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Abstract

With rapid progress in application development and technologies, there is an increasing need to specify

and handle complex schema changes of databases. The existing support for schema evolution in current

OODB systems is limited to a pre-de�ned taxonomy of simple schema evolution operations with �xed seman-

tics. We have proposed an extensible framework, SERF(Schema Evolution using an Extensible Re-Usable

Framework) for schema transformations to address this open problem. The SERF framework succeeds

in giving the user the exibility to de�ne the semantics of their choice, the extensibility of de�ning new

complex transformations, and the power of re-using these transformations through the notion of templates.

In this paper, we now report on OQL-SERF, the realization of our concepts based on the ODMG standard

on top of PSE (Persistent Storage Engine) Object Design Inc. We have utilized not only the ODMG object

model, but have also used OQL as the database transformation language, the ODMG MetaData Repository

for providing meta information utilized by the templates and Java's binding of ODL. In order to design

a schema evolver manager for ODMG, we had to develop a taxonomy of schema evolution primitives for

the ODMG object model that is minimally complete. Related to the implementation of OQL-SERF on

top of PSE (Persistent Storage Engine), we also describe the design and implementation issues involved in

developing a java-based schema evolution manager as well as an OQL query engine for PSE. Our working

prototype, OQL-SERF, demonstrates the capability of our SERF approach to handle a large set of schema

transformations.

1 Introduction

With current database technology, object-oriented database systems (OODBs) can support very complex

object models like the ODMG object model [Cea97]. These complex object models have paved the road for

modelling dynamic applications which by their very nature have frequent schematic changes and upgrades

[FFM

+

95].
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Unfortunately, the existing support for schema evolution provided by current OODBs [BKKK87, Tec94,

BOS91, IS93, Inc93] is limited to a pre-de�ned taxonomy of simple �xed-semantic schema evolution opera-

tions. However, such simple changes, typically to individual types only, are not su�cient for many advanced

applications [Br�e96]. More radical changes of the schema, such as combining two types or rede�ning the

relationship between two types, are very di�cult or even impossible to achieve with the current commercial

database technology [Tec94, BOS91, IS93, Inc93]. In fact, it typically requires the user to write throw-away

programs to accomplish these. Research has been done recently towards providing evolution support for

such complex changes [Br�e96, Ler96]. However, this new work is again limited to providing a �xed set of

now more complex operations with �xed semantics.

The provision of any �xed set, may it be simple or complex, is not satisfactory, as it would be very

di�cult for any one user or system to pre-de�ne all possible semantics and all possible transformations that

could be required by a user in the future. Our SERF framework [CJR98] addresses this by introducing

the powerful concept of schema transformations. A SERF schema transformation uses a database query

language to integrate primitives for schema updates, meta-data retrieval for schema information access,

object updates, and object manipulations to formulate a powerful script for schema restructuring. These

schema transformations are then generalized in our framework as transformation templates such that they

are applicable to any schema and thus are re-usable for building new transformations. The SERF framework

[CJR98] thus gives users:

� The exibility to de�ne the transformation semantics of their choice.

� The extensibilty of de�ning new complex transformations meeting user-speci�c requirements.

� The generalization of these transformations to templates so as to be applicable to any schema.

� The re-useability of a template from within another template.

� The ease of template speci�cation by programmers and non-programmers alike.

� The soundness of these user-de�ned transformations in terms of assuring schema consistency.

� The portability of these transformations across OODBs as libraries.

In order to validate this proposed concept of SERF transformations [CJR98], we now set out to develop a

working system, called OQL-SERF, both as proof of concept as well as to explore the suitability of the ODMG

standard as the foundation for a template-based schema evolution framework. Our OQL-SERF development

is based on the ODMG standard which today is the only source for a reliable basis to develop open OODB

applications. ODMG holds 90% of the existing commercial OODB market and is fast becoming the standard

for OODB systems [Cea97]. The ODMG standard de�nes an Object Model, a Schema Repository, an Object

Query Language (OQL) as well as a transaction model for OODB systems (see Section 5).

As demonstrated in this paper, OQL-SERF uses the ODMG standard in its entirety. It uses an extension

of Java's binding of the ODMG model as its object model, our binding of the Schema Repository for its

MetaData Dictionary, OQL as its database transformation language. It uses Object Design Inc.'s PSE as

its persistent store which is a lightweight persistent storage engine and it is 100% pure Java. However, as

PSE has limited facilities in terms of schema evolution, as part of the OQL-SERF implementation e�ort

we �rst developed a schema evolution manager. This e�ort also involved the de�nition of the invariants

for preserving the ODMG Object Model and the development of a set of schema evolution primitives that

preserve these invariants.

The main contributions of this paper are:

� Axioms of Preservation - the invariants for preserving the ODMG object model under schema evolution.



� Taxonomy of Schema Evolution Primitives - we have a complete set of ODMG-based schema evolution

primitives such that they have minimal semantics and a combination of them is able to describe a large

set of schema transformations.

� Development of the �rst 100% Pure Java Schema Evolution Manager - have design and implementation

of a dynamic schema evolution facility for PSE Pro 2.0

1

.

� Development of an OQL Query Engine - have design and development of an OQL Query Engine for

PSE Pro 2.0 using JavaCC, JTB and the Visitor design pattern.

� Software Engineering Challenges - the requirement analysis of the SERF concept, the choices and the

design decisions we had to make in the process of developing this system so as to make it re-usable and

extensible to other systems.

� Development of OQL-SERF - design and implementation of OQL-SERF fully based on ODMG, that

is, the Object model, OQL and the Schema Repository, as a proof of concept for the SERF framework.

Thus also showing the portability of the SERF Framework to any ODMG compliant OODB system.

The rest of the paper is organized as follows. Section 2 presents some related work and Section 3

presents the SERF framework. Section 4 gives the SERF architecture and the requirements for an OODB

system. Section 5 presents the the relevant parts of the ODMG Standard, i.e., the ODMG Object Model,

the MetaData and the Object Query Language. Section 6 describes the invariants for the ODMG object

model and describes how evolution of this model can be done. Section 7 describes the implementation of

OQL-SERF based on the ODMG Object Model and developed on top of PSE Pro 2.0. We conclude in

Section 8.

2 Related Work

Schema evolution is a problem that is faced by long-lived data. The goal of schema evolution research is to

allow schema evolution mechanisms to change not only the schema but also the underlying objects to have

them conform to the modi�ed schema. One key issue in schema evolution is understanding the di�erent

ways of changing a schema. The �rst taxonomy of primitive schema evolution operations was de�ned by

Banerjee et al. [BKKK87]. They de�ned consistency and correctness of these primitives in the context of the

Orion system. Until now, current commercial OODBs such as Itasca [IS93], GemStone [BOS91], ObjectStore

[Inc93], and O

2

[Tec94] all essentially handle a set of evolution primitives based on their own object models.

In recent years, the advent of more advanced applications has led to the need for support of complex

schema evolution operations. [Br�e96, Ler96, Cla92] have investigated the issue of more complex operations.

[Ler96] has introduced compound type changes in a software environment, i.e., focusing on the type and not

on the object instance changes. She provides compound type changes like Inline, Encapsulate, Merge, Move,

Duplicate, Reverse Link and Link Addition.

[Br�e96] proposed a similar list of complex evolution operations for O

2

, i.e., now considering both schema

as well as object changes. [Br�e96] claims that these advanced primitives can be formulated by composing

the basic primitives that are provided by the O

2

system. Like other previous work, the paper however still

provides a �xed taxonomy of primitives to the users, instead of giving them the exibility, extensibility and

customization as o�ered by our approach. Also for object changes, the user is limited to using the object

migration functions written in the programming language of O

2

.

1

The dynamic schema evolution facility, the OQL Query Engine for PSE Pro 2.0 and OQL-SERF will be available for

download from our web site http://davis.wpi.edu/OOSE/SERF.html.



In summary, all previous research in this area tends to provide the users with a �xed set of schema

evolution operations [FFM

+

95, BKKK87]. No provision, other than for the user to write ad-hoc programs

for a desired transformation, is made for the situation where this does not meet the user's speci�c needs.

How to add extensibility to schema evolution is now the focus of our e�ort.

In 1991, Cattell set up the Object Database Management Group (ODMG) to standardize the object

models used by the di�erent object database vendors. Today, although there are over 20 members in the

ODMG consortium, to the best of our knowledge we are the �rst to look at providing an extensible ODMG-

compliant schema evolution framework. Our OQL-SERF tool focuses on an implementation of the SERF

framework based on the ODMG standard.

Peters and Ozsu [PO95] have introduced a sound and complete axiomatic model that can be used to

formalize and compare schema evolution modules of OODBs. This is the �rst e�ort in developing a formal

basis for schema evolution research, and we utilize their notations for the description of our invariants and

primitives.

Other research has studied the issue of when and how to modify the database objects to address

such concerns as e�ciency, availability, and impact on existing code. Research on this issue has focused on

providing mechanisms to make data and the system itself more available during the schema evolution process

[Lau97a], in particular deferred and immediate propagation strategies [FMZ94b, FMZ94a]. In principle,

either of these propagation strategies could be implemented for our framework.

Another important issue focuses on providing support for existing applications that depend on the old

schema, when other applications change the shared schema according to their own requirements. Research

to address this issue has followed along two possible directions, namely, views [RRL97, RR95, RR97, Ber92]

and versions [SZ86, Lau97b]. Some of this on-going research may need to be re-examined in order to handle

the complex notion of transformations as introduced by our templates.

3 The SERF Framework

The SERF Framework addresses the limitation of current OODB technology that restricts schema evolution

to a prede�ned set of simple schema evolution operations with �xed semantics. It provides support for

arbitrary user-customized and possibly very complex schema evolution operations. The SERF framework is

based on the idea that three key ingredients, namely:

� the set of schema evolution primitives provided by the underlying OODB system,

� the Schema Repository exposed by the underlying OODB system, and

� the query language supported by the OODB system.

can be combined together to transform both the schema and the objects in a general and re-usable manner

through a transformation as shown in Figure 1.

Figure 1 illustrates the transformation for inlining via an example. Inlining is de�ned as the replacement

of a referenced type with its type de�nition [Ler96]. For example in Figure 2 the Address type is inlined into

the Person class, where all the attributes de�ned for the Address type (the referenced type) are now added

to the Person type resulting in a more complex Person class. We claim that in general a transformation

accomplishes this using the following four key steps

2

:

2

Note that each of these four steps are not pure but can often be composed of or inter-mingled with the other steps. For

example, Step D also involves the query of objects. We use these four key steps to denote the primary functionality of the



refClass = element (

              select a.attrType

     from MetaAttribute a

     where a.attrName = address

            and   a.classDefinedIn = Person )

define AddressAttrs() as

   select c.localAttrList

   from MetaClass c

   where c.metaClassName = refClass;

for all attrs in AddressAttrs():

   add_atomic_attribute (Person, attrs.attrName,

                         attrs.attrType,

                         attrs.attrValue);

define extents() as

   select c

   from Person c;

for all obj in extents():

   for all AA in AddressAttrs ()

       obj.set (obj.AA, valueOf(obj.address.AA))

delete_attribute (Person, address);

Step A

Step B

Step C

Step D

Step B

Figure 1: The Inline SERF Transformation.

� Step A: Query the MetaData. To make a transformation general and re-usable for any possible

schema in the form of a transformation template, it is necessary that a user be able to query the

metadata using a query language. This information can then be used to make decisions about changes

to the schema. In Figure 1 this step denoted by Step A which retrieves all the objects from the

metadata that model the properties of the Address object.

� Step B: Change the Schema. All structural changes, i.e., changes to the schema, are exclusively

made through the schema evolution primitives. This restriction helps us in guaranteeing the schema

consistency after the application of a transformation [CJR98]. The information gathered in Step A can

provide the metadata to be changed as well as the information needed for determining how to change

the metadata, both serving as input to these SE primitives. For example, Step B in Figure 1 shows

the addition of extra attributes through the add attribute primitive to the Person class.

� Step C: Query the Objects. As a preliminary to performing object transformations, we need to

obtain the handle for objects involved in the transformation process. This may be objects from which

we copy object values (e.g., Address objects in Step C), or objects that get modi�ed themselves (e.g.,

Person objects in Step D).

� Step D: Change the Objects. The next step to any schema transformation logically is the trans-

forming of the objects to conform to the new schema. Through Step C, we already have a handle to

the a�ected object set. Step D in Figure 1 shows how a query language like OQL and system-de�ned

transformation.
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name
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address street

city

state

Person

name
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Figure 2: Example of an Inline Transformation

update methods, like obj.set(...), can be used to perform object transformations.

In general, a transformation in our SERF framework uses a query language to query over the schema

repository, i.e., the metadata and the application objects, as in Steps A and C. The transformation also

uses the query language to invoke the schema evolution primitives for schema structure changes and the

system-de�ned functions for updating the objects, as in Steps B and D.

A SERF transformation as given in Figure 1 allows a user to exibly de�ne schema transformations

for a given schema, but to make them re-usable across di�erent schemas SERF goes one step further and

introduces the notion of templates [CJR98]. A template is an arbitrarily complex tranformation that has

been encapsulated and generalized with a name and a set of parameters. By parameterizing the variables

involved in a transformation such as the input and the output classes, e.g., the Person and Address classes

in our example and their properties, e.g., the address attribute in our example, and assigning a name

to the transformation e.g., inline in our example, a transformation becomes a generalized reusable module

applicable to any application schema. Figure 3 shows the inline transformation of Firgure 1 as a template.

Vice versa,a when this inline template as shown in Figure 3 is instantiated with the variables Person and

address it results in the SERF transformation shown in Figure 1. These templates can then be collected in

a template library, guaranteeing the availability of these templates to any user at any time, just as the �xed

set of schema evolution operations is available to the users in any regular schema evolution system.

4 Towards an ODMG Compliant SERF

4.1 System Architecture

Figure 4 gives the general architecture of the SERF framework [CJR98]. The components listed on the top

half of the �gure make up the framework and thus are to be provided by any implementation realizing the

SERF framework. The components listed below the line represent system components that we expect any

underlying OODB system to provide.

Figure 4 also shows the interaction of the various modules during the execution of a template. In

general, a template

3

uses a query language to query over the schema repository, i.e., the metadata

4

,

and the application objects. The template also uses the query language to invoke the schema evolution

primitives for modifying the schema types (schema updates), and system-de�ned functions for updating the

object instances (data updates). These interactions are captured in the Figure 4 by arrows between the

3

Although we distinguish between a transformation and a template, unless explicitly stated we use the term template to

refer to both.

4

More details on the schema repository are presented in Section 4.2.



begin template inline (className, refAttrName)
{

  refClass = element ( 
                select a.attrType
                from MetaAttribute a

                where a.attrName = $refAttrName
                and   a.classDefinedIn = $className; )

   define localAttrs(cName) as
      select c.localAttrList
      from MetaClass c

      where c.metaClassName = cName;

   // get all attributes in refAttrName and add to className

   for all attrs in localAttrs(refClass)
      add_atomic_attribute ($className, attrs.attrName, 
                            attrs.attrType, attrs.attrValue);

   // get all the extent

   define extents(cName) as
      select c

      from cName c;

   // set: className.Attr = className.refAttrName.Attr

   for all obj in extents($className):
      for all Attr in localAttrs(refClass)

         obj.set (obj.Attr, valueOf(obj.refAttrName.Attr))
   

   delete_attribute ($className, $refAttrName);
}

end template

Legend: cName: OQL variables
$className: template variables
refClass: user variables

Figure 3: The Inline Transformation as a SERF Template.

Template Module, the Query Engine, the Schema Repository, the Schema Evolution Manager and the Object

Repository.

4.2 System Requirements for the SERF Framework

The SERF framework imposes the following minimum requirements for the system modules, as shown below

the line in Figure 4, provided by the underlying OODB system :

� Schema repository. For a transformation (as shown in Figure 1) to be generalizable to a template (as

shown in Figure 3), we need to be able to query and access the metadata in some manner. For example,

to merge two source classes into a single merge class by doing a union of the properties of the source

classes, we need to get the properties of the source classes and add them to the merge class. In general

to be able to get this information in a template, our framework requires access to the metadata. Most
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Figure 4: Architecture of the SERF Framework

OODB systems indeed do allow access to the metadata, i.e., the data dictionary, and in most cases this

is via some high-level declarative interface like a query language instead of just a procedural low-level

API.

� Taxonomy of schema evolution primitives. The OODB needs to provide a set of schema evolution

primitives that is complete

5

and consistent [BKKK87]. Most OODB systems provide a taxonomy of

schema evolution primitives and have invariants de�ned for preserving the consistency of the schema

graph. The set of schema evolution primitives used is dependent on the underlying object model

[BKKK87, Tec94].

� Query language. A transformation is a sequence of statements that gather metadata information, ex-

ecute schema evolution primitives, and invoke system-de�ned methods for object manipulations. There

is therefore a need for a uniform language to access, query and modify both the metadata information

and the application objects. For the SERF framework, we propose the use of a declarative language,

namely the query language of the OODB system itself, to accomplish this task, thus requiring the query

language to have the expressibility power to do all of the above. Thus for the SERF Framework we

require the query language to provide:

5

By complete we mean a complete set of schema evolution primitives as de�ned by Banerjee et al. [BKKK87] in terms of

achieving all possible basic types of schema graph manipulations.



� simple-to-use access to the OODB system,

� constructs to invoke the schema evolution primitives,

� support for creating, deleting and modifying objects either through some built-in features as in

SQL or through inovocation of system-de�ned update methods,

� support for universal and existential quanti�cation, for example:

for all x in Students: x.student_id > 0

and

exists x in Doe.takes:x.taught_by.name = ``Turing''.

In an object-oriented realization of the SERF framework, we also require the query language to provide

not just the above but also to provide the object-oriented notions such as complex objects, object identity,

path expressions, and polymorphism.

4.3 OQL-SERF: Why ODMG?

The analysis of the requirements for the underlying OODB system revealed the ODMG standard to be

a perfect �t for the SERF Framework. The ODMG object model encompasses the most commonly used

object models and standardizes the features into its own object model, thus increasing the portability and

applicability of our prototype. ODMG also de�nes metadata and MetaObject Protocols in the shape of

the ODL Schema Repository and explicitly states that this Repository should be accessible to tools and

applications using the same operations that apply to the user-de�ned types [Cea97].

ODMG also de�nes a query language, OQL, as part of its standard that is a superset of SQL-92 interms

of its querying capabilities. In addition OQL also provides programming-language-like constructs such as for

loop, iterators etc.. And, although OQL does not have any built in features for updating objects, it has the

capability to invoke system-de�ned functions. This implies that it can update objects through system-de�ned

set methods and also it can invoke schema evolution primitives. OQL thus meets all the requirements of a

query language as set forth by the SERF framework.

In this paper, we present OQL-SERF, an object-oriented implementation of the SERF Framework based

on the ODMG standard. However the SERF Framework itself as presented in this paper is not limited to

relational or object technology nor is it limited to any particular object model, but the basic SERF principles

could be applied to such other environments as long as they meet the four requirements given in Figure 4.2.

5 ODMG Standard

The ODMG standard is based on the continuing work for OODB systems undertaken by the members of the

Object Database Management Group (ODMG). The major components of the ODMG standard as applied

to the SERF framework are described in the subsequent sections.

5.1 ODMG Object Model

The ODMG Object Model is based on the OMG Object Model for object request brokers, object databases

and object programming languages [Cea97, Clu98]. For the purpose of the SERF framework we limit our

description of the ODMG Object Model to the Java's binding of the object model.



Types, Objects and Literals. The basic modeling primitives for an ODMG compliant database are

objects and literals or immutable objects which are categorized by their types implying that there are object

types

6

and literal types. All elements of a given type have a common range of state (i.e., the same set of

properties), and common behavior (i.e., the same set of de�ned operations). Objects are also referred to as

the instances of their type.

Object Identity. The identity of an object distinguishes it from all other objects in a database i.e., they

are unique. The identity of an object is independent of its state and persists through the lifetime of the

object. Object identity provides a means to reference objects and thus allows an object to be shared by

others.

Literals do not have their own identi�ers; they are characterized by their state. As literals are immutable

objects a change in the state of the literal creates a new one.

Object Names. In addition to being assigned an object identi�er by the OODB system, an object may be

given one or more names that are meaningful to the user. The scope of uniqueness of names is the database.

This is called persistence by reachibility and implies the existance of a garbage collector that deletes objects

that are no longer referenced. A literal may also be given a name.

Inheritance. Although ODMG de�nes multiple inheritance, Java's binding of ODMG Model supports

only single inheritance

7

. This implies that a user may de�ne a class to be a subclass of only one other

class. A subclass inherits the range of states and behavior from its superclass. Moreover, an object can be

considered as an instance of its class as well as its superclass.

Extent of Types. Although Java's binding of the ODMG model does not as yet support the notion of

extents, we have found it to be a necessary extension to the binding

8

. The extent of a class is the set of

persistent objects belonging to that class. Once a class has been de�ned with extent, the system is in charge

of managing the set of all its persistent instances. This implies that when an object is created the system

inserts it into the extent of its direct type and vice versa when it is removed the system removes it from the

extent of its direct type. The extent of a class is also implicitly included in the extent of the superclass.

ODMG Schema A schema is composed of a set of object and literal type de�nitions, a class hierarchy

and a set of names for persistence by reachability.

5.2 ODMG Schema Repository

MetaData is descriptive information that de�nes the schema of a database. It is used by the OODB system at

initialization time to de�ne the structure of the database and at run-time to guide its access to the database.

MetaData is stored in a Schema Repository, which is also accessible to tools and applications using the same

operations that apply to user-de�ned types, like OQL.

6

The terms \class" and \type" are used interchangeably in the remainder of this paper.

7

We deal with the extends relationship which does specilization of one class to another. At this point we do not deal with

the implements relationship which does does inheritance from an abstract type (i.e., interface) to an implementation class.

8

In the absence of support for extents, a user would have to either declare and maintain an explicit collection for each type

or we would have to scan the entire space to retrieve an object of a particular type. Both these options are tedious and very

time consuming for the user as well as the sytem. For this we found it necessary to implement extents.



The Schema Repository is stored in the form of meta-objects interconnected by relationships that de�ne

the schema graph. A database schema, the types and the properties of these types all exist in the Schema

Repository as meta-objects. For example, a class Person and an attribute name are meta-objects. Most

meta-objects have a de�ning scope which gives the naming scope for the meta-objects in the repository. For

example, the de�ning scope for Person would be its de�ning schema and the de�ning scope for name would

be Person. In addition to this, the Schema Repository also contains the inheritance relationships between

the meta-objects which de�nes the schema graph. These relationships help guarantee the referential integrity

of the meta-object graph.

5.3 ODMG's Object Query Language - OQL

As part of its standard, ODMG has de�ned an object query language OQL which supports the ODMG data

model. OQL is similar in format and features to SQL 92 but has extensions for some object-oriented notions

like complex objects, object identity, path expressions, polymorphism, operation invocation and late binding.

In this section we describe a small subset of the language that is used for the examples in the paper. For a

complete description of OQL the reader is referred to [Cea97].

Selection. As a stand-alone query language, OQL supports the querying over any kind of object (i.e.,

individual object instances, collections and even the metadata in the schema repository) starting from their

names which act as entry points to the database. OQL supports querying with and without object identi�ers.

For example, if the schema de�nes the types Person and Employee with extents Persons and Employees

then we can query Persons as follows:

select distinct x.age

from Persons x

where x.name = ``Pat''

This selects the set of ages of all persons named Pat, returning a literal of type set<integer>.

select x

from Persons x

where x.name = ``Pat''

This selects all persons with the name Pat, returning a literal of type set<Person> where each Person

object in the resultant set has the same object identi�er as that in the database.

Creation. OQL supports the creation of objects both with and without identity. For example,

Person(name: ``Pat'', birthdate:''3/28/95'',salary:10000) creates an instance of the type Person

using the Person type constructor. This constructs a new Person object with a new object identi�er.

Similarly, struct (name:''Pat'', birthdate:''3/28/95'', salary:10000 ) yields a structure with two

�elds but no object identity.

Path Expressions. ODMG as mentioned in Section 5.1 supports the naming of objects and also the

reachability of other objects through this named object (i.e., persistance by reachability). From OQL, one

therefore needs a way to navigate from a named object and reach the right data. For example, the query

p.spouse.address.city.name starts from a Person, gets his/her spouse, a Person again, goes inside the

complex attribute of type Address to get the City object whose name is then accessed.



Method Invocation. OQL can call a method with or without parameters anywhere the result type of

the method matches the expected type in the query. For example,

select p.oldest-child.address

from Persons p

where p.lives-in(``Paris'')

In this statement we are trying to retrieve the address of the oldest-child of all those Persons who

live in Paris. Here oldest-child is a method that takes no parameters but returns an object of type

Person and thus we are trying to retrieve the Person.address. The method lives-in takes one parameter

of type String and returns true or false depending on whether the oldest-child lives in Paris or not.

Although OQL does not have any explicit support for updating the objects this capability to invoke

methods allows a user to invoke application-speci�c update methods through the query language.

6 Evolving the ODMG Object Model

Today, some support for schema evolution is provided by most OODB systems [BKKK87, Tec94, BOS91,

IS93, Inc93]. This support typically is in the form of a pre-de�ned taxonomy of simple �xed-semantic schema

evolution operations. While PSE Pro 2.0 supports the ODMG model and does provide support for schema

evolution through a stream mechanism, it does not o�er the dynamic evolution of the ODMG object model.

As a step towards extending the schema evolution for PSE Pro 2.0, we have developed a taxonomy of schema

evolution primitives for the ODMG object model such that they preserve the object model. In this section we

�rst present the invariants for preserving the ODMG object model and then the schema evolution primitives

that preserve these invariants and hence the object model.

6.1 Invariants for the ODMG Object Model

A schema update can cause inconsistencies in the structure of the schema, referred to as structural incon-

sistency. An important property imposed on schema operations is thus that their application always results

in a consistent new schema [BKKK87]. The consistency of a schema is de�ned by a set of so called schema

invariants of the given object model [Br�e96]. In this section, we present the invariants for the ODMG object

model. We have adapted the axiomatic model proposed by Peters and Ozsu [PO95] in order to axiomatize

the schema changes for the ODMG Object Model

9

.

6.1.1 Axiomatization of Schema Changes

As described in Section 5.1, a type in an object model de�nes the properties of the objects. Most object

models support the notion of subtyping of these types. Typical valid schema changes like adding and dropping

of types, adding and dropping of subtype relationships, adding and dropping type properties can a�ect the

system integrity. To maintain a valid schema, i.e., the schema integrity, through these changes we now

de�ne some axioms which must be maintained by any schema evolution primitive attempting to change the

structure of this valid schema.

9

This is our adaptation of the model presented in [PO95].



Term Description

T All the types in the system

s, t, T, ? Elements of T

Pt The immediate supertype of type t

Nt The native properties of type t

Ht The inherited properties of type t

Table 1: Notation for Axiomatization of Schema Changes

Table 1 shows the notation we use for describing the axiomatic model. In the table, native properties

Nt refer to the properties of type that are de�ned locally in the type. Inherited properties of a type t refer

to the union of all the properties de�ned by all the supertypes of type t. For the ODMG model, a type

de�nes properties of objects. Although ODMG de�nes a property as attributes or relationships we

consider a property to be only an attribute

10

in the context of this paper.

Axiom of Rootedness. There is a single type T in T that is the supertype of all types in T . The type T

is called the root

11

.

Axiom of Closure. Types in T , excluding the root, have supertypes in T , giving closure to T .

Axiom of Pointedness. There are many types ? in T such that ? has no subtypes in T . ? is termed a

leaf.

Axiom of Nativeness. The native properties of a type T is the set of properties that are locally de�ned

within a type.

Axiom of Inheritance. The inherited properties of a type T is the union of the inherited and native

properties of its supertype.

Axiom of Distinction. All types T in T have distinct names. Every property p for a type T has a distinct

name. The scope of distinction for a property is the set of native properties for a type.

6.2 Taxonomy of Schema Evolution Primitives

In this section we present the taxonomy of schema evolution primitives that we have designed for the ODMG

object model such that they preserve the invariants introduced in Section 6.1. Our goal is to achieve a set

of schema evolution primitives that is:

� Complete, i.e., our primitive set should subsume every possible type of schema change.

� Minimal, i.e., none of the primitives can be achieved by a combination of the other primitives.

� Simple, i.e., each primitive has minimal simple semantics so as to not embed semantics in the primitives.

� Consistent, i.e., each primitive generates a valid schema when applied to a valid schema.

10

This is because the Java binding of ODMG does not support the notions of relationships as yet.

11

ODMG de�nes this root as an object.



Our schema change taxonomy is as follows:

1. Changes to the components of a type

(a) Changes to class properties

i. add-attribute: Add a new property to the type

ii. delete-attribute: Delete a property from the type

(b) Changes to the inheritance graph

i. add-IS-A-edge: Add a new supertype/subtype relationship

12

ii. delete-IS-A-edge: Delete a supertype/subtype relationship

13

2. Changes to the types

(a) create-class: Add a new type

(b) drop-leaf-class: Delete a type

(c) rename-class: Change the name of type

Like the Orion schema evolution taxonomy [BKKK87], we have kept the schema changes create-class,

rename-class, add-attribute, delete-attribute, add-IS A-edge and delete-IS A-edge as primitives in our basic

set. We have excluded the schema change change-name-of-attribute from our primitive set due to our

minimality requirement, because it can be achieved by the composition of two other schema evolution

primitives. Namely, change-name-of attribute can be accomplished by a sequence of �rst add-attribute with

the new name and then delete-attribute with the old name and with the intermediate operation of copying

values from one attribute to another. For this reason, the change-name-of-attribute is not a �xed prede�ned

primitive in our framework. For the same reason, we have excluded retype-attribute from the taxonomy.

This can be achieved by a sequence of �rst add-attribute with a new name and a new type and then copying

or casting the values from the attribute of the old type to the new attribute with the new type, followed

by delete-attribute with the old attribute, creating another attribute with the old attribute name and the

desired type and then performing a copy of values. As a last step the temporary new attribute and all its

values are deleted. We recognize the ine�ciency of such an approach and are investigating some optimization

techniques that can help us address this problem [Nat98].

We have replaced the schema change drop-class from the Orion taxonomy with the destroy-leaf-class

operation which removes a leaf class that has no local attributes as per our minimal-intrusion requirement.

The destroy-leaf-class can be achieved through a SERF template by applying the delete-attribute primitive

to all locally de�ned attributes followed by our drop-class primitive [Jin98].

6.3 Completeness and Soundness of the Basic Schema Evolution Primitive Set

All the schema evolution primitives in our basic set are updates either to the attributes of a class or to the

class as a whole. Each of them is an atomic operation with �xed semantics which cannot be decomposed

any further. And, each of them transforms the schema from one structurally consistent state to another

structurally consistent one [BKKK87, Zic91].

12

For Java's binding of the ODMG model because of the single inheritance, this applies for only those types that inherit

directly from the root.

13

When the inheritance relationship between two types is removed, the subtype is added to the root. This is preservance of

the Axiom of Rootedness.



Banerjee et al. [BKKK87] outlined a formal proof of the completeness of their schema evolution taxon-

omy and correctness of the semantics of schema changes. Their approach is based on a property inheritance

graph (PIG) which is a single-rooted, directed acyclic graph (DAG) corresponding to a class hierarchy. In

this formal model, they de�ne eight PIG operations which correspond essentially to the schema changes

in their taxonomy. They prove that every legal PIG is achievable using this set of eight operations (i.e.,

completeness). They also show that the basic set of operations cannot generate a directed acyclic graph that

would violate the syntactic rules which characterize a PIG (i.e., soundness).

The basic PIG operation set used above includes operations we either directly support as primities

such as add-attribute, delete-attribute, add-edge, delete-edge, add-class, delete-class and rename-class or that

we indirectly support as SERF templates such as change-attribute-name and drop-any-class. The original

semantics of all these schema updates have been preserved for our basic primitive set. For this reason, the

proof of the completeness and soundness of our basic primitive which follows directly from their proof is

omitted from here.

7 Design and Implementation of the OQL-SERF System

In this section we present our implementation of the SERF Framework - OQL-SERF. OQL-SERF is built

using Object Design Inc.'s Persistent Storage Engine Pro 2.0 (PSE Pro 2.0) as the underlying OODB system.

It is based on the ODMG standard and is written in 100% Pure Java. In particular, we have used an extension

of Java's binding of the ODMG object model and we have built our own binding of the ODMG Schema

Repository using Java [Cea97].

7.1 System Architecture of the OQL-SERF System

Figure 4 presents the system design for OQL-SERF using PSE Pro 2.0 as the underlying OODB system.

PSE Pro 2.0 is the �rst persistent storage engine written entirely in Java [Bri97] and runs within the same

process as the Java applications or applets. The PSE Java client and the storage layer provide an easy-to-use

interface for storing and retrieving persistent objects. As per ODMG, PSE provides named objects and o�ers

persistence by reachability. For further details on PSE, we refer the user to [Bri97].

In a persistent storage system, like PSE, it is assumed that the schema representation, data, applications

and the links between them are all held as objects in persistent storage. While PSE o�ers most OODB

features, it does not explicitly de�ne a Schema Repository as per the ODMG standard. It also does not

have the requisite schema evolution support, nor does its query interface meet the requirements of a query

language for the SERF framework.

Thus as part of the OQL-SERF implementation, we have enhanced PSE Pro 2.0 by providing:

� an operational ODMG-compliant schema repository.

� a complete schema evolution facility (based on the ODMG object model) that does dynamic class-level

changes at run-time and in-place without requiring the lengthy approach of piping the database extent

to a �le, manually creating the new desired schema, and then reloading all data into the new schema.

� a fully functional subset of the OQL Query Engine for querying the objects stored in the OODB system.

In Section 7.2, we present the challenges that we faced in doing the design and implementation of these

modules, and the lessons we learned from the experience.



The realization of the OQL-SERF system consists of two major tasks: namely, the OODB System

Modules and the SERF Framework Modules. The implementation of the OODB System Modules provides

the OODB support as per the SERF requirements (refer Section 4.2). With this in place, the main imple-

mentation of the SERF system focuses on the SERF Framework Modules, i.e., the Template Module and

the User Interface. Although at some point in the future we plan to enhance the OQL-SERF to provide

help mechanisms such as advanced search mechanisms, more rigid template checking, etc., here we focus on

presenting the core of the template module, the steps involved in its processing, its API interface and the

user interface (Section 7.3).

7.2 OODB Systems Modules Required as Basis for OQL-SERF

7.2.1 Schema Repository

PSE Pro 2.0 provides some data dictionary support. It has a ClassInfo for each persistence capable class

and each of these classes needs to be registered with the PSE database at the time of creation. Although we

can access and use the ClassInfo class to some degree it is not fully accessible and modi�able by the SERF

system. For this reason we have implemented our own binding of the ODMG Data Dictionary called the

Schema Repository and have consolidated some of its functionality with the PSE Data Dictionary. In our

implementation, the Schema Repository stores and manages metadata which de�nes the schema of a database

and the instances of the ClassInfo are used by PSE at runtime to guide its access to the database [Bri97].

Figure 5 shows the OQL-SERF Schema Repository which is our binding to the ODMG speci�cation for the

same. There are two main kinds of system classes, i.e., called MetaSchema and MetaObject. The MetaClass

and the MetaProperty are specializations of the MetaObject and represent application classes and properties

respectively. An instance of the MetaSchema is synonymous with an application schema. Instances of the

MetaClass model the application classes and the de�ning scope of these classes is the application schema

instance for which they exist. Instances of the MetaProperty are the properties of the application classes and

the de�ning scope for these is an instance of the MetaClass. All instances of the MetaSchema, MetaClass

and MetaProperty are stored in the PSE database and all of them together de�ne a particular application

schema.

Figure 5 shows the partitioning of the database space into the MetaSpace and the Application Space.

The MetaSpace, represented by the Schema Repository in OQL-SERF, manages the Application Space, i.e.,

each instance of the MetaClass translates into a java class de�nition and instances of the MetaProperty bind

to the properties that are part of a class de�nition.

MetaClass MetaProperty

MetaSchema MetaObject

Legend: = aggregation relation

= inherits from

Public class <MetaObject> 
{
     <type> <MetaProperty>;

}

<type> <MetaProperty>;

= maps to

MetaSpace Application Space

Figure 5: The Design of the Schema Repository for OQL-SERF



7.2.2 Schema Evolution Manager

The Schema Evolution Manager provides an interface for the execution of the set of schema evolution

primitives as described in Section 6.2. It interacts with the schema repository which contains information

on each class and its placement in the class hierarchy. It also updates the PSE ClassInfo so as to keep it in

sync with our Schema Repository as shown in Figure 5. For our implementation, we have assumed that all

additions, deletions and modi�cations to the schema happen through the interface that we have provided.

This implies that as part of the schema evolution process, the schema evolution manager creates, modi�es or

deletes the source code, i.e., the Java �les corresponding to the instances of the MetaClass

14

. The schema

manager is also responsible for the migration of objects from the existing (old) class de�nition to the changed

class de�nition, thus keeping them updated and consistent with the schema change.

Consider, for example, the addition of the new attribute DateOfBirth to an existing class Person

which should add this new attribute DateOfBirth of type String to the speci�ed class Person and then

augment the existing objects of Person to contain DateOfBirth with the default value. As a �rst step we

update the Schema Repository by creating a copy PersonTmpCopy of the class Person with the new attribute

DateOfBirth. A new source �le (a Java �le) PersonTmpCopy.java is created by collating the information in

Person.java and the now updated Schema Repository. The source code is compiled and annotated to create

the PersonTmpCopy.class and the PersonTmpCopy.classinfo for PSE. The annotated class is registered

with the PSE system in compliance with requirements of the PSE Pro 2.0 and PersonTmpCopy gets a copy

of all the objects that make the extent of the Person class. At this point the PersonTmpCopy class includes

the requested change and its extent has all the objects transformed so to conform with its de�nition and

hence to conform to the schema change. As a last we swap the OIDs of the Person objects with those

of the PersonTmpCopy objects thereby maintaining the OIDs of the objects through the schema evolution

process

15

; and we rename the PersonTmpCopy to the Person class through an API provided by PSE Pro

2.0.2.

This overall process is almost identical for all primitives that change an existing type.

� Step1: Change the Schema Repository. Create a new temporary instance of the MetaClass by aug-

menting or reducing the capacity of the original object (i.e., the original class) with the desired change.

� Step2: Create the Source. Create the source, i.e., the java class �le for the temporary class. The .java

�le is a subset or superset of the original .java �le.

� Step3: Compile the Source. Compile the temporary.java �le.

� Step4: Annotate the Source. Annotate the temporary.class �le to create the temporary.classInfo

�le such that they are compliant to the PSE requirements.

� Step5: Change the PSE dictionary. Register the existence of the temporary.class in the PSE data

dictionary through the temporary.classInfo �le.

� Step6: Copy the Objects. Copy all the objects of the original class to the temporary class such that the

objects of the temporary class are now augmented or reduced by the change.

� Step7: Swap OIDs. Preserve the OIDs by making the new objects have the same OID as the original

objects

16

.
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We do not limit the user from editing these �les manually for adding, deleting or modifying method de�nitions. The only

limitation that we impose is of using our interface for the addition, deletion and modi�cation of properties.
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We would like to thank the PSE team at Object Design Inc. for going out of their way and spending the time and e�ort

to provide us with the swap OID feature as well as the capability to de-register classes from the PSE system on the y. These

new APIs have been released in PSE Pro 2.0.x

16

This is part of a patch for PSE Pro2.0.2 provided to us by the PSE team at ODI.



� Step8: Rename Class. Remove the original class and rename the new class to the original class name

in both the Schema Repository and the PSE data dictionary

17

.

The evolution steps for primitives at the class level (like create-class, rename-class, etc.) are similar

but do not involve any object copying. The drop-leaf-class primitive although it does not have any object

copying has object deletions.

7.2.3 OQL Query Engine

Although PSE Pro 2.0 provides a mechanism for querying collection objects, it is very basic (does not yet

have support for joins) and does not meet all of our criteria for SERF transformation support. Thus as part

of the implementation e�ort of OQL-SERF, we have designed and now are implementing an OQL interface

for PSE. Our goal in building an OQL Query Engine is to provide:

� a general-purpose OQL Query Engine for object databases,

� a binding of the OQL Query Engine for PSE Pro 2.0,

� an API interface binding consistent with ODMG and Java's binding of ODMG for the applications using

the OQL Query Engine.

Application

Query 
Engine

OO
Repository

Query Engine API

Uses the interface exposed

Executes query

Gets required objects

Figure 6:

Figure 6 shows how we envision the query engine being used by an application to query the underlying

OODB system. An application would use the exposed interface of the query engine to formulate and execute

OQL queries on the underlying database. Our OQL Query Engine is based on the OQL grammar given in

Chapter 4 of the ODMG Standard 2.0 [Cea97].

The key functionality of the OQL Query Engine is to parse and map a given OQL statement to the

right OODB system functions in order to get the required result. The left hand side of Figure 7 shows the

steps involved in the building of the OQL Query Engine. To accomplish this, the OQL Query Engine must:

� Parse: parse the OQL statement
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OQL BNF

Program Understandable Form

convert

AST- abstract syntax tree

parse & generate

Interface to OODB

write code

Result Set

execute

JTB -Java Tree Builder

JavaCC - Java Compiler Compiler

    Visitor- Design Pattern

javac, java - compiler and executor

Steps Tools

Figure 7: Tools for building the OQL Interface

� Generate: generate the abstract syntax tree

� Iterate: iterate over the abstract syntax tree and collect the information from the query tree into

appropriate data structures.

� Execute: using the information in the data structures, call the system functions to retrieve the set of

requested objects from the OODB.

We were fortunate that on the Web we found a wealth of information and tools that provided us with

the building blocks for the OQL Query Engine. The right side of the Figure 7 matches each step with

the tool that was used to accomplish it. The Java Compiler Compiler (JavaCC) is currently the most

popular parser generator for use with Java applications. A parser generator is a tool that reads a grammar

speci�cation and converts it to a Java program that can recognize matches to the grammar. In addition to

the parser generator itself, JavaCC provides other standard capabilities related to parser generation such as

tree building, embedded calls for actions, debugging, etc. In the past year since the release of JavaCC there

have been many tools that have been built to enhance and compliment the JavaCC functionality. The Java

Tree Builder (JTB) is one such tool. It is a syntax-tree builder to be used with the JavaCC. It takes as input

a grammar de�nition in the JavaCC format and automatically generates:

� a set of syntax tree java class �les based on the productions in the grammar,

� a properly annotated JavaCC grammar to build the syntax tree during parsing, and

� a Visitor superclass whose default methods allow us to visit the children of the current node.

Thus after using JTB and JavaCC tools on the OQL grammar, we have a functional OQL Parser. The

Visitor generated by JTB as a default is our tool for doing the next step of the process, namely, the iterate



and execute steps. The Visitor pattern is one among many design patterns aimed at making object-oriented

systems more exible [GHJV95]. The issue addressed by the Visitor pattern is the manipulation of composite

objects. Without visitors, such manipulation runs into several problems. The Visitor pattern allows us to

de�ne a new operation on an object structure without changing the classes of the objects on which it operates.

Rather than writing dedicated methods for each programming task and afterwards recompiling, with a visitor

the idea is to:

1. automatically insert a so-called accept method in each class, and

2. write the action code in so-called visitors.

The Visitor pattern gives us the exibility of rapidly retargeting the OQL Query Engine to a number

of OODB systems. In OQL-SERF, we have written a Visitor for PSE Pro 2.0 using their existing collection

query interface to take advantage of their collection optimization strategies such as indexes. In our �rst

version of the OQLVisitor for PSE, we have extended (e.g., developed a given join operator java class) and

used the PSE query interface to allow for an extensive support for the OQL query language.

7.3 SERF Framework Modules

The SERF Framework Modules are the core components that need to be provided by any system realizing

the SERF Framework. Sections 7.3.1 and 7.3.2 describes the core functionality and support needed for SERF

Templates and transformations both in terms of the templates and the user interface.

7.3.1 Template Module

The Template Module provides all of the functionality for storing, retrieving of templates and for the exe-

cution of templates. Figure 8 shows the architecture for the Template Module in OQL-SERF.

Template
Manager

Template
Processor

Bind-check

Template
Library

Type-check

Template
Checker

Figure 8: Modules for Realizing the Template

The Template Manager can store, retrieve and edit templates in the Template Library. It provides

the users with an interface for storing, retrieving and editing the templates in the Template Libraries. A

Template Library is a package of templates and since the Template Manager can have more than one

library, libraryName.templateName gives the complete path for a template
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. A template object itself is
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We distinguish between a template and a SERF template. Here a template object implies an instance of the TemplateClass

and a SERF template is the source code that is part of this instance.



an instance of the TemplateClass (see Figure 9) and there is a one-to-one correspondence between this

instance and the SERF template. An instance of the TemplateClass contains the name, description, a set

of input paprameters, a list of keywords and the source corresponding to the SERF template. When a user

stores a template, he is required to furnish the name and the input parameters for the template.

Template

templateName;
parameterList;
sourcecode;
description;
keywords;

newTemplate();

editTemplate();

deleteTemplate();

executeTemplate();

Figure 9: The Template Class

The Template Manager also provides the users with an interface for searching through the templates.

In our current implementation we support search by name, search by complete or partial description, and

search by keywords.

The actual execution of the SERF Template is handled by the Template Processor, after having been

passed the proper information needed for execution from the users through the interface of the Template

Manager. The Template Processor is responsible for instantiating and executing a template. Figure 10

shows the steps performed by the Template Processor for the execution of a SERF template. The template

processing begins with the user supplying the input parameters. These parameters are a particular Class or

Property in the application schema to which the user wants to apply the SERF template transformation. A

type-check ensures that the types of the parameters match as well as the correct number of parameters are

supplied by the user. This is followed by a bind-check which checks the existence of these actual parameters

in the schema on which they are being applied by accessing the Schema Repository. The SERF template is

instantiated using these parameters by replacing each variable with its bound parameter after all the checks

are completed successfully. The instantiated SERF template now corresponds to legal OQL statements, i.e.,

we now call it an OQL transformation. The OQL Query Engine provides an interface for the syntax-checking,

the parsing and the execution of the OQL transformation (see Section 7.2.3).

7.3.2 User Interface

No software is usable unless and until there is an interface provided for it. The usabilty of the software is

increased ten-fold with an easy-to-use graphical user interface. For OQL-SERF version 1.0, we have designed

and developed a GUI as a frontend to the functionality o�ered by the Template Manager. It provides a

Template Editor with syntax highlighting that allows the user to create a new or edit an existing template.

The Save option walks the user through the steps of providing the name, the list of formal parameters, the

description, and the keywords for the SERF template object before it can be stored and managed by the

template library. The GUI also allows the user to view the schema graph before and after a transformation



Template inline(className, refAttrName)

Type-check

className  =  Class  Person, 
refAttrName  =  Attribute  address 

Bind-check

pass

Error to User

error

Instantiate

pass

syntax-check

inline(className, refAttrName)

Execute

pass

error

error

Pure oql statements

Figure 10: Steps for the Execution of a Template

has been applied to the schema thus giving the user a chance to verify if this selected template was indeed

the desired transformation.

8 Conclusions

In this paper we have presented an implementation of OQL-SERF, the template-based scheam evolution

framework. We have used the ODMG standard as the foundation for this implementation. As part of

this work we have also devised our own taxonomy of schema evolution primitives and have shown it to be

minimally complete in the context of the SERF framework.

In summary the main contributions of this paper are:

� Axioms of preservation - we have presented the invariants for preserving the ODMG object model under

schema evolution.

� Taxonomy of schema evolution primitives - we have presented a minimally complete set of ODMG-

based schema evolution primitives such that they have minimal semantics and a combination of them is

able to describe a large set of transformations. This minimality holds within the context of the SERF

framework.



� Development of a Dynamic Schema Evolution Manager - we have designed and implemented a dynamic

schema evolution facility for PSE Pro 2.0
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� Development of an OQL Query Engine - we have designed and developed an OQL Query Engine for

PSE Pro 2.0 using JavaCC, JTB and Visitor design pattern.

� Discussion of Software Engineering Challenges - we presented the choices and decisions we had to make

in the process of developing this system so as to make it re-usable and extensible to other systems.

� Design and Implementation of the OQL-SERF System - we have developed OQL-SERF fully based on

ODMG, that is, the Object model, OQL and the Schema Repository, as a proof of concept for the

SERF framework. Being based on ODMG, it should now be easily portable to any OODB that is

ODMG-compliant.

We are currently in the process of completing the implementation of the modules mentioned in this

paper. We have enough in place to be able to validate our ideas. We anticipate to have a work-

ing prototype later in the year, at which point we plan to release it to public domain via our website

http://www.davis.wpi.edu/OOSE/SERF.html.
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