameters. Parameters A and B are from the equation y = Ax + B. Intervals

are 95% con�dence intervals around the parameters A and B.

and SPECfp both primarily test oating point performance, so we compare them with TouchFp

(Touchstone incrementing a oating point variable). Similarly, SPECint stresses integer operations,

so we compare it with TouchInt (Touchstone incrementing a long integer variable). Since our

quicksort benchmark sorted integers, we compare it with TouchInt. Gcc contains 99% integer

operations [10]. Thus, we correlated gcc with TouchInt. For benchmarks measured by time, such

as gcc and quicksort, the lower the number the more powerful the processor. Thus, Touchstone

values are inversely proportional to the time for gcc and quicksort.

To quantify our comparisons, we apply a simple linear regression model through a least-squares

line �t for each benchmark. We calculate the regression parameters A and B from the equation:

y = Ax + B. This gives us a line predicting the correlation between Touchstone and the other

benchmarks. In addition, we calculate a 95% con�dence interval surrounding each parameter. This

gives us a range for performance predictions for di�erent processors having di�erent Touchstone

counts. The numeric results are given in Table 3. Figures 3 through 7 depict the results graphically.

Without linear regression, the mean of Touchstone and the other benchmarks can be used for

the predicted correlation. The quantity is called the total sum of squares. It can be broken

into two parts: the variation not explained by the regression and the variation explained by the

regression. The fraction of the variation that is explained by the regression is called the coe�cient

of determination, R

2

. The \goodness" of a regression is measured by R

2

. The higher the value of

R

2

, the better the regression. If the regression is perfect in the sense that all observed values are

equal to those predicted by the model, R

2

will be one. On the other hand, if the regression model

is completely bad, R

2

will be zero. R

2

values above .8 are said to have a strong correlation, R

2

values above between .5 and .8 are considered having a medium correlation, and R

2

values below

.5 have a weak correlation [8]. Table 3 lists the coe�cient of determination for Touchstone and

each benchmark and Figure 8 gives a graphical representation of the coe�cient of determination

for each benchmark.

Touchstone correlates strongly with all the benchmarks with the exception of gcc. Most likely this

is because Touchstone is a processor intensive benchmark while gcc reects the performance of

more of the system, including Mbytes of RAM and disk speed.

8

0

2

4

6

8

10

12

14

16

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

M
flo

ps

Touchstone Fp Count

Crimson
Indigo

Sparc10
IPX

Sparc2
486
Iris

Sparc1
386

Figure 3: LINPACK Mops vs. TouchFp. The horizontal axis is the Touchstone count. The vertical axis is the

Mops score. The middle line is the least-squares line �t. The upper and lower curving lines represent the 95%

con�dence interval around the least-squares line �t.

3.2 Touchstone Portability

To test our second hypothesis, Touchstone is easier to port than other benchmarks, we create a

portability function that takes into account a level of e�ort to run each benchmark. Our level of

e�ort is based on the number of user steps required to port the benchmark, the amount of time it

took to compile, and the disk space required. We weight each component roughly based on a dollar

cost:

� Change is the number of line changes necessary to either the source code or the Makefile in

order to ready the benchmark for a new platform. Change also includes the number of steps

required to do an installation and run. We assume each change takes 5 human minutes. We

weight human time at $50/hour, so each change costs about $12.

� Compilation is the number of minutes to compile the benchmark. We weight machine time at

$1 per hour, so each minute of compilation costs about $.16.

� Space is the number of Mbytes required to support the benchmark, including source code,

compiled code and output data. We weight space at $1 per Mbyte.

The total measure of portability is the weighted sum of each of the above components for each of

the 5 operating systems listed in Table 1 (Irix 5.2, SunOs 4.1.4, Irix 4.01, SunOs 4.0.2 and Linux

1.2.13):

9

0

10

20

30

40

50

60

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

S
pe

cI
nt

Touchstone Int Count

Crimson
Indigo

Sparc10
IPX

Sparc2
486
Iris

Sparc1
386

Figure 4: SPECInt vs. TouchInt. The horizontal axis is the Touchstone count. The vertical axis is the SPECint

score. The middle line is the least-squares line �t. The upper and lower curving lines represent the 95% con�dence

interval around the least-squares line �t.

Portability = Change� 12 + Compilation� :16 + Space� 1

The SPEC benchmarks were unavailable to us because of their prohibitive costs. Their portability

was the dollar cost for the integer and oating point benchmarks (see Section 1).

Table 4 summarizes the portability for each benchmark and Figure 9 shows the total portability

graphically.

The installation of gcc was very resource intensive. The distribution alone required over 20 Mbytes

of disk space. Several of the systems we ran our experiments on had disk quotas in e�ect. On these

Benchmark Change Compilation Space Portability

Touchstone 5 10 .2 62

Quicksort 5 20 1.5 65

LINPACK 21 30 2.8 260

Gcc 18 400 30 310

SPEC - - - 900

Table 4: A Measure of Portability. \Change" is the number of line changes necessary to ready the benchmark for a

new platform. \Compilation" is the number of minutes to compile the benchmark. \Space" is the number of Mbytes

required to support the benchmark. \Portability" is a weighted sum of Change, Compilation and Space.

10

0

10

20

30

40

50

60

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

S
pe

cF
p

Touchstone Fp Count

Crimson
Indigo

Sparc10
IPX

Sparc2
486
Iris

Sparc1
386

Figure 5: SPECfp vs. TouchFp. The horizontal axis is the Touchstone count. The vertical axis is the SPECfp

score. The middle line is the least-squares line �t. The upper and lower curving lines represent the 95% con�dence

interval around the least-squares line �t.

systems, we had to receive assistance from the system administrators in running our benchmarks.

From the above data, we �nd Touchstone is the most portable of the benchmarks tested.

4 Conclusion

Benchmarks provide a standard measure of performance that demonstrate system improvements

and allow users to make informed system choices. Unfortunately, when benchmark results are

unavailable for a system, obtaining and running typical benchmarks can be di�cult or impossible.

Touchstone can overcome some of the di�culties in running standard benchmarks. Touchstone

is a process that increments a variable in a tight loop for a �xed period of time. This simplicity

makes Touchstone easier to port than other benchmarks. The count value that Touchstone reports

represents the power of the processor. Surprisingly, this simple measure of performance has a strong

correlation with processor performance under other benchmarks. Thus, Touchstone can be used

as an quick, accurate easy-to-use indicator of processor performance. Moreover, you can convert

Touchstone results into common benchmark results by using the linear equations in Table 3.

11

0

0.2

0.4

0.6

0.8

1

1.2

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

1
/ (

Q
ui

ck
so

rt
 T

im
e

in
 M

ill
is

ec
on

ds
)

Touchstone Int Count

Crimson
Indigo

Sparc10
IPX

Sparc2
486
Iris

Sparc1
386

Figure 6: Quicksort vs. TouchInt. The horizontal axis is the Touchstone count. The vertical axis is the 1 over the

quicksort score. The middle line is the least-squares line �t. The upper and lower curving lines represent the 95%

con�dence interval around the least-squares line �t.

4.1 A Grain of Salt

All of the Touchstone measurements should be taken with a grain of salt, for they are largely

dependent upon the compiler used. For example, compiling Touchstone on the Sun IPX with gcc

resulted in a count 1/3 lower than the Touchstone count reported above using acc. In addition,

compiler optimizations, such as loop unrolling and instruction reordering to exploit instruction slots

available after delayed branch instructions, may increase Touchstone counts even more. According

to John Larson and David Bailey, such manipulative benchmarking becomes \benchmarketing"

when the normally objective evaluation process becomes awed incomplete, irrelevant, or invalid

[13, 2]. Therefore, this weakness in Touchstone is to be expected. Standard benchmarks such as

LINPACK and SPEC always list the compiler names and ags that the benchmark was tested under

when reporting benchmark performance. Ultimately, it is up to the user to apply Touchstone

properly if a reasonably accurate indicator of processor performance is to be expected.

4.2 Other Applications of Touchstone

It is easy to extend Touchstone to study the e�ects that other peripherals and other processes on

processor performance. This use of Touchstone is depicted in Figure 10. The Touchstone count on

the bare machine gives us the processor potential for the machine, depicted by the single column

on the far left. We then run Touchstone with the other component we wish to test. The di�erence

in the bare Touchstone count and the component Touchstone count is the component-induced load.

12

0

0.005

0.01

0.015

0.02

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

1
/ (

G
cc

 T
im

e
in

 M
ill

is
ec

on
ds

)

Touchstone Int Count

Gcc vs. Touchstone

Indigo
Sparc10

IPX
Sparc2

486
Iris

Sparc1
386

Figure 7: Gcc vs. TouchInt. The horizontal axis is the Touchstone count. The vertical axis is the 1 over the gcc

score. The middle line is the least-squares line �t. The upper and lower curving lines represent the 95% con�dence

interval around the least-squares line �t.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mflops SpecInt SpecFp Quicksort Gcc

C
oe

ffi
ci

en
t o

f D
et

er
m

in
at

io
n

strong correlation

medium correlation

weak correlation

Figure 8: Correlation with Touchstone. The horizontal axis is the coe�cient of determination. The vertical axis is

the benchmark. The horizontal lines represent the weak, moderate and strong correlation boundaries as indicated.

13

0

200

400

600

800

1000

Touchstone Quicksort Linpack Gcc Spec

P
or

ta
bi

lit
y

Figure 9: Total Portability. The weighted sum of Change, Compilation and Space is shown for each benchmark.

For example, the middle two columns show the count obtained if two Touchstone processes were

run simultaneously. On a Sun IPX, each Touchstone would count to about 0.85 million per second.

In the last two columns, the processor load of the send process would be the count obtained on a

bare machine less the count obtained by the Touchstone process. If the Sun IPX were sending data

at a rate of a 1280 byte packet every 160 ms, the count would be about 1.69 million in one second.

The di�erence between the 1.7 million barecount and the 1.69 million send count can be converted

into milliseconds of processor load, resulting in a send load of about 1 millisecond per second. As

another example, a Touchstone count on a system with a SCSI disk having a faulty parity bit can

be compared to a Touchstone run on the same system with a healthy SCSI disk.

2

The di�erence

in the values reported is the processor degradation due to the failing disk.

To verify that Touchstone does indeed accurately report load of processor bound processes with

which it runs concurrently, we ran Touchstone with 1, 2, 3 and 4 other Touchstones. We expect the

count value to be (count on bare machine) / (N+1), where N is the number of other counters

running. Figure 11 depicts the result of this experiment. At all points, the predicted values

were within the con�dence intervals for the measured values. In fact, we have used Touchstone

successfully extensively to measure the processor load of many low-level systems [4, 3, 5]. Note

that in instances where processor degradation was very slight, single-user mode was necessary to

determine exact performance.

In time sharing systems, Touchstone can also be used to analyze computing power. Touchstone

2

In fact, we used Touchstone for just this purpose. The ailing disk caused a performance degradation of 20%

because of the many interrupts it generated.

14

Touchstone Touchstone Touchstone Touchstone Send

Barecount

Figure 10: Touchstone to Measure Process Load. Touchstone is run on a quiet machine to get the \barecount" as

depicted on the left. Touchstone is then run with the component to be tested, such as another Touchstone (as depicted

in the middle) or a process that sends packets (as depicted on the right). The processor load of the component is the

barecount less the count obtained by the Touchstone process.

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

0 1 2 3 4 5

C
ou

nt

Number of Extra Touchstones

IPX Loads With Multiple Touchstones

predicted
meaured

95% confidence interval

Figure 11: Sun IPX loads with multiple Touchstone processes. The points are from 5 samples each with 95%

con�dence intervals. The largest interval is 8% of the measured value. The curving line is the predicted value. At all

points, the predicted values were within the con�dence intervals for the measured values.

15

can be run several times during the day. The mean value reported indicates the mean available

processor power. In this sense, the Touchstone value on a lightly loaded machine will give the

peak processor power. To determine processor utilization, Touchstone can be run as a low-priority

process, through nice or some other means.

3

The value reported represents the amount of \unused"

processor and can be used to estimate the number of additional users a time-sharing system may

support before the processor becomes the critical resource.

4.3 Future Work

There are several possible areas for future work:

� Other Workstations. We ran Touchstone on most of the workstation platforms that were

available to us. Future work might involve seeking assistance from other researchers, perhaps

even the Internet community at large, in running Touchstone on other workstations.

� Other Benchmarks. We correlated Touchstone with one benchmark from each of the bench-

mark categories presented in Section 1. Future work might involve correlating Touchstone to

additional benchmarks within those categories.

� Multi-Processors. Touchstone may not give a good indication of performance for machines

that have more than one processor. For although a counting loop can certainly be pipelined,

splitting the work to multiple processors may be di�cult since counting is inherently sequential.

Future work may involve research into a counter that utilizes multiple processors.

References

[1] The Performance Database Server. 1997. The URL for this document can be found at

http://netlib2.cs.utk.edu/performance/html/PDStop.html.

[2] David H. Bailey. How to fool the masses when giving performance results on parallel computers.

Supercomputer, 8(5):4 { 7, September 1991.

[3] M. Claypool, J. Riedl, J. Carlis, G. Wilcox, R. Elde, E. Retzel, A. Georgopoulos, J. Pardo,

K. Ugurbil, B. Miller, and C. Honda. Network requirements for 3D ying in a zoomable brain

database. IEEE JSAC Special Issue on Gigabit Networking, 13(5), June 1995.

[4] Mark Claypool and John Riedl. Silence is golden? The e�ects of silence deletion on the CPU

load of an audio conference. In Proceedings of IEEE Multimedia, Boston, May 1994.

[5] Mark Claypool and John Riedl. A quality planning model for distributed multimedia in the

virtual cockpit. In Proceedings of ACM Multimedia, pages 253 { 264, November 1996.

[6] Standard Performance Evaluation Corporation. SPEC faq. December 1995. The SPEC Primer

is frequently posted to the newsgroup comp.benchmarks. SPEC information can also be found

at http://www.specbench.org/.

[7] H.J. Curnow and B.A Wichmann. A synthetic benchmark. The Computer Journal, 19(1),

1976.

3

Pilot tests suggest that a maximally niced Touchstone running on a machine with a processor bound process

will only count 4% as high as an unloaded Touchstone.

16

[8] Jay Devore and Roxy Peck. Statistics { The Exploration and Analysis of Data. Wadsworth,

Inc., second edition edition, 1993.

[9] Jack J. Dongarra. Performance of various computers using standard linear equations software.

Technical Report CS-89-85, University of Tennessee, February 1994. To obtain a postscript

copy of the report send mail to netlib@ornl.gov and in the message type: send performance

from benchmark.

[10] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers, Inc., 1990.

[11] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley and Sons, Inc.,

1991.

[12] Leslie Lamport. The Latex Document Preparation System/User's Guide and Reference Manual.

Addison-Wesley Publishing Company, 1985.

[13] John L. Larson. Benchmarks. Newsletter of IEEE Computer Society Technical Comittee on

Supercomputer Applications, 6(1):3 { 4, June 1992.

[14] F.M McMahon. The livermore fortran kernels: A computer test of numerical performance

range. Technical Report UCRL-55745, Lawrence Livermore National Laboratory, University

of California, December 1986.

[15] R.P. Weicker. Dhrystone: A synthetic systems programming benchmark. Communications of

the ACM, 27(10):1013 { 1030, October 1984.

17

