
WPI-CS-TR-97-8 September 1997

CVS: The Complex Substitution Algorithm for View

Synchronization

by

Anisora Nica

Amy J. Lee

Elke A. Rundensteinter

Computer Science

Technical Report

Series

 ��

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

CVS: The Complex Substitution Algorithm for View

Synchronization

�

Anisoara Nica

y

, Amy J. Lee

y

, and Elke A. Rundensteiner

z

(y) Department of EECS (z)Department of Computer Science

University of Michigan, Ann Arbor Worcester Polytechnic Institute

Ann Arbor, MI 48109-2122 Worcester, MA 01609-2280

amylee,anica@eecs.umich.edu rundenst@cs.wpi.edu

(313) 764-1571 (508) 831-5815

February 24, 1998

Abstract

Maintenance of materialized views in large-scale information spaces such as the WWW has impor-

tance for many applications. However, such large-scale environments typically contain autonomous

information sources (ISs) that dynamically modify their content, interfaces as well as their query ser-

vices. Unfortunately, current view technology supports only static views in the sense that views become

unde�ned and hence obsolete as soon as the underlying ISs undergo capability changes. We propose

to address this view evolution problem by a novel solution approach that allows view de�nitions to be

dynamically evolved when they become unde�ned. In particular, we have enhanced the (SQL-based)

view de�nition language with evolution parameters to allow the view de�ner to state her view evo-

lution preferences, indicating for example which components of the view are completely dispensable,

replaceable by alternate components, etc. Furthermore, in our view synchronization architecture, a

description of the content, capabilities as well as interrelationships of all ISs is maintained in a meta-

knowledge base (MKB) in order to provide this knowledge to the view synchronization process. Given

a view modeled by the extended view de�nition language and the MKB, we present in this paper a for-

mal de�nition of what corresponds to legal rewritings of a view a�ected by capability changes. Based

on this formal foundation, we then propose a three-step strategy for the view synchronization process.

Given a capability change, we propose algorithms for (1) evolving the meta knowledge base (MKB)

itself, (2) detecting views possibly a�ected by this MKB evolution, and (3) evolving the a�ected view

de�nitions guided by constraints imposed by the view evolution preferences as well as by the knowledge

captured in the MKB. The proposed strategy can be shown to �nd a new valid de�nition of a view in

many cases where current view technology would have simply disabled the view.

Keywords: Self-adapting views, view synchronization and preservation, data warehouse, large-space informa-

tion space, information descriptions, evolving information sources.

�

This work was supported in part by the NSF RIA grant #IRI-9309076 and NSF NYI grant #IRI 94-57609. We would

also like to thank our industrial sponsors, in particular IBM for the IBM Partnership Award and our collaborators at IBM

Toronto for their support.

1

1 Introduction

Advanced applications such as web-based information services, data warehousing, digital libraries, and data

mining typically operate in an information space populated with on a large number of dynamic information

sources (ISs) [Wid95]. The ISs in such environments are usually distributed, have distinct schemas, support

di�erent query languages, update not only their content but also their capabilities

1

, and even join or leave the

environment frequently. In order to provide easy access to information in such environments, relevant data is

often retrieved from several sources, integrated as necessary, and then materialized at the user site. For instance,

many WWW users may be interested in all information related to travel including fares, special bargains and

ight availabilities of di�erent airlines. While such information could principally be retrieved by each of the

interested users by querying over many ISs and integrating the results into a meaningful answer, it is much

preferable if one travel consolidator service were to collect such travel-related information from di�erent sources

on the WWW and to organize such information into a materialized view. Besides providing simpli�ed information

access to users who may not have the time nor skill to identify and retrieve relevant information from all sources

on the WWW, such a materialized view may also o�er more consistent availability shielding users from the fact

that some of the underlying ISs may temporarily become disconnected as well as better query performance.

Materialized views in such evolving environments introduce new challenges to the database community

[Wid95]. In our prior work [RLN97], we have identi�ed view evolution as a critical new problem faced by

these applications. The problem is that current view technology is insu�cient for supporting exible view def-

initions. That is, under current view technology, views are static, meaning views are assumed to be speci�ed

on top of a �xed environment and once the external ISs change their capabilities, the views de�ned upon them

become unde�ned. In our prior work, we have proposed a novel approach to solve this view inelasticity problem

[LNR97a]. Namely, we have designed a framework for view maintenance in these evolving environments which

supports to \preserve as much as possible" of the view instead of completely disabling it with each IS change.

While the evolution of views is assumed to be triggered by capability changes of ISs in our work, previous work

(e.g., by Gupta et al. [GMR95] and Mohania et al. [MD96]) typically assumed that view rede�nition at the

schema level was explicitly requested by the view developer at the view site. Furthermore, previous work Gupta

et al. [GMR95], Mohania et al. [MD96], Huyn [Huy96], etc., has focused on maintenance of the data itself (i.e.,

content changes) that is associated with the modi�ed schema and not with modi�cations of the view de�nitions

themselves as done in this paper.

One key component of our solution is the extended view de�nition language (essentially, SQL extended with

view evolution preferences) that allows the view de�ner to control the view evolution triggered by environment

changes by indicating the criticality and dispensability of the di�erent components of the view de�nition. For

example, a view de�ner could indicate that the attribute Name is indispensable to the view, whereas the

attribute Address is desirable yet can be omitted from the original view de�nition, if keeping it becomes

impossible, without jeopardizing the utility of the view.

A second key component of our solution is a language for capturing a description of the content, capabilities

as well as interrelationships of all ISs in the system. In order to keep our approach general we only consider

basic types of constraints in our model that are likely to be applicable to many types of information sources. For

1

Capabilities here refer to information such as their schema, their query interface, as well as other services o�ered by

the information source.

this reason, constraints such as keys and functional dependencies are assumed not to be available by most ISs

and hence are not supported in our model. This IS description is maintained in a meta-knowledge base (MKB)

available to the view synchronizer during the view evolution process.

Given a view modeled by the extended view de�nition language and given a MKB, we now present in this paper

a formal foundation for what corresponds to legal rewritings of the view a�ected by capability changes. This

includes properties characterizing that all MKB constraints must be obeyed, as well as that maximal preservation

of the view including preferences given by the view de�ner must be achieved by the view rede�nition process.

Based on this formal foundation, we then propose a three-step strategy for the view synchronization process.

Given a capability change, we �rst propose algorithms for evolving the meta knowledge base (MKB) itself.

Second, we introduce an algorithm for detecting views a�ected by this MKB evolution. Lastly, we present the

view synchronization algorithm that evolves the a�ected view de�nitions guided by constraints imposed by the

view evolution preferences as well as by the knowledge captured in the MKB. Our view synchronization algorithm

attempts to �nd valid replacements for a�ected (deleted) components of the existing view de�nitions based on

the semantic constraints captured in the MKB. These replacements thus correspond to possibly complex pieces

of information from several ISs [LNR97b]. The proposed strategy can be shown to �nd a new valid de�nition of

a view in many cases where current view technology would have simply disabled the view.

While we have introduced the view evolution problem as well as the overall solution framework in [RLN97],

new contributions of this paper now include the following. First, since our work discusses applications operating

in a dynamic environment, issues associated with meta knowledge base management are important. To address

this, we now present our solution of evolving the meta knowledge base itself under the basic set of capability

changes. Second, we present a formal foundation for when view rewriting is considered to be legal within

the context of our problem. For this, rather than just determining simple view rewriting, we are interested in

providing possibly complex view rewrites through multiple join constraints given in MKB. Third, to demonstrate

our solution approach, we present algorithms for view synchronization. In particular, we focus on handling the

most di�cult capability change operator, namely, the delete-relation operator, in depth in this paper.

The remainder of the paper is structured as follows. In Section 2, we present our solution approach, and

introduce a web-based travel agency example to serve as running example throughout the paper. In Section 3,

we present the knowledge representation model that is used to describe the capabilities of each IS as well as the

interrelationships between ISs. The extended view de�nition language designed to address evolution preferences

is presented in Section 4. The MKB evolution process is presented in Section 5. Sections 6 describes the formal

basis for correct view synchronization, while Section 7 introduces our proposed algorithm for synchronizing views

based on this formal model. Section 8 lists work in the literature that is most closely related to ours, and Section

9 presents our conclusions.

2 Background

In this section, we �rst give a brief overview of the evolvable view environment (EVE) framework that we

have designed to tackle the view evolution problem (Figure 1) [RLN97]. Then, we describe a web-based travel

consolidator as our running example used throughout the remainder of this paper.

2.1 Framework for View Maintenance in Evolving Environments

Our environment can be divided into two spaces, i.e., the view site and the information space. The information

space is populated by a large number of heterogeneous and autonomous ISs. These ISs join, leave, or change

their capabilities dynamically, thus it is of particular concern with how to maintain views in such an evolving

environment. An IS is \integrated" into our proposed framework via a mediator (i.e., the information source

interface (ISI)) that serves as a bridge between the information space and the view site. Any IS that supports

a query interface can participate in our framework.

When an IS joins our environment, it advertises itself and registers the information regarding its capabilities

and data content to the meta knowledge base (MKB). For this purpose, we have designed a model capable of

describing the content and capabilities of heterogeneous and widely diverse ISs [NR97]. Our model captures the

capability of each IS and the relationships between ISs by partial and/or complete containment constraints, join

constraints, and attribute transformation constraints (see Section 3). The IS descriptions collected in the MKB

are critical for identifying alternate view de�nitions when evolving a view de�nition.

Views and ISs within the framework are decoupled in the sense that each IS may have its own data de�nition

and query languages. The knowledge about the views, such as the view de�nitions and the location of the

views, is stored in the view knowledge base (VKB). One novel aspect of our solution framework, not previously

addressed in any other work, is that each view in our environment is described by a view speci�cation that

incorporates evolution characteristics of views in terms of their dependence on (possibly evolving) ISs as well

as the criticality of view components for the existence of the view (Section 4). These speci�cations, expressed

as view evolution parameters, allow the user to specify criteria based on which the view will be transparently

evolved by the system under capability changes of ISs. In this work, we concern ourselves with capability changes

(i.e., schema evolution operations) typically found in literature, such as adding/deleting an attribute, changing

name of an attribute, adding/deleting a relation, and changing name of a relation.

View synchronization is concerned with synchronizing the view de�nition with the modi�ed IS descriptions so

that the view remains both valid and consistent with the view evolution parameters and with all IS constraints

kept in the MKB. Upon receiving a capability change noti�cation at an IS, the view synchronizer tool (see Figure

1) identi�es which views are a�ected by the capability change based on knowledge captured in the VKB (see

algorithms in Sections 5 and 6). Then, based on the view change semantics expressed by our extended view

de�nition language E-SQL, the view synchronizer explores alternate techniques for query rewriting with the

goal of meeting all view preservation constraints in the view de�nition (VD), extracting appropriate information

from other ISs as replacement of the modi�ed capabilities using the MKB, and then calculating the new view

de�nition (VD') (see Section 6).

2.2 Running Example

Below, we describe a web-based travel consolidator as running example used throughout the remainder of this

paper.

Example 1 Consider a large travel agency which has a headquarter in Detroit, USA, and many branches all

over the world. It helps its customers to arrange ights, car rentals, hotel reservations, tours, and purchasing

insurances. Therefore, the travel agency needs to access many disparate information sources, including domes-

tic as well as international sites. Since the connections to external information sites, such as the overseas

.

INFORMATION SPACE

Information
 Source

ISI

Information
 Source

ISI

Information
 Source

ISI

 Query
Executor

 View
Synchronizer

capability
changes

 View
Knowledge
 Base

. . .
 View
Definition

Extent

 View
Definition

Extent

 Meta
Knowledge
 Base

View Evolution

 View
Adaptation

 MKB
Evolver

 update
notificationsqueries/query results

VIEW SPACE

Figure 1: The EVE Framework: View Evolution in a Changing Environment.

IS 1: Customer Information

Content Description: Customer(Name, Address, Phone, Age)

IS 2: Tour Information

Content Description: Tour(TourID, TourName, Type, NoDays)

IS 3: Tour Participant Information

Content Description: Participant(Participant, TourID, StartingDate,Location)

IS 4: Flight Reservation Information

Content Description: FlightRes(Passenger, Airline, FlightNo, Source, Destination, Date)

IS 5: Insurance Information

Content Description: Accident�Ins(Holder, Type, Amount, Birthday)

IS 6: Hotel Information

Content Description: Hotels(City, Address, PhoneNumber)

IS 7: Car Rental Company Information

Content Description: RentACar(Company, City, PhoneNumber, Location)

Figure 2: Information Source Content Descriptions.

branches, are very expensive and have low availability, the travel agency materializes the query results (views) at

its headquarter or other US branches (at the view site). The information space is summarized in Figure 2.

Assume the headquarter maintains complete information of the customers Customer(Name, Address,

Phone, Age), the complete set of Tour information Tour(TourID, TourName, Type, NoDays) - where

Type = fluxurious; economy;super-valuedg, and the information Participant(Participant, TourID, Start-

ingDate) stating which customer joins which tour starting on what day. We further assume the local branches

keep partial information of its local customers, the tours o�ered locally, and the participation information of its

local customers. The ight reservation information FlightRes(Passenger, Airline, FlightNo, Source, Des-

tination, Date) is managed by each individual airline company. Insurance informationAccident�Ins(Holder,

Type, Amount, Birthday) is kept with each individual insurance company.

3 Information Sources Description Language

While an individual IS can be based on any data model, we assume that the information source interface (ISI)

agent of an IS describes the schema exported by the IS as a set of relations IS:R

1

, IS:R

2

; : : : ; IS:R

n

, each with

two or more attributes. Note that a relation name is unique within each IS, but may not be unique across ISs.

We assume the combination of (IS name, relation name) is unique in the MKB. The descriptions of an IS contains

information of its data structure and content, its query capabilities, and its relationships with exported relations

from other ISs. We assume in this paper that all ISs support at least SQL queries composed of a conjunction

of primitive clauses in the WHERE clause, and we do not discuss how query capabilities are described in our

system further. (For a description of an IS description model that including query capabilities see [NR97].)

3.1 Type Integrity Constraints

Each attribute A

i

is given a name and a data type to specify its domain of values. This information is speci�ed

by using a type integrity constraint with the format Type

i

(A

i

). A type constraint for a relation R(A

1

; : : : ; A

n

)

is speci�ed as:

R(A

1

; : : : ; A

n

) � Type

1

(A

1

); : : : ; Type

n

(A

n

) (1)

which says that the attribute A

i

is of type Type

i

(A

i

). For simplicity, we assume that the attribute types are

primitive. If two attributes are exported with the same name, they are assumed to have the same data type

(which must be reected by the type constraints for their relations)

2

.

3.2 Order Integrity Constraints

The order constraints specify data constraints that are satis�ed by any tuple of a relation at any time. For a

relation R(A

1

; : : : ; A

n

), an order constraint is de�ned as follows:

R(A

1

; : : : ; A

n

) � C(A

i

1

; : : : ; A

i

k

) (2)

where (A

i

1

; : : : ; A

i

k

) is a subset of the attributes of R and C(A

i

1

; : : : ; A

i

k

) is a conjunction of primitive clauses

de�ned over the attributes. A primitive clause has one of the following forms: (<attribute-name> � <attribute-

name>) or (<attribute-name> � <value>) with � 2 f<;�;=;�;>g. Expression (2) speci�es that for any state

of the database R, and for any tuple t 2 R, C(t[A

i

1

]; : : : ; t[A

i

k

])

3

is satis�ed.

Example 2 An insurance relation Expensive-Insurance, containing all expensive accidental insurances that

cover more than $1; 000; 000, can be expressed by the following order constraint:

Expensive-Insurance(Holder, Type, Amount, Birthday) � (Amount > 1; 000; 000):

2

In the future work we plan to allow complex types and utilize a hierarchy of types. We anticipate that most of the

proposed solution approach will continue to apply to these extended types.

3

The expression t[A] refers to the value of the attribute A in the tuple t.

3.3 Join Constraints

A join constraint is used to specify a meaningful way to combine information from two ISs. The join condition

is a conjunction of primitive clauses C

i

(not necessarily equijoin clauses). Formally, a join constraint is of the

form:

J C

R

1

;R

2

= (C

1

� � � AND � � �C

l

) (3)

where C

1

; : : : ; C

l

are primitive clauses over the the attributes of R

1

and R

2

. Expression (3) gives a default, legal

join condition used to join R

1

and R

2

, that is the joined relation J = R

1

1

(C

1

��� AND ���C

l

)

R

2

is a meaningful

way of combining the two relations.

Example 3 The following join constraint de�ned for the relations Customer(Name, Address, Phone, Age)

and Person(SSN, Name, Address) states that the two relations can be joined on the attributes Name and

Address:

J C

Person;Customer

= (Person.Name = Customer.Name AND Person.Address = Customer.Address)

For our running Example 1, the join constraints are given in Figure 3.

J C Name Relations Join Constraint

JC1 Customer, FlightRes Customer.Name = FlightRes.Passenger

JC2 Customer, Accident�Ins Customer.Name = Accident�Ins.Holder

JC3 Customer, Participant Customer.Name = Participant.Participant

JC6 FlightRes, Accident�Ins FlightRes.Passenger = Accident�Ins.Holder

JC4 Participant, Tour Participant.TourID = Tour.TourID

JC5 Hotels, RentACar Hotels.Address = RentACar.Location

Figure 3: Join Constraints for Example 1

3.4 Partial and Complete Information Constraints

The partial and complete (PC) information constraints make it possible to describe that a fragment of a relation

is part of or equal to a fragment of another relation for all extents of the two relations. The PC information

constraints are used to decide if an evolved view is equivalent, subset of or superset of the initial view. For two

relations R

1

and R

2

, the PC information constraint is given by:

PC

R

1

;R

2

=

�

�

R

1

:A

i

1

;:::;R

1

:A

i

k

(�

C(A

j

1

;:::;A

j

l

)

R

1

) � �

R

2

:A

n

1

;:::;R

2

:A

n

k

(�

C(A

m

1

;:::;A

m

t

)

R

2

)

�

(4)

where � is f�;�g for the partial or complete information constraint, respectively; R

1

:A

i

1

, : : :, R

1

:A

i

k

, R

1

:A

j

1

,

: : :, R

1

:A

j

l

are attributes of R

1

; and R

2

:A

n

1

, : : :, R

2

:A

n

k

, R

2

:A

m

1

, : : :, R

2

:A

m

t

are attributes of R

2

. The sets

R

1

:A

i

1

; : : : ; R

1

:A

i

k

and R

2

:A

n

1

; : : : ; R

2

:A

n

k

are such that any attribute R

1

:A

i

s

, for s = 1; : : : ; k, has the same

type as R

2

:A

i

s

.

Example 4 The Equation (5) states that the relations Person and Customer have the same data for the

attributes Name and Address for customers age 1 or older. (The relation Person contains SSN only for

persons who are older than 1 year.)

PC

Person;Customer

=

�

�

Name, Address

(Person) = �

Name, Address

(�

Age>1

Customer)

�

Using the PC information constraints and type constraints we can, for example, de�ne that two relations are

equivalent: (1) they have attributes of the same types (expressed by type constraints); and (2) their extents are

the same (expressed by PC constraints).

3.5 Attribute Function-Of Constraints

The attribute function-of constraint relates two attributes by de�ning a function to transform one of them into

another. This constraint is speci�ed by:

F

R

1

:A;R

2

:B

= (R

1

:A = f(R

2

:B)) (5)

where f is a function

4

. The function-of constraint F

R

1

:A;R

2

:B

speci�es that if there exists a meaningful way of

combining the two relations R

1

and R

2

(e.g., using join constraints) then for any tuple t in the joined relation

J , we have t[R

1

:A] = f(t[R

2

:B]).

Example 5 Let Age, an attribute for the relation Customer (C), be a customer's age, and Birthday, an at-

tribute for the relation Insurancei (I), be an insurance policy holder's birthday. Once we identify c 2 Customer

is the same as i 2 Insurance, we have:

F

C.Age,I.Birthday

= (C.Age = (today� I.Birthday)/ 365)

4 Extending SQL for Flexible View Evolution

We have enhanced the conventional view de�nition language (SQL) with evolution parameters to allow the

view de�ner to state her view evolution preferences. We call this enhanced language the evolvable-SQL view

de�nition language (or E-SQL for short). In this section, we briey describe this extended view de�nition

language. Evolution preferences are expressed as view evolution parameters, which allow the user to specify

criteria based on which the view will be transparently evolved by the system under capability changes at the ISs.

We assume SELECT-FROM-WHERE views de�ned as in Equation (6), with a conjunction of primitive clauses in

the WHERE clause. Each component of the view de�nition (i.e., attribute, relation or condition) has attached

two evolution parameters: the dispensability parameter speci�es if the component could be dropped (value true)

or must be present in any evolved de�nition (value false); the replaceability parameter speci�es if the component

could be replaced in the process of view evolution (value true) or must be left unchanged as de�ned in the initial

view (value false).

We summarize the evolution parameters in Figure 4. Each row represents one type of evolution parameter

in our view language. Figure 4 has four columns: column one gives the name, column two the symbol, column

4

Note that the inverse of f is not required to exist, and hence if an inverse is available it must be explicitly listed as

R

2

:B = f

�1

(R

1

:A).

three the semantics, and column four the default value. When the parameter setting is omitted from the view

de�nition, then the default value is assumed. This means that a conventional SQL query (without evolution

preferences) has well-de�ned change semantics in our system. That is, a view de�nition with all the evolution

parameter values having the default values means the relations in the FROM clause cannot be substituted

with other relations, and the attributes and conditions in the SELECT and WHERE clauses are not allowed

to be dropped. This default setting of view evolution corresponds to the most rigid information preservation

requirement, i.e., anything the user speci�ed in the view de�nition must be preserved.

Parameter Symbol Semantics Default

Attribute-dispensability � true: the attribute is dispensable false

false: the attribute is indispensable

Attribute-replaceability " true: the attribute is replaceable false

false: the attribute is nonreplaceable

Condition-dispensability � true: the condition is dispensable false

false: the condition is indispensable

Condition-replaceability � true: the condition is replaceable false

false: the condition is nonreplaceable

Relation-dispensability � true: the relation is dispensable false

false: the relation is indispensable

Relation-replaceability � true: the relation is replaceable false

false: the relation is nonreplaceable

View-extent � don't care: the new extent can be anything �

�: the new extent is equal to the old extent �

�: the new extent is a superset of the old extent

�: the new extent is a subset of the old extent

Figure 4: View Evolution Parameters.

The format of the E-SQL view de�nition language is as follows:

CREATE VIEW V (B

1

; : : : ; B

m

) (� = �

v

) AS

SELECT R

1

:A

s

1;1

(� = �

s

1;1

; � = �

s

1;1

); : : : ; R

1

:A

s

1;i

1

(� = �

s

1;i

1

; � = �

s

1;i

1

); : : : ;

R

n

:A

s

n;1

(� = �

s

n;1

; � = �

s

n;1

); : : : ; R

n

:A

s

n;i

n

(� = �

s

n;i

n

; � = �

s

n;i

n

)

FROM R

1

(� = �

1

; � = �

1

); : : : ; R

n

(� = �

n

; � = �

n

)

WHERE C

1

(� = �

1

; � = �

1

); : : : ; C

k

(� = �

k

; � = �

k

)

(6)

where the set fA

s

j;1

; : : : ; A

s

j;i

j

g is a subset of the attributes of relation R

j

.

Next, we use one example to demonstrate the integrated usage of and interactions among these evolution

parameters, while a more extensive justi�cation for the design of this language plus many more examples can

be found in [LNR97b].

Example 6 In our Example 1, let's assume that the travel agency has a promotion for the customers who travel

to Asia. Therefore, the travel agency needs to �nd the customers' names, addresses, and phone numbers. The

travel agency is either going to send promotion letters to these customers or call them by phone. The query for

getting the necessary information can be speci�ed as follows:

CREATE VIEW Asia-Customer AS

SELECT Name, Address, PhoneNo

FROM Customer C, FlightRes F

WHERE (C.Name = F.Passenger) AND (F.Destination = 'Asia')

(7)

Equation (7) is a static SQL query, incapable of evolving, which is inevitable in a dynamic environment. Next, we

reformulate Equation (7) with view evolution parameter so that it can be evolved when the environment changes.

Assume the travel agency is willing to accept the query results with the customer's names and addresses only.

That is, the company is okay to put o� the phone marketing strategy, if the customer's phone number attribute

PhoneNo is deleted from the relation Customer for some reason and a suitable substitute cannot be found. The

user can state this preference clearly in the SELECT clause (Equation (7)) by using the attribute dispensability

parameter �.

SELECT Name(� = false);Address(� = false);PhoneNo(� = true)

In addition to instructing our system that the customer name and address have to be kept in the view interface,

the user may want to guide the system as to whether it is acceptable for an attribute to be obtained from other

sources besides the original relation. For example, if the user only accepts the customer name and address to

come from the relation Customer, but agrees to have the phone number come from other source(s), then the

user can augment the SELECT clause (Equation (7)) with the attribute replaceable parameter.

SELECT Name(� = false; " = false);Address(" = false);PhoneNo (" = true)

Further, let's assume the person who de�nes the view Asia-Customer is willing to accept a view without the

second (local) condition speci�ed, as long as the equijoin condition is kept

5

. As a consequence (if the local condi-

tion is dropped), the promotion invitation letters are sent to all customers traveling by air. The user can explicitly

specify her preference by adding the condition-dispensable parameter to the conditions in the WHERE clause of

Equation (7).

WHERE (C.Name = F.Passenger) (� = false) AND (F.Destination = Asia) (� = true)

If the user requires the rede�ned view extent to be either equivalent to or larger than the original view extent,

the user sets the view-extent parameter to �. This means any substitution of a relation, condition, or attribute

should make the view extent equivalent to or larger than the original view extent for the view evolution process to

be valid. That is, if originally the view Asia-Customer returns the customers who travel to Japan, Korea, or

Hong Kong, then the view is still valid if in addition to these customers it also returns the customers who travel

to Thailand and Malaysia.

CREATE VIEW Asia-Customer (� = �) AS

Uniting all proposed view evolution parameters with Equation (7), we get Equation (8). For the view com-

ponents that have their view evolution parameter values omitted, the default value is assumed as indicated in

Figure 4. To name a few, Name and Address attributes in the select clause are indispensable, and the relation

FlightRes is indispensable and nonreplaceable.

5

Note that in general dropping a local condition is more acceptable than dropping a join condition, since dropping a

join condition may change the view de�nition dramatically. For example, replacing a join condition that returns some

subset of tuples by a Cartesian product which then would return all pairwise combinations of tuples from both relations

as view result.

CREATE VIEW Asia-Customer (� = �) AS

SELECT Name (" = false), Address (" = false), PhoneNo (� = true, " = true)

FROM Customer C (� = true), FlightRes F

WHERE (C.Name = F.Passenger) (� = false) AND (F.Destination = 'Asia') (� = true)

(8)

5 Meta Knowledge Base Evolution Under Capability Changes

First we describe what constitutes a legal MKB evolution, and then we present the MKB evolution process for

all constraint types.

5.1 Foundation For Valid MKB Evolution

Let MKB be the current state of the meta knowledge base containing IS description knowledge for a given

information space. Let ch be a capability change of one of the ISs. Let Detect-A�ected-MKB(MKB,ch) be a

boolean function that detects if the MKB is a�ected by the change ch. When Detect-A�ected-MKB(MKB,ch) is

true, the MKB is a�ected; and false, otherwise. When the returned value is true, our system �nds and removes,

as appropriate, the a�ected meta knowledge. De�nition 1 de�nes the notion of a valid evolution of the MKB

under a capability change ch.

De�nition 1 MKB

0

is a valid evolution of the meta knowledge base (MKB) under a capability change ch if

the following properties hold:

P1. The new meta knowledge base MKB

0

is no longer a�ected by the change ch. That is, Detect-A�ected-

MKB(MKB',ch) = false.

P2. All condition-dispensability and condition-replaceability parameters in the join constraints of the MKB are

satis�ed by the MKB

0

. For example, the MKB

0

must have all indispensable primitive clauses in the join

constraints.

P3. The MKB

0

only contains information supported in the MKB, i.e., either the knowledge in the MKB

0

also

existed (explicitly or implicitly) in the MKB or it was speci�ed to be added to the MKB by ch.

P4. The MKB

0

is maximal with respect to the MKB, in the sense that any of the implicit or explicit meta

knowledge is still accessible in the new state MKB

0

unless it is in conict with ch. For example, if we

have �

A;B

(R) � �

A;B

(S) and �

A;B

(S) = �

A;B

(T), which are the partial/complete information constraints

between relation pairs (R, S) and (S, T) in theMKB { the partial/complete information constraint �

A;B

(R)

� �

A;B

(T) between R and T is an implicit meta knowledge information constraint between (R, T). When

the relation S is removed by the user, the new state of the meta knowledge base MKB

0

should still have the

meta knowledge (possibly becoming explicit) between R and T, although the partial/complete information

constraints between (R, S) and (S, T) are dropped.

5.2 MKB Evolution Process

Figure 5 depicts whether a particular type of meta knowledge in the MKB may or may not be a�ected by a

capability change at an IS. Each row represents one type of (out of six) capability change under consideration

(Section 2), and each column represents the types of constraints supported by our meta knowledge model (Section

3). We make the following observations:

� Adding new attributes (the second row) or relations (the �fth row) to an IS does not a�ect the existing

meta knowledge in the MKB, though it is likely that subsequently new meta knowledge concerning new

capabilities and even the rest of the information space may be added by the information provider. We

assume that our system does not attempt to further optimize existing views, when new knowledge becomes

available in MKB.

� Our system keeps a name-mapping table in the MKB along with other meta knowledge. For this reason,

none of the meta knowledge is a�ected by the change-attribute-name (the third row) and the change-

relation-name (the sixth row) capability changes. Even if a name changes more than once, our system

keeps track of this information in the same entry of the name mapping table.

� Constraints in our MKB are only a�ected by two types of capability changes, namely by deleting an attribute

(the �rst row) or deleting a relation (the fourth row).

Based on the above assumptions, we discuss the meta knowledge evolution process under delete-attribute and

delete-relation changes only in the rest of this section.

capability n constraint type integrity order integrity attribute join partialncomplete

change constraint constraint function-of constraint constraint info constraint

del-attr maybe a�ected maybe a�ected maybe a�ected maybe a�ected maybe a�ected

add-attr una�ected una�ected una�ected una�ected una�ected

chg-attr-name una�ected una�ected una�ected una�ected una�ected

del-rel maybe a�ected maybe a�ected maybe a�ected maybe a�ected maybe a�ected

add-rel una�ected una�ected una�ected una�ected una�ected

chg-rel-name una�ected una�ected una�ected una�ected una�ected

Figure 5: MKB Evolution under Capability Changes.

5.2.1 Integrity Constraint Evolution

As mentioned earlier, an IS describes its content by using two kinds of integrity constraints, namely the type

integrity constraints and the order integrity constraints. When an attribute attr of a relation R is dropped by

the user, then our algorithm will drop the type constraint of attr beside removing attr from the relation R.

Furthermore, if an order constraint exists for R, then it will �nd the a�ected primitive clauses that reference to

attr, compute the transitive closure of the a�ected clauses, and evolve the order constraint of R by adding the

derived primitive clauses (if any) to the order constraint and by removing the a�ected primitive clauses at the

end.

Example 7 Assume the order constraint of R is: R(A,B,C) � (A > B) AND (B > C). When the attribute B is

dropped, our system �rst drops B and type

i

(B) from the MKB and �nds both clauses of the order constraint are

a�ected. After computing the transitive closure of the a�ected clauses, our system derives an order constraint

(A > C) that was implicitly stated in the original order constraint. Since all the (explicit and implicit) primitive

clauses of the order constraint are satis�ed by any extent of R at any time, the implicit order constraint (A >

C) is still satis�ed after removing B from R. Therefore, the order constraint of R is evolved to: R(A,C) � (A >

C).

Similarly, when a relation is dropped by the user, then our algorithm will (1) drop all the type constraints of

R from the MKB, and (2) drop the order constraint, if there is one.

5.2.2 Join Constraint Evolution

A join constraint J C is used to specify what is a meaningful way to combine information from possibly two ISs.

When a primitive clause (R

1

:attr

i

� R

2

:attr

j

) of a join constraint J C in the MKB is a�ected by del-attr(R

1

,

attr

i

), our system does the following:

1. If the condition-replaceable parameter is set to false (� = false) and the condition-dispensable parameter

is set to false (� = false), then the join constraint is retracted from the MKB.

2. If the condition-replaceable parameter is set to false (� = false) and the condition-dispensable parameter

is set to true (� = true), then the join constraint would be rewritten with the a�ected primitive clause

dropped.

3. If the condition-replaceable parameter is set to true (� = true), our algorithm will attempt to �nd an

appropriate replacement in the same relation R

1

. For example, if there is an attribute function-of constraint

R

1

:attr

i

= f(R

1

:attr

x

) with attr

x

an attribute of R

1

and attr

i

6= attr

x

, then replace (R

1

:attr

i

� R

2

:attr

j

)

with (f(R

1

:attr

x

) � R

2

:attr

j

) in J C.

4. If our system fails to �nd a replacement within R

i

and the condition-dispensable parameter is set to true

(� = true), then the join constraint can be rewritten with the a�ected primitive clause dropped. If the

condition-dispensable parameter is set to false (� = false), then the join constraint is retracted from the

MKB.

When a relation R is dropped by the user, then our system will drop all the join constraints J C referencing to

R, because new join constraints cannot be inferred by computing the transitive closure of existing join constraints

in general.

5.2.3 Partial and Complete Information Constraint Evolution

A general partial/complete information constraint PC is given earlier in Equation (4). When an attribute R

1

:A

is deleted from its IS, a PC between R

1

and another relation R

2

is a�ected if (1) R

1

:A appears in the projection

list of the PC, i.e., A 2 A

i

1

, � � �, A

i

k

, (2) R

1

:A appears in (one or more of the primitive clauses of) the selection

condition of the PC, i.e., A 2 A

j

i

, � � �, A

j

l

, (3) R

1

:A appears in both the projection list and the selection

condition, i.e., (A 2 A

i

1

, � � �, A

i

k

) and (A 2 A

j

i

, � � �, A

j

l

) (see Equation 4).

1. If R

1

:A appears in the projection list only, we simply remove R

1

:A and the attribute corresponding to R

1

:A

in the projection list of R

2

, respectively, and the relationship between R

1

and R

2

stays the same. This can

be proved by induction, because the selection conditions used on both sides of the PC stay the same.

2. If R

1

:A appears in the selection condition only, PC can be evolved by deleting the primitive clauses that

reference R

1

:A from the selection list and with the new � value set to �, if the old � value was � or �. If the

old � value was �, then the old PC cannot be evolved and has to be dropped. The reason is that removing

one or more primitive clauses from a selection condition may make the result set grow bigger in general.

However, when the old � value was �, i.e., the original fragment of R

1

is a subset of the fragment of R

2

,

removing one or more clauses from the selection condition for R

1

makes the fragment of R

1

bigger. We no

longer know how to compare the new fragment of R

1

and the old fragment of R

2

, so the partial/complete

information condition between R

1

and R

2

has to be retracted from the MKB.

3. R

1

:A

i

s

appears in both the projection list and the selection condition. This is a combination of the �rst

and the second case. Algorithms presented earlier can be united to handle this case.

When a relation R is dropped by the user, then our system takes the following steps to evolve the a�ected

partial/complete information constraints:

Partial/Complete Information Constraint Evolution Algorithm After Relation R is removed:

1. Find the set of affected partial/complete information constraints

involving the relation R, and call this set Affected-PC.

2. Derive new partial/complete information constraints, New-PC,

by computing the transitive closure of Affected-PC.

That is, New-PC = Transitive-Closure - Affected-PC.

3. Add New-PC to MKB.

4. Remove the affected partial/complete information constraints, Affected-PC, from the MKB.

Example 8 Assume there are two partial/complete information constraints in the MKB:

PC

R;S

=

�

�

A,B

(R) � �

A,B

(S)

�

AND PC

S;T

=

�

�

B

(S) � �

B

(T)

�

(9)

If the relation S is dropped by the user, then our system �rst �nds both partial/complete information con-

straints, i.e., PC

R;S

and PC

S;T

, are a�ected. Intersecting the projection lists of S of both PCs, we derive a

new partial/complete information constraint between R and T as:

PC

R;T

=

�

�

B

(R) � �

B

(T)

�

(10)

Note that the new meta knowledge can be derived from the existing partial/complete information constraints,

because the containment relationships of the existing PCs are compatible (in our example, we have � and �).

Therefore, we add this derived meta knowledge into the MKB and remove the two a�ected partial/complete

information constraints given in Equation (9) from the MKB.

5.2.4 Attribute Function-Of Constraint Evolution

An attribute function-of constraint relates two attributes by de�ning a function that can transform one of them

into another. Deleting an attribute or deleting a relation are the only capability changes that can a�ect the

set of attribute function-of constraints in the MKB. Let Function-Of be the original set of attribute function-of

constraints in the MKB. When an attribute A is deleted from an IS, Function-Of is evolved as follows:

Attribute Function-Of Constraint Evolution Algorithm After Attribute A Is Removed:

1. Find the set of affected attribute function-of constraints in the MKB, i.e.,

that have A as the argument or as the result of the function-of constraints,

and call this set Affected-Function-Of.

2. Derive new attribute function-of constraints, New-Function-Of,

by computing the transitive closure of Affected-Function-Of.

That is, New-Function-Of = Transitive-Closure - Affected-Function-Of.

3. Add New-Function-Of to the MKB.

4. Remove the affected attribute function-of constraint Affected-Function-Of from MKB.

Example 9 Let's assume Function-Of = f R

i

:A

r

= f

1

(R

j

:A

s

), R

j

:A

s

= f

2

(R

k

:A

t

) g. If R

j

:A

s

is removed from

its IS, both of the attribute function-of constraints in Function-Of are a�ected. Following the algorithm listed

above, the transitive closure of the a�ected constraints is:

Transitive-Closure = f R

i

:A

r

= f

1

(R

j

:A

s

), R

j

:A

s

= f

2

(R

k

:A

t

), R

i

:A

r

= f

1

� f

2

(R

k

:A

t

) g.

After adding the transitive closure to Function-Of and removing the a�ected function-of constraints, the set

of attribute function-of constraints in the MKB contains one constraint only, namely the composed attribute

function-of constraint { R

i

:A

r

= f

1

� f

2

(R

k

:A

t

).

When a relation R is deleted from its IS, for each of its attributes attr execute Attribute Function-Of Con-

straint Evolution Algorithm(attr) de�ned as above.

6 Formal Foundation for View Synchronization

In this section we give a formal de�nition of what constitutes a legal rewriting for a view de�nition VD which

became obsolete after a capability change at an IS. The goal of our system is to use the information collected in

the MKB to �nd acceptable (ideally equivalent) ways of rewriting a view de�nition VD so that the view is no

longer unde�ned and all constraints imposed by the evolving parameters are satis�ed by the new evolved view

de�nition.

Consider a SELECT-FROM-WHERE view V de�ned as in Equation (6) by a query with a conjunction of

primitive clauses in the WHERE clause. We assume in the rest of the paper that a view V is de�ned such that all

distinguished attributes (i.e., the attributes used in the WHERE clause in an indispensable condition) are among

the preserved attributes (i.e., the attributes in the SELECT clause) inheriting the evolving parameters from the

condition they come from.

De�nition 2 A�ected View under Capability Change ch. Let ch be a capability change of an underlying

information source. The function DetectA�ectedView(V;ch;MKB) detects if the de�nition of the view V is

a�ected by the change ch when the state of the knowledge base is MKB. DetectAffectedV iew(V; ch;MKB) could

have three outputs: (1) error - the view V is a�ected by the change ch but cannot be evolved because there exists

at least a view component (i.e., attribute, relation or condition) a�ected by the change that is nondispensable

and nonreplaceable (i.e, the attached dispensable parameter and replaceable parameter are both false). If such

a component exists it is impossible to evolve the view and satisfy the evolving parameters in the same time.

For example, if the change is drop attribute A, and attribute A is nondispensable and nonreplaceable in the

SELECT clause of the view V , the view de�nition cannot be evolved such that the new de�nition satis�es evolving

parameters for A); (2) true - the view V is a�ected by the change ch and it is possible to �nd a legal rewriting;

note, that in this case, our system may still fail to evolve the view; (3) false - the view V is not a�ected by the

change ch.

When DetectAffectedV iew(V; ch;MKB) = true, our view synchronization tool will try to evolve the view

de�nition and possibly its content to be in sync with the new state of the information space, but it is not guaranteed

that a legal evolved de�nition will be found. De�nition 4 de�nes the notion of legal rewriting of the view V under

capability change ch, and thus provides a formal foundation for the actions of the view synchronization module.

In the following we use the term view element to refer to a view component such as an attribute, relation or

condition used in the view de�nition together with the set of evolving parameters attached to it. If an attribute,

relation or condition has no evolving parameters de�ned in the view de�nition, we assume that the view element

corresponding to it has the default parameters as de�ned in Section 4.

De�nition 3 For a view V de�ned as in Equation (6), and a view V

0

having properties P1 to P6 from the

De�nition 4, the evolving parameters of V

0

are set as following:

1. For an element X(par

1

= x

1

; par

2

= x

2

) of the view V

0

that is identical to the element X of the view V ,

the evolving parameters are left the same as in the original view de�nition.

2. For a new element X(par

1

= x

1

; par

2

= x

2

) of the view V

0

that replaces exactly one element of the original

view V , the evolving parameters are left the same. Note, that if an element of V is replaced by more than

one new element of the view V

0

, we say that each of the new elements replaces exactly one element of V .

3. For a new element X(par

1

= x

1

; par

2

= x

2

) of the view V

0

that replaces more than one element of the

original view de�nition X

1

(par

1;1

= x

1;1

; par

1;2

= x

1;2

), : : :, X

k

(par

k;1

= x

k;1

; par

k;2

= x

k;2

)

6

, we set

X(par

1

= x

1;1

AND � � � AND x

k;1

; par

2

= x

1;2

AND � � � AND x

k;2

), as all x

j;i

; j = 1; k; i = 1; 2 are

boolean.

4. The extent evolving parameter �

V

0
is equal to �

V

.

De�nition 4 A view V

0

is a legal rewriting of the view V under capability change ch if the following properties

hold:

P1. The view V

0

is no longer a�ected by the change ch, i.e., DetectAffectedV iew(V

0

; ch;MKB') = false.

P2. The view V

0

can be evaluated in the new state of the information space. I.e., if the meta knowledge base

MKB is changed into MKB' to reect the change ch (see Section 5), then the view V

0

contains only elements

de�ned in MKB' and can be evaluated given its de�nition.

6

Note that if some elements are replaced in the new de�nition, they are replaceable, i.e., second evolving parameter is

true.

P3. The extent parameter �

V

of V is satis�ed by the view V

0

. That is, if

�

B

V

and

�

B

V

0
are the attributes of

interfaces of V and V

0

, respectively, then

�

�

B

V

\

�

B

V

0

(V

0

)�

V

�

�

B

V

\

�

B

V

0

(V) (11)

is satis�ed for any state of the underlying information sources.

P4. All evolving parameters attached to the view elements such as attributes, relations or conditions of the

view V , are satis�ed by the view V

0

. For example, any legal rewriting of the view V must have in the

interface all indispensable attributes (i.e., the ones having � = true).

P5. The de�nition of the view V

0

is consistent with the constraints of the MKB'. I.e., any new element (e.g.,

new condition in the WHERE clause) matches some constraint in MKB'. More precisely, new elements

appear in the view V

0

only if they are required to replace existing elements that after a drop relation or drop

attribute change must be replaced by other attributes. Thus, we have the following cases:

1. Case 1. A new element f(S:A

0

)(� = �

A

; " = "

A

) could appear in the SELECT clause of V

0

if it replaces

exactly one element R:A(� = �

A

; " = "

A

) from the SELECT clause of V

7

. The attributes f(S:A

0

) and

R:A must have the same type and the following condition holds:

9R

1

; R

2

; : : : ; R

n

having R and S among them, fJ C

R

i

;R

i+1

j J C

R

i

;R

i+1

a join constraint in MKB' ;

i = 1; n � 1g such that 9R

i

1

:A

i

1

(= R:A); : : : ; R

i

l

:A

i

l

(= S:A

0

), fi

1

; : : : ; i

l

g � f1; : : : ng,

9F

R

i

j

:A

i

j

;R

i

j+1

:A

i

j+1

= (R

i

j

:A

i

j

= f

j

(R

i

j+1

:A

i

j+1

)), for j = 1; l � 1 function-of constraints and

f = f

1

� f

2

� � � � � f

l�1

a composition of the sequence of functions.

That is, R:A = f

1

(f

2

(� � � f

l�1

(S:A

0

) � � �)) where the set of \linked" attributes fR

i

1

:A

i

1

(=

R:A); : : : ; R

i

l

:A

i

l

(= S:A

0

)g are from the relation de�ned by the following expression:

R

1

1

JC

R

1

;R

2

R

2

1

JC

R

2

;R

3

� � � 1

JC

R

n�1

;R

n

R

n

(12)

All relations from the expression (12) must appear in the FROM clause of the view V

0

and all primitive

clauses from the set of join constraints used in expression (12) must appear in the WHERE clause

of the view V

0

. Moreover, the attribute R:A is replaced by f(S:A

0

) in V

0

in the conditions of the

WHERE clause where R:A appears in V .

2. Case 2. A new element C(� = �

C

; � = �

C

) could appear in the WHERE clause of V

0

if it is a primitive

clause in one of the sequences of join constraints used to replace an attribute R:A as in Case 1.

3. Case 3. A new element R(� = �

R

; � = �

R

) could appear in the FROM clause of V

0

if it appears in

one of the sequences of joins used to replace an attribute R:A as in Case 1.

P6. The de�nition of the view V

0

is minimal with respect to the set of the relations in the FROM clause and the

set of conditions in the WHERE clause. That is, if we drop a relation from the FROM clause or a condition

from the WHERE clause, the modi�ed de�nition doesn't satisfy properties P1 to P5 any longer. P6 imposes

that the new view de�nition cannot have extra elements that are not needed in the view, such as an extra

attribute in the SELECT clause or an extra relation in the FROM clause that serves no purpose.

7

An attribute R:A of V is to be replaced in the new view V

0

if for example the attribute is dropped from the relation

R or the whole relation R is dropped.

P7. The evolving parameters for the elements of V

0

are de�ned as in De�nition 3.

Example 10 Let a view V be de�ned as follows:

CREATE VIEW Asia-Customer(� =�) AS

SELECT C.Name, C.Address(� = false; " = true);C.PhoneNo

FROM Customer C, FlightRes F

WHERE (C.Name = F.Passenger) AND (F.Destination = 'Asia')

(13)

And let's assume that change ch is \drop attribute Address from the relation Customer". We have to �nd

a replacement for this attribute that could be obtained from a chain of join constraints de�ned in MKB'. Let's

assume we have in MKB the following constraints:

(1) Person relation is de�ned by Person(Name, SSN, Address);

(2) J C

Customer, Person

= (Customer.Name = Person.Name);

(3) F

Customer.Address, Person.PermanentAddress

= (Customer.Address = Person.PermanentAddress);

(4) PC

Customer, Person

=

(�

Name, PermanentAddress

(Person) � �

Name, Address

(Customer))

Equation (14) de�ning Asia-Customer' is a legal rewriting (new elements are underlined) of Equation (13):

CREATE VIEW Asia-Customer' (� =�) AS

SELECT C.Name, P.PermanentAddress (� = false; " = true);C.PhoneNo

FROM Customer C, FlightRes F, Person P

WHERE (C.Name = F.Passenger) AND (F.Destination = 'Asia')

AND (P.Name = C.Name)

(14)

This legal rewriting uses the join constraint J C

Customer, Person

to obtain the address from the relation Per-

son by using the join relation

�

Customer 1

JC

Customer, Person

Person

�

;

and the function-of constraint de�ned by F

Customer.Address, Person.PermanentAddress

. Then the

evolved view de�nition is given by Equation (14) which has all the properties P1 to P7, thus it is a legal rewriting.

Note, that we can prove that for the evolved view de�ned by Equation (14), the extent parameter \�" is satis�ed

given the constraint (4), PC

Customer, Person

.

Example 11 Examples of queries that violate at least one of the properties from De�nition 4 are given below:

(A) The evolving parameters from the initial query V are not satis�ed by attribute Address being dropped, thus

property P4 is violated:

CREATE VIEW Asia-Customer(� =�) AS

SELECT C.Name, C.PhoneNo

FROM Customer C, FlightRes F

WHERE (C.Name = F.Passenger) AND (F.Destination = 'Asia')

(15)

(B) The expression used to obtain a replacement for the attribute Customer.Address is not merged into the

new de�nition by failing to add the join conditions in the WHERE clause, thus violating P5:

CREATE VIEW Asia-Customer(� =�) AS

SELECT C.Name, P.PermanentAddress (� = false; " = true), C.PhoneNo

FROM Customer C, FlightRes F, Person P

WHERE (C.Name = F.Passenger) AND (F.Destination = 'Asia')

(16)

7 The Process of View Synchronization

As already discussed in Section 5, four of the six capability change operations we consider can be handled in

a straightforward manner. Namely, the add-relation and add-attribute capability changes do not cause any

changes to existing (and hence valid) views, and we assume that our current system will not further optimize

existing views based on this new knowledge. The two rename capability change operators, rename-relation and

rename-attribute, are caught by the name mapping service in the MKB and hence also do not require any

synchronization at the individual view site level.

However, the two remaining capability change operators, i.e., delete-attribute and delete-relation, cause ex-

isting views to become invalid and hence need to be addressed by the view synchronization algorithm. Below,

we present the algorithm for handling the most di�cult operator, namely, the delete-relation operator, in depth.

The algorithm for the delete-attribute operator is a simpli�ed version of the delete-relation algorithm given

below, and hence is omitted in this paper due to space limitations.

Given delete-relation(R), we assume for the following that the view query V uses R only once in the

FROM clause. The algorithm LegalRewritings could be easily adapted for a more general case when the

relation R appears more than once in the FROM clause. We also assume that any join constraint in MKB is

augmented with the order constraints de�ned for the relations involved in that join constraint. We start by

giving some de�nitions for the concepts needed for the view synchronization process.

Example 12 The following query will be used to illustrate the steps for rewriting under a delete relation change

\delete relation Customer". The view Customer-Passengers-Asia de�nes pairs (passenger; participant)

of passengers ying to Asia and participants to a tour in Asia that y and start the tour at the same day,

respectively. Such a view could be used to see what participants to a tour are ying to \Asia" at the same day

as the tour starts.

CREATE VIEW Customer-Passengers-Asia (�

V

) AS

SELECT C.Name (� = false; � = true), C.Age (� = true; � = true),

P.Participant (� = true; � = true), P.TourID (� = true; � = true)

FROM Customer C (� = true; � = true), FlightRes F (� = true; � = true),

Participant P (� = true; � = true)

WHERE (C.Name = F.Passenger) (� = false; � = true) AND (F.Destination = 'Asia') AND

(P.StartingDate = F.Date) AND (P.Location = 'Asia')

(17)

De�nition 5 Meta Knowledge Base Hypergraph H(MKB). Given the meta knowledge base MKB, we

de�ne the hypergraph associated with it H(MKB), of the set of relations fR

1

; : : : ; R

n

g described in MKB, the

set of join constraints fJ C

1

; : : : ;J C

m

g in MKB, and the set of function-of constraints fF

1

; : : : ;F

n

g in MKB,

by representing the relations and function-of constraints by hyperedges, and the attributes and join constraints

by nodes. A function-of constraint is a hyperedge connecting only two attribute nodes, thus, for simplicity, we

represent it by a direct edge connecting the corresponding attributes (depicted by arrows in Figure 6). Two

relations share a constraint node (depicted by JCi in Figure 6) if and only if the node corresponds to a join

constraint de�ned for the two relations. Figure 6 depicts the hypergraph associated to Example 2.

De�nition 6 Connected Sub-Hypergraph H

R

(MKB). For a relation R, we de�ne the sub-hypergraph of

H(MKB) that contains R as following:

H

R

(MKB) = fS

R

(MKB);J

R

(MKB);A

R

(MKB);F

R

(MKB)g (18)

S

R

(MKB) = fS

1

; S

2

; : : : ; S

k

g is a set of relations of H(MKB) containing R, such that for any two relations S

1

and S

2

in S

R

(MKB), there exists a sequence of join constraints J C

S

1

;R

1

; : : : ;J C

R

n

;S

2

de�ned in MKB, with

R

1

; : : : ; R

n

2 S

R

(MKB). I.e., the following relation is a meaningful way (given MKB) to combine the relations

S

1

and S

2

: S

1

1

JC

S

1

;R

1

R

1

� � � 1 � � � 1

JC

R

n

;S

2

S

2

.

J

R

(MKB) = fJ C

S;S

0
j S; S

0

2 S

R

(MKB)g is the set of join constraints in MKB de�ned between relations in

S

R

(MKB),

A

R

(MKB) = fA j A 2 S;S 2 S

R

(MKB)g is the set of attributes of the relations in S

R

(MKB), and

F

R

(MKB) = fF

A;B

j A;B 2 A

R

(MKB)g is the set of function-of constraints de�ned between relations in

S

R

(MKB).

Example 13 Figure 6 depicts two connected components for the hypergraph H(MKB) for Example 1. In

Figure 6 for R = Customer we have S

Customer

(MKB) = f FlightRes, Customer, Participant, Tour,

Accident�Ins g.

De�nition 7 R-mapping of a view query V into sub-hypergraph H

R

(MKB). For a view query V de�ned

by an expression (6) and a relation R from the FROM clause of the view query V , we de�ne the R-mapping of the

query intoH

R

(MKB) by R-mapping(V , H

R

(MKB)) = (Max(V

R

);Min(H

R

)) to be a pair of two subexpressions

one constructed from the view query V and one constructed from the connected sub-hypergraph H

R

(MKB) such

that the followings hold:

(I) The expression Max(V

R

) is of the form:

Max(V

R

) = R

v

1

1

C

R

v

1

;R

v

2

� � � 1

C

R

v

l�1

;R

v

l

R

v

l

(19)

such that relations fR

v

1

; : : : ; R

v

l

g are from the FROM clause of V , R 2 fR

v

1

; : : : ; R

v

l

g, and

fC

R

v

1

;R

v

2

; : : : ; C

R

v

l�1

;R

v

l

g are conjunction of primitive clauses from the WHERE clause of V . A conjunction

C

R

v

s�1

;R

v

s

contains all the primitive clauses that use attributes of relations R

v

s�1

and R

v

s

(both local and join

conditions).

(II) The expression Min(H

R

) is of the form:

Min(H

R

) = R

h

1

1

JC

R

h

1

;R

h

2

� � � � � � 1

JC

R

h

s�1

;R

h

s

R

h

s

(20)

where relations fR

h

1

; : : : ; R

h

s

g � S

R

(MKB), R 2 fR

h

1

; : : : ; R

h

s

g and fJ C

R

h

1

;R

h

2

; : : : ;J C

R

h

s�1

;R

h

s

g �

J

R

(MKB).

(III) The relation de�ned by Max(V

R

) is contained in the relation de�ned by Min(H

R

):

�

R

v

1

1

C

R

v

1

;R

v

2

� � � 1 � � � 1

C

R

v

l�1

;R

v

l

R

v

l

�

�

�

R

h

1

1

JC

R

h

1

;R

h

2

� � � 1 � � � 1

JC

R

h

s�1

;R

h

s

R

h

s

�

(21)

(IV) The expressionMax(V

R

) is maximal with the properties (I) and (III). I.e., there is no other relations from

the FROM clause of the view V that could be added to it and still be able to �nd a subexpression in H

R

(MKB)

such that (I) and (III) are satis�ed.

The expression Min(H

R

) is minimal with the properties (II) and (III). I.e., we cannot drop a relation from it

and still have (II) and (III) satis�ed.

Algorithm for Computing R-mapping(V , H

R

(MKB)) = (Max(V

R

);Min(H

R

)).

To �nd the expressions Max(V

R

) and Min(H

R

) with the property (III), it is su�cient ([Ull89]) to have that:

(M1) fR

h

1

; : : : ; R

h

s

g � fR

v

1

; : : : ; R

v

l

g;

(M2) each join constraint J C

S;S

0
of expression Min(H

R

) (20) is implied by the corresponding join condition

C

S;S

0
of expression Max(V

R

) (19), where S;S

0

2 fR

h

1

; : : : ; R

h

s

g.

To �nd Max(V

R

) in V having property (M2), we start by selecting all relations that join with R in V with a

join condition C

R;S

such that 9J C

R;S

in MKB, and C

R;S

implies J C

R;S

. Then for any relation found by this

�rst step, we recursively �nd others that are joined with it with join conditions that imply the corresponding

join constraints in MKB, until we cannot �nd any new relation to add. Min(H

R

) is obtained from Max(V

R

) by

dropping the join conditions that are not part of the join constraints de�ned in MKB.

Example 14

The maximal subexpressionMax(Customer-Passenger-Asia

Customer

) of the query (17) and change ch =

delete�relation Customer is:

Max(Customer-Passenger-Asia

Customer

) = FlightRes 1

�

(FlightRes.Passenger = Customer.Name)

AND (FlightRes.Destination = 'Asia')

�

Customer

(22)

In the Figure 6, the minimal subexpression Min(H

Customer

) of the H

Customer

(MKB) is marked by bold

lines and corresponds to:

Min(H

Customer

) = FlightRes 1

(FlightRes.Passenger = Customer.Name)

| {z }

JC1

Customer (23)

The relation de�ned by expression (22) is contained in the relation de�ned by expression (23) and they are

maximal and minimal, respectively, with this property. I.e., the expression (22) is the maximal subexpression in

the view query (17) having the properties (I) to (III): if we add a new relation from the query (17) to it, we

cannot �nd any longer a subexpression of H(MKB) so that these properties hold. The same we can say for the

subexpression (23) to be minimal with the properties (I) to (III).

De�nition 8 R-replacement(V;H

R

(MKB)). For a given view de�nition V and the MKB, we compute a set

of expressions constructed from H

R

(MKB) that doesn't contain R and could be used to meaningfully replace the

maximal subexpression Max(V

R

) in V . Let MKB' be the meta knowledge base evolved from MKB (Section 5)

when relation R is dropped; and H

0

R

(MKB

0

) be the sub-hypergraph of H

R

(MKB) obtained by erasing hyper-

edge R. We de�ne R-replacement(V;H

R

(MKB)) = fMax(V

1;R

); : : : ;Max(V

k;R

)g to be a set of subexpressions

constructed from H

0

R

(MKB

0

) and Max(V

R

).

A subexpressionMax(V

1;R

) has the following properties:

(I) Max(V

1;R

) = R

1

1

JC

R

1

;R

2

� � � 1

JC

R

k�1

;R

k

with R

1

; : : : ; R

k

and J C

R

1

;R

2

; : : : ;J C

R

k�1

;R

k

in H

0

R

(MKB

0

).

(II) R doesn't appear in Max(V

j;R

). I.e., R not among R

1

; : : : ; R

k

.

(III) The expression Min(H

R

) without R, Min(H

0

R

), could be mapped into Max(V

j;R

). That is, if Min(H

R

)

is given by the equation (20) then: fR

h

1

; : : : ; R

h

s

g n fRg � fR

1

; : : : ; R

k

g and fJ C

R

h

1

;R

h

2

; : : :J C

R

h

s�1

;R

h

s

g

nfJ C

S;S

0
j S = R or S

0

= Rg � fJ C

R

1

;R

2

;:::JC

R

k�1

;R

k

g.

(IV) For any attribute A 2 R that is a nondispensable attribute in the query view V , the expression Max(V

j;R

)

contains a relation S 2 fR

1

; : : : ; R

k

g such that there exists a function-of constraint F

R:A;S:B

= (R:A = f(S:B))

in MKB. We call the relation S a cover for the attribute A and the attribute f(S:B) a replacement for the

attribute A in Max(V

j;R

).

Algorithm for computing R-replacement(V;H

R

(MKB)).

Erasing R from the connected sub-hypergraph H

R

(MKB) could lead to a disconnected sub-hypergraph

H

0

R

(MKB

0

). If H

0

R

(MKB

0

) is disconnected and the relations left in Min(H

0

R

) are in disconnected com-

ponents then the set R-replacement(V;H

R

(MKB)) is empty.

Example 15 In Figure 7, the expressionMin(H

0

Customer

) corresponding to the subexpression (23) is marked

with bold lines: Min(H

0

Customer

) = �

FlightRes.Destination = 'Asia'

(FlightRes).

If relations left in Min(H

0

R

) are in a connected component of H

0

R

(MKB

0

), we construct the set

fMax(V

1;R

); : : : ;Max(V

k;R

)g in two steps:

Step 1. For any nondispensable attribute A of R, from the SELECT clause, we �nd a set of pairs (relation,

function-of), Cover(A), from H

0

R

(MKB

0

) such that 8(S; (R:A = f(S:B))) 2 Cover(A), S is in H

0

R

(MKB

0

)

and there exists a function-of constraint F

R:A;S:B

in MKB such that F

R:A;S:B

= (R:A = f(S:B)).

If there exists a nondispensable attribute A of R such that Cover(A) = ;, then the set R-

replacement(V;H

R

(MKB)) is empty.

Example 16 In our example, the only nondispensable attribute is Customer.Name. Using the hypergraph

depicted in Figure 7, we �nd: Cover(Customer.Name) =

f (Accident�Ins, (Customer.Name = Accident�Ins.Holder)),

(Participant, (Customer.Name = Participant.Participant)),

(FlightRes, (Customer.Name = FlightRes.Passenger)) g.

Step 2. At this step we build expressions by joining (using join constraints from H

0

R

(MKB

0

)) Min(H

0

R

) with

relations from Cover(A), for each nondispensable attribute A of R. If the expression obtained is a \connected"

expression (i.e., corresponds to a connected sub-hypergraph of H

0

R

(MKB)), then we found an expression

Max(V

j;R

).

Example 17 For our example and the set Cover(Customer.Name), let's construct the candidate expres-

sions Max(Customer-Passenger-Asia

j;Customer

) and de�ne what is the replacement for the attribute Cus-

tomer.Name.

(1) For (Accident�Ins, (Customer.Name = Accident�Ins.Holder)) 2 Cover(Customer.Name), we ap-

ply Step 2.:

Max(Customer-Passenger-Asia

1;Customer

) = (24)

FlightRes

| {z }

Min(H

0

Customer

)

1

0

B

B

B

@

(FlightRes.Passenger = Accident�Ins.Holder)

| {z }

JC6

AND FlightRes.Destination = 'Asia'

| {z }

Min(H

0

Customer

)

1

C

C

C

A

Accident�Ins

| {z }

in Cover(Customer.Name)

(2) For (Participant, (Customer.Name = Participant.Participant)) 2 Cover(Customer.Name), we

apply Step 2.:

Max(Customer-Passenger-Asia

2;Customer

) = (25)

FlightRes

| {z }

Min(H

0

Customer

)

1 Participant

| {z }

Cover(Customer.Name)

We see that for this particular cover for the attributeCustomer.Name, we fail to �nd a connected expression,

as there is no join constraint between the relations FlightRes and Participant in MKB' (Figure 7). Then we

cannot generate any replacement for Max(Customer-Passenger-Asia

Customer

) using this cover.

(3) For (FlightRes, (Customer.Name = FlightRes.Passenger)) 2 Cover(Customer.Name), we apply

Step 2.:

Max(Customer-Passenger-Asia

3;Customer

) = (26)

FlightRes

| {z }

Min(H

0

Customer

)

1 FlightRes

| {z }

in Cover(Customer.Name)

We assume that any relation could be joined with itself, then expression (26) is equivalent to FlightRes, i.e.,

Max(Customer-Passenger-Asia

3;Customer

) = (27)

�

(FlightRes.Destination = 'Asia')

FlightRes

| {z }

Min(H

0

Customer

);in Cover(Customer.Name)

Now we are ready to give a LegalRewriting algorithm that has as input a view query V , the meta knowledge

base MKB and a change \delete relation R" and returns all possible rewritings of the view V .

Algorithm for Finding Legal Rewritings: LegalRewritings(V , ch =delete�relation R, MKB,

MKB')

INPUT:

the view de�nition V de�ned as in Equation 6;

the change ch = delete-relation R;

the augmented MKB represented by the hypergraph H(MKB)

the evolved augmented MKB' represented by the hypergraph H(MKB

0

)

OUTPUT:

A set of legal rewritings V

1

; : : : V

l

of V .

Customer

T
our

JC3

JC4

Hotels RentACar

JC5

Phone

Age
PName

Source

Dest

Date
Participant

TourID

StartingDate

JC2

Holder

Type

Amount

BirthDay

Company

PhoneNumber
Location

Hotels.City

Hotels.Address

Hotels.PhoneNumber

Address

JC1

JC6

A
cc

id
en

t−
In

s

Participant

Tour.Name

Tour.Type

NoDays

Tour.TourID

Name

Airline

FlightNo

F
lig

h
tR

e
s

F1

F2

F3

F4

F5

F6

F7

City

Relation−edges

F−edges

JC−nodes

Attribute−nodes

Symbol
Hypergraph
 Element

 MKB
 Element

join constraint

attribute

relation

Relation−edges

in Min(H_Customer)

function−of constraint

Figure 6: The Original Hypergraph H(MKB)

for Example 1 and View (17).

Relation−edges

F−edges

JC−nodes

Attribute−nodes

Symbol
Hypergraph
 Element

 MKB
 Element

join constraint

attribute

relation

Relation−edges

function−of constraint

T
our

JC3

JC4

Hotels RentACar

JC5

Phone

Age
PName

Source

Dest

Date
Participant

TourID

StartingDate

JC2

Holder

Type

Amount

BirthDay

Company
City

PhoneNumber
Location

Hotels.City

Hotels.Address

Hotels.PhoneNumber

Address

JC
1

JC6

A
cc

id
en

t−
In

s

Participant

Tour.Name

Tour.Type

NoDays

Tour.TourID

Name

Airline

FlightNo

F
lig

h
tR

e
s

F1

F2

F3

F4

F5

F6

F7

Customer

Deleted edges

in Min(H’_Customer)

Indispensable Attributes for Customer

Dispensable Attributes for Customer

Figure 7: The Evolved Hy-

pergraph H(MKB') for Example 1 and View

(17).

Step 1. Construct the sub-hypergraph H

R

(MKB) as de�ned in De�nition 6.

Step 2. Compute R-mapping(V , H

R

(MKB)) = (Max(V

R

);Min(H

R

)) as de�ned in De�nition 7.

Step 3. Compute R-replacement(V , H

0

R

(MKB

0

)) = fMax(V

1;R

); : : : ;Max(V

k;R

)g as de�ned in De�nition 8. If

R-replacement(V , H

0

R

(MKB

0

) = ; then the algorithm fails to �nd an evolved view de�nition for the view V .

Step 4. An evolved query V

0

is found by replacing Max(V

R

) with Max(V

j;R

) and substitute the attributes of

R in V with the corresponding replacements found in Max(V

j;R

). Because some more conditions are added

in the WHERE clause (corresponding to the join conditions in Max(V

j;R

)), we have to check if there are no

inconsistency in the WHERE clause. Example 18 below gives some examples of evolved view de�nitions for view

de�ned by the Equation (17).

Step 5. Set the evolving parameters for all V

0

obtained at Step 4, as de�ned in Section 6, De�nition 4.

Step 6. All the rewritings from Step 4 have properties P1, P2, P4, P5, P6, and P7 from De�nition 4, Section 6.

At this step, we have to check for which rewriting V

0

obtained in Step 4 the extent parameter �

V

of the query V

is satis�ed in order to see if the property P3 from De�nition 4 is satis�ed. This problem is similar to the problem

of writing a query using views which was extensively studied in the database community [CKP95, LSK95].

However, in our problem domain, we have an added issue of the availability of the set of partial/complete

information constraints de�ned in MKB' that could be used to compare the extent of the initial view V and

the extent of the evolved view V

0

. This development is beyond the scope of current paper, but we plan, in the

future work, to address this problem.

Example 18 For our view Customer-Passenger-Asia de�ned by the Equation (17), let's apply Steps 4 and

5 from the algorithm and �nd replacement under the change \delete relation Customer".

The expression Max(Customer-Passenger-Asia

Customer

) =

FlightRes 1

�

(FlightRes.Passenger = Customer.Name) AND

(FlightRes.Destination = 'Asia')

�

Customer could be replaced by one of the follow-

ing expressions found at Step 3 of the LegalRewritings algorithm:

(1) MaxCustomer-Passenger-Asia

1;Customer

) = FlightRes 1

(

(FlightRes.Passenger = Accident�Ins.Holder)

)

AND FlightRes.Destination = 'Asia'

Accident�Ins.

For this particular case, we see that the attribute Customer.Age is also covered by the relation Accident�Ins:

(Customer.Age = (today �Accident�Ins.Birthday)=365). In this case, we can replace Customer.Age in

the view, too. A new rewriting of Equation (17) using this substitution is given by Equation (28). There are no

contradictions in the WHERE clause after the replacement is done.

CREATE VIEW Customer-Passengers-Asia AS

SELECT AI.Name (� = false; � = true), f(AI.BirthDay) (� = true; � = true),

P.Participant (� = true; � = true), P.TourID (� = true; � = true)

FROM Accident�Ins AI (� = true; � = true), FlightRes F (� = true; � = true),

Participant P (� = true; � = true)

WHERE (AI.Holder = F.Passenger) (� = false; � = true) AND (F.Destination = 'Asia') AND

(P.StartingDate = F.Date) AND (P.Location = 'Asia')

(28)

(2) Max(Customer-Passenger-Asia

3;Customer

) = �

(FlightRes.Destination = 'Asia')

FlightRes.

A new rewriting of the query (17) is given by the query (29). There are no contradictions in theWHERE clause

after the replacement is done.

CREATE VIEW Customer-Passengers-Asia AS

SELECT F.Passenger (� = false; � = true),

P.Participant (� = true; � = true), P.TourID (� = true; � = true)

FROM FlightRes F (� = true; � = true),

Participant P (� = true; � = true)

WHERE (F.Destination = 'Asia') AND

(P.StartingDate = F.Date) AND (P.Location = 'Asia')

(29)

8 Related Work

This work addresses issues of view evolution caused by capability changes in participating information sources. To

our knowledge, this problem has not been studied before in the database literature. However, some subproblems

that must be solved in the context of our DVS system were studied before, most of them in the area of information

integration.

The Dynamic Information Integration Model (DIIM) we propose in a University of Michigan Digital Library

Project [NR96, NR97] is a model that allows information sources to dynamically participate in an information

integration system. The DIIM query language allows loosely speci�ed queries that the DIIM system re�nes

into executable, well-de�ned queries based on the capability descriptions each information source exports when

joining the DIIM system. Issues of de�ning evolving view models, MKB evolution process, view synchronization,

etc., are not discussed. In the DVS system, on the other hand, we solve the problem of how to change well-de�ned

view queries when the capabilities of the underlying ISs change.

In the work of Levy et al. [LSK95], a global information system is designed using the world-view approach

where the external information sources are described relative to the uni�ed world-view relations. The queries in

the global information system are expressed in terms of world-view relations, thus the system must \translate"

them into queries expressed using the base relations exported by external information sources. This work

addresses the problem of choosing the right base relations for query executions, a process that is similar to

the DVS process of rede�ning the view using \appropriate" relations or attributes based on DVS constraints.

However, evolution of views as handled in our current paper is not discussed at all in [LSK95].

Papakonstantinou et al. [PGMW95] are pursuing the goal of information gathering across multiple sources.

Their proposed language OEM assumes queries that explicitly list the source identi�ers of the database from

which the data is to be taken. Their data model allows information sources to describe their capabilities as

well, but they don't assume that these capabilities could be changed and thus they do not address the view

synchronization problem. The latter is the problem we address in our work.

In a separate project, we [RR95, RRL97] use view technology to handle schema changes transparently in

a centralized environment. In the TSE framework, a user works on special-tailored view schemas instead of

working on the base schema directly. Schema changes then are speci�ed against the view schema (whereas in

DVS they are triggered due to changes of ISs). The TSE system is responsible for deriving an alternate view

schema to simulate the e�ects of schema evolution while preserving the current view schemas. When the schema

change is capacity-reducing/preserving, TSE derives the target view schema from the original view schema.

When the schema change is capacity-augmenting, TSE �rst translates the schema change request speci�ed on

the view schema into an in-place schema change speci�ed on the base schema, augments the base schema, derives

the target view schema based on the augmented base schema, and �nally restores the original base schema by

applying an inverse schema change transformation on the augmented base schema. In both cases, none of the

existing view schemas are a�ected, since in both cases the original base schema is preserved. Furthermore, all

view schemas are kept in the system. In DVS system, instead we consider schema (capability) changes coming

from the information space, and we study the e�ects of such IS capability changes on existing view's de�nition.

If all of the ISs were willing to preserve the relations that are referenced by the view de�nitions (i.e., no schema

changes were to happen on base relations), then DVS behaves like TSE.

Gupta et al. [GMR95] and Mohania et al. [MD96] address the problem of how most e�ciently to update

view tuples after a view rede�nition takes place. And, they study under which conditions this view update can

take place without requiring access to base relations, i.e., the self-maintainability issue. Their algorithms could

potentially be applied to views in the context of our overall framework, once DVS has determined an acceptable

view rede�nition - though we expect that adjustments to their solutions must be made to account for when one

does not have accesses to old, dropped data.

9 Conclusion

Our work is the �rst to study the problem of view evolution in a dynamic environment. In our system, views

survive even when the underlying ISs upon which they are de�ned change their capabilities. One component

of our solution approach is for a user to specify evolution criteria as part of the view speci�cation. In order

to �nd alternate replacements for components of a view a�ected by IS capability changes, we have developed a

description model for capturing the capabilities of ISs as well as interrelationships between ISs.

Equipped with the extended view de�nition language and the IS description model, we then propose strategies

for the view synchronization process. First, we introduce algorithms for MKB evolution. Then, we identify which

views are potentially a�ected by the MKB evolution. Thereafter, based on the view change semantics expressed

by our view de�nition language, our view synchronizer explores alternate techniques for view rewriting with the

goal of meeting all view preservation constraints in VD, extracting appropriate information from other ISs as

replacement of the modi�ed capabilities using the MKB, and then generating new view de�nitions. The ideas of

view synchronization are illustrated in this paper by describing algorithms for evolving view de�nitions caused

by the `delete-relation" capability change.

To summarize, the main contributions of this paper are:

� We have formally presented a set of properties for a view rewriting to be legal when a view de�nition

became obsolete after a capability change at an IS. In this paper, we investigate in particular complex view

rewriting possibilities through multiple join constraints given in MKB.

� Since our work discuss applications operated in a dynamic environment, issues associated with MKB man-

agement are important. For that, we have presented the MKB evolution algorithm for the basic set of

capability changes.

� To demonstrate our solution approach, we have presented the algorithm for handling the most di�cult

capability change operator, namely, the delete-relation operator, in depth.

This work has opened a new problem domain, and much future research could be conducted within the

context of our proposed framework, such as appropriate cost models for maximal view preservation, etc.

References

[CKP95] S. Chaudhuri, R. Krishnamurthy, and S. Potamianos. Optimizing Query with Materialized Views.

In Proceedings of IEEE International Conference on Data Engineering, 1995.

[GMR95] A. Gupta, I.S. Mumick, and K.A. Ross. Adapting Materialized Views after Rede�nition. In Pro-

ceedings of ACM SIGMOD International Conference on Management of Data, pages 211{222, 1995.

[Huy96] N. Huyn. E�cient View Self-Maintenance. Proceedings of the Workshop on Materialized Views:

Techniques and Applications, June 1996.

[LNR97a] A. J. Lee, A. Nica, and E. A. Rundensteiner. Keeping Virtual Information Resources Up and

Running. In Proceedings of IBM Centre for Advanced Studies Conference CASCON97, Best Paper

Award, pages 1{14, November 1997.

[LNR97b] A. J. Lee, A. Nica, and E. A. Rundensteiner. The EVE Framework: View Evolution in an Evolv-

ing Environment. Technical Report WPI-CS-TR-97-4, Worcester Polytechnic Institute, Dept. of

Computer Science, 1997.

[LSK95] A. Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in Global Informa-

tion Systems. Journal of Intelligent Information Systems. Special Issue on Networked Information

Discovery and Retrieval, 1995.

[MD96] M. Mohania and G. Dong. Algorithms for Adapting Materialized Views in Data Warehouses.

International Symposium on Cooperative Database Systems for Advanced Applications, December

1996.

[NR96] A. Nica and E. A. Rundensteiner. The Dynamic Information Integration Model. Technical Report

CSE-TR-311-96, University of Michigan, Ann Arbor, EECS Dept. CSE Division, 1996.

[NR97] A. Nica and E. A. Rundensteiner. On Translating Loosely-Speci�ed Queries into Executable Plans

in Large-Scale Information Systems. In Proceedings of Second IFCIS International Conference on

Cooperative Information Systems CoopIS'97, pages 213{222, June 1997.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across Heterogeneous

Information Sources. In Proceedings of IEEE International Conference on Data Engineering, pages

251{260, March 1995.

[RLN97] E. A. Rundensteiner, A. J. Lee, and A. Nica. On Preserving Views in Evolving Environments.

In Proceedings of 4th Int. Workshop on Knowledge Representation Meets Databases (KRDB'97):

Intelligent Access to Heterogeneous Information, pages 13.1{13.11, Athens, Greece, August 1997.

[RR95] Y. G. Ra and E. A. Rundensteiner. A Transparent Object-Oriented Schema Change Approach

Using View Schema Evolution. In Proceedings of IEEE International Conference on Data Engi-

neering, pages 165{172, March 1995.

[RRL97] E. A. Rundensteiner, Y. G. Ra, and A. J. Lee. Transparent Schema Evolution (TSE) Using Object-

Oriented View Technology: Taking a Fresh Look. Technical Report WPI-CS-TR-97-3, Worcester

Polytechnic Institute, Dept. of Computer Science, 1997.

[Ull89] J.D. Ullman. Principle of Database and Knowledge-Base Systems. Computer Science Press, 1989.

[Wid95] J. Widom. Research Problems in Data Warehousing. In Proceedings of International Conference

on Information and Knowledge Management, pages 25{30, November 1995.

