
GaeaPN: A Petri Net Model for the Management of Data

and Metadata Derivations in Scienti�c Experiments

�

Nabil I. Hachem, Ke Qiu, Nina Serrao, and Michael A. Gennert

Department of Computer Science

Worcester Polytechnic Institute

Worcester, MA 01609, USA

e-mail: hachem,qiu,michaelg@cs.wpi.edu

Abstract

One important aspect of scienti�c data management is metadata manage-

ment. Metadata is broadly de�ned as information about data (e.g., content,

source, processing applied, precision). One kind of metadata which needs spe-

cial attention is the data derivation information, i.e., how data are generated.

In our application domain of geographical information systems (GIS) and

global change research, we view scienti�c objects according to three di�erent

extents: spatial, temporal, and derivation. Extents are dimensions along which

domain users \naturally" access and select information from the database.

While the spatial and temporal extents have been studied and formal semantics

to those extents proposed, derivation semantics have been ignored.

In this paper, we present our own view of what metadata is and propose

extensions to current database models to include implicit metadata manage-

ment. We formulate a de�nition of extents as dimensions of metadata, and

speci�cally discuss derivation metadata and the semantics of such specialized

relationships. The proposed model, GaeaPN, is based on a variation of Petri

Nets and extends current models such as the object-oriented data model. Petri

nets are interpreted as a model to capture and manage data derivation rela-

tionships between scientifc data as well as the procedures and algorithms to

derive data. We formulate the basic model, study its closure with respect to a

\metadata space," as well as its closure with repect to database states.

The important contributions of this work are... ... We believe that this

framework, useful for GIS and global change studies, generalizes well to other

scienti�c �elds.

�

This work is supported by the National Science Foundation under Contract IRI-9116988.

0

1 Introduction

[I have a feeling that metadata discussion stu� should be moved to their own section

or merged with the discussion of Gaea.]

There are several issues in scienti�c databases which make conventional database

techniques insu�cient to achieve the goals of data integration and data sharing [10,

16, 45]. One of the most important issues is metadata management.

1.1 What is Metadata?

For scientists, metadata is the information required to identify data of interest based

on content, validity, sources, preprocessing, or other selected properties. In scienti�c

databases, with many kinds of data stored, the associated metadata must be preserved

and accessible so that the data can be meaningfully processed later.

Metadata includes such information as: Who did what and when, device char-

acteristics, transform de�nitions, documentation and citations, structure and format

description, precision and accuracy, etc. The list can go on like this without end.

So how can scienti�c databases capture and manage the metadata necessary for a

speci�c application?

First let us present our view of what is metadata? The de�nition widely used

is { \metadata is the data about data." After looking up the de�ntion of data in a

dictionary; that is \data is something known or assumed; facts from which conclusions

can be inferred," we can say that metadata is something we know or facts about the

data.

Metadata is a relative concept. It depends on what your object is or where your

interest are. For example, assume we have rainfall data, and we are interested in

the amount of rainfall. Then how the rainfall data is collected, where and when it is

measured is metadata because this information is used for the interpretation of the

rainfall measurement. However, consider for example a student database. A student

record may include a social security number, name, age, major, home address, etc.

Among all this information, it is di�cult to say what is data and what is metadata.

Furthermore, metadata for database management systems (DBMS) are quite di�erent

from those for an application. For example, in relational systems, metadata includes

the number of columns in a relation, the type of each attribute, which is primary key,

etc. Furthermore, for a DBMS, there is no di�erence between the management of

data and metadata of a speci�c application.

[needs some work on wording]

In view of the above, one should look at metadata according to di�erent views.

For example, for the database administrator metadata is represented by the schema

de�nition, integrity constraints, and other database structures. At the system level,

metadata is represented by indexing information, and other information on data pro-

cesing algorithms and their implementations. For a scienti�c user, the metadata of an

application appears as di�erent relationships between the interested data and other

1

data in the system. For example, in a computational chemistry database [8], the

metadata of experimental data is represented as relationships with other data such as

who performs the experiment, which molecule is the subject, what program package

it used, etc.

1.2 Motivation

It seems there is nothing special about metadata management if we can create a

standard set of metadata that is believed to be essential to understanding a speci�c

database. Apparently, such metadata will vary from domain to domain. However,

just storing and retrieval of metadata is not enough. A good database management

system should automatically create and maintain the metadata as scienti�c databases

are dynamic and evolutionary.

In order to see how a system can automatically create and maintain metadata, let's

look at the development of a temporal database [?]. In a conventional DBMS time is

not supported. Although in most cases date is supported as a data type, it is usually

represented as a text string. When temporal information is needed in a application

such as medical history, the programmer has to take care of the temporal \extension"

of the application because a query cannot be speci�ed declaratively to include time.

For example, one can't ask the following: \�nd the patient's record surgery between

1970 and 1980" or \�nd the patient's temperature and blood pressure two day's ago."

essentially the database only reects the current status of the world, and history

information is not available. In this case, temporal information is metadata.

In a temporal database, the time when the data is input into the database (trans-

action time) and when the data is valid (real time) are stored in the database. As the

status of the database changes, those information are modi�ed automatically. The

user can make the previous queries on a temporal database [?].

1.3 The Gaea Approach

One objective of the Gaea project [?, ?, ?] is to develop a metadata manager for

generic metadata, intrinsicallymanaged by the system. Obviously, extensibility is also

required for the system to be tunable to di�erent application domains. Essentially, we

promote some of the important relationships in data modeling and implement them

in a DBMS environment.

In scienti�c databases, there are many di�erent metadata that are very important

and worth database management system support. For example, one kind of metadata

which needs special attention is the data derivation information, i.e., how data are

generated. We have detailed a framework for this in [Hachem93 et al.]. This paper

focuses on the model used for that framework.

In Gaea such implicitely managed metadata are called extents. Extents represent

essential information implicitely and naturaly used by the domain scientist to identify

the data objects of interest. We are currently interested with three kinds of extents:

2

1) Temporal, 2) Spatial, and Derivation extents. We provide, in Gaea, a mechanism

to automatically keep track of those kinds of information as data are created and

stored in the database system.

Speci�cally for derived data and metadata, data is classi�ed into two categories:

base data and derived data. By base data, we mean those data obtained from well

known sources outside the system. Base data are well understood and accepted by

most scientists. Base data may be provided by a variety of standard agencies, gov-

ernment departments, research institutions, or generated by the scientists themselves.

By derived data, we mean data obtained by scientists in their research by applying

some algorithms on base data

1

. Unlike base data, derived data are not well under-

stood. One important objective for the e�cient management of scienti�c information

is to be able to build on pre-existing knowledge, by sharing both base and derived

data.

Consider the following simple scenario: two scientists are working on detecting

the changes in vegetation index in Africa between 1988 and 1989. One may subtract

the NDVI

2

of 1988 from that of 1989, while another divides the NDVI of 1989 by that

of 1988. In this case, if only the resultant images are stored (as in common GIS such

as IDRISI and GRASS [13, 40]), there is no way to share and compare the produced

data unless the derivation procedures are known to both scientists.

[this will be replaced with what we contribute and a breakdown of the paper.

What is now here is the VLDB paper stu�].

In this paper, we investigate this problem and propose a framework for the man-

agement of derived data. This framework is being implemented in the Gaea kernel,

a spatio-temporal DBMS for global change research [20]. We focus on how Gaea

handles metadata, and provide a general framework for the management of scien-

ti�c experiments and procedures. Our contribution parallels other e�orts such as

[5, 8, 36], while addressing limitations of current systems such as [13, 40]. We pro-

pose to extend current semantic modeling and object-oriented technology with special

constructs: concepts, processes

3

, and tasks. Concepts are used to capture entity sets

with imprecise de�nitions. A process captures the derivation procedure of a speci�c

object class, while a task is the instance representing the derivation of a speci�c sci-

enti�c data object. We believe that this framework, useful for GIS and global change

studies, generalizes well to other scienti�c �elds.

[need to link to other sections]

1

One user's derived data may be another's base data. For example, cloud cover maps may be

derived data for a satellite imagery scientist, but base data for a climatologist.

2

NDVI is the normalized di�erence vegetation index. It is a qualitative measure of vegetation

derived from AVHRR satellite imagery data.

3

Here we use the term process to refer to its general de�nition as understood in the scienti�c

community and not necessarily as perceived in the �eld of Computer Science.

3

2 The Gaea System

We provide �rst an overall description of the Gaea architecture which is being im-

plemented in Phase 2 of our project, then present and discuss in some detail the

di�erent levels of management that Gaea provides for experiments in Earth Science

applications. We concentrate on the di�erent constraucts and speci�cally on our view

of how to represent and manage derived data.

2.1 The Gaea Architecture

GaeaVEKhoros/AVS/VE

Postgres

DATABASE BACKEND

VISUAL FRONT-END

Gaea KERNEL

Gemstone

ObjectStore

Meta-Data
Browser

Query/Analysis
Schema
Manager

DISTRIBUTED

Visual Environment Interface

Database BackendDistributed Computing
Interface

Data Abstraction
Generators/Recall

Meta-Data/
Semantics
Layers

AVS/AT Khoros/AT

Grass/AT

VE

Processor

Other analysis tools

 Interface

ANALYSIS TOOLS

Meta-Data Manager

Distributed
Archival
Systems

Figure 1: The Architecture of Gaea

The Gaea system architecture is designed to meet the needs of scienti�c research.

Our view of a scienti�c data management and analysis environment can be layered

along three levels (Figure 1): 1) The visual frontend, which allows the user to pose

visual queries, apply analysis operators to data, and visualize data, including analy-

sis results; 2) the Gaea Kernel, which provides support for meta-data, that is data

about the data, and converts simple queries from the visual frontend into a complex

series of database accesses and operations; and 3) The Database Backend, which ac-

tually stores the data, providing network and archiving functions. We describe each

subsystem in turn.

The Visual Frontend mediates all interaction with the user. Our objective is to

provide su�cient exibility so that a variety of popular visual environments can be

interfaced to the Gaea Kernel. There exists many such packages, either commercial

4

(e.g., AVS [?]) or publicly available (e.g., Khoros [?]). These visual environments

come with complete analysis subsystems; we would like to make use of the frontends

and analysis operators separately, as shown in Figure 1. In addition, we have written

our own visual frontend tailored to the Gaea Kernel [?]. One challenge on which we

are currently working is the de�nition of a query and analysis language in which any

visual query can be expressed. When that language is de�ned and implemented, any

visual environment may be incorporated into Gaea by converting commands into the

common query and analysis language.

The most important function of the Gaea Kernel is the management of meta-

data and the semantics of derived data. This semantics is elaborated upon in Section

2.2. Users can query meta-data to obtain the meaning of derived data. Furthermore,

capturing a data object's derivation process information enables the user to repeat

that process and derive new data, given di�erent input data. The kernel will include

a schema manager which manages the meta-data and the associated derivation se-

mantics and analysis operators (Figure 1). The Query/Analysis Processor (QAP) is

responsible for processing queries, deriving new data whenever necessary, and using

meta-data. The kernel includes a semantic and meta-data browser to allow a user

to �nd relevant data without knowing speci�c �le and path names. There is also a

Data Abstraction Generation and Recall module which allows previously generated

data to serve as a template for additional queries, i.e., queries can be abstracted. Fi-

nally, generic interfaces to the frontend visual environments and backend distributed

computing and distributed databases and archives are provided.

The Backend System consists of distributed and archive databases such as Post-

gres, Object Store and Gemstone ([?], pp. 34{93). The distributed computing envi-

ronment consists of scienti�c analysis operators which are available within commercial

or public domain software systems. Examples are the analysis tools available within

AVS, Khoros, and GRASS. These tools may be imported into Gaea because the

meta-data manager will have registered information about analysis operators, their

domains of application, data types and formats they apply to, among other meta-

data. The Gaea kernel will be able to chose from these available tools and use them

to provide a seamless integration between analysis and data management for scienti�c

environments.

2.2 Meta-Data Management in Gaea

We view scientists as manipulating objects in three orthogonal extents: space, time,

and data derivation (object classes). For example, in global change studies, ob-

jects have spatial as well as temporal extents. Although these two extents may be

correlated, scientists retrieve and manipulate \scienti�c objects" by viewing those

extents as orthogonal. The semantics of the spatial [14, 15, 18, 30] and temporal

[2, ?, 27, 37, 39, 41] dimensions have been the subject of much research over the

last decade. The third dimension, which has not received much attention so far, is

the data derivation dimension, dealing with the derivation procedure followed in the

5

Scientific Investigation

Hypothesis Conclusions
Observations

Experiment

References

Meta-Aggregation

(“Is there any correlation between

deforestation and carbon dioxide,
rainfall and acidity of closed bodies

within the Amazon region over the

last two decades?”)

confirmed-by

published-in

supported-by

derived-from

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

Remote

Sensing

AVHRRLandsat TM EOS

ISA ISA
ISA

LULC

NDVI

Tropical
Forest

Deforestation

EXPERIMENT (instance)

D1

D2

D3 D4

High Level Semantics

MODIS-N

Figure 2: Generic Semantic Model for Scienti�c Investigations

generation of new or existing complex objects.

Meta-data management in Gaea extends semantic modeling technology [22, 31]

with the following constructs [Hachem93 et al.]: concepts, processes, and tasks. Con-

cepts are used to capture entity sets with imprecise de�nitions. A process captures the

derivation procedure of a speci�c object class, while a task is the instance represent-

ing the derivation of a speci�c scienti�c data object. We believe that this framework,

useful for GIS and global change studies, generalizes well to other scienti�c �elds.

The actual meta-data are viewed by the system at three semantic levels (Figures 2

and 3):

2.3 High Level Semantics and the Experiment Level

This level records the information that is necessary for the understanding of a speci�c

experiment. In global change research, it is di�cult to agree on carefully designed ex-

periments. The Gaea kernel supports experiments through the experiment manager

module of the metadata manager. The experiment manager is capable of manipu-

lating conventional semantic modeling constructs [22]. In addition, we introduce the

notion of concepts, which may either be base data or data derived from other data

according to any of several well-de�ned algorithms.

A general de�nition of a concept is a representation of a spatio-temporal entity

set, extended with an imprecise de�nition. Concepts are very common in scienti�c

databases. In the context of geographical information systems and global change

research, one can e�ectively cite many examples of concepts.

6

PERSON is an entity set as de�ned by the ER model [7], and may be considered

a concept with a well de�ned and agreed upon meaning. But can we de�ne what a

DESERT or DESERTIC REGION is? According to [6], an acceptable de�nition of a

desert must include consideration of the following factors: the amount of precipitation

received, the distribution of this precipitation over a calendar year, the amount of

evaporation, the mean temperature during the designated period, and the amount

and utilization of the radiation received. Furthermore, every one of those factors may

have di�erent metrics: for example dryness, related to precipitation, can be measured

by the Aridity Index, a Quotient of Dryness or the Radiational Index of Dryness [6].

So a DESERTIC REGION is an entity set whose de�nition may di�er from one user

to another.

The full semantic model for experiment management is based on concepts and

the specialized relationship derived-by. Derived-by relationships connect concepts to

those that are potentially used to derive them. Concepts are arranged in hierarchies,

which map into sets of classes at the derivation semantics layer (Figure 3). We are

in the process of extending this view to include specialized semantic entities such as

scienti�c investigations, experiments, observations, hypotheses, conclusions, and oth-

ers (Figure 2). A scienti�c investigation describes the case study being performed.

In the described scenario, it captures the essence of the header and is a meta-level

aggregation of entities, concepts and relationships such as: hypothesis con�rmed by

observations based on experiments. Conclusions are drawn from observations. An

experiment is the set of tasks that are performed on data representing concepts to

derive new data of other concepts. The specialized relationship derived-by maps into

a set of processes. As there is one process that maps to a speci�c derived class in the

derivation semantics layer, a derived-by relation is associated with one concept at the

high level semantics layer (Figure 3). The model will include other conventional se-

mantic constructs [22, 31], such as conventional entities, ISA hierarchies, associations

and aggregation. This high-level model will provide a desktop manager for scienti�c

investigations, based on a schema-centric view similar to [?]. Our long term objective

is to provide an interface so that other high level managers could be integrated.

2.4 Derivation Semantics Layer

This layer provides for the management of (scienti�c) derivations of data. Concepts

map to a set of object classes in the derivation semantics layer. Each class represents

a di�erent de�nition of a concept, based on a speci�c derivation procedure.

The derivation semantics layer records the derivation relationships among classes

of data. Such relationships can also be used for the generation of new data objects

for a class. Typically, when data are not stored in the database, we generate the

needed data with the help of such derivation relationships. The basic constructs used

are: 1) a Process, which captures the description of a scienti�c procedure used for

the generation of new concepts from other concepts and 2) a Task, which is the

instantiation of a process with input data objects. Every task will generate a set of

7

Remote

Sensing

AVHRRLandsat TM EOS

ISA ISA
ISA

LULC

NDVI

Tropical

Forest

Deforestation

Concept Derived-By Process Class Operator

EXPERIMENT (instance)

D

D1

D2

D3 D4

C1

C2

C3

C4

C5

C7 C9

TM = {C1}

AVHRR ={C2}
LULC={C3,C4}

NDVI={C5}

Tropical Forest={C6,C7}

C6 C8

Deforestation={C8,C9,C10}

D1={P3,P4}

D2={P5}

P3

P4

P5 P6

P7

P8

P9

Example Derivation Process: P4 is used to derive LULC using unsupervised
classification, while P3 is based on supervised classification.

D3={P6,P7}

D4={P8,P9,P10}

Low Level Semantics

Derivation Semantics Level

High Level Semantics

C1.spatialextent C4spatialextent

C1.timestamp C4.timestamp

C4.numclass

C4.imagedata

unsuperclassify(composite(),12)

C1.bands[12]

invariant()

invariant()

parameter(int)12

Mapping of process P4 , unsupervised classification from the derivation

level to the low level semantics:
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

C1 C4
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

P4

MODIS-N

C11 C10

P10

MODIS-N = {C11}

Figure 3: Derivation Management Layers

objects (most commonly just one) for the output class.

An example of a process for the derivation of LULC is illustrated in Figure 3. Pro-

cess P4 derives class C4 which has four attributes: the spatial extent C4.spatialextent,

the temporal extent C4.timestamp, the number of land cover classes C4.numclass,

and raster image data C4.data. The extents are invariantly transferred from the

input classes, while the image data is derived using the functional application of the

image operators: unsuperclassify() and composite()[12]. The assertions using

the rule common()make sure that the spatio-temporal extents of the input classes are

the same or overlap. The process de�nition in Gaea is illustrated in Figure 4.

2.5 System-Level Semantics or the ADT Level

This layer is used to manage the abstract data type (ADT) view of the system. The

mapping between the derivation semantics layer and the system layer consists of the

8

common (bands.spatialextent);

C4.timestamp = ANYOF bands.timestamp;

}

C4.data = unsuperclassify (composite (bands), 12);

C4.numclass = 12;

C4.spatialextent = ANYOF bands.spatialextent;

common (bands.timestamp);

card (bands) = 3; // need three bands

)C1 SETOFbands

C4

P4

Land_coverLandsat TM
Rectified

P4
C4C1

TEMPLATE {

OUTPUT

ARGUMENT (

ASSERTIONS:

MAPPINGS:

DEFINE PROCESS

unsupervised

classification

Figure 4: Derivation Process for Unsupervised Classi�cation

9

mapping of a process as a transformation of a set of input classes to an output class

using operators that are applied to primitive classes. This is captured using a data

ow network of functional operators that are applied on primitive classes, such as

spatial coordinates, temporal attributes, and raster images. The mapping of Process

P4 is illustrated in Figure 3.

The mapping we just described captures the structural aspect of the scienti�c

procedure used to derived a concept (LULC in the example). Gaea provides for the

actual application of such derivation procedure by dynamically interpreting each op-

eration at run time. Whenever a user requests an LULC output, the Gaea kernel

parses the query using the mapping from the top layer to the system level layer.

Within that layer, operators are classi�ed according to multiple taxonomies as illus-

trated in Figure 5. A user can speci�cally select an operator based on the function it

performs; for example a classi�er which performs clustering, or a multispectral image

function similar to principle component analysis [35]. The speci�c operator can be

implemented in di�erent GIS systems such as Grass and IDRISI, or analysis software

such as AVS and Khoros. Furthermore, such operators may have binaries for di�erent

architectures. Once a process is edited and speci�c operators selected, the user does

not have to worry about the low level details of which version is used and on which

platforms it is applied. The Gaea kernel through its meta-data manager and QAP

takes care of this task.

Image-Function

Operator

GRASS
Khoros

AVS

(Hardware basis)

(Software basis)

Classifier

i.cluster i.maxlik

Multispectral

Principle
Component
Analysis

i.pca

Figure 5: Operator taxonomies

We are currently designing and implementing the low level operator taxonomies

in Gaea; GRASS operators are now accessible from within Gaea. To be able to use

the taxonomies for distributed data management and analysis, the following types of

meta-data must be included:

10

� Input and output data object types.

� Programming language used, necessary to determine the appropriate run-time

environment.

� Experimental/computational. Is the input to the operator intended to be ob-

served data (experimental operator) or a process model (computational opera-

tor).

� Hardware platform.

� Software environment needed. Library or other executable packages needed for

proper execution.

� Invocation mode. Flags, switches, etc. must be supplied.

� Type of parallelism. SIMD, SISD, MIMD.

� Timing information. Allow query optimization based on expected time to com-

plete an operation.

3 GaeaPN: A Model for Managing Data Deriva-

tion Semantics

The core of the Gaea system is the metadata manager. We focus here on the presenta-

tion of a model for managing the semantics of data derivations. Speci�cally, the petri

net model we describe is implemented has been the Gaea system prototype for earth

science applications. We start by motivating the use of PNs then present GaeaPN,

our network model used in the Gaea system. We then discuss the closure of the model

with respect to \metadata space" and the database states, followed by semantics of

queries and updates. Finally we provide a brief discussion of our implementation and

point out how the model can be applied in other scienti�c domains.

3.1 Petri Nets

Petri nets (PN) have been used extensively for representing and studying concur-

rent systems [?, ?, ?, ?]. We have proposed to represent data derivation processes with

PNs

[Hachem93 et al.]. The advantages of using PNs to model the derivation process

in Gaea are [1, 9, 23, 33]:

� The graphical representation of Petri nets is not only easy to understand but has

a well-de�ned semantics which, in an unambiguous way, de�nes the behavior of

the system.

11

� PN have proven to be very useful to describe pieces of intended system behavior

where process synchronization is of utmost importance and the behavior of the

system needs to be analyzed.

� PN can be used to represent systems in a top-down fashion at various levels of

abstraction, i.e. they can be used to model a system hierarchically.

� PN are uninterpreted models. Hence they can be used in many di�erent envi-

ronments by using appropriate interpretations.

Informally, a Petri net is an abstract model of ow of information and control of

actions in a system. A Petri net structure consists of places, transitions and input

and output functions [33].

De�nition 1 A Petri net is de�ned as the four-tuple C = (P, T, I, O) where

P = fp

1

; p

2

, : : : p

m

g is a set of places.

T = ft

1

; t

2

, : : : t

n

g is a set of transitions.

The relationship between the places and the transitions is de�ned using the input func-

tion I, and the output function O.

I de�nes for each transition t

j

, the set of input places for the transition I(t

j

).

O de�nes for each transition t

j

, the set of output places for the transition O(t

j

) [33].

The two components of a Petri net are places, represented using circles and tran-

sitions, represented using vertical lines (Figure 6). Arrows interconnect places and

transitions. Tokens (black tiny circles) move from place to place according to a speci�c

rule.

De�nition 2 A marking � of a Petri net is an assignment of tokens to the places in

that net. A Petri net C = (P, T, I, O) with a marking � becomes the marked Petri

net, M = (P, T, I, O, �).

De�nition 3 The �ring rules for a Petri net are as follows:

� A transition is said to be enabled when all of its input places have a token in

them.

� Only one of the enabled transitions can �re at a time.

� A transition �res by removing the enabling tokens from their input places and

generating new tokens which are deposited in the output places of the transition.

� The number of tokens in each place always remains nonnegative when a transi-

tion is �red [33].

12

Tokens are moved by �ring of the transitions. In Figure 6, for example, transition

P1 is enabled since its input places A and B have at least one token in them. Tran-

sitions P2 and P3 are not enabled as their respective input places do not have any

tokens in them. Transition P1 �res by removing one token from each of A and B and

then deposits one token in C. The e�ect of �ring a transition can be seen in Figure 7.

Petri net

A

B

C

D

E

F

A

B

F

EC

D

Petri net in Gaea

P1 P2

P3

P1
P2

P3
Class

Process

Token

Data Object

Place

Transition

Figure 6: Petri Net and Gaea Petri Net

Many di�erent interpretations of PN have been applied in various areas. Some of

these areas are computer hardware, distributed databases, operating systems, com-

pilers [?, 23], logic, and in hypertext systems [?]. Extensions to Petri nets have been

proposed in their capacity as modeling tools and decision making tools. For example,

a �nite state system is a Petri net which has very high decision making capability but

the modeling capabilities are limited. The latter is due to the fact that the reachable

13

states in a �nite state system is �nite. Moreover cooperation of parallel sequences

cannot be described using state machines. Turing machines on the other hand have

very good modeling capabilities, but decision making power is limited since most

problems are undecidable in case of Turing machines. In fact PN evolved to over-

come the limitations of �nite state machines [33]. One of the extensions was called

Generalized Petri nets where multiple arcs between places and transitions were al-

lowed signifying the number of input tokens used and output tokens generated. PN

cannot model ordering of events, hence the PN were extended to include inhibitor

arcs [?]. Another extension to PN is a marked graph where each place has exactly one

input transition and one output transition. Free choice nets in which each arc from

a place is either the unique output of the place, or the unique input to a transition is

another subclass of Petri nets [33].

High-level Petri nets like Colored Petri nets (CP-net) have provided methods for

organizing concepts in a hierarchy. Moreover CP-net provides a formalism for relating

and analyzing the individual Petri nets. CP-net consists of three di�erent parts: net

structure, the declarations and the net inscriptions. The net structure is a directed

graph with two kinds of nodes, places and transitions, interconnected by arcs. The

latter is prevalent in low-level Petri nets. The declarations describe the di�erent types

of data and the variables being used in the the description of any process using a CP-

net. The net inscriptions consist of names for the places, transitions and arcs, the

types of data (color sets) and initialization expressions attached to a place, the guards

attached to a transition and the arc expressions attached to an arc. Some of these

features were incorporated into the variant of Petri nets proposed in Gaea, but use of

CP-nets to model derivation semantics was not found to be signi�cantly bene�cial.

The di�erent extensions to Petri nets were found to be inadequate for the modeling

and decision support capabilities desired by the Gaea System. An interpretation and

extension of Petri nets for the derivation semantics layer of the Gaea System is given

below.

3.2 Interpretation of Petri Nets in Gaea: GaeaPN

Petri nets are uninterpreted models as mentioned earlier and they can exhibit

complex behavior. A meaning or interpretation can be assigned to the di�erent

entities in the net namely, the places, transitions and tokens. Thus Petri nets can be

used in Gaea to model the derivation process with appropriate interpretation.

De�nition 4 The Gaea Petri net (GaeaPN) is de�ned as the six-tuple G = (C, P,

I, O, A, m

0

) where

C = fc

1

; c

2

, : : : c

m

g is a set of classes (places) where a class encapsulates the structure

of the di�erent types of data.

P = fp

1

; p

2

, : : : p

n

g is a set of processes (transitions) where a process consists of the

14

procedures applied to the data in the classes.

The relationship between the classes and the processes is de�ned using the input func-

tion I, and the output function O.

I de�nes for each process p

j

, the set of input classes for the process I(p

j

).

O de�nes for each process p

j

, the output class for the process O(p

j

). Each process

has an unique output class.

A is an assertion function. It is de�ned from process P into expressions such that

A(p

j

) is true.

m

0

is the initial marking of GaeaPN. It is the set of instances of data-objects in the

base classes. A class c

i

is a base class if it is not an output class to a process. A

marking of a GaeaPN is an assignment of tokens to the classes in that net.

A token in GaeaPN is the instance of a class (data object)

4

. A class can have

more than one token as illustrated for classes A and B of the GaeaPN of Figure 6.

Also, from Figure 6 one can observe that in GaeaPN a process has only one output

class hence process P2 does not have an arrow to class F in the GaeaPN.

3.3 Execution Rules for Marked GaeaPN

In Gaea tokens are not created and consumed hence they are always present in the

system as can be seen in Figure 7. There is only one token in a class in case of a

PN but many tokens in case of a GaeaPN. The state of a Petri net is de�ned by its

marking.

De�nition 5 A marking in a GaeaPN is modi�ed according to the following �ring

rules:

� A process p is said to be instantiatable (enabled), if there exists a set of tokens

in each input class c

i

of process p such that A(p) (the assertions for process p)

is true (are satis�ed).

� Each of the instantiatable processes can �re at any time.

� Instantiating (�ring) a process p, does not remove any tokens from each input

class c

i

of process p, but adds one token to the output class c of p.

Therefore, the equivalent to �ring of a transition in a PN is instantiating a process

in a GaeaPN. The only di�erence between the two being, that the latter does not

remove a data object from its input class when it generates a new data object in the

output class.

4

Although it is not discussed here, the instance of a class (data object) in Gaea is a spatio-

temporal object i.e. it has an intrinsic spatial and temporal attribute [?].

15

A

B

C

D

E

F

A

B

F

EC

D

P1 P2

P3

P1 P2

P3

Firing a transition

Instantiating a process

Figure 7: Results of Firings in a Basic Petri Net and a Gaea Petri Net

16

De�nition 6 Given an initial marking, a marking in a GaeaPN is said to be a legal

marking if it is a result of successive and/or simultaneous instantiations of processes

from the initial marking.

De�nition 7 Given an initial marking the union of all legal markings is called a

�nal marking.

Every legal marking includes the initial markingm

0

and the �nal marking includes

every other legal marking. Since the number of tokens in a class is bounded (�nite)

over the set of all markings, there is a �nite number of markings for a GaeaPN. A

�nal marking is achievable as the cardinality of the initial marking is �nite and only

an enumerable number of tokens can be generated from the initial marking.

A

B

F

EC

D

P1 P2

P3

Legal token

Illegal token

Figure 8: Illegal Marking in a GaeaPN

Illustration: Consider the GaeaPN in Figure 6. The initial marking, m

0

consists

of the set of data objects in classes A and B i.e., a set of three data objects from each

of the classes making it a total of a set of six data objects. From the legal markingm

0

if P1 is instantiated, generating an object in class C the resultant marking m

1

, is a

legal marking as illustrated in Figure 7. Assume a new data object is added to class C

as shown in Figure 8 i.e., without instantiation of process P1. Then the marking m

0

1

(which includes m

0

) is NOT considered to be a legal marking. Consider the GaeaPN

in Figure 9 the initial marking, m

0

is the set of data objects in classes A, B and D.

The marking m

1

is the result of instantiating process P1 from the initial marking m

0

,

generating an object in class C. The marking m

2

is the result of instantiating process

P2 from marking m

1

generating an object in class E. The marking m

3

is the result of

instantiating process P3 from marking m

0

generating an object in class F. Assuming

17

A

B

F

EC

D

P1 P2

P3

Figure 9: GaeaPN with a Final Marking

for this example that it is not possible for other instantiations to take place. Thus,

the �nal marking, m

f

for the GaeaPN of Figure 9 is m

0

[m

1

[m

2

[m

3

.

Proposition 1 The set of legal markings forms a partially ordered set (poset), or-

dered by the operation of set inclusion. The least upper bound (lub) of the set is the

�nal marking and the the greatest lower bound (glb) is the initial marking. Hence it

follows that the set of legal markings forms a lattice.

Illustration: The initial marking m

0

is the glb as it is contained in every marking

and the �nal marking m

f

is the lub. The set of legal markings f m

0

;m

1

;m

2

;m

3

g

forms a lattice. m

0

is contained in m

1

and m

1

is contained in m

2

. Similarly m

0

is

contained in m

3

. However m

2

and m

3

are not comparable.

Petri nets in Gaea have another salient feature, called assertions which is similar to

guards in CP-nets [23]. In CP-nets the guard of a transition is a boolean expression

which must be ful�lled before the transition can �re. In GaeaPN, the assertions are

a part of the process de�nition. Assertions are used to provide the following features:

� Guarantee the integrity of data.

� When an assertion is speci�ed, the system tests it for validity. For a process

to be instantiated the input data needs to satisfy the assertions. Hence the

assertions are validated as part of the process of instantiation.

� the capture and expression of relationship between classes as pertaining to a

speci�c derivation process.

18

3.4 Observations

Particularly, very useful in Gaea is that Petri nets can be used to represent systems

in a top-down fashion at various levels of abstraction. The latter is most useful in

Gaea when the operators that comprise a process need to be depicted as illustrated

by process P7 in Figure ?? (Refer Section ??).

The problems of conict which arise in PN do not arise in GaeaPN as tokens are

not removed from the input places [?, 33]. Since �ring of one of the transitions in the

conict does not disable the other i.e. more than one process can be instantiated with

the same data object. Nevertheless the problems of deadlock may arise in Gaea. A

process is said to be dead in a marking if there is no sequence of process instantiations

that can instantiate it. In other words a dead process is one which is not only

uninstantiatable but a process which cannot become instantiatable. The latter may

arise when base classes do not have any data, hence processes directly or indirectly

dependent on that base class will be dead. For example, in Figure 6 process P3 is

said to be dead as there are no tokens (data-objects) in its input class. Process P2

is also dead as it needs input data from classes C and D. D being a base class and as

it does not have any data causes P2 to be dead, even though class C also does not

have any data. The latter is due to the fact that the data in class C can be generated

eventually by instantiating process P1 but data in base classes cannot be generated.

Furthermore the state of nondeterminism does not occur in the GaeaPN. Since when

more than one transition is enabled in Gaea all of them can �re based on some order.

Logic and GaeaPN: One can draw a correspondence between logic and GaeaPN.

The initial marking corresponds to the extensional set of facts of a database (EDB)

and the intensional set of rules of the database (IDB) correlates with the set of pro-

cesses [?]. The �nal marking in GaeaPN corresponds to the closed world assumption

(CWA).

3.5 Analysis of Petri Nets

Di�erent properties of PN that have been investigated as analysis tools are bound-

edness, conservation of tokens, safe nets, liveness of transitions [33]. The property of

conservation of tokens is not important in GaeaPN as tokens are not created and con-

sumed. Similarly the property of a safe net and boundedness is irrelevant since there

is no bound on the number of tokens in any class (place) of the net. The implication

of liveness can be di�erent for di�erent systems modeled using PN. The concept of

liveness is reducible to the reachability problem in PN and can be used to analyze a

PN [33]. Reachability is de�ned in GaeaPN with three di�erent interpretations of the

PN, namely the graph based, the class based and the object based interpretation.

19

3.5.1 Reachability

In Petri nets a reachability set is de�ned as the set of all states into which the Petri

net can enter by any possible execution. The reachability problem is as follows: Given

a marked Petri net (with marking M) and a marking M

0

, is M

0

reachable from M

[33]?

A

B

F

EC

D

P1
P2

P1

P2

P3

P3

Figure 10: Graph Representation of the Petri Net in Figure 6

A Petri net is also de�ned as a bipartite directed graph as illustrated in Figure

10 [?]. The correspondence between PN and graphs is so similar that most often

they are considered as di�erent representations for the same concept [33]. In graph

terminology a node n

1

is reachable from a node n

2

if n

1

equals n

2

, or there is a path

from n

2

to n

1

[?]. Therefore a graph based de�nition of reachability is as follows:

De�nition 8 Class reachability (graph based) A class b is said to be reachable

if it is a base class or a class derived by a process p such that the set of input classes

fa

i

g of process p are reachable. The set of input classes fa

i

g are said to be reachable

if each of the members of the class are reachable. The reachability set of a class is

the pseudo-transitive closure of the set of reachable classes from a given set of classes.

The GaeaPN can be used to determine if a class is reachable or an instance of a class

(data object) is reachable. Hence the de�nition of reachability of an object is di�erent

from the reachability of a class. In order to de�ne class and object reachability one

needs to de�ne the reachability path of a class. The de�nitions of class reachability

and object reachability are based on the de�nition of a reachability path.

20

De�nition 9 The Reachability path of a class a

i

is the set of processes fp

i

g, that

should be instantiated from a given set of classes fa

j

g to reach the class a

i

.

De�nition 10 Class reachability (PN based): Given a set of input classes fa

i

g

with data objects (instances), a class b is said to be reachable if there exists a sub-

set of objects from the set of input classes fa

i

g that instantiate all processes in the

reachability path of class b.

De�nition 11 Object reachability: Given a set of input classes fa

i

g with a set of

data objects (instances or tokens), an object b in class c is said to be reachable if the

given set of data objects from the set of input classes fa

i

g instantiates all processes

in the reachability path of class c and generates the object b.

Illustration: Consider the GaeaPN of Figure 6. The Petri net in Gaea has

tokens in classes A and B. These tokens form the initial marking. Based on the

graph based de�nition of class reachability, class E is said to be reachable from

class A. The reachability path of class E is the set of processes fP1, P2g. Based on

the class reachability de�nition class E is not reachable, since there are no tokens

in class D, hence process P2 cannot be instantiated to obtain any new data-object

in class E. Again based on the de�nition for object reachability, class E is not

reachable from class A. However class C is said to be reachable from both the graph

based view and by the de�nition for class reachability. Although a new object is

generated in class C as a result of instantiation of process P1, the latter may not be

the object desired by the user. Therefore, from the object reachability point of

view an object in class C is said to be reachable if the new object generated is the

one desired by the user.

In addition to class reachability, object reachability, and graph based reachability,

reverse reachability can be de�ned for a class and an object. Intuitively, reverse

reachability is the ability to determine the source data provided the target data exists.

As opposed to the earlier de�nitions of reachability, new data is not generated as a

result of reverse reachability. It is only the ability to determine the source from

which the target data was generated. Therefore the de�nitions for reverse reacha-

bility are as follows:

De�nition 12 Reverse class reachability: Given a non base-class the ability to

recursively determine the set of input classes, that had the set of data objects to

generate at least one new data object in the given non base-class.

De�nition 13 Reverse object reachability: An object b is said to be reverse

reachable if the set of objects in the initial marking that were used to generate the

object b can be determined. Object reachability is the ability to determine the set of

data objects that were used to generate the object b.

21

A

B

F

EC

D

P1 P2

P3

Figure 11: Reverse Class and Object Reachability

Illustration: Consider the Petri net in Gaea as shown in Figure 11. Classes E and

F have a token (data object), assume it is the �nal marking. The initial marking for

those tokens in classes E and F is a token in class A, class B and class D. Therefore,

the classes E and F are said to be reverse reachable. Similarly if the object (token)

b in class E is the �nal marking then the initial marking for the marking in class E

is in class A and class B. However one needs to note that reverse reachability gets

the initial marking. If the user knows the structure of the network then he/she can

determine from which class in the network the marking needs to be obtained.

In addition to the property of �nding the reachability set of a Petri net given an

initial marking, in Gaea one would be able to �nd the initial marking for a desired

legal marking. Moreover it would generate the data objects in the legal marking. The

latter is due to the property of reversibility.

3.5.2 Reversibility

In Gaea a process is said to be reversible, if for a given object in the output class of

process p, the corresponding object in the input class of process p can be found from

the mappings de�ned as part of the process de�nition. The syntax and semantics of

the Gaea language construct de�ne process is given in Section ??. An example of a

process that is reversible is as follows:

Example:

De�ne process

output o1

arguments (a of in1)

22

template

mappings:

o1.timestamp = a.timestamp;

o1.spatialextent = a.spatialextent;

Assume the granularity of time is the same in the input and output class. The

functions de�ned by the two mappings speci�ed in the process are bijective mappings.

Therefore, if the user desires information for \15 Nov 1992" and for the town of

\Worcester", the information can be retrieved from the input class and assigned to

the output class. Hence it can be said that the process p is reversible. An example

of a process that is not reversible is as follows:

Example:

De�ne process p2

output o2

arguments (a of in2)

template

mappings:

o2.timestamp = a.timestamp;

o2.spatialextent = a.spatialextent;

o2.data = gIMaxlik(gICluster(gMkGroup(a.�lename), 12));

In the above process de�nition gIMaxlik, gICluster, gMkGroup are operators in

Gaea borrowed from GRASS which perform the functions of Maximum Likelihood,

Clustering, and making a group respectively. In the above process if an output object

is speci�ed as \15 Nov 1992" and for the town of \Worcester", the input object cannot

be found as there is no indication as to which input object needs to be used. Moreover

even if objects can be found to have the timestamp as \15 Nov 1992" and for the

town of \Worcester", they may not all be usable. On the other hand, if objects can

be found to have the timestamp \15 Nov 1992" and for the town of \Worcester" they

may generate more than one object. Thus it is observed that precisely one desired

object cannot be generated. Therefore the process is not reversible.

De�nition 14 Reversibility is the process of generating the desired set of data in

class b by instantiating processes in the reachability path of class b provided

� all processes in the GaeaPN are reversible and

� a set of classes with the set of data objects that can be used to obtain the desired

set of data in class b can be found.

23

Di�erence between reachability and reverse reachability:

� Reachability generates data if it does not exist.

� Reverse reachability does not generate any data, it only helps you �nd the

source of the target data. In order to do reverse reachability the target data

should have been generated earlier.

Di�erence between reversibility and reverse reachability:

� For reversibility the target data need not exist. Reversibility generates the

target data when the target data does not exist after determining which is the

source data that can be used to generate the target data.

� For reverse reachability the target data has to exist.

Uses of Reachability and Reversibility: It automates the process of data

derivation in Gaea, thus making the process of derived data retrieval transparent to

the user.

4 Relationships to Other Work

[extend with new stu� from Nina's and Additional on Moose and others from Ke...]

In this Section, we review other proposed mechanisms that relate to our work,

and make some comparisons.

4.1 Related Work in Conceptual Modeling

Markowitz [25] uses the extended E-R approach to model both the functional and

structural components of an information system. The basic idea is to represent a

process as a relationship and apply existential constraints to express the partial order

implied in a process. However, we do not believe that the E-R approach is su�cient

to represent derivation relationships among data classes for the following reasons:

1. An E-R diagram is basically a network structure, while the derivation relation-

ship actually de�nes a hierarchical structure among data classes, which is not

obvious in an E-R diagram representation.

2. Derivation relationships are di�erent from other kinds of relationships in an E-

R model. The input data classes and output class of a derivation relationship

cannot be directly mapped into the E-R model. Furthermore, the constraints

involved in a derivation relationship cannot be expressed in the E-R model.

24

3. Compared with the E-R diagram, the PN we propose to use expresses more

semantics for a derivation relationship. It shows not only the input and output

classes but also the constraints on a derivation procedure. Those constraints

are in the form of guard rules that need to be satis�ed for a derivation to be

applicable. We have briey shown how PNs can also be used to generate derived

data automatically. Furthermore, PNs can be used to capture the control ow

of the scienti�c computation on hand.

4.2 Derivation Management vs. Functional Modeling

One may �nd similarities between our work and functional modeling in the system

analysis stage of business database applications. However they are di�erent in their

purpose and the methods used.

Usually an information system is described by two components: structure and

function. In the structural component, entities and their relationships are identi�ed.

This is also called a static view of the database and forms the basis for schema

de�nition. The dynamic view (behavior) of the database is described in the functional

component, which forms the basis for application programs.

One popular method for functional modeling is Data Flow Analysis [26]. In data

ow analysis, an information system is considered as a process that maps input data to

output data, and can be represented as a data ow diagram. Then the transformation

process is further decomposed into subprocesses until each is basic enough to be

implemented with a piece of simple program.

Although functional analysis is also concerned with a process, the purpose is

di�erent from that of derivation management in scienti�c databases. A process in

functional analysis is used to develop application programs, while a process in our

work is used to de�ne derivation relationships among data classes. In addition, a

task, the instantiation of a process, is of no interest in functional analysis, while it

plays an important role in data derivation management. It is an individual task that

de�nes the derivation relationship among a set of data objects.

In summary, functional analysis is concerned with how to transform input data to

output data, i.e., how to accomplish the task; while data derivation management is

concerned with how the data were and will be generated, i.e., how the task was and

will be accomplished.

4.3 Related Research in Scienti�c Databases

Experiment management is also the goal in [8]. The problem is to model experiments

in computational chemistry, and the approach followed is based on the object-oriented

paradigm. Cushing et. al. derived a model that captures the interrelationships be-

tween the data, its source, methods and instruments used, and other information

25

relevant to the generation of the data. They provide a mechanism for managing the

de�nition, preparation, monitoring and interpretation of computational experiments.

We address the same problem, but identify di�erences between experiment manage-

ment and data derivation management. By using di�erent formalisms to model them,

we have introduced more semantics into our system.

Semantic networks are an appropriate tool to capture the relationships among a

set of data objects. This formalism has been used in the USD system [36]. Although

their intention was to make use of the exibility of semantic networks to represent un-

structured data, it can also be adequately used to model an experiment. The problem

with semantic networks is that they might become too complex with a large database

system. In addition, data derivation relationships are not explicitly represented in

the network.

[add some of Nina's stu�.]

5 Conclusions and Future Work

[bla bla bla]

References

[1] T. Agerwala, \Putting Petri Nets to Work," IEEE Computer Magazine, pp. 85-94,

Dec. 1979.

[2] J.F. Allen, \Maintaining Knowledge about Temporal Intervals," CACM, Vol. 26,

No. 11, pp. 832-843, Nov. 1983.

[3] M. Atkinson, F. Bancilhon, D. DeWitt, D. Maier, and S. Zdonik, \The Object-Oriented

Database System Manifesto," Proc. Int. Conf. on Deductive and Object-Oriented

Databases, pp. 40{57, 1989.

[4] J.-L. Baer, \Modeling Architectural Features With Petri-Nets," Lecture Notes in Com-

puter Science, Springer-Verlag, No. 255, pp. 258-277, 1986.

[5] A. Beller, \Spatial/Temporal Events in GIS," GIS/LIS 91, V57, N4, pp. 407{411, 1991.

[6] G. Bender, \Reference Handbook on the Deserts of North America," Greenwood Press,

p. 594, 1982.

[7] P.P. Chen, \The Entity-Relationship Model: Towards a Uni�ed View of Data," ACM

Trans. on Database Systems, Vol. 1, No. 1, pp. 9{36, 1976.

[8] J.B. Cushing, et. al. \Object-Oriented Database Support for Computational Chem-

istry," Proc. SSDM'92, pp. 58{76, 1992.

[9] A.M. Davis, A comparison of techniques for the speci�cation of external system behav-

ior, Communications of the ACM, Sept. 1988, Vol.31, No.9, pp.1098-1115.

26

[10] J. Dozier, \Access to data in NASA's Earth Observing System," Keynote Address,

Proc. ACM SIGMOD Intern. Conf. on Management of Data, San Diego, 1992.

[11] J.R. Eastman, \Time Series Map Analysis Using Standard Principle Components,"

ASPRS/ACSM/RT 92, pp. 195{205, 1992.

[12] J.R. Eastman and J.McKendry, \Change and Time Series Analysis in GIS," UNITAR,

1991.

[13] J.R. Eastman, \IDRISI { A Grid-Based Geographic Analysis System (User's Manual),"

Clark University, Worcester, MA, Nov. 1990.

[14] M. Egenhofer and J. Herring, \A Mathematical Framework for the De�nition of Topo-

logical Relationships," Proc. 4th Intl. Symp. on Spatial Data Handling, pp. 803-813,

Zurich, Switzerland, 1990.

[15] A.U. Frank, \Properties of Geometric Data: Requirements for Spatial Methods," In

Advances in Spatial Databases, 2nd Symp., SSD'91, Spring-Verlag, Zurich, Switzer-

land, Aug. 1991.

[16] J.C. French, A.K. Jones, and J.L. Pfaltz, \Summary of the Final Report of the NSF

Workshop on Scienti�c Database Management," SIGMOD Rec. 19-4, pp. 32{40, 1990.

[17] H.J. Genrich \Predicate/Transition Nets," Lecture Notes in Computer Science 254,

pp. 207{247 , Springer-Verlag, 1986.

[18] O. Guenther and A. Buchmann, \Research Issues in Spatial Databases," SIGMOD

Rec. 19-4, pp. 61{68, 1990.

[19] N.I. Hachem, \Petri-Net Driven Knowledge Base System for Automated Microcode

Generation in VLSI," in Proc. of the IASTED Int. Symp. MODELING and SIMULA-

TION, Calgary, Canada, July 1991.

[Hachem93a et al.] N. I. Hachem, K. Qiu, M. Gennert, M. Ward, Managing Derived Data

in the Gaea Scienti�c DBMS, Proceedings of the VLDB Conference 1993, pp.1-13.

[Hachem93 et al.] N. I. Hachem, M. Gennert, M. Ward, Distributed Database Management

for Scienti�c Data Analysis, Proc. Int. Wkshp. on Global GIS, Int. Soc. Photogram-

metry and Remote Sensing WG IV/6, Tokyo, Japan, pp. 85{93, Aug. 1993.

[20] N.I. Hachem, M.A. Gennert, and M.O. Ward, \A DBMS Architecture for Global

Change Research," Proc. ISY Conf. on Earth and Space Science, Pasadena, CA, pp.

186{194, Feb. 1992.

[21] M.A. Holliday and M.K. Vernon, \A Generalized Timed Petri Net Model for Perfor-

mance Analysis," IEEE Trans. on Soft. Eng., Vol. 13, Dec. 1987.

[22] R. Hull and R. King, \Semantic Database Modeling: Survey, Applications, and Re-

search Issues," ACM Computing Surveys, Vol. 19, No. 3, pp. 201{260, 1987.

27

[23] K. Jensen, Coloured Petri Nets: A High Level Language for System Design and Anal-

ysis, EATCS Monographs on Theoretical Computer Science, 1992, pp.342-416.

[24] G. Kappel and M. Schre, \Object/Behavior Diagrams," Proc. of Intl. Conf. on

Data Engineering, pp. 530{539, 1991.

[25] V.M. Markowitz, \Representing Processes in the Extended Entity-Relationship

Model," Proc. Intl. Conf. Data Engineering, pp. 103{110, 1990.

[26] J. Martin and C. McClure, \Diagraming Techniques for Analysis and Programming,"

Prentice-Hall, New Jersey, 1985.

[27] L.E. McKenzie, Jr. and R. Snodgrass, \Evaluation of Relational Algebras Incorporating

the Time Dimension in Databases," ACM Computing Surveys, Vol. 23, No. 4, pp. 501-

543, Dec. 1991.

[28] T. Muck and G. Vinek, \Modeling Dynamic Constraints Using Augmented Place Tran-

sition Nets," Information Systems, 14-4, pp. 327{340, 1989.

[29] F.J. Monkhouse and J. Small, \A Dictionary of the Natural Environment," Halsted

Press, p. 320, 1978.

[30] B.C. Ooi., \E�cient Query processing in Geographic Information Systems," In Lecture

Note in Computer Science, Spring-Verlag, 1990.

[31] J. Peckham and F. Maryanski, \Semantic Data Models," ACM Computing Surveys,

Vol. 20, No. 3, pp. 153{189.

[32] J.L. Peterson, \Petri Net Theory and the Modeling of Systems," Prentice Hall, 1981.

[33] James L. Peterson, Petri Nets, Computing Surveys, Vol.9, No.3, September 1977,

pp.223-252.

[34] C.V Ramamoorthy and G.S. Ho, \Performance Evaluation of Asynchronous Concur-

rent Systems Using Petri Nets," IEEE Trans. on Soft. Eng., Vol. 6, Sep. 1980.

[35] J.A. Richards, \Multispectral Transformations of Image Data," Chapter 6 in Remote

Sensing Digital Image Analysis, Springer-Verlag, pp 127{145, 1986.

[36] R. R. Johnson, M. Goldner, M. Lee, K. McKay, R. Shectman, and J. Woodru�, \USD

- A Database Management System for Scienti�c Research," Video presentation at the

ACM SIGMOD Int. Conf. on Management of Data, San Diego, 1992.

[37] K. Qiu, N.I. Hachem, M.O. Ward, and M.A. Gennert, \Providing Temporal Support

in Data Base Management Systems for Global Change Research," Proc. SSDM '92,

Switzerland, 1992.

[38] H. Sakai, \A Method for Entity-Relationship Behavior Modeling," Entity-Relationship

Approach to Software Engineering, North-Holland, pp. 111{129, 1983.

28

[39] A. Segev and A. Shoshani, \Logical Modeling of Temporal Data, " Proc. ACM SIG-

MOD Conf., pp. 454{466, 1987.

[40] M. Shapiro, et. al., \GRASS 4.0 Programmer's Manual (Draft)," U.S. Army Construc-

tion Engineering Research Laboratory, April 1992.

[41] R. Snodgrass, I. Ahn, \Temporal Databases," IEEE Computer, Vol. 19, No. 9, pp. 35{

42, Sept. 1986.

[42] M. Stonebraker, L.A. Rowe, and M. Hirohima, \The Implementation of POSTGRES,"

IEEE Trans. Knowledge and Data Eng. 2-1, pp. 125{142, 1990.

[43] L. Vincent and P. Soille, \Watersheds in Digital Spaces: An E�cient Algorithm Based

on Immersion Simulations," IEEE Trans. on PAMI, Vol. 13, No. 6, pp. 583{598, 1991.

[44] Y. Zhang, M.O. Ward, N.I. Hachem, and M.A. Gennert, \A Visual Programming

Environment for Supporting Scienti�c Data Analysis," Proc. of the Int. Workshop on

Visual Prog. Languages, August 1993. (extended version as WPI-CS-TR 93-01, March

1993)

[45] Y. Zhou, M. Gennert, N. Hachem, and M. Ward, \Requirements of a Database Man-

agement System for Global Change Studies," ASPRS/ACSM/RT 92, pp. 186{194,

1992.

29

