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ABSTRACT

The growth of wireless LANs has brought the expectation for

high-bitrate streaming video to wireless PCs. However, it remains

unclear how wireless channel characteristics impact the quality of

streaming video sent over wireless LANs. This paper presents re-

sults from experiments that stream commercial video over a wire-

less campus network. By analyzing the streaming video quality

and capturing wireless LAN characteristics across network and

wireless link layers, “weather forecasts” are created such that se-

lected wireless LAN performance indicators might be used to pre-

dict the streaming video quality. Furthermore, a quantified mea-

surement of accuracy is presented to evaluate the effectiveness

of individual weather forecasts. The paper evaluates six distinct

weather forecasts over the space of four different streaming con-

figurations including TCP and UDP streaming, and single and

multiple-level encoded videos. The results show that the wireless

Received Signal Strength Indicator (RSSI) and average wireless

link capacity are the most accurate indicators to predict the per-

formance of streaming video over wireless LANs. The weather

forecast philosophy can be beneficial for adapting video stream-

ing in wireless LAN environments.

1. INTRODUCTION
Although much is already known about wireless LANs and

the individual components of the wireless LAN environment
that make the delivery of high-demand applications over
wireless a challenge, there has been little effort to find the
relationships between wireless link measurements and the
performance of streaming media applications. Therefore,
predicting the performance of high-demand applications is
analogous to weather forecasting. However, while meteorol-
ogists attempt to provide accurate weather predictions using
well-known predictors, such as temperature and humidity,
network practitioners do not yet have effective methods to
forecast the performance for streaming video over wireless
LANs as a function of reliable WLAN characteristics.

Previous work [10] has shown that streaming products
such as RealNetworks and Windows Streaming Media use
network probes to provide estimates of the underlying net-
work characteristics prior to making key decisions about
the exact nature of the video stream sent over the network.
However, current techniques do not adapt to wireless char-
acteristics such as frame loss rate, signal strength, or link
layer bitrate to protect the quality of video streams from
bad wireless weather.

A primary goal of this investigation is to correlate wire-
less link layer behavior and network layer performance with

streaming video application layer performance. Applica-
tion layer measurement tools [7] are combined with cus-
tomized network layer measurement tools and publicly avail-
able IEEE 802.11 measurement tools to conduct wireless ex-
periments and integrate the measurement results. Seeking
the relationships between wireless network indicators and
video performance, this study evaluates the effectiveness of
several wireless network condition predictors for forecasting
streaming video performance.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the methodology used to obtain video mea-
surements on a wireless LAN; Section 3 presents the results
from the experiments and describes how the weather reports
are constructed; Section 4 depicts detailed wireless weather
reports; and Section 5 summarizes the paper and presents
possible future work.

2. METHODOLOGY

2.1 Tools
The strength of this investigation is concurrent use of mea-

surement tools at multiple levels in the network protocol
stack to seek the correlation between wireless transmission
characteristics and the performance of streaming video. For
reference, the layer corresponding to each tool and examples
of some of the performance measurements available from
each tool are listed in Table 1.

Table 1: Measurement Tools

Layer Tools Performance Measures

Application Media Tracker Frame rate,
Frames lost, Encoded bitrate

Network UDP Ping Round-trip time,
Packet loss rate

Wireless Typeperf, Signal strength,
WRAPI Frame retries, Capacity

At the application layer, the WPI Wireless Multimedia
Streaming Lab has experience measuring video client and
server performance [3, 7, 10, 12]. An internally developed
measurement tool, called Media Tracker [7], streams video
from a Windows Media Server, collecting application layer
data specific to streaming video including: video frame rate,
encoded bitrate, playout bitrate, time spent buffering, frames
lost, frames recovered, etc.

For network layer performance measures such as round-
trip time and packet loss rate along the stream flow path,
an internally developed tool, UDP ping, was used. Prelim-
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inary experiments revealed that a constant ping rate could
not be maintained by the standard ICMP ping provided by
Windows XP in some poor wireless conditions where 10 sec-
onds and longer round-trip times were recorded. Thus, a
customized ping tool using application-layer UDP packets
was built to provide constant ping rates, configurable ping
intervals and packet size.

At the wireless data link layer, a publicly-available library,
called WRAPI [2] was enhanced to collect information at
the wireless streaming client that includes: Received Signal
Strength Indicator (RSSI), frame retransmission counts and
failures, and information about the specific wireless access
point (AP) that handles the wireless last hop to the client.
Additionally, typeperf, a performance monitoring tool built
into Windows XP, collected processor utilization and net-
work data including received bitrate and the current wireless
capacity target.

Although the above four tools were deployed concurrently
on the wireless streaming client, baseline measurements in-
dicated these tools consume only about 3% of the processor
time on the test laptop. Given that streaming downloads
consumed about 35% of the processor time, the assumption
is the measurement tools do not significantly effect the per-
formance of the streaming downloads to the wireless clients.

2.2 Experiment Setup
This investigation conducts a series of experiments where

video clips are streamed from a Windows Media Server over
a wired campus network to a wireless streaming client at
pre-determined locations in the WPI Computer Science de-
partment building. As Figure 1 shows, the wireless portion
of the WPI campus network is partitioned from the wired in-
frastructure. Thus, the assumption is that all video streams
traverse the same network path except for the last two hops
from a common exit off the wired campus LAN to a wire-
less AP and from the AP to the streaming client. The media
server runs Windows Media Service v9.0 as part of the Win-
dows Server 2003 Standard Edition, and the wireless client
runs on a Dell laptop with a Centrino mobile CPU running
Windows XP sp1 and an IEEE 802.11g wireless network
adaptor based on the Broadcom1 chipset. The WPI wire-
less LAN uses Airespace2 APs and provides IEEE 802.11
a/b/g wireless service for all the experiments.

Figure 1: WPI Campus Network

1http://www.broadcom.com/
2http://www.airespace.com/

Two distinct video clips, one with high motion and the
other with low motion, were used in this study. Both clips
were encoded to run 353 × 288 resolution and 30 frames
per second with a duration of approximately two minutes.3

However, an earlier analysis of the two video clips concluded
that these two clips did not significantly impact performance
over a wireless network.

Broadly, there are two classes of videos stored on the Web,
those with a single encoded bitrate level and those with mul-
tiple encoded bitrate levels [8]. With a single encode bitrate
level, a streaming media server is limited in its ability to
adapt to changes in the network weather. An analogy is
going outside without a coat; if it gets cold, there is no easy
way to warm up. With multiple encoded bitrate levels, a
streaming media can adapt the video streaming to network
condition changes. An analogy is going outside wearing mul-
tiple layers of clothing; if it gets warm, you can take off layers
to remain comfortable.

Therefore, during this investigation, two distinct versions
of each video were streamed to every client location: a single
level version of the video encoded at 2.5 Mbps and a multiple
level version that includes eleven encoding layers such that
the streaming server has the opportunity to do media scaling
to dynamically choose the encoded clip to stream based on
the network weather.

As previous work has shown both UDP and TCP are fre-
quently used for streaming [5], each of the four video in-
stances was streamed using TCP and repeated using UDP
to capture the effect of transport protocol choice on stream-
ing performance.

2.3 Experiment Design
Each experiment consisted of streaming videos under eight

different conditions (2 clips × 2 versions (Single Level and
Multiple Level) × 2 transport protocols (UDP and TCP)) to
a stationary, wireless laptop. While each video was streamed,
the client initiated UDP ping requests to determine round-
trip time and packet loss rates. The UDP ping requests were
200 milliseconds apart, with 1350-byte packets for the single
level video and 978-byte packets for the multiple level video.
The choice of packet sizes came from the observation that
90% of the packets are 1350 bytes and 978 bytes for single
level and multiple level video, respectively. While streaming,
measurement data was also collected by WRAPI, typeperf
and Media Tracker at the client side.

On each floor an AP was selected to interact with the
client laptop. It was found that the selected video clips
could be played back at full-motion quality at all locations
where the RSSI was above −65dBm. At locations where the
RSSI was less than −65dBm, the video performance was in-
consistent. Thus, the experiments were designed to gather
more data in areas where performance was inconsistent. A
natural weather analogy is the need to be precise on the tem-
perature near freezing to be able to predict rain/sleet/snow,
while prediction is easy when the temperature is in the 40+
degree range. Preliminary experiments found three laptop
reception locations for each AP, representing good, fair, and
bad reception locations (as indicated by the Windows XP).

Streaming performance over a wireless network depends
upon the prevalent network conditions. To reduce the vari-
ability in the network conditions, all experiments were con-

3The median duration of video clips stored on the Web is
about 2 minutes [8].
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ducted during the University’s winter break (December 23-
25, 2004 and December 29-30, 2004). During the testing
periods, there was only occasional network activity and vir-
tually no other wireless users around. Each experiment was
repeated five times at the three distinct locations on three
different floors in the Computer Science department. Thus
the results come from a total of 45 experimental runs that
include 360 video stream runs.

2.4 Weather Forecast
The term “weather forecast” is used to emphasize the im-

portance of predicting (forecasting) the quality of a stream-
ing video (the weather) given measurements of a network
condition. For a given quality metric (the weather predic-

tion), the mission of a weather forecast is to use a measur-
able network parameter (the weather predictor) to predict
the quality of streaming video. However, different predic-
tions may be more sensitive to certain predictors than oth-
ers, and may vary under different network environments,
such as transport protocols or encoding method. Thus, one
weather forecast may not be equally effective for other qual-
ity metrics or network environments. This study seeks good
weather predictors for one specific weather prediction (Win-
dows Streaming Media frame rate) in a predefined network
environment (a wireless LAN).

There are a number of measurable network parameters
that can be used as weather predictors. For instance, the
wireless Received Signal Strength Indicator (RSSI) is one of
the most widely used wireless performance indicators, there-
fore, can naturally be selected as a weather predictor to pre-
dict the streaming quality in wireless network.

This WLAN weather forecasting proceeds in three steps.
First, divide the numerical quality measurement for a weather
prediction into three regions, namely Good (Sunny), Edge

(Cloudy) and Bad (Rainy). Second, after selecting a weather
predictor, divide the predictor samples into 10 bins with an
equal number of samples and determine the fraction of sam-
ple points in the Good, Edge and Bad regions for each bin.
Finally, a map is draw to show the weather forecast by us-
ing the median value of the predictor in each bin and the
fractions of Good, Edge and Bad.

An ideal map that could be used with some accuracy to
predict the streaming video weather over a wireless terrain
should have vertically separated Good, Edge and Bad re-
gions. This allows a measurement of the weather predictor
on the axis to accurately predict the streaming video perfor-
mance for that condition. A weather map that has vertical
overlap of the Good, Edge and Bad regions means measure-
ment of the weather predictor in the overlap region cannot
always be used to accurately predict video streaming per-
formance for that condition.

The effectiveness (E) of a weather map is defined as the
fraction of the range of the weather predictor that can be
used to accurately produce predictions:

E =
Reffective

Rall

(1)

Reffective is the range of the predictor that provides more
than a 50% chance of having either Good or Bad perfor-
mance. Rall is the observed range of the predictor using as
endpoints the median of the first bin and the median of the
last bin. Any predictor sample values less than the median
of the first bin and greater than the median of the last bin

are removed as outliers. For some wireless network predic-
tors, such as round-trip time, the theoretical sampling space
is infinite. Thus, this definition of a practical range bounds
the sampling space to observed values minus a few outliers.
This definition of E then provides a method of normaliz-
ing across different predictors, such as round-trip time and
signal strength, allowing comparison of the effectiveness of
different weather maps. Note that having an equal num-
ber of samples in each bin maintains a reasonable density of
samples for computing the quality fractions, thus providing
a more accurate prediction across the predictor range than
might uniform sized bins as occurs in a typical histogram.

The value of E ranges between 0 and 1. An E of 1 implies
a perfect indicator, which means that the weather map pro-
vides effective predictions (more than 50% chance of having
Good quality or more than 50% chance of having Bad qual-
ity) over the entire practical range of the weather predictor.
An E of 0 implies a useless indicator, which means that the
weather map does not provide effective predictions for any
part of the practical range of the weather predictor.

3. RESULTS
Due to wireless connection failures that resulted in abnor-

mal terminations, ten data sets were removed from the set
of 360 streaming runs. Thus, 350 video streaming runs are
included in the analysis.

3.1 Weather Predictors
The weather predictors used in this research are all mea-

surements taken from our tools and include: the physical
layer Received Signal Strength Indicator (RSSI), wireless
link capacity, MAC layer retry fraction, IP loss rate, round-
trip time (RTT) and throughput.

as discussed in Section 2.1. At the wireless layer, the
physical layer Received Signal Strength Indicator (RSSI) is
an easily accessible and widely used performance indicator
provided by most wireless card drivers and operating sys-
tems.

The wireless connection capacity which adapts from 1,
2, 5.5 ... up to 54 Mbps and the wireless layer errors (and
subsequent frame retransmissions) also impact performance.

Aguayo et al.[1] suggest that signal strength alone is not
an accurate indicator of performance for some wireless appli-
cations. Figure 2 presents the relationship in this study be-
tween wireless connection capacity and wireless RSSI, with
a second order best-fit polynomial curve for reference. Since
the wireless network capacity adapts based on RSSI, the
strong relationship shown with RSSI is not surprising. Con-
versely, Figure 3, shows that upstream wireless layer retry
fraction is not strongly correlated with the RSSI since the
retry fraction is also affected by the network traffic load.

From the end host point of view, the measurable wireless
layer retry fraction is on the upstream and might differ from
the downstream retry fraction from Access Point (AP) to
the end host. Since typical APs do not provide a means
to measure the downstream wireless layer retry fraction, the
assumption is the contention and error status on the wireless
channel is symmetric.

Network layer measurements, such as the IP packet loss
rate and round-trip time (RTT) are also selected as weather
predictors. In addition, the TCP-Friendly rate, which com-
bines the effects of both packet loss rate and round-trip time
is also used as a weather predictor. The TCP-Friendly rate,

3



0

10

20

30

40

50

60

-80 -70 -60 -50 -40 -30

A
v
g
. 
W

ir
e
le

s
s
 L

in
k
 C

a
p
a
c
it
y
 (

M
b
p
s
)

Received Signal Strength Indicator (dBm)

Figure 2: Average Wireless Capacity versus RSSI
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Figure 3: Upstream MAC Layer Retry Fraction ver-

sus RSSI

T Bps, for a connection can be computed by [11]:

T =
s

R

q

2p

3
+ trto(3

q

3p

8
)p(1 + 32p2)

(2)

with packet size s in bytes, round-trip time R in seconds
and packet drop rate p. The TCP retransmission timeout
trto is set to four times round-trip time by default. For each
video clip for each run, Equation (2) is used to compute the
TCP-Friendly rate (T ), using a packet size (s) of 1350 bytes
for the single level video and 978 bytes for the multiple level
video, and the loss rate (p) and round-trip time (R) obtained
from the corresponding ping samples.

Finally, the throughput measured on the end host is also
used as a weather predictor. Previous research [6] shows
that, for the same throughput, videos encoded with multi-
ple levels often achieve better performance than videos en-
coded with a single level. Using throughput as an predictor
may provide accurate weather maps for videos encoded with
single versus multiple levels.

3.2 Weather Prediction
For weather prediction, the average frame rate, one of the

fundamental measures of video performance, is used as the
measure of video quality. The standard frame rate for full-
motion video is 24 to 30 frames per second (fps). At this
speed, the human eye perceives movement as continuous,
without seeing individual frames. A common frame rate
for computer video that approximates full-motion video is
15 fps. To most people, a 15 fps video flows smoothly, al-
though for some videos, it will not appear quite as fluid as
it would at a higher frame rate. A video looks choppy if
the frame rate is lower than 15 fps. Using these guidelines,
video quality is partitioned into three distinct regions: Bad
(less than 15 fps), Edge (between 15 and 24 fps) and Good
(more than 24 fps). Figure 4 shows a cumulative distribu-
tion function (CDF) of the average frame rates for all the
experimental runs, with arrows depicting the Good, Edge
and Bad regions.

A high average frame rate video can still appear choppy
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Figure 5: Coefficient of Variation of Frame Rate ver-

sus Frame Rate

if the variance in the frame rate is high. Therefore, a sec-
ond weather prediction, the coefficient of variation (CoV)
of the frame rate was analyzed. However, Figure 5 shows
the coefficient of variation of frame rate strongly related to
average frame rate. The CoV of frame rate remains high
when the average frame rate is low, while a higher average
frame rate usually implies a lower CoV. This corresponding
relationship results in similarly accurate weather maps and
the CV of frame rate is not considered as a separate weather
prediction.

The coefficient of variation (CoV) of the frame rate was
also considered for weather prediction but analysis showed
CoV to be highly correlated with average frame rate. Analy-
sis of other weather predictions using alternate video quality
metrics, such as buffering count, media scaling count, and
video image quality is left as future work.

4. ANALYSIS
All the analysis presented uses the average video frame

rate for weather prediction.
Figure 6 shows a forecasting weather map where the weather

predictor is RSSI. The (unlabeled) horizontal illustration
above the figure is a visual histogram of RSSI samples that
indicates the data sample density for the weather maps. The
Good (Sunny) and Bad (Rainy) regions are separated by the
Edge (Cloudy) quality area.

The weather map can be used for weather forecasting as
follows: If the RSSI is -60 dBm, there is a 100% chance for
Sunny weather (24-30 fps). If the RSSI is -75 dBm, there
is a 75% chance of Sunny weather, about a 20% chance
of Cloudy weather (15-23 fps) and a 5% chance of Rainy
weather (less than 15 fps). If the RSSI is -80 dBm, it is
likely to Rain.

The lack of vertical overlap between the three areas im-
plies RSSI is a good predictor of average video frame rate.
In the RSSI range from -80 dBm to -36 dBm, the only region
that does not provide clear predictions of Good or Bad per-
formance is between -79 dBm and -78 dBm. An RSSI lower
than -79 dBm forecasts likely Rain (the probability of Bad
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frame rate is 50+%), while an RSSI higher than -78 dBm
forecasts likely Sun (the probability to get the Good frame
rate is 50+%). The region where RSSI is greater than -68
dBm strongly forecasts Sunny weather.

Average wireless capacity is the predictor for the weather
map in Figure 7. Similar to the previous result, the lack of
vertical overlap in the map suggests average wireless capac-
ity is also an effective predictor of frame rate. In the sam-
pling range from 0 to 54 Mbps, an average wireless capacity
greater than 5 Mbps forecasts a high likelihood of Good
weather, while a capacity greater than 18 Mbps always fore-
casts Good weather. Given the maximum encoding bit rates
of 2.5 Mbps for the videos used in the experiments, the per-
formance degradation in the region between 2.5 to 5 Mbps is
not only due to capacity, but may be due to the variance of
link capacity. Figures 8 and 9 demonstrate that even with
high average link capacity, the variation in capacity can be
high enough to degrade the video frame rate. The link ca-
pacity variance may cause upper layer congestion. In the
case of TCP streaming, the sender might reduce to a lower
sending rate, while a UDP stream may suffer from bursty
packet drops as the AP queue fills.

Multiple level encoding can benefit from the adaptive stream-
ing rate with correctly adapting the sending rate to the avail-
able capacity [6].

Figure 10 provides a forecasting weather map using the
wireless layer retry fraction as the predictor. As the wireless
layer retry fraction increases over the 16% to 44% range, the
probability of Good weather slowly decreases. Moreover, the
vertical overlap between Good, Edge and Bad over much of
the x axis suggests wireless layer retry fraction is not an
effective predictor of video frame rate.

IP packet loss rate is used as the predictor for the weather
map in Figure 11. As with wireless retry fraction, the IP
packet loss rate is not effective for forecasting video frame
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Figure 10: Frame Rate Prediction by Upstream
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rate. Only when the loss rate is under 2% or over 16% is a
single forecast likely.

This is perhaps explainable considering the predicted TCP-
Friendly data rate. A 2% loss rates with a corresponding
observed average round-trip time of 16.53 ms, provides a
TCP-Friendly rate of 5.2 Mbps, sufficient to transfer the
2.5 Mbps encoded video under TCP. For UDP streaming,
the 2% lost packets can be recovered by the Windows Me-
dia Service retransmissions, and even ignored for data rate
reduction.

Note, that since the IEEE 802.11 data link layer retrans-
mits lost frames up to 7 times [4], this significantly reduces
the number of lost data link frames and also lowers the num-
ber of IP packet losses. Comparing the wireless layer retry
histogram (the thin, horizontal illustration at the top of each
figure) at the top of Figure 10 with the IP packet loss rate
histogram at the top of Figure 11, one sees that the density
of the samples has shifted from 25%-40% for wireless retries
down to less than 10% for IP packet loss rate.

Figure 12 and Figure 13 depict weather maps for forecast-
ing video frame rate using the round-trip time as a predic-
tor, for streaming over TCP and UDP, respectively. In both
figures,

This investigation also considered using round-trip time as
a weather predictor for forecasting TCP and UDP streams
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Figure 12: Frame Rate Prediction by Round-Trip

Time for TCP Streaming

separately. Due to space constraints, the weather maps can-
not be shown, but the results imply that round-trip time is
not a good choice as a weather predictor for average frame
rate. Similarly, throughput was analyzed as a weather pre-
dictor for both multiple and single level videos and also
shown to be ineffective in forecasting the wireless weather.
However, while not presenting the respective weather maps,
we choose to look below the surface a bit to review the ap-
propriate scatter plots.

For streaming over TCP and UDP, the predicted frame
rate decreases as the round-trip time increases. However,
the decreasing trend is slow, resulting in significant verti-
cal overlap among the Good, Edge and Bad regions. Thus
round-trip time not effective for forecasting video frame rate.
Notice that the practical range of the round-trip time ob-
served for for UDP streaming is up to 1285 ms, while the
practical range observed for TCP streaming is only about
144 ms. This increased round-trip time for UDP streaming
might be caused by a combination of a large AP queue size
that fills due to the unresponsive UDP sender [6]. For both
TCP and UDP streaming, only round-trip times less than
10 ms have a high probability of Good frame rates.

The practical throughput range for both the multiple and
single level videos are bounded by the highest encoding
bit rate at 2.5 Mbps. From the range of vertical overlap,
throughput is not effective in forecasting video frame rate.
However, a throughput close to the upper bound at 2.5 Mbps
provides a 100% likelihood of a Good frame rate for both
multiple and single level videos. In addition, for multiple
level encoded videos, a 1 Mbps throughput provides a rela-
tively higher probability of having a Good frame rate than
for a single level video. This is because the multiple level
video includes a encoding bitrate at 1 Mbps, encoded at 30
fps and a lower quantization.

Figure 14 depicts a weather map for forecasting video
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frame rate using the TCP-Friendly rate as a predictor. The
TCP-Friendly rate, computed using Equation 2, goes to in-
finity as the loss rate decreases. Since the maximum encoded
rate used for streaming is 2.5 Mbps, the practical maximum
for the TCP-Friendly is set to 2.5 Mbps to allow comparison
of the TCP-Friendly weather maps with the other weather
maps. Over the range from to 2.5 Mbps, the TCP-Friendly
rate is a reasonable predictor of video frame rate. More-
over, the probability of having a Good frame rate is high
even when the TCP-Friendly rate is less than the video en-
coding rate, 2.5 Mbps. From the results in [6], video stream
will tend to select an encoding bit rate higher than the TCP-
Friendly rate when streaming video. This results in a TCP-
Unfriendly bitrate when using UDP, and buffer underflows
(but still periods of Good frame rates) when using TCP.

The average buffer count is 1.59 and 1.18 for TCP and
UDP, respectively.

Figure 15 and Figure 16 depict weather maps for fore-
casting video frame rate using the throughput measured on
the end host as a predictor, for multiple level encoding and
single level encoding, respectively.

The result visually confirms early that the media scal-
ing of Windows Media Service with multiple encoding level
video can improve the frame rate performance in the wireless
environment [6].

Commented out by Mingzhe for space saving
Figure 17 graphs scatter points for throughput in different

streaming setups: multiple level TCP streaming, multiple
level UDP streaming, single level TCP streaming, and single
level UDP streaming. Each graph has a best-fit line for vi-
sual reference and take special note of the y-intercepts at the
left edge of the lines. Comparing Figure 17(a)-17(b) to Fig-
ure 17(c)-17(d), one sees that multiple level encoded video
sustains frame rates of 10+ fps even for very low throughput,
while single level encoded video has frame rates near 0 fps
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Figure 15: Frame Rate Prediction by Throughput

for Multiple Level Encoding Video
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Figure 16: Frame Rate Prediction by Throughput

for Single Level Encoded Video

at the same throughput. Conversely, reviewing frame rates
for the different protocols shows TCP streaming maintains
a higher average frame rate than UDP streaming for low
throughput. However, TCP streaming also suffers from long
buffering times and a higher frequency of re-buffer events [6].

These experiments include four distinct video configura-
tions that are analyzed with weather maps based on the six
distinct weather predictors. The number of samples in each
experimental category is shown in Table 2. Table 2 indi-
cates that encoding video with multiple levels (versus only
a single level) results in fewer Bad frame rates, with many
Bad rates having been moved into the Edge rate region.
Furthermore, TCP streaming provides slightly more Good
frame rates overall and for multiple level encoding than UDP
streaming.

Table 2: Experiments Categorized by Frame Rate

Setup Good Edge Bad Total

TCP 73 5 8 86
Multiple level UDP 50 25 10 85

Subtotal 123 30 18 171
TCP 62 7 20 89

Single level UDP 62 3 25 90
Subtotal 124 10 45 179

TCP 135 12 28 175
All UDP 112 28 35 175

Subtotal 247 40 63 350

The weather maps for all of the configurations and predic-
tors are not included in this paper due to lack of space, but
more can found in [9]. A summary of the four categories and
corresponding effectiveness measurement, E (Equation 1),
are provided in Table 3 (sorted in decreasing order of effec-
tiveness). The weather map of the predictors with bold E

value in the table are analyzed in this paper.
From Table 3, RSSI and average wireless link capacity

are effective predictors for all streaming setups. While one
predictor might perform well for one setup but poorly for an-
other setup, predictors such as round-trip time and through-
put are effective for single level encoded video but are inef-
fective for multiple level encoded video. Finally, forecasting
performance for videos encoded with a single level is easier
than for videos encoded with multiple levels. This is likely
because a video with multiple levels of encoding may adapt
better to the network weather and yield Good performance,
while in the single level encoding case, there is only Bad
weather.

Table 3: Effectiveness of Weather Maps

Predictor All Multiple Single TCP UDP

RSSI 0.98 0.96 0.99 0.99 0.96
Capacity 0.97 0.95 0.99 0.97 0.94
Retry rate 0.75 0.76 0.81 0.79 0.59
Loss rate 0.71 0.69 0.98 0.79 0.89

RTT 0.54 0.35 0.85 0.83 0.94
Throughput 0.47 0.31 0.82 0.59 0.66

5. CONCLUSIONS
This study uses streaming wireless experiments to investi-

gate the relationship between streaming video performance
and wireless network characteristics. Nearly 400 videos were
streamed in carefully designed experiments over multiple ac-
cess points and multiple network conditions to accurately
capture performance for wireless locations where streaming
is a challenge.

The main analysis vehicle was generation and interpre-
tation of weather maps to forecast streaming video perfor-
mance. A quantifiable measure of effectiveness is presented
allowing comparison of the value of individual weather maps.
By considereing weather maps for six distinct predictors in
four different experimental setups, this research makes sev-
eral key contributions.

First, the wireless RSSI and average wireless capacity are
effective predictors of video frame rate. Second, even predic-
tors that are not effective for forecasting video performance,
often provide weather maps that have regions of accurate
performance prediction. For example, IP packet loss rate,
an predicts high video frame rates when loss rates are less
than 2%. Third, the effectiveness of individual predictors
varies for different video configurations. For example, mul-
tiple encoding levels improves video performance over single
level encoding for poor wireless conditions and TCP stream-
ing improves frame rates compared with UDP streaming in
the same regions. These findings can improve rate adaption
schemes for streaming video over dynamic wireless LAN en-
vironments.

Future research includes incorporating knowledge derived
from the weather maps into a dynamic video system. Ad-
ditional weather maps can be developed based on combined
weather predictors, such as RSSI and retries or even retries
and IP packet loss. Weather maps with different predictions,
such as buffering time, re-buffer count and image quality
need to be investigated.

Finally, weather forecasting for other commercial stream-
ing applications, such as Real Media and QuickTime, is also
a rich area for future work.

6. REFERENCES

7



0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

A
v
g
 F

ra
m

e
 R

a
te

 (
fp

s
)

Receiving Bit Rate (Mbps)

Multiple TCP

(a) Multiple Level TCP Streaming

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

A
v
g
 F

ra
m

e
 R

a
te

 (
fp

s
)

Receiving Bit Rate (Mbps)

Multiple UDP

(b) Multiple Level UDP Streaming

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

A
v
g
 F

ra
m

e
 R

a
te

 (
fp

s
)

Receiving Bit Rate (Mbps)

Single TCP

(c) Single Level TCP Streaming

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

A
v
g
 F

ra
m

e
 R

a
te

 (
fp

s
)

Receiving Bit Rate (Mbps)

Single UDP

(d) Single Level UDP Streaming

Figure 17: Comparison of Throughput versus Average Frame Rate
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Appendix

Weather forecast for all experiments setups
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Figure 18: Frame Rate Prediction by Throughput
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Figure 19: Frame Rate Prediction by Round Trip
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Weather forecast for Mutiple level video
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Figure 20: Frame Rate Prediction by Receive Singal

Strength Indicator
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Figure 21: Frame Rate Prediction by Average Wire-

less Capacity
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Figure 22: Frame Rate Prediction by Upstream

MAC layer Retry Ratio
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Figure 23: Frame Rate Prediction by IP Packet Loss
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Figure 24: Frame Rate Prediction by Round Trip
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Figure 25: Frame Rate Prediction by TCP Friendlt
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Figure 26: Frame Rate Prediction by Throughput

Weather forecast for Single level video
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Figure 27: Frame Rate Prediction by Receive Singal

Strength Indicator
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Figure 28: Frame Rate Prediction by Average Wire-

less Capacity
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Figure 29: Frame Rate Prediction by Upstream

MAC layer Retry Ratio
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Figure 30: Frame Rate Prediction by IP Packet Loss
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Figure 31: Frame Rate Prediction by Round Trip
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Figure 32: Frame Rate Prediction by TCP Friendlt
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Figure 33: Frame Rate Prediction by Throughput

Weather forecast for TCP Streaming
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Figure 34: Frame Rate Prediction by Receive Singal

Strength Indicator
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Figure 35: Frame Rate Prediction by Average Wire-

less Capacity
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Figure 36: Frame Rate Prediction by Upstream

MAC layer Retry Ratio
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Figure 37: Frame Rate Prediction by IP Packet Loss
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Figure 38: Frame Rate Prediction by Round Trip
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Figure 39: Frame Rate Prediction by TCP Friendlt
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Figure 40: Frame Rate Prediction by Throughput

Weather forecast for UDP Streaming
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Figure 41: Frame Rate Prediction by Receive Singal

Strength Indicator
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Figure 42: Frame Rate Prediction by Average Wire-

less Capacity
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Figure 43: Frame Rate Prediction by Upstream

MAC layer Retry Ratio
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Figure 44: Frame Rate Prediction by IP Packet Loss
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Figure 45: Frame Rate Prediction by Round Trip
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Figure 46: Frame Rate Prediction by TCP Friendlt
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Figure 47: Frame Rate Prediction by Throughput
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