
WPI-CS-TR-97-07 August 1997

1997 Computer Science Department MQP Review

by

George T. Heineman

Robert E. Kinicki

Computer Science

Technical Report

Series

 ��

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

Abstract

This report presents results of a peer review of MQPs conducted within the

Computer Science Department during the Summer of 1997 as part of a campus-wide

MQP review. The goal of the report is to assess whether the department MQPs are

accomplishing their educational goals. The report identi�es problems that need to

be addressed and trends that need to be continued to make the MQPs a worthwhile

learning experience. It re
ects data and evaluations for 29 MQPs, involving 57

computer science students, that were completed between the Summer of 1996 and

the Spring of 1997. The report also makes comparisons to similar reviews done in

1991, 1993, and 1995.

Overall, the large majority of the projects are meeting the educational goals of

the department as good learning experiences. The reviews indicate, however, that

the overall quality of the projects is down from 1995. The reviewers believe that

the faculty must set reasonable expectations for all project students. This will be

increasingly important as the department continues to grow in size. The report

draws a number of conclusions about the success of the projects based upon the

data collected and evaluations done for this review. The report concludes with

recommendations for future projects.

1

1 Introduction

1.1 Purpose

The Major Qualifying Project (MQP) is required of all undergraduate students at

Worcester Polytechnic Institute. The MQP within the Computer Science Department

is a capstone experience, requiring one unit of work, that gives students practice on

applying the fundamentals and skills they have learned to a large problem in the �eld of

Computer Science. The project may involve original research, data collection, analysis,

or design of a system and often a software implementation. The approach is determined

by the student/advisor team. The MQP allows students to study an area of Computer

Science in depth, or allows them to combine areas into a single project.

This report presents results of a peer review of MQPs conducted within the Computer

Science Department during the Summer of 1997 as part of a campus-wide MQP review.

The goal of the report is to assess whether the department MQPs are accomplishing

their educational goals. The report identi�es problems that need to be addressed and

trends that need to be continued to make the MQPs a worthwhile learning experience.

It re
ects data and evaluations for 29 MQPs, involving 57 computer science students,

that were completed between the Summer of 1996 and the Spring of 1997. The report

also makes comparisons to the following reviews:

Year Number of MQPs Number of students

1991 19 31

1993 26 44

1995 23 43

1997 29 57

1.2 Procedure

The peer review was conducted during the Summer of 1997 by Robert E. Kinicki, de-

partment head, and George T. Heineman, assistant professor. The review was to be

for projects completed during the 1995-1996 and 1996-97 academic years. Rather than

examine a sampling of reports for a two-year period, the peer review team examined

projects completed between the Summer of 1996 and the Spring of 1997. The report

for each MQP was obtained from either the project advisor or from the Gordon Li-

brary. Additional project information was gathered from CDR (Completion of Degree

Requirement) records.

As in the previous review process [3], the reviewers conducted a detailed evaluation

of all projects using the review form in Appendix A. The form contains information

used in classifying the projects, questions quanti�ed on a scale between 1 and 5, and has

questions for written comments concerning the report. The form was designed to be easy

to �ll out with information that could be quickly collected and compared. Questions for

written comments concerning the report were used to gather more detailed information

1

about the project and give a means to express speci�c project strengths and weaknesses.

Project grades and registration information was obtained from CDR records.

The MQP reports were divided between the two reviewers for evaluation. After all

evaluations were completed, the data from the forms were collected and analyzed. This

report is the outcome of the peer review process. Section 2 presents the results from

the evaluation forms. Section 3 analyzes and correlates the results. Section 4 discusses

conclusions and recommendations.

2 Results

This section presents the results of the Computer Science MQP evaluations. Along with

presentation of the results are included reviewer comments (denoted by Comment:)

which highlight the results and contrast them against those from previous reviews when

appropriate. Note: All data are presented on a per project and not per student basis.

All percentages are represented in whole number amounts (i.e., 1/29 is represented as

3%), and all number averages are represented to one decimal accuracy (i.e., 1.97 is shown

as 2). Because of this formatting, the percentages do not always total to 100%.

2.1 Faculty/Student Ratio

Table 1 shows the percentage of projects with the given numbers of students and fac-

ulty. Three (10%) of the projects had one or more advisors from outside the department

(one Mechanical Engineering, one Civil Engineering, one Electrical and Computer En-

gineering). Three (10%) of the projects (two Electrical and Computer Engineering, one

Computers with Applications, one Civil Engineering) involved a total of four students

from other departments.

The average number of students per project was 2. The average number of faculty per

project was 1.3.

Comment: The results show that only eight projects (28%) of the projects were done

by a single student. This number is down sharply from the 1995 �gure of 44% and the

1993 �gure of 42%. This shows that the faculty is implementing a suggestion from the

1995 peer review to increase student team size. The number of projects advised by a

single faculty member was 21 (73%), up from 67% in 1995. About the same number

of projects involved faculty outside of the department as in 1995, but the number of

students from other departments decreased by half to only four.

2.2 Faculty Project Load

Table 2 shows the distribution on the number of projects (co-)advised by each faculty

member. There were eleven full-time faculty in Computer Science during AY96-97 (one

faculty was on sabbatical, one started in January, one was on leave) plus two instructors

2

Table 1: Percentage of projects with the given number of students and faculty

Students

Faculty 1 2 3 4+ Total

1 7 11 2 1 73

2 0 4 3 0 24

3+ 1 0 0 0 3

Total 28 62 17 3 100

who advised projects. Table 3 shows the same data, but in cases where projects were

co-advised a weighting of one-half project load was given to each advisor. Note: The

co-advisors from other departments are not shown in the tables.

Comment: The data show that one professor advised ten (34%) of the projects while

two professors had no projects (one had returned from sabbatical, one �rst year faculty

member was away B term). Aside from these, the project load was dispersed among the

remaining eight faculty members. The average project load dropped slightly to 2.6, from

2.7 in 1993 and 2.8 in 1995. The comparable average loads shown in Table 3 remained

at 2.2 projects/faculty, the same value as 1995, but up from 1.8 in 1993 and 1.5 in 1991.

These numbers are expected to signi�cantly increase since the number of computer sci-

ence majors at the Freshman and Sophomore levels is more than double the number of

students in the Senior class. However, this should be o�set by the recently hired faculty

members in their second year.

Table 2: Distribution of projects advised or co-advised

Number of Projects (Co-)Advised Number of Faculty

0 2

1 3

2 3

3 2

4 1

5 1

10 1

avg: 2.6 projects/faculty

2.3 O�-Campus Projects

Seven (24%) of the projects were sponsored or involved o�-campus companies and or-

ganizations. The sponsors were Cabletron Systems, Planet Corporation, Stratus Corpo-

ration, Naval Research Laboratory, University of Puerto Rico Mayaguez (UPRM), and

3

Table 3: Distribution of load of projects advised

Load of Projects Advised Number of Faculty

0 2

0.5 3

1 1

1.5 2

3.0 2

3.5 1

4.5 1

9.5 1

avg: 2.2 projects/faculty

Digital Equipment Corporation. One project started initially with Digital Equipment

Corporation as a sponsor, but the students later completed the project independently.

One project was associated with an o�-campus organization: Worcester Art Museum.

The remaining projects were done on-campus and not sponsored by o�-campus compa-

nies.

Comment: This number of o�-campus sponsored projects was slightly higher than the

number in 1995.

2.4 Project Grades

In the projects reviewed, several student projects resulted in members on a given project

receiving di�erent individual grades. 72% of the projects (71% of the students) received

a �nal grade of A, 27% of the projects (21% of the students) received a �nal grade of B,

and 14% of the projects (7% of the students) received a �nal grade of C. These numbers

are in line with the campus-wide historical averages where 70-75% of the students receive

an A on their project.

Comment: These data indicate the number of A grades given to projects increased from

the 1995 �gures of 63% (60% of the students). The same number of projects received a

grade of C as in 1995. These data seem to indicate that the faculty grading is in line with

the campus as a whole. The number of projects with split grades re
ects the increase in

faculty attention to the individual performance of the students. The large percentage of

A grades is noticeable, however.

2.5 Project Continuation

Two projects (7%) were continuations of prior MQPs and MS theses. The other projects

were not directly related to other projects. These results are down from 1995.

4

2.6 Project Duration

Table 4 shows the duration of each project. 73% of the projects �nished with one unit

of work.

Comment: This number compares to 42% (1991), 54% (1993) and 63% (1995) projects

completing with one unit of work. These �gures indicate a trend of better e�ciency by

students and faculty in completing projects on time; the faculty is successfully imple-

menting recommendations from previous peer reviews (dating back to 1991) to encourage

completing projects on-time.

Table 4: Percentage of projects with the given duration

Total Units Total Percentage

1 21 73

1 1/12 1 3

1 1/6 7 24

2.7 Project Report Size

The average size of the project reports was 59 pages (� 26 with a range of 20{138),

which excludes appendices and code. The average size of the appendices for a report

was 33 pages (� 32 with a range of 0{106).

Comment: The length of reports is about the same as previous years 45 (1991), 49

(1993) and 50 (1995).

2.8 References

The average number of references was 14 (� 8 with a range of 1{32) for each report. Many

projects did not have an explicit literature review section, but referenced additional work

through the course of the document. Each MQP was graded on its literature review, as

shown in Table 5

Table 5: Evaluation of literature review

Grade Percentage

High 17

Good 24

Poor 28

None 31

5

Comment: These numbers are virtually the same as in 1995. Students could have done

a better job on referencing prior work. More than half of the MQPs were rated as having

an insu�cient literature review.

2.9 Type of Projects

24 (83%) of the projects contained design and implementation of a piece of software

with the other projects involving design without actual coding of software. 4 (14%) of

the projects involved data collection. 5 (17%) of the projects involved evaluating other

systems or having the developed system evaluated. Two (7%) projects involved original

research. Five projects involved simulations.

Comment: As in previous years a signi�cant number of the projects involved a design

component and in most cases implementation of a program. The reviewers believe that

more of the developed systems should be evaluated by other users as part of the project

life cycle. The use of software written by others caused problems for students in integrat-

ing it with their own work. This problem points to the need for more system integration

tasks in our curriculum.

2.10 Project Area

Table 6 shows the percentage of projects that involved di�erent areas of Computer Sci-

ence. In some cases a project involved only one area while in other cases it involved

multiple areas (thus the percentages total to over 100%).

Comment: As the data show there is a variation in the sub-areas of Computer Sci-

ence covered by the projects, but there is an increasing focus on network management

and/or software engineering. The area of human-computer interaction also had a strong

showing, although down from previous years. While some of these numbers may be

biased by the reviewers { whose research interests focus on network management and

software engineering { the reviewers believe the networked dorm rooms has increased

the number of students working on distributed, network problems. The need to write

the necessary software allowing programs to communicate over a network re
ects the

increase in software engineering projects. The world-wide interest in Java also appears

on the WPI campus as many projects involved Java, either in the form of Java Applets

or stand-alone applications. This trend is expected to continue.

2.11 Software Used

Table 7 shows the relative use of di�erent programming languages and other software in

the projects. Some projects used more than one software tool (e.g. MS-Windows and

C++) thus the percentages total to over 100%.

Comment: The use of the C programming language continues in the projects with a

signi�cant number of projects evolving to use C++, as seen in 1995. The increase in Perl

6

Table 6: Project areas by percentage

41% Networks

34% Software Engineering (principally part)

21% Human-Computer Interaction (principally part)

14% Arti�cial Intelligence/Robotics

14% Applications

14% Distributed Systems

14% Operating Systems

7% Database

7% Information Management

3% Architecture

3% Graphics/Visualization

3% Languages

3% Visual Systems

is most likely from its use in CGI-bin scripts within a web site; C is also used to write

CGI-bin scripts. An increasing number of projects constructed a web-based front-end

using HTML and CGI-bin scripts.

Table 7: Software used by percentage

34% C language

28% C++ language

21% Java language

17% HTML

7% Perl

7% X-Windows

7% other software packages (VB, Oracle)

3% Lisp or a Lisp dialect language

13% no software

2.12 Hardware Used

Table 8 shows the percentage of projects that used di�erent types of hardware platforms

for their work. The numbers do not add to 100 since some projects involved di�erent

hardware platforms.

Comment: The data show that more projects were done using PCs than workstations,

a continuing trend from the 1995 data. Reasons for these results may be the increased

personal use of PCs by students, the wide availability of C++ compilers on PCs and the

number of projects done with companies which are using PCs. Also, since more projects

7

involved HTML and Java programming, there was less emphasis on the particular hard-

ware used. In many cases, the projects did not describe which machines were used { this

should be required for each project.

Table 8: Hardware used by percentage

45% PC

20% workstation (Digital, Sun)

3% Stratus workstation

3% neutral (i.e., Java)

38% Unknown

2.13 Computer Science Classes

In previous reviews, an attempt was made to determine which courses contributed in

some way to the success of the project. This is an important question, since it helps

validate the selection of courses in our curricula. However, the reviewers felt it was

not possible to accurately select a set of courses for each project. In many cases, the

reviewers simply selected the courses in the project area (see Section 2.10). There is

concern by the reviewers that the current curricula does not exactly match the student's

interests as seen in the projects. The addition of new courses, such as WebWare, will

help, but perhaps an overall assessment is needed.

2.14 Project Evaluations

The numerical evaluations of the projects are shown in Tables 9 and 10. The average

and distribution (by percentage) of evaluation for each question is shown. Note: The

\stat" level on the Math Level question represents any mathematics between calculus

and the senior-level, such as probability and statistics or linear algebra.

Comment: Some projects (17%) do not adequately state the objectives of the project,

a sharp increase from previous years. Most projects met or exceeded their objectives,

although 17% failed to do so, perhaps because the objectives were too ambitious, the

project simply did not complete the work, or the objectives changed during the project.

These numbers re
ect worse performance relative to 1995.

A surprising number (37%) of projects do not include an adequate abstract of their

report. This is much higher than in past years (11% in 1995). Each project report must

include a satisfactory abstract; there must be improvement in this area.

The motivation for the projects shows a wide distribution; 34% of the projects failed to

describe proper motivation. Some of this can be attributed to the overall poor literature

reviews (Section 2.8). Those poorly motivated projects often failed to explain why they

were implementing a particular application. There was an increase from 7% in 1995 to

8

Table 9: Project evaluations by percentage

1 2 3 4 5 avg.

Abstract accurate and missing poor adequate excellent

complete 3 34 34 28 0 2.9

Clearly stated project poor adequate excellent

objective 3 14 41 38 3 3.2

Objective met unk no mostly yes exceeded

0 17 59 21 3 3.1

CS Level 1000 2000 3000 4000 grad

0 17 41 38 3 3.3

Math Level none calc stat 4000 grad

62 7 21 3 0 1.6

Motivate the project? poor adequate excellent

17 17 31 17 17 3

Style, grammar, spelling poor adequate excellent

10 17 34 34 3 3

Quality of Tables/ poor adequate excellent

Diagrams/Figures 0 31 38 21 10 3.1

9

Table 10: Project evaluations by percentage (cont.)

1 2 3 4 5 avg.

Project Methodology unknown poor adequate excellent

7 31 34 24 3 2.9

Issues/Problems poor adequate excellent

Discussed 3 17 38 38 3 3.2

Overall report poor adequate excellent

organization 3 21 41 28 7 3.1

Programming E�ort none some considerable

7 17 28 48 0 3.2

Overall E�ort Level too little about right too much

(worth 1 unit/student) 17 21 41 21 0 2.7

Quality of report poor adequate excellent

7 28 14 38 14 3.2

Quality of project poor adequate excellent

7 21 31 24 17 3.2

Quality of unknown poor adequate excellent

presentation 59 14 21 7 0 2.8

10

17% this year for those projects rated as having excellent motivation.

The project methodology continues to remain a problem. 38% of the projects had either

no methodology or one that was poorly described (as compared to 15% in 1995). On the

positive side, 27% exhibited better than average methodology (up from 22% in 1995).

In general the reports do a satisfactory job in motivating and explaining the context

of why the project was done. The reports were less thorough in discussing the design

and methodology of how the project was carried out, and in discussing the issues and

problems faced in the course of working on the project. The quality of report style and

grammar was down sharply { this year 27% of the projects were less than adequate, up

from only 4% in 1995.

The quality of reports exhibit a bi-modal distribution, with 35% being less than ade-

quate, and 52% more than adequate. Contrasting with this, the quality of the projects

decreased (28% less than adequate this year as compared to 19% from 1995). These re-

sults indicate that there is a widening disparity between project and report quality. The

lower-evaluated reports needed better organization (24% were less than adequate) and

motivation. The number of reports with poor �gures increased sharply to 31%, perhaps

contributing to the poor quality of the reports.

There was a surprising increase (to 17%) in projects whose Computer Science knowledge

level was only at the 2000-level. This occurred, perhaps, because of the increase in web-

based projects requiring only simple programming. This was combined with a decrease

in projects requiring 4000-level classes. The reviewers feel there is di�culty in evaluating

the accurate level for each project. The projects exhibited roughly the same mathematics

level as in 1995.

The overall e�ort of the students appears the same as 1995; no projects were rated as

requiring too much e�ort. The programming e�ort was also the same as 1995.

The overall project quality shows two trends. First, the number of less than adequate

projects is continuing to increase, from 15% in 1993, to 19% in 1995, to 28% this year.

Second, the number of above adequate projects remains somewhat constant 38% (8%

excellent) in 1993 to 41% (15% excellent) in 1995, to 41% (17% excellent).

The quality of the presentations was di�cult to judge for the reviewers and more than

half of the evaluations were unknown. The average of 2.8 is for the 12 presentations for

which the reviewers attended. In the future, the reviewers of the MQP reports should

be decided in advance so they can attend the MQP presentations. The presentation

facilities were adequate, using Perreault hall and the IMC television room. In only one

case, the presentation machine crashed, forcing a delay in the presentation.

2.15 Project as a Learning Experience

Almost all of the projects (79%) were a good learning experience. The few projects

that were not so rated resulted from: too simplistic a computer science component,

little rationale for choosing the design of an implementation, lack of consideration of

11

alternatives, not enough e�ort. The reviewers feel the students should be told that

writing an application is not su�cient for an MQP.

Table 11: Project Strengths

Tried to utilize new interface technologies not taught in courses.

Embedded tags easy to understand by HTML-savvy professors.

Thorough Analysis.

Solid CS foundation.

Well thought out.

Report reads like an MS thesis. Excellent organization, well motivated, very useful to

company.

Strong Java programming. Good distributed programming experience.

Full understanding of proprietary SECS/HSMS protocols. Well-created design document.

Attacks hard theoretical problem.

O� campus. Real life problem.

Actual working implementation. Design methods for OO.

Some very nice �gures.

Good topic.

Implementation works. User feedback incorporated.

Experimental attitude. Selection of program.

Attacking topics not normally covered by undergrad curricula.

Shows di�culty when software and hardware are changing and must constantly interface

with each other.

Good interdisciplinary project. Thorough presentation.

Solid understanding of ATM simulation experience.

Good division of workload into 4 communicating executables. Solid professional look/feel.

Tried to help existing organization with MIS.

Good motivation and clear scope. Integration with database. Interesting application.

Good future work. Good comparison with existing tools.

Very speci�c goal on which group kept their focus.

2.16 Project Strengths

Table 11 contains speci�c reviewer comments extracted from the evaluation forms con-

cerning project strengths.

Comment: As in previous reviews, the projects were good when they were well-

motivated, had a clear presentation indicating what was done, had a good design, and

followed through on a particular topic.

2.17 Project Weaknesses

Table 12 contains speci�c reviewer comments extracted from the evaluation forms con-

cerning project weaknesses.

Comment: As in previous reviews, projects with problems showed simplistic objectives,

poor planning, and poor presentation of what was done.

12

Table 12: Project Weaknesses

Not well done. Structure of writing not good. Lack of sentences.

CS work not strong { especially Databases.

No evaluation. No methodology.

No real motivation. No real exams used. No grading engine developed, nor any discussion

of the privacy/security issues. Plagiarism?

Student underestimated project. Should have been 3/4 students.

Some ad hoc treatment of rules. No example showing agent rules.

Not much development. Close to being an IQP.

No test application developed with the project.

Ad hoc treatment of problems/issues that any distributed system must face.

No characterization of how system would be built (if at all). No thorough evaluation of

missing parts, strengths, weaknesses. No example of possible use/scenarios.

More discussion of the hurricane programs needed.

Report not well written. Didn't do much.

Motivation entirely from company. State case for reuse in general.

No �gures of product they claimed to develop.

Flawed methodology.

No context or comparison. No design.

More thorough analysis needed. Summary of problems/issues. Needs Better design.

Report wanders a bit.

No formal architecture of real time system. No Software Engineering principles applied.

Not �nished. No methodology. No testing.

Overestimated simulation part of the project.

More discussion of methodology and expected results.

Not enough evaluation of usefulness of 3d visualization. Too many programming errors.

Not enough modeling, quantitative analysis. No clear objectives. More like an IQP.

No discussion of design. Not enough examples.

Report was short and incomplete. No discussion of design.

Ad hoc approach. Very little design.

Ad hoc treatment of code. No design.

13

Table 13: Expected correlation between project quality and grade

Project Quality

Grade 1 2 3 4 5

C

B/C

B

A/B

A

2.18 Interdisciplinary Work

There were four projects involving other departments: Physical Education, Mechanical

Engineering (structural engineering and vibration study), Civil Engineering, and Elec-

trical Engineering (Signals).

Comment: The number of non-computer science students involved in the projects

dropped slightly from 1995.

3 Analysis of Results

This section correlates various aspects of the MQPs with the evaluations the projects

received. This analysis is intended to help identify which project characteristics tend to

yield good projects and which traits result in lower quality projects.

3.1 Correlation of Evaluations

The following correlations show the relationship between various results and the project

evaluations. The project grades and project evaluations are shown for all projects.

Note: For sake of comparison the value 4 is assigned to an A project grade, a value 3

to a B project grade and a value 2 is assigned to a C project grade. Recall the project

evaluations had a 1 to 5 range where 1 is poor, 2 is fair, 3 is adequate, 4 is good, and

5 is an excellent project. Because of the di�erence in these scales, we set the standard

for correlation as shown in Table 13. We suggest that an A should never be rated less

than a 4, a B should receive an evaluation of 2, 3, or 4, and a C should receive a 1 or a

2. Each entry with a black box shows poor correlation. A project with a split grade of

A/B should receive a 3 or 4.

To start our analysis, we compare the two evaluation criteria taken from the reviewer

questionnaire: project grade assigned by the advisor and the project quality (PQ). Ta-

ble 14 shows the correlation between the project evaluation and the project grade as-

signed by the advisor. The projects were evaluated before obtaining the project grade.

14

Table 14: Correlation of project grade with quality of project

Project Quality

Grade 1 2 3 4 5 Total

C 3 0 0 0 0 3

B/C 3 3 0 3 0 10

B 0 3 7 3 0 14

A/B 0 0 3 0 0 3

A 0 14 21 17 17 69

Total 7 21 31 24 17 100

Comment: There is a disparity between the two evaluation measures for the projects.

There are three cases to consider:

C1 The adviser and reviewer agree in their assessment of the project.

C2 The adviser graded too harshly or the reviewers overrated the project.

C3 The advisor graded too easily or the reviewer underrated the project.

The results show that while 62% of the projects have correlating evaluations (C1), 35%

fall into case C3, and 3% (only one project) fall into case C2. In Table 14, cases C2 and

C3 are represented by bold faced entries.

We now try to explain case C3. The peer review team divided the project reports between

them; Heineman read nineteen projects while Kinicki read ten. On the key questions

of quality of report (RQ) and quality of project (PQ) in Table 10, the average for all

projects was 3.2 (� 1.2). When separated by reviewer, there is no signi�cant di�erence:

Reviewer Report Quality Project Quality

GTH 3.2 � 1.3 3.3 � 1.3

REK 3.4 � 1.1 3.1 � 1

The greatest variance between the two reviewers appears on the results to q1 (Abstract

accurate and complete) and q6 (Motivate the project):

Reviewer Abstract Motivation

GTH 2.5 � .8 2.6 � 1.3

REK 3.5 � .5 3.8 � 1.1

This may be attributed in part to the larger sample of projects reviewed by Heineman.

There thus appears to be no reviewer bias regarding the projects falling under case C3.

For case C3, the reviewers agree that the quality of the projects is not entirely correlated

with the individual grades assigned by the project advisor. 14% of the projects received

15

an A grade although they were assessed to be less than adequate. 21% of the A projects

were rated as being adequate, but the A grade should be reserved for those projects that

are more than adequate. Either the reviewers did not fully comprehend the signi�cance

of the work or the students and advisors agreed upon a less than adequate project. There

is room for improvement here, and as the number of MQPs in our department grows,

the faculty needs to pay attention to standardizing the quality and e�ort of all MQPs.

For case C2, one project that was rated as above adequate received a B/C grade. This

most likely re
ects the dissatisfaction the project advisor had with one of the team

members, so the weaker student member received the lower grade.

3.2 Correlation of Faculty Team Size and Evaluation

Table 15 shows the correlation between the number of faculty and the project evaluations.

The two indicators are report quality (RQ) and project quality (PQ).

Table 15: Correlation of faculty team size and evaluation

Faculty Team Size % of Projects avg Grade avg RQ avg PQ

1 72 3.6 3.3 3.2

2+ 28 3.7 3 3.2

Comment: The data show mixed results. Single-faculty projects receive slightly lower

grades but have higher report quality ratings. The di�erence in project quality is in-

signi�cant.

3.3 Correlation of Student Team Size and Evaluation

Table 16 shows the correlation between the number of students and the project evalua-

tions.

Table 16: Correlation of Student Team Size and Evaluation

Student Team Size % of Projects avg Grade avg RQ avg PQ

1 28 3.6 3.3 3.4

2 52 3.5 3.1 3.1

3 17 3.8 3.4 3.2

4 3 4.0 5.0 5.0

Comment: The analysis shows that two-student projects consistently fared the worst

among all evaluations. This may be explained by the four projects this year (all with

two students) with split grades. Another suggestion is that two-student projects are

16

unable to de�ne and complete large enough projects. The evaluations for single-student

projects are much better than 1995 results.

3.4 Correlation of On/O�-Campus Projects and Evaluation

Table 17 shows the correlation between projects that were sponsored on/o�-campus and

the project evaluations.

Table 17: Correlation of On/O�-Campus Projects and Evaluation

Type % of Projects avg Grade avg RQ avg PQ

On 76 3.6 3.3 3.2

Assoc. 3 4.0 2.0 2.0

O� 21 3.8 3.2 3.5

Comment: Projects that were either o�-campus or associated with an organization

received higher grades than the on-campus projects. The project associated with, but

not sponsored by, an outside organization received low reviewer evaluations even though

the students received A grades.

3.5 Correlation of Project Duration and Evaluation

Table 18 shows the correlation between the project duration and the project evaluations.

Table 18: Correlation of Project Duration and Evaluation

Project Duration (Units) % of Projects avg Grade avg RQ avg PQ

1 72 3.6 3 3.3

1 1/12 3 2.5 2 2

1 1/6 24 3.8 4 3.9

Comment: Projects that were completed with more than one unit of work typically

evaluated higher, although one project with an additional 1/12 unit scored rather low.

3.6 Correlation of Project Report Size and Evaluation

Table 19 shows the correlation between the project report size and the project evalua-

tions. Note: The report size in Table 19 does not include code and appendices, which in

some cases were larger than the report itself.

Comment: The results of this correlation shows that grades given by the advisor corre-

late directly to the size of the project report. Historically, shorter reports indicate that

17

Table 19: Correlation of Project Report Size and Evaluation

Project Report Size % of Projects avg Grade avg RQ avg PQ

0{30 pgs. 17 3.3 2.0 2.0

31{56 pgs. 38 3.6 3.4 3.4

57{82 pgs. 34 3.7 3.2 3.2

83{138 pgs. 10 4.0 5.0 5.0

students did not accomplish much or that they did not allocate enough time to write

an adequate report. The results also show that the report quality and project quality

are highly correlated with the size of the report. The clear marks from the reviewers for

reports of less than 30 pages show a di�erence with the grade given for these projects.

In this year's review, the mean project size was 57 with a standard deviation of 26.

3.7 Correlation of Computer Science Level and Evaluation

Table 20 shows the correlation between the Computer Science level and the project

evaluations.

Table 20: Correlation of Computer Science Level and Evaluation

Computer Science Level % of Projects avg Grade avg RQ avg PQ

2000 17 3.3 1.8 3.4

3000 41 3.6 3.2 3.3

4000 38 3.8 3.8 2.9

grad 3 4.0 5.0 4.0

Comment: The data show that projects done at the CS 4000 level and higher tend to

receive the best evaluations for report quality from the reviewers. The project grade is

highly correlated to the CS level, as it should be. The project quality average for 4000

level projects was surprisingly less-than adequate. This could be from the large number

of network projects that were completed this year. The reviewers feel that there is not

enough communication between the di�erent project groups working on the same area

or topic; there is room for improvement.

3.8 Correlation of Math Level and Evaluation

Table 21 shows the correlation between the math level and the project evaluations.

Comment: Projects that involved some math received better grades and evaluations.

Part of the reason may be that stronger students are taking on these projects. Another

18

Table 21: Correlation of Math Level and Evaluation

Math Level % of Projects avg Grade avg RQ avg PQ

none 69 3.6 2.9 2.9

calc 7 4.0 4.0 4.0

stat 21 3.6 4.2 4.2

4000 3 4.0 4.0 4.0

consideration is that the topic requires more e�ort. Current percentages are roughly the

same as comparable to 1993 and 1995 results.

3.9 Correlation of Overall E�ort Level and Evaluation

Table 22 shows the correlation between the overall e�ort level and the project evaluations.

Table 22: Correlation of Overall E�ort Level and Evaluation

Overall E�ort Level % of Projects avg Grade avg RQ avg PQ

1 17 3.3 2.0 1.6

2 21 3.3 2.0 2.5

3 41 3.7 3.8 3.7

4 21 4 4.5 4.5

5 0

Comment: As expected, there is a strong correlation.

4 Conclusions and Recommendations

The 1997 review of Computer Science MQPs re
ects data and evaluations for 29 MQPs,

involving 57 computer science students, that were completed between the Summer of

1996 and the Spring of 1997. In this section, we attempt to draw some conclusions from

the data collected during the evaluation process. Although 29 reports does not provide

a large set of data points, some conclusions can be drawn from the data collected from

the evaluation process.

4.1 Quality of Project

The overall project quality shows two trends. First, the number of less than adequate

projects is continuing to increase, from 15% in 1993, to 19% in 1995, to 28% this year.

19

Second, the number of above adequate projects remains somewhat constant 38% (8% ex-

cellent) in 1993 to 41% (15% excellent) in 1995, to 41% (17% excellent). As the number of

projects increase in the Computer Science department, we must try to both decrease the

number of less than adequate projects and increase the number of exceptional projects.

Most of the MQPs were good capstone learning experiences for CS majors and meet the

educational goals of the department. There was some concern on a few of the projects

as good learning experiences. These problematic projects showed little rationale for

choosing the design, displayed a lack of consideration for alternatives or indicated the

students did not expend enough e�ort.

Many of the MQPs were judged to involve the appropriate amount of student e�ort.

Typical Computer Science MQPs include the design and implementation of a large piece

of software with many following the software life cycle from requirements gathering to

implementation. Unfortunately not enough had results on testing and evaluation of the

work. Also, the project methodology was poorly documented so the students could not

explain why the students carried out their actions.

4.2 Quality of Report and Abstract

The quality of the reports themselves exhibited a bi-modal distribution this year { the

number of less than adequate reports increased, as did the number of more than adequate

reports. The quality of report style and grammar was down sharply { this year 27% of

the projects were less than adequate, up from only 4% in 1995. The reports that were

evaluated lower needed better organization and needed to be more complete.

Some of the reports lacked proper structure for a scienti�c paper or a technical report.

Project goals were not always clearly stated, and the conclusion chapter occasionally did

not evaluate how well the original objectives were met. Most of the reports could have

been improved by a better literature review or by an explanation of how the MQP �ts

in with previous work, particularly other MQPs. The most common causes for weaker

projects were lack of a clear plan of attack, insu�cient work completed by the students,

di�culties with the posed problem, underestimating the required work, or inadequate

time allocated to writing the report. Not enough time and planning for the report was

a problem with both some good and fair projects.

4.3 Students per MQP

The number of single student CS MQPs was down sharply to 28% (versus 44% in 1995

and 42% in 1993). This is important and shows that the faculty are successfully able to

group students together on projects. However, in four years, the number of CS students

will more than double, thus there will be increasing pressure to do more multi-student

projects to keep faculty project load at a reasonable number. The results show that

multi-student projects receive higher evaluations.

20

4.4 Distribution of CS Faculty over MQPs

This year one CS faculty member advised ten projects (almost half in the department).

Since the department has hired several new faculty members, there needs to be a better

distribution of CS faculty to the MQPs. However, next year the number of students

involved in CS projects may likely jump to over 70. It will be important to maintain a

proper distribution as the overall project load has increased and will continue to do so.

The grades of co-advised projects were slightly better than single advisor CS MQPs.

4.5 O�-Campus Projects

In the 1991 review there were perceived problems in o�-campus projects. The past three

reviews indicate no di�erence between evaluations of on and o�-campus projects. This

is a positive result and indicates the quality of the two types of projects is comparable.

4.6 Project Resources

The project data show mixed results on the environment for software-oriented CS MQPs.

As in the previous review many projects were done with C on Unix workstations, but

others were done with C++ or on a PC platform. The C++ trend is a re
ection of

industry and has rami�cations for our introductory curriculum. Reasons for the increased

PC use may be the increased personal use of PCs by students, the wiring of the student

dorms, the wide availability of C++ compilers on PCs and the number of projects done

with companies that are using PCs.

More projects are being developed with web-based front ends, or using Java applets.

Currently, there are no dedicated resources, such as Adobe PageMill, or Java environ-

ments such as Visual J++ and Symantec Cafe. The introduction of the WebWare course

will address these issues, but perhaps the department should look into other resources.

4.7 Interdisciplinary Involvement

The number of interdisciplinary projects dropped slightly from previous years, but there

was still involvement with four other departments on campus. This result is encouraging

and indicates continued interest on interdisciplinary projects by our students and faculty.

4.8 Recommendations for the Next CS MQP Review

The evaluation process worked well. Again the biggest problem was evaluating oral

presentations. Earlier identi�cation of the oral presentations would allow for correlation

with the projects themselves.

The reviewers had di�culty in determining which CS undergraduate classes contributed

in some way to the success of each project. There is a concern that the current curricula

21

does not exactly match the student's interests as seen in the projects. The addition of

new courses, such as WebWare, will help, but perhaps an overall assessment is needed.

4.9 Recommendations for Improving CS MQPs

The following list of recommendations are drawn from the analysis and conclusions of

this Computer Science MQP Peer Review. Most of the recommendations are aimed at

CS MQPs, but a few may apply to the success of MQPs campus-wide.

� Increase student team size. There is still room for improvement as this recommen-

dation will only become more important with increased enrollments. The results

indicate that larger projects generally lead to better grades on the part of the

students. Although optimal in a few situations, single student projects should be

discouraged. Better mechanisms for bringing project groups together earlier need

to be investigated. Working in project groups improves cooperative and commu-

nication skills of the students. Larger MQP teams o�er more e�cient use of a

faculty member's time. It may be that more of the early CS courses should include

group assignments. For some reason, this year two-student projects were not as

successful.

� Encourage co-advising. The results show it leads to slightly better projects, and

co-advising is a good mechanism for learning how to successfully advise projects.

It is a way for faculty with expertise in unpopular subareas to become more in-

volved and share the project load. It also encourages cross-pollination among our

faculty both inside and outside of the department. Since the department has hired

several faculty over the past two years, the reviewers feel that co-advising is a good

introduction for new faculty members to experience the responsibilities of being a

project advisor.

� Use better project planning. The project team (faculty and students) need to do

a better job at planning the project and organizing the work. The report should

document the planning stage of the project and give a better sense of problems,

design considerations, and adjustments in both the direction of the project and

work assignments. More emphasis should be given by faculty on expecting formal

project proposals.

� Emphasize the testing and evaluation phase. Lack of adequate evaluation by exter-

nal sources was a problem with many of the design and implementation projects.

This was often a problem because students rushed to �nish the project and did not

have time for adequate evaluation.

� Pay attention to technical writing methodology. Standard technical writing issues

such as clear objectives, adequate literature search, report structure, and a thor-

ough review of the project in the conclusion need to be emphasized more when

producing a project report.

22

� Require a satisfactory abstract from each student project. A surprising number

of projects had less than satisfactory abstracts. It should be mandatory that all

projects have an abstract that adequately describes the project.

� Emphasize the need for students to indicate why the MQP was a good experience

and what experiences/courses the MQP builds upon. It was di�cult with some

projects for the reviewers to understand the signi�cance of the work and upon

which prior student work the project built upon.

� Allot more time for writing the reports. This recommendation was made in the

prior review and needs to be emphasized again. Many of the shorter reports were

from projects that were not as good, although some of the better projects were

diminished by reports that were not as high of quality as the project. Part of the

problem is that students spend too much time working on the project and not

enough time in conveying its signi�cance in the report.

� Continue to encourage o�-campus and interdisciplinary projects. These type of

projects broaden the background of our students and faculty and help to make

contacts with companies and other departments.

� Strive to have MQPs build on previous MQPs and projects. In industry, our

graduates will have to learn how to work with old code from old projects, and one

way we can address this is through building upon previous MQPs and theses. One

project this year continued experiments from a thesis in the Electrical Engineering

department. Each faculty member should strive to create a pipeline of projects, so

the students can see the larger objective for their individual project.

23

References

[1] Robert E. Kinicki and Craig E. Wills. Computer science department MQP review.

Technical Report WPI-CS-TR-91-13, Worcester Polytechnic Institute, July 1991.

[2] Robert E. Kinicki and Craig E. Wills. Computer science department MQP review.

Technical Report WPI-CS-TR-93-5, Worcester Polytechnic Institute, August 1993.

[3] Robert E. Kinicki and Craig E. Wills. Computer science department MQP review.

Technical Report WPI-CS-TR-95-1, Worcester Polytechnic Institute, August 1995.

24

A Review Form

The following three-page form was used to evaluate all MQP reports.

25

Project Students: Reviewer:

1997 Computer Science MQP Review Form

1. Number and department of advisor(s)

2. Number, year and department of MQP student(s)

3. On/o�-campus project and sponsor

4. Final grade given to report

5. Distribution of units to complete MQP

E96 A96 B96 C97 D97 E97 Total

6. Report length in pages (excluding appendices and code)

7. Pages of appendices . User manual? Y/N.

8. Quality of literature review? None/Poor/Good/High. How many references?

9. Circle the following types of work and areas of computer science that are relevant

for this project.

Analytic AI Theory

Data Collection (Emperical) Architecture Info Mgmt

Design DataBase Applications

Design/Implementation Graphics Networks

Evaluation HCI

Research Languages

Simulation Software Engineering

Survey Operating Systems

Other Distributed Systems

Other

10. Circle the following software languages, tools, and hardware resources used for this

project.

C Macintosh

C++ IBM/PC

HTML wpi Alpha

Lisp/Scheme Sun workstation

Lisp DEC workstation

X-Windows Other

Java

Perl/Tcl/Tk on-campus/o�-campus?

Other

11. What Computer Science classes were background for this project?

Abstract accurate and complete 1 2 3 4 5

missing poor adequate excellent

Clearly stated project objective 1 2 3 4 5

poor adequate excellent

Objective met 1 2 3 4 5

unknown no mostly yes exceeded

CS Level 1 2 3 4 5

1000 2000 3000 4000 grad

Math Level 1 2 3 4 5

none calc stat 4000 grad

Motivate the project? 1 2 3 4 5

poor adequate excellent

Style, grammar, spelling 1 2 3 4 5

poor adequate excellent

Quality of Tables/ 2 3 4 5

Diagrams/Figures quantity poor adequate excellent

Project Methodology 1 2 3 4 5

unknown poor adequate excellent

Issues/Problems Discussed 1 2 3 4 5

poor adequate excellent

Overall report organization 1 2 3 4 5

poor adequate excellent

Programming E�ort 1 2 3 4 5

none some considerable

Overall E�ort Level 1 2 3 4 5

(worth one unit/student) too little about right too much

Quality of report 1 2 3 4 5

poor adequate excellent

Quality of project 1 2 3 4 5

poor adequate excellent

Quality of presentation 1 2 3 4 5

unknown poor adequate excellent

1. Was this project a good learning experience? What was learned by the student(s)?

2. Was this project a continuation of an earlier project, and if so, did the students

indicate the part of the work that is theirs?

3. Project strengths: Project weaknesses:

4. Did this project involve any interdisciplinary work? What departments and sub-

jects were involved?

5. Other comments.

