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ABSTRACT: A generating function is developed to express the number of

labeled graphs with a fixed number of points and cutpoints in terms of the

generating function of the number of blocks.  An asymptotic bound is derived

for the number of connected graphs with any number of cutpoints.
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1. INTRODUCTION AND DEFINITIONS

A cutpoint of a graph is a point whose removal increases the number of

components, and a noncutpoint is a point which is not a cutpoint. A trivial

graph is a graph with exactly one point, and a block is a maximal nontrivial

connected graph without a cutpoint.  We only count labeled graphs.

According to Harary and Palmer [3], in 1950 Uhlenbeck posed the

problem of counting blocks, and Riddell [4] and Ford and Uhlenbeck [1] derived

an expression relating the number of blocks to the number of connected

graphs.  The derivation of this expression is an exercise in Goulden and

Jackson [2]. An exponential generating function (EGF) of the series   A1,A2,...  is

the formal power series 
  
A z( ) = An

z
n

n!n≥1∑ .  For any non-negative integer n, the

operator 
  
z
n[ ] applied to polynomial P(z) yields the coefficient of zn in P(z),

and Dz denotes the derivative with respect to z.  For integers p, q≥0, we let   p
q

denote the falling factorial function defined recursively as   p
0 = 1 and

  p
q = p * p −1( )q −1

 for q>0.

The EGF for graphs is 
  
G z( ) = Gn

z
n

n!n≥1∑ , where Gn = 2
n
2

 
  

 
  
 is the number of

graphs of n  points, 
  
C z( ) = Cn

z
n

n!n≥1∑  is the EGF of connected graphs, and

  
B z( ) = Bn

z
n

n!n≥1∑  is the EGF of blocks (with B1 = 0).  Because all blocks are

connected, and all connected graphs are graphs, Bn≤Cn≤Gn for all n≥1.  Our goal

is to find a semiexponential generating function for

  

S x,z( ) = Sm ,nx
m z

n

n!
n≥2
∑

m ≥0
∑

where Sm,n is the number of connected graphs with n≥2 points and m≥0

cutpoints. Some small values of Sm,n are shown in TABLE I.

It is easy to see that B(z), C(z) and G(z) can be expressed in terms of

S(x,z) as:

  
B z( ) = x

0[ ]S x,z( ) = S 0,z( )

  
C z( ) = z + x

m[ ]S x,z( )
m ≥0∑ = z +S 1,z( )

  G z( ) = ez+S 1,z( )  .

The number of graphs with n points and m cutpoints is 
  
x
m z

n

n![ ]ez+S x,z( ) . Given

an enumeration of blocks by their numbers of points and edges, our results can

also be extended in a straightforward way to enumerate connected graphs by

their numbers of points, cutpoints and edges.
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In SECTION 2 we characterize the generating function S(x,z) and develop a

recurrence for Sm,n. In SECTION 3 we examine the asymptotic growth of Sm,n.

2. THE GENERATING FUNCTION S(x,z)

Since a graph with one cutpoint may be considered to be rooted at that

cutpoint, the number of connected graphs with one cutpoint can be expressed

as a function of B(z).

THEOREM 1: x[ ]S x ,z( ) = z e
B ' z( ) −B

'
z( ) −1( ) .

Proof: To enumerate graphs with one cutpoint, we identify the

unlabeled roots of k≥2 blocks.  There are n ways to choose the root of a block

of n points. Thus, the EGF of rooted blocks is zDzB(z), and DzB(z) counts rooted

blocks with the root unlabeled.  There are 
B ' z( )( )k

k !  k-multisets of rooted blocks

with unlabeled roots. Since the new cutpoint can belong to any number k≥2 of

blocks, the number of multisets being counted is

B ' z( )( )k
k !k ≥2∑ =

B ' z( )( )k
k !k ≥0∑ −B

'
z( ) −1 =e

B ' z( ) −B
'
z( ) −1

and the theorem follows from adding a factor of z to label the root.

Although extending THEOREM 1 to graphs with two cutpoints is

straightforward, it seems to be very difficult to handle much larger values of

m. This is because the cutpoint of THEOREM 1 corresponds to a root, but with

several cutpoints the root can be any cutpoint which belongs to at least one

block containing no other cutpoint. However, S(x,z) may be characterized as in

the following relation.

THEOREM 2: zDz − xDx( )S x,z( ) = zB' z + ΦS x,z( )( ), where   Φ = x 1− x( )D x + zDz( ).
Proof: Both sides of the equation enumerate connected nontrivial

graphs rooted at a noncutpoint. Every nontrivial graph has at least two

noncutpoints, and a graph counted by Sm,n has n-m of them. Thus there are

  

n −m( )Sm ,nx
m z

n

n!
n≥2
∑

m ≥0
∑ = zDz − xD x( )S x,z( )

ways to choose a nontrivial connected graph and root it at a noncutpoint.

A noncutpoint of a nontrivial connected graph G belongs to exactly one

block.  Assume that the block containing the root has k≥2 points, 
  
v1,...,vk{ } ,

where vk is the root of G. There are kBk rooted blocks with k points. For each

  
v
i

∈ v1,...,vk{ }, remove 
  
v1,...,vi−1,vi+1,...,vk{ } from G, and let Hi be the (possibly

trivial) component rooted at vi.  If Hi is trivial, it is counted by z. Hk is

trivial. If Hi is not trivial, then vi is a cutpoint of G. If vi is a cutpoint of Hi,
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then xDxS(x,z) counts the number of choices for Hi times the number of ways

to root it at a cutpoint. If vi is not a cutpoint of Hi, then   zDz − xD x( )S x,z( )
counts the number of choices for Hi times the number of ways to root it at a

noncutpoint. Finally, we add a factor of x since vi becomes a cutpoint of G.

Connected graphs rooted at a noncutpoint which belongs to a block of

k≥2 points are counted by

  
kBk

z z + xD xS x,z( ) + x zDz − xD x( )S x,z( )( )k−1

k!
 .

Since k can be any integer greater than or equal to 2, combining these

possibilities yields

  

kBk

z z + xD xS x,z( ) + x zDz − xD x( )S x,z( )( )k−1

k!
k≥2
∑

  

= z Bk

z + xD xS x,z( ) + x zDz − xD x( )S x,z( )( )k−1

k −1( )!
k≥2
∑

  
= zB '

z + xD xS x,z( ) + x zDz − xD x( )S x,z( )( )
which yields the theorem.

For m=0, the relation of THEOREM 2 reduces to the identity zB'(z)=zB'(z).

For m≥1, the recurrence permits the computation of Sm,n for all n≥2. This task

is made easier for n>>m by noticing that at most m points of the block

containing the root can be cutpoints. The recurrence of the following

COROLLARY was used to compute the values of Sm,n displayed in TABLE I and used

in TABLE II.

COROLLARY 1: For m≥1 and n≥2,

  

Sm ,n = n !
n −m

Bk
k=2

n−m

∑ x
m
z
n+q −k[ ] ΦS x,z( )( )q

q ! k −1−q( )!
q =1

min k−1,m( )
∑  .

Proof: As in THEOREM 2, we enumerate connected nontrivial graphs,

with at least one cutpoint, rooted at a noncutpoint.  These are counted by the

terms of zDz − xDx( )S x ,z( ) with positive exponents of x, or n − m( )Sm ,n x
m z n

n!n ≥2
∑

m ≥1
∑ .

Let the block containing the root have k points, q of which are cutpoints,

k>q≥1. Each subgraph rooted at one of the q cutpoints of the block containing

the root is counted by   ΦS x,z( ). There are k-q choices for the root of the graph,

and Bk ways to arrange the lines of the block containing the root. Combining

these terms yields

ΦS x ,z( )( )q

q!
k − q( )Bk

z k−q

k − q( )!q =1

k−1

∑
Allowing k to vary from 2 to n-m,
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n − m

n!
Sm ,n x

m
z

n

n ≥2
∑

m ≥1
∑ = Bk

k=2

n −m

∑ ΦS x ,z( )( )q

q! k −1− q( )!q =1

min k−1,m( )

∑ z
k−q

and the COROLLARY follows from comparing coefficients.

3. ASYMPTOTIC VALUES OF Sm,n

Since Sm,n=0 unless 0≤m≤n-2, then for any n, 
  

Sm ,nm ≥0∑  is distributed

among the values 
  
S0,n ,...,Sn−2,n{ }. Because the only graph with n points and n-2

cutpoints is a path of length n, and the number of labeled paths of length n is

n! divided by the order of the symmetry group of the path, then 
  
Sn−2,n = n!

2  for

n≥2.

The derivation of other values of Sm,n appears to be more difficult, so

we consider asymptotics. Since it follows that Sm ,nm ≥0∑ = Cn ~ Gn = 2
n
2

 
  

 
  
, then

  
Sm ,n ~ 2

n
2







m ≥0∑ .  Almost all graphs are blocks [3], 
  
S0,n ~Gn , so

  
S0,n ~ Sm ,n ~ 2

n
2







m ≥0∑ , and as n→ ∞, almost all of 
  

Sm ,nm ≥0∑  is concentrated in

the first term.  In fact, the following theorem shows that the series

k =0

m
Si , nk ≥ i ≥ 0∑{ }  yields increasingly tight approximations to

Cn = S i,nk ≥ i ≥0∑ +o Sk ,n( ).

THEOREM 3: For any m≥1, Sm,n =o Sm−1,n( ).
Proof:  Any connected graph with n points and m cutpoints must have a

cutpoint, w, belonging to blocks with a total of p ≥ n

m
 points. The contribution

of such a graph to Sm,n consists of four factors:

-
n

p

 

 
 

 

 
 , the number of ways to choose labels for the p points,

- S1,p , the number of of ways to distribute edges and labels among the p

points,

-the number of of ways to distribute edges and labels among the n-p

other points,

-the number of ways to choose and identify cutpoints connecting the

 sets of p points and n-p points.

By making w a noncutpoint, the only factor above that changes is that

S1,p  is replaced by S0,p . Since S0,p ~Gp , the theorem follows from the

observation that S1,p =o S0,p( ).
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It will be seen (THEOREM 4) that since Bn grows so rapidly with n, then

for any fixed m≥0, as n→ ∞ almost all connected graphs with n points and m

cutpoints consist of m+1 blocks, with m of the blocks being single edges and

n-m of the points belonging to a single large block.  Each of the m simple

blocks has a distinct vertex of the big block as an endpoint. There are

  

n

m







= n
m

m !
 ways to choose the labels for the m points not belonging to the big

block,   n −m( )m  choices of points in the big block for attaching the m little

blocks, and   Bn−m ~ 2
n−m

2




  ways to arrange the edges and labels on the vertices

of the big block. Combining terms,

Sm,n ~
n m

m!
n −m( )m 2

n−m
2

 
 

 
 =

n 2m

m!
2

n−m
2

 
 

 
 ~

n 2m

m!
2

n−m
2

 
 

 
 
 .

LEMMA 1: For any q>m≥0 and n≥0, x
m

z
n[ ] ΦS x ,z( )( )q = 0.

Proof Since   Φ = x 1− x( )D x + zDz( ), then ΦS x ,z( )( )q
 must be divisible by xq.

LEMMA 2: For any m≥1 and q > n −m , x
m

z
n[ ] ΦS x ,z( )( )q = 0.

Proof (by induction on q):  

x
m

z
n[ ]ΦS x ,z( ) =

mSm,n + n −m +1( )Sm−1,n

n!
 ,

so x
m

z
n[ ]ΦS x ,z( ) = 0 if n≤m, which establishes the LEMMA for q=1.

x
m

z
n[ ] ΦS x ,z( )( )q = x

m
z

n[ ]ΦS x ,z( ) ΦS x ,z( )( )q −1

= x
j
z

k[ ]ΦS x ,z( ) x
m− j

z
n−k[ ] ΦS x ,z( )( )q −1

j ,k
∑ .

By the basis, x
j
z

k[ ]ΦS x ,z( ) = 0 unless k>j, but in that case q −1> n −k( ) − m − j( ),
so that  x

m− j
z

n−k[ ] ΦS x ,z( )( )q −1
= 0 by the induction hypothesis.

LEMMA 3: For any m≥q≥1, x
m

z
m+q[ ] ΦS x ,z( )( )q =

m −1

q −1

 
 
 

 
 
 .

Proof:

x
m

z
m+q[ ] ΦS x ,z( )( )q = x

rk z
sk[ ]ΦS x ,z( )

q ≥k ≥1
∏

r1 +…+ rq =m
s1+…+sq =m+q

∑   .

By LEMMA 1 and LEMMA 2, every term in the above summation is 0 unless

r i ≥1,s i = r i +1,q ≥ i ≥1, so
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x
m

z
m+q[ ] ΦS x ,z( )( )q = x

rk z
rk +1[ ]ΦS x ,z( )

q ≥k ≥1
∏

r1 +…+ rq =m
∑ = 1

r1 +…+ rq =m
r1 ≥1,…,rq ≥1

∑

=
m −1

q −1

 
 
 

 
 
 ,

which is the number of compositions of m into q parts.

Consequences of LEMMA 3 which will be used in THEOREM 4 are that for

any m≥1, x
m

z
2m[ ] ΦS x ,z( )( )m =1 and x

m
z

m + 1[ ]ΦS x ,z( ) =1.

THEOREM 4: For any fixed m,

Sm,n ~
n 2m

m!
2

n−m
2

 
 

 
 
 .

Proof: The proof is by induction on m, the number of cutpoints. The

basis S0,n ~ 2
n
2

 
 

 
 
 is proved in Harary and Palmer [3]. We now fix an m≥1 and

assume the statement of the theorem for all smaller values. Being interested

in asymptotic results, we assume n>>m. From COROLLARY 1,

  

Sm ,n = n !
n −m

Bk
k=2

n−m

∑ x
m
z
n+q −k[ ] ΦS x,z( )( )q

q ! k −1−q( )!
q =1

min k−1,m( )
∑  .

We will show that the sum is dominated by the term (k=n-m, q=m), and now

consider three cases:

   k      =      n      -       m      By LEMMA 3,

n!

n −m
Bn−m x

m
z

m+q[ ] ΦS x ,z( )( )q
m! n −m −q −1( )!q =1

m

∑

=
n!

n −m
Bn−m

m −1

q −1

 
 
 

 
 
 

1

m! n −m −q −1( )!q =1

m

∑

=
n!

n −m
Bn−m

1

m! n − 2m −1( )! +
m −1

q −1

 
 
 

 
 
 

1

m! n −m −q −1( )!q =1

m−1

∑
 

 
  

 

 
  

~
n!

n −m

Bn−m

m! n − 2m −1( )! 1+O
1

n

 
 
 

 
 
 

 
 
 

 
 
 

~
n 2m

m!
2

n−m
2

 
 

 
 
 .

    k      =2    By THEOREM 3 and the induction hypothesis,

n!

n −m
B2 x

m
z

n−1[ ]ΦS x ,z( ) =
n!

n −m

mSm,n−1 + n −m( )Sm−1,n −1

n −1( )!
 

 
 

 

 
 ~nSm−1,n −1
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~
n 2m−1

m −1( )! 2
n−m

2
 
 

 
 =o

n 2m

m!
2

n−m
2

 
 

 
 

 

 
  

 

 
  
 .

   n-m       >      k      >2   

Before treating this case, a bound must be determined for x
m

z
n+q −k[ ] ΦS x ,z( )( )q .

LEMMA 4: For any fixed m≥q≥1,

 x
m

z
n[ ] ΦS x ,z( )( )q =

2
n −m −q + 2

2
 
  

 
  

n − 4m( )! O 1( ).

Proof (by induction on q): For q=1,

x
m

z
n[ ]ΦS x ,z( ) =

mSm,n + n −m +1( )Sm−1,n

n!
By THEOREM 3 and the induction hypothesis of THEOREM 4, this is asymptotic to

Sm−1,n

n −1( )! ~
n 2m−2

n −1( )! m −1( )! 2
n−m+1

2
 
 

 
 =

2
n−m+1

2
 
 

 
 

n − 2m +1( )!O1( )

Fixing q>1, we assume the LEMMA for all smaller values.

x
m

z
n[ ] ΦS x ,z( )( )q = x

j
z

k[ ] ΦS x ,z( )( )q −1
x

m− j
z

n−k[ ]ΦS x ,z( )
k = j +q −1

n−m+ j −1

∑
j =q −1

m−1

∑ .

The term 2
n−m−q +2

2
 
 

 
 
 in the induction hypothesis grows so rapidly that the

inner summation of the last equation is dominated by the end values, k=j+q-1

and k=n-m+j-1.

x
m

z
n[ ] ΦS x ,z( )( )q

~
j −1

q − 2

 
 
 

 
 
 x m− j

z
n− j −q +1[ ]ΦS x ,z( ) + x

j
z

n−m+ j −1[ ] ΦS x ,z( )( )q −1 

 
 

 

 
 

j =q −1

m−1

∑

=
2

n−m+q +2
2

 
 

 
 

n − 2m + j −q + 2( )! +
2

n−m+q +2
2

 
 

 
 

n −m − j − 2q + 4( )!

 

 

 
 
 

 

 

 
 
 j =q −1

m−1

∑ O1( ) =m
2

n−m−q +2
2

 
 

 
 

n − 4m + 5( )!O1( )

where the last step is justified by LEMMA 1. This finishes the proof of LEMMA 4.

Using LEMMA 4 to finish the third case of THEOREM 4 (where the constants in

the O-notation depend upon m),

n!

n −m
Bk

k =3

n−m−1

∑ x
m

z
n+q −k[ ] ΦS x ,z( )( )q

q! k −q −1( )!q =1

min k −1,m( )

∑

=
n!

n −m
2

k
2

 
  

 
  

q =1

mink −1,m( )

∑ 2
n −m −k + 2

2
 
  

 
  

n − 4m −k +q( )! k −q −1( )!k =3

n −m −1

∑ O 1( )
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= n
4m +k −q −1

q =1

mink −1,m( )

∑ 2
n −m −k + 2

2
 
  

 
  + k

2
 
  

 
  

k −q −1( )!k =3

n −m −1

∑ O 1( )

=
n 2 m

m!
2

n −m
2

 
  

 
  

q =1

mink −1,m( )

∑ 1

nq −2m −k + 1 k −q −1( )!2
n −m −k + 2( )k −2n

2k =3

n −m −1

∑ O1( )

=
n 2 m

m!
2

n −m
2

 
  

 
  1

n
q −2m −k

k −q −1( )!2 n
2
O 1( ) =o

n 2m

m!
2

n−m
2

 
 

 
 

 

 
  

 

 
  

which establishes THEOREM 4.

TABLE II gives an indication of the rate of convergence of Sm,n to its

asymptotic value 
n2m

m! 2
n−m

2
 
 

 
 
 for some small values of m and n.

THEOREM 4 suggests an efficient way to generate a random graph with n

points, m of which are cutpoints, for n>>m, such that almost all such graphs

are chosen with the same probability.

repeat

generate a random graph G of n-m points
until G is a block
Randomly select m points of G
for each of the m points

attach an edge between the point and a new point
Randomly relabel each of the n points

Since   Bn ~Gn  , the repeat-until loop will almost certainly be executed one

time.  Because the test for being a block (connected with no cutpoints) can be

performed in time 
  
O n

2( ), the expected execution time of the algorithm is

  
O n

2( ), which is optimal, since almost all graphs being counted have Ω n
2( )

edges.
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n              S0,n                              S1,n                         S2,n                      S3,n

2 1

3 1 3

4 10 16 12

5 238 250 180 60

6 11368 8496 4560 1920

7 1014888 540568 211680 75600

8 166537616 61672192 17186624 4663680

9 50680432112 12608406288 2416430016 469336898

10 29107809374336 4697459302400 597615868800 79132032000

11 32093527159296128 3256012245850496 266262716016000 23121510192000

12 68846607723033232640 4276437400678311936 218583901063537152 12082931084928000

Sm,n

TABLE I
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n       
  

Cn

Gn

          
  

S0,n

Cn

         

  

S0,n

2
n
2







      

  

S1,n

n
22

n−1
2







   

  

S2,n

n
4

2! 2
n−2

2






    

  

S3,n

n
6

3! 2
n−3

2






  
S4,n

n8

4! 2
n−4
2

 
 

 
 

5 .71094 .32692 .23242 .19531 .37500 .00018 .00000

10 .98045 .84379 .82729 .68357 .44526 .22640 .08811

15 .99908 .98731 .98641 .91283 .72892 .49616 .28418

20 .99996 .99928 .99924 .94876 .81045 .61909 .42002

25 .99999+ .99996 .99996 .95994 .84777 .68630 .50724

30 .99999+ .99999+ .99999+ .96666 .87214 .73260 .57142

35 .99999+ .99999+ .99999+ .97143 .88975 .76700 .62111

40 .99999+ .99999+ .99999+ .97500 .90309 .79359 .66067

TABLE II
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