
Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension

Reordering∗

Wei Peng, Matthew O. Ward and Elke A. Rundensteiner

Computer Science Department

Worcester Polytechnic Institute

Worcester, MA 01609

{debbie,matt,rundenst}@cs.wpi.edu

ABSTRACT

Clutter denotes a disordered collection of graphical entities in in-
formation visualization. Clutter can obscure the structure present
in the data. Even in a small dataset, clutter can make it hard for
the viewer to find patterns and reveal relationships. In this paper,
we present the concept of clutter-based dimension reordering. Our
hope is to reduce clutter without reducing information content or
disturb data in any way. Dimension order is a variable that can
significantly affect a visualization’s expressiveness. By varying the
dimension order in visualizations, our goal is to find the views with
the least amount of visual clutter. Clutter reduction is a display-
dependent task. We define different measures of what constitutes
clutter in terms of display properties for four different visualization
techniques. We then apply dimension ordering algorithms to search
for a order that minimizes the clutter in a display.

CR Categories: H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Graphical user interfaces H.2.8 [Database
Management]: Database Applications—Data mining I.5.3 [Pattern
Recognition]: Clustering—Similarity Measures

Keywords: multidimensional visualization, dimension ordering,
visual clutter, visual structure

1 INTRODUCTION

Visualization is the graphical presentation of information, with the
goal of facilitating the user to gain a qualitative understanding of the
information. A good visualization clearly reveals structure within
the data and thus can help the viewer to better identify patterns
and detect outliers. Clutter, on the other hand, is characterized by
crowded and disordered visual entities that obscure the structure
in visual displays. Clutter is certainly undesirable since it hinders
viewers’ understanding of the displays content. However, when the
dimensions or number of data items grow high, it is inevitable for
users to encounter clutter, no matter what visual method is used.

Many clutter reduction techniques deal with data of high volume
or high dimensionality, such as hierarchical clustering, sampling,
and filtering. But they may result in some information loss. Dis-
tortion is another category of methods for clutter reduction. But
distorted views do not give an unbiased representation of the data
content because spatial relationships are modified. In order to com-
plement these approaches, helping the user to reduce clutter in some
traditional visualization techniques while retaining the information
in the display, we propose a clutter reduction technique using di-
mension reordering.

∗This work was supported under NSF grant IIS-0119276.

In many multivariate visualization techniques, such as parallel
coordinates [6], glyphs [14], scatterplot matrices [1] and pixel-
oriented methods [9], dimensions are positioned in some one- or
two-dimensional arrangement on the screen [24]. Given the 2-D
nature of this medium, the arrangement must choose some order
of dimension. This arrangement can have a major impact on the
expressiveness of the visualization. Different orders of dimensions
can reveal different aspects of the data and affect the perceived clut-
ter and structure in the display. Thus completely different conclu-
sions can be drawn based on the available display. Unfortunately,
in many existing visualization systems that encompass these tech-
niques, dimensions are usually ordered without much care. In fact,
dimensions are often determined by the default order in the original
dataset. Manual dimension ordering is available in some systems.
For example, Polaris [18] allows users to manually select and order
the dimensions to be mapped to the display. Similarly, in XmdvTool
[24], users can manually change the order of dimensions from a re-
configurable list of dimensions. However, the exhaustive search for
best ordering is tedious even for a modest number of dimensions.
At the same time it lacks a quantitative measurement of quality.
Therefore, automatic clutter-based dimension ordering techniques
would remedy this shortcoming of current tools.

Clutter reduction is a visualization-dependent task because visu-
alization techniques vary largely from one to another. The basic
goal of this paper is to present clutter measuring and reduction ap-
proaches for several visualization techniques, namely parallel co-
ordinates [6], scatterplot matrices [1], star glyphs [17], and dimen-
sional stacking [12].

In order to automate the dimension reordering process for a dis-
play, we are concerned with two issues: (1) designing a metric to
measure visual clutter, and (2) developing an algorithm to reorder
the dimensions for the purpose of clutter reduction. The solutions
we provide must be specifically tuned to each individual visualiza-
tion technique. In some techniques, we want to reduce the level
of noise that tends to obscure the structure in the display; in other
cases we want to increase the number of clusters. In some cases we
even want to do both. For each technique, we will study both is-
sues. First, we will carefully define a metric for measuring clutter.
Second we will choose one algorithm from the possible solution
candidates to arrange the dimensions. Third, we will compare the
results with the original display.

Our technique targets on small to middle-size dataset in terms
of dimensionality. Although we only chose four visualization tech-
niques to experiment with, there are many more traditional visual-
ization techniques can benifit from this concept.

The remainder of this paper is organized as follows. Section 2
will provide a review of related work. Sections 3, 4, 5, and 6 discuss
the clutter definitions and measures for four different visualization
techniques respectively. In Section 7, algorithms for reordering are
presented. Conclusions and future work are presented in Section 8.

2 RELATED WORK

To overcome the clutter problem, many approaches have been pro-
posed. Distortion [16, 13] is a widely used technique used for
clutter reduction. In visualizations supporting distortion-oriented
techniques, the interesting portion of the data is given more display
space. The problem with this technique is that the uninteresting
subset of the data is squeezed into a small area, making it difficult
for the viewer to fully understand it. Multi-resolution approaches
[23, 22, 5] are used to group the data into hierarchical clusters and
display them at a desired level of detail. These approaches do not
retain all the information in the data, since many details will be
filtered out at low resolutions.

High dimensionality is another source of clutter. Many ap-
proaches exist for dimension reduction. Principal Component
Analysis [8], Multi-dimensional Scaling [11, 21], and Self Orga-
nizing Maps [10] are popular dimensionality reduction techniques
used in data and information visualization. Yang et al. [26] pro-
posed a visual hierarchical dimension reduction technique that cre-
ates meaningful lower dimensional spaces with representative di-
mensions from original data instead of from generated new dimen-
sions. These techniques generate a lower dimensional subspace to
reduce clutter but some information in the original data space is
also lost. All these approaches unavoidably cause information loss,
in one way or another.

Dimension ordering in visualization has been studied in [2, 25].
Ankerst et al. [2] proposed a method to arrange data dimensions
according to the similarity between dimensions so that similar ones
are put next to each other. They used Euclidean distance as the
similarity measure, proved that the arrangement problem is NP-
complete, and applied heuristic algorithms to search for the opti-
mal order. Yang et al. [25] imposed a hierarchical structure over
the dimensions themselves, grouping a large number of dimensions
into hierarchies so that the complexity of the ordering problem is
reduced. User interactions are then supported to make it practical
for users to actively decide on dimension reduction and ordering
in the visualization process. However, in those approaches, dimen-
sions are reordered according to only one particular measure, the
similarity between dimensions. In many visualization techniques,
the overall clutter in the display is not always related to similar-
ity between dimensions. A visualization with the best correlated
dimensions does not guarantee the least clutter. But the idea of us-
ing dimension ordering to improve clustering certainly inspired our
work into the research of dimension ordering to improve visualiza-
tion quality.

3 PARALLEL COORDINATES

Parallel coordinates is a technique pioneered in the 1980’s that has
been applied to a diverse set of multidimensional analysis problems
[6]. In this method, each dimension corresponds to an axis, and
the N axes are organized as uniformly spaced vertical or horizontal
lines. A data element in an N-dimensional space manifests itself
as a connected set of points, one on each axis. Thus a polyline is
generated for representing one data point.

3.1 Clutter Analysis of Parallel Coordinates

In the parallel coordinates display, as the axes order is changed,
the polylines representing data points can be shown with very dis-
tinct shapes. In Figures 1 and 2, the two displays illustrate the
same dataset with different dimension orders. As can be seen in
the figure, a parallel coordinates display makes inter-dimensional
relationships between neighboring dimensions very easy to see, but
does not at all disclose relationships between non-adjacent dimen-
sions. In a full display of parallel coordinates without sampling,

filtering or multi-resolution processing, if polylines between two
dimensions can be naturally grouped into a set of clusters, the user
will likely find it easier to comprehend the relationship between
them. Instead, if there are many polylines that don’t belong to any
cluster, the space between the two dimensions can be very cluttered.
These polylines don’t help the viewer to find patterns and discover
relationships. These data points that don’t belong to any cluster are
called outliers. And we would want to minimize their impact in the
display.

3.2 Clutter Measure in Parallel Coordinates

3.2.1 Clutter Definition

Due to the fact that outliers often obscure structure and thus confuse
the user, clutter in parallel coordinates can be defined as the propor-
tion of outliers against the total number of data points. To reduce
clutter in this technique, our task is to rearrange the dimensions to
minimize the clutter between neighboring dimensions. To calculate
the score for a given dimension order, we first count the total num-
ber of outliers between neighboring dimensions, Soutlier. If there
are n dimensions, the number of neighboring pairs for a given order
is n−1. The average outlier number between dimensions is defined
to be Savg = Soutlier/(n− 1). Let Stotal denote the total number of
data points. The clutter C , defined as the proportion of outliers, can
then be calculated as follows:

C = Savg/Stotal =
Soutlier

n−1

Stotal

(1)

Since n− 1 and Stotal are both constant, dimension orders that
reduce the total number of outliers also reduce clutter in the display.
In this way, we can measure the clutter in the display and then find
the best order.

3.2.2 Algorithm for Computing Clutter

Now we are faced with the problem of how to decide if a data
item is within a cluster or is an outlier. Since we are only con-
cerned with clusters within pairs of dimensions, we can use the nor-
malized Euclidean distances between data points to measure their
closeness. The two-dimensional clustering problem has been dis-
cussed intensely in the statistics, pattern recognition and data min-
ing communities. Jain’s book [7] gives a thorough description of
clustering algorithms. Since our purpose is to find outliers that do
not have any neighbors close to them, we decided to choose Lu and
Fu [15]’s nearest-neighbor clustering algorithm. Suppose a set of
data points P = {x1,x2, ...,xn} is to be partitioned into clusters. Let
k denote the cluster number. The user specifies a threshold, t, on
the nearest-neighbor distance. The algorithm can be described as
follows:

• Step 1. Set i ← 1 and k ← 1. Take x1 from P. Assign data
point x1 to cluster C1.

• Step 2. Set i← i+1. If xi has not been assigned to any cluster,
find the nearest neighbor of xi among the data points already
assigned to clusters. Suppose that the nearest neighbor is in
cluster m. Let dm denote the distance from xi to this neighbor.

• Step 3. If dm ≤ t, then assign xi to Cm. Otherwise, set k ←
k +1 and assign xi to a new cluster Ck.

• Step 4. If every point has been assigned to a cluster, stop.
Else, go to step 2.

If a cluster contains only one data point, it is then called an
outlier. In this way, we are able to find all the data points that

Figure 1: Parallel coordinates visualization of original Cars dataset. Outliers are highlighted with red in Fig.1-(b)

Figure 2: Parallel coordinates visualization of cars dataset after clutter-based dimension reordering. Outliers are highlighted with red in Fig.2-(b)

don’t have any neighbors within the distance t in the specified two-
dimensional space. We do this for every pair of dimensions and
store the outlier numbers in a outlier matrix M. Given a dimension
order, we can then count the total clutter by adding up outlier num-
bers between neighboring dimensions. If the dimension number is
n, this is done in O(n) time. Since the optimal dimension ordering
algorithm is an exhaustive search algorithm with O(n!) time, the
search time involved is therefore O(n∗n!).

3.3 Examples

Figures 1 and 2 both represent the Cars dataset. In Figure 1 the data
is displayed with the default dimension ordering. Figure 2 displays
the data after being processed with clutter-based ordering. In the
rightmost image in each figure, polylines highlighted in red are out-
liers according to our clutter metric. With a glimpse we can identify
more outliers in the original visualization than the improved one. It
is also clear that, in the new display, the data points are better sepa-
rated and easier for the viewer to find patterns.

4 SCATTERPLOT MATRICES

Scatterplot matrices are one of the oldest and most commonly used
methods to project high dimensional data to 2-dimensions [1]. In

this method, N ∗ (N −1)/2 pairwise parallel projections are gener-
ated, each giving the viewer a general impression regarding rela-
tionships within the data between pairs of dimensions. The projec-
tions are arranged in a grid structure to help the user remember the
dimensions associated with each projection.

4.1 Clutter Analysis in Scatterplot Matrices

In clutter reduction for scatterplot matrices, we focus on finding
structure in plots rather than outliers, because the overall shape and
tendency of data points in a plot can reveal a lot of information.
Some work has been done in finding structures in scatterplot visu-
alizations. PRIM-9 [19] is a system that makes use of scatterplots.
In PRIM-9 data is projected onto a two-dimensional subspace de-
fined by any pair of dimensions. Thus the user can navigate all
the projections and search for the most interesting ones. The data
can also be rotated, isolated and masked to help the user to find
structures that may not be visible in one of the simple orthogonal
projections. However this manual projection pursuit approach is
not efficient when dealing with high dimensional datasets. It is also
likely to result in undetected structures since it’s based on the user’s
knowledge and perception of the data. Automatic projection pursuit
techniques [4] utilize algorithms to detect structure in projections
based on the density of clusters and separation of data points in the
projection space to aid in finding the most interesting plots.

Figure 3: Scatterplot matrices visualization of Cars dataset. In Fig.3-(a) dimensions are randomly positioned. After clutter reduction Fig.3-(b)
is generated. The first four dimensions are ordered with the high-cardinality dimension reordering approach, and the other three dimensions are
ordered with low-cardinality approach.

With a matrix of scatterplots, users are not only able to find plots
with structure, but also can view and compare the relationship be-
tween these plots. With scatterplot matrices visualizations, all two-
dimensional plots are displayed on the screen. Thus changing the
dimension order does not result in different projections, but rather
a different placement of the pairwise plots. In practice, it will be
beneficial for the user to have projections that disclose a related
structure to be placed next or close to each other in order to reveal
important dimension relationships in the data. To make this possi-
ble, we have defined a clutter measure for scatterplot matrices. The
main idea is to find the structure in all 2-dimensional projections
and use it to determine the position of dimensions so that plots dis-
playing a similar structure are positioned near each other.

Figure 3 gives two views of scatterplot matrices visualization.
In these visualizations, we can separate the dimensions into two
categories: high-cardinality dimensions and low-cardinality dimen-
sions. In high-cardinality dimensions, data values are often contin-
uous, such as height or weight, and can take on any real number
within the range. In low-cardinality dimensions, data values are of-
ten discrete, such as gender, type, and year. These data points can
only take a small number of possible values. It is often perceived
that plots involving only high-cardinality dimensions will place
dots in a scattered manner while plots involving low-cardinality di-
mensions will place dots in straight lines because a lot of data points
share the same value on this dimension. However, a dimension be-
ing continuous or discrete does not inform us whether it has high or
low cardinality. In this paper, we determine if a dimension is high
or low-cardinality depending on the number of data points and their
possible values. Let mi denote the number of possible data values
on the ith dimension, and N denote the total number of data points.
If mi ≥ N, dimension i is considered high-cardinality, otherwise it
is low-cardinality.

We will treat high-cardinality dimensions and low-cardinality di-
mensions separately because they generate different plot shapes.
The clutter definition and clutter computation algorithms for these
two classes of dimensions will differ from each other.

4.2 High-Cardinality Clutter Measure in Scatterplot Matrices

4.2.1 Clutter Definition

The correlation between two variables reflects the degree to which
the variables are associated. The most common measure of correla-
tion is the Pearson Correlation Coefficient, which can be calculated
as:

r =
∑i (xi − xm)(yi − ym)

√

∑i (xi − xm)2
√

∑i (yi − ym)2
(2)

where xi and yi are the values of the ith data point on the two
dimensions, and xm and ym represent the mean value of the two
dimensions. Since plots similarly correlated will likely display a
similar pattern and tendency, we can calculate the correlations for
all the two-dimensional plots (in fact half of them are symmetric
along the diagonal), and reorder the dimensions so that similar plots
are displayed as close to each other as possible. We will define the
plot side length to be 1 and calculate the distance between plots

X and Y using
√

(RowX −RowY)2 +(ColumnX −ColumnY)2. For
example, in Figure 4, the distance between similar plots A and B

will be
√

(1−0)2 +(1−0)2 =
√

2. The larger this number is for a
display, the more cluttered it is. We then define the total distances
between similar plots to be the clutter measure.

Figure 4: Illustration of distance calculation in scatterplot matrices.

4.2.2 Algorithm for Computing Clutter

In high-cardinality dimension space, the approach to calculate to-
tal clutter for a certain dimension ordering is as follows. Let pi

be the ith plot we visit. Let threshold t be the maximum corre-
lation difference between plots that can be called ”similar”. Note
that we are only concerned with the lower-left half of the plots, be-
cause the plots are symmetric along the diagonal. The plots along
the diagonal will not be considered because they only disclose the
correlations of dimensions with themselves. This is always 1.

• Step 1. A correlation matrix M(n,n) is generated for all n
dimensions. M[i][j] represents the Pearson correlation coeffi-
cient for the plot on the ith row, jth column.

• Step 2. i ← 0. Visit plot p0. Find all the unvisited plots that
have similar correlation with p0, i.e., the differences between
their Pearson correlation with p0’s are within threshold t. Cal-
culate their distances from p0 on the display, and add them to
the total clutter measure.

• Step 3. i ← i + 1. Visit pi. Find all unvisited plots similar

enough to pi. Calculate their distances from pi on the display,
and add them to the total clutter measure.

• Step 4. If all plots have been visited, stop. Otherwise go to
step 3.

This way, we will get a total distance for any scatterplot ma-
trices display. With this measure, we will be able to make com-
parisons between different displays of the same data. Unlike the
one-dimensional parallel coordinates display, we have to calculate
distance for every pair of plots. This is a O(n2) process. We will do
the exhaustive search for best ordering, so the total computing time
will be O(n2 ∗n!).

4.3 Low-Cardinality Clutter Measure in Scatterplot Matrices

In low-cardinality dimensions, we also want to place similar plots
together. But they have a different clutter measure from high-
cardinality dimensions.

Plots involving low-cardinality dimensions are very different in
display pattern from those only involving high-cardinality dimen-
sions. The user’s perception will naturally envision them as two
different types of patterns.

For plots with low-cardinality dimensions, the higher the cardi-
nality, the more crowded the plot seems to be. Therefore, we have
a different measure of clutter for these dimensions. Instead of nav-
igating all dimension orders and searching for the best one, we will
order these dimensions according to their cardinalities. Dimensions
with higher cardinality are positioned before lower-cardinality di-
mensions. In this way, plots with similar density are placed near
each other. This satisfies our purpose for clutter reduction. The dot
density of plots will appear to decrease gradually, resulting in less
clutter; or more perceived order, in the view.

With low-cardinality dimensions, the dimension reordering can
be envisioned as a sorting problem. With a quick sort algorithm, we
can then achieve it within O(n∗ logn) time.

4.4 Example

From Figure 3 we notice that plots generated by two high-
cardinality dimensions are very different in pattern with plots in-
volving one or two low-cardinality dimensions. We believe that
separating the high and low-cardinality dimensions from each other
will be useful in helping the user identify similar low-cardinality di-
mensions and find similar plots more easily in the high-cardinality
dimension subspace.

5 STAR GLYPHS

5.1 Clutter Analysis in Star Glyphs

A glyph is a representation of a data element that maps data values
to various geometric and color attributes of graphical primitives or
symbols [14]. XmdvTool uses star glyphs [17] as one of its four
visualization approaches. In this technique, each data element oc-
cupies one portion of the display window. Data values control the
length of rays emanating from a central point. The rays are then
joined by a polyline drawn around the outside of the rays to form a
closed polygon.

In star glyph visualization, each glyph represents a different
data point. With dimensions ordered differently, the glyph’s shape
varies. Since glyphs are stand-alone graphical entities, we consider
reducing clutter here as to make those single data points overall
seem more structured. Gestalt Laws are robust rules of pattern per-
ception [20]. They state that similarity and symmetry are two fac-
tors that help viewers see patterns in the visual display. Suppose
we want to find structure in one glyph. For this glyph, we may call

it well structured if its rays are arranged so that they have similar
length to their neighbors and are well balanced along some axis. In
our approach, we define monotonicity and symmetry as our mea-
sures of structure for glyphs. Therefore user can find monotonic
structure, symmetric structure or a combination of the two in the
data.

Let’s take monotonicity+symmetry for example. Then in a per-
fectly structured glyph we have:

• Neighboring rays have similar lengths.

• The lengths of rays are ordered in a monotonically increasing
or decreasing manner on both sides of an axis.

• Rays of similar lengths are positioned symmetrically along
either a horizontal or vertical axis.

The perfectly structured star glyph is thus a teardrop shape. With
such shapes in glyphs, the user will find it easier to identify relative
value differences between dimensions, and can better discern rays
and the bounding polylines. For instance, the data points shown
in Figure 5 present very different shapes with different dimension
order. The original order in Fig.5-(a) makes them look irregular
and display a concave shape, while the dimension order in Fig.5-
(b) make them more symmetric and easy to interpret.

Figure 5: The two glyphs in Fig.5-(a) represent the same data points
as Fig.5-(b), with a different dimension order.

5.2 Clutter Measure in Star Glyphs

5.2.1 Clutter Definition

To reduce the clutter for the whole display, we seek to reorder the
dimensions for the purpose of minimizing the total occurrence of
unstructured rays in glyphs. Therefore, we define clutter as the to-
tal number of non-monotonic and non-symmetric occurrences. We
believe that with more rays in data points displaying a monotonic
and symmetric shape, the structure in the visualization will be eas-
ier to perceive.

5.2.2 Algorithm for Computing Clutter

In order to calculate clutter in one display, we test every glyph for
its monotonicity and symmetry. Suppose the user chooses mono-
tonically increasing and symmetry as the structure measure. The
user can then choose a threshold t1 for checking monotinicity, and
a threshold t2 for checking symmetry. t1 and t2 are measures for
normalized numbers and thus can take any number from 0 to 1.
If for a point’s normalized values on two neighboring dimensions
(dimensionn−1 and dimension0 are not considered neighbors) pi

and pi+1, pi+1 is less than pi, we will see if pi − pi+1 is less than
threshold t1 or not. If so, we consider this non-monotonicity occu-
rance as tolerable. If not, we will add this occurance to our measure
count of unstructuredness. Similarly, for two dimensions that are
symmetrically positioned along the horizontal axis, if their differ-
ence is within threshold t2, they are considered symmetric to each
other. Otherwise another increment is added to the total occurrence
of unstructuredness.

Figure 6: Star glyph visualizations of coal disaster dataset. Fig.6-(a) represents the data with original dimension order, and Fig.6-(b) shows the
data after clutter being reduced.

The calculation for a single glyph involves going through n−
1 pairs of neighboring dimensions to check for monotonicity and
n/2 pairs of dimensions symmetric along the axis. Therefore, for a
dataset with m data points, the calculation takes O(n∗m). With the
exhaustive search for best ordering, the computational complexity
for dimensional reordering in star glyphs is then O(n∗m∗n!).

5.3 Example

For each ordering we can count the unstructuredness occurrences
to find the order that minimizes this measure. Figure 6 displays the
Coal Disaster dataset before and after clutter reduction. In Fig.6-
(a), many glyphs are displayed in a concave manner, and it’s hard
to tell the dimensions from bounding polylines. This situation is
improved in Fig.6-(b) with clutter-based dimension reordering.

6 DIMENSIONAL STACKING

6.1 Clutter Analysis in Dimensional Stacking

The dimensional stacking technique is a recursive projection
method developed by LeBlanc et al. [12]. Each dimension of the
dataset is first discretized into a user-specified number of bins. Then
two dimensions are defined as the horizontal and vertical axis, cre-
ating a grid on the display. Within each box of this grid this process
is applied again with the next two dimensions. This process con-
tinues until all dimensions are assigned. Each data point maps to a
single bin based on its values in each dimension.

In this technique, the dimension order determines the orienta-
tion of axes and the number of cells within a grid. The inner-most
dimensions are named the fastest dimensions because along these
dimensions two small bins immediately next to each other represent
two different ranges of the dimensions. On the contrary, the outer-
most dimensions have the slowest value changing speed, meaning
many neighboring bins on these dimensions are within the same
value range. Therefore, in dimensional stacking, the order of di-
mensions has a huge impact on the visual display.

For dimensional stacking, the bins within which data points fall
are shown as filled squares. These bins naturally form groups in
the display. We hypothesize that a user will consider a dimen-
sional stacking visualization as highly structured if it displays these

squares mostly in groups. Compared to a display with mainly ran-
domly scattered filled bins, those that contain a small number of
groups can reveal much more information. The data points within
a group share similar attributes in many aspects. Thus this view
will help the user to search for groupings in the dataset as well as
to detect subtle variances within each group of data points. The
other data points that are considered as outliers may also be readily
perceived if most data falls within a small number of groups.

6.2 Clutter Measure in Dimensional Stacking

6.2.1 Clutter Definition

We define the clutter measure as the proportion of occupied bins
aggregated with each other versus small isolated “islands”, namely
the filled bins without any neighbors around them. A measure of

clutter might then be
number o f isolated f illed bins
number o f total occupied bins . The dimension or-

der which minimizes this number will then be considered the best
order. Besides that, we need to also define which bins are consid-
ered neighbors. The choices are 4-connected bins and 8-connected
bins. With 4-connected neighbors, the points considered aggregated
will share the same data range on all but one dimension, while the
8-connected bins may fall into different data ranges on at most two
dimensions. And since they are connected, their values on those
dimensions have to fall into immediately neighboring value ranges.

6.2.2 Algorithm of Computing Clutter

Given a dimension order, our approach will search for all filled bins
that are connected to neighbors and calculate clutter according to
the above clutter measure. The dimension order that minimizes this
number is considered the best ordering.

The algorithm is similar to that used with high-cardinality di-
mensions in scatterplot matrices. However we are comparing the
position of bins instead of plots. The computational complexity
will be O(m2) for one dimension order, and the optimal search will

take O(m2 ∗n!).

6.3 Example

An example of clutter reduction in dimensional stacking is given in
Figure 7. We have defined 8-connected as our measure for neighbor.

Figure 7: Dimensional stacking visualization for Iris dataset. Fig.7-(a) represents the data with original dataset, and Fig.7-(b) shows the data
with clutter reduced.

Table 1: Table of computation times using optimal ordering algorithm
Visualization Algorithm Complexity Dataset Data Number Dimensionality Time

Parallel Coordinates O(n∗n!) AAUP-Part 1161 9 3secs
Cereal-Part 77 10 23secs

Voy-Part 744 11 4:02mins

Scatterplot Matrices O(n2 ∗n!) Voy-Part 744 11(6 high-card dimensions) 5 secs
AAUP-Part 1161 9 3:13mins

Star Glyphs O(m∗n∗n!) Cars 392 7 18secs

Dimensional Stacking O(m2 ∗n!) Coal Disaster 191 5 10secs
Detroit 13 7 2:10mins

Fig.7-(a), denoting the original data order, is composed of many
”islands”, namely the filled bins without any neighbors to them.
In Fig.7-(b), the optimal ordering, there are much fewer ”islands”,
resulting in an easier interpretation.

7 ANALYSIS OF REORDERING ALGORITHMS

As stated previously, the clutter measuring algorithms for the four
visualization techniques take different amount of time to complete.
Let m denote the data size, and n denote the dimensionality. The
computational complexity of measuring clutter in the four tech-
niques is presented in Table 1.

Ideally, we would hope to use an exhaustive search to find a
best dimension order that minimizes the total clutter in the display.
However, in [2], Ankerst et al. proved that an optimal search for
best dimension order is an NP-complete problem, equivalent to the
Traveling Salesman Problem. Therefore, we can do the optimal
search with only low dimensionality datasets. To get a quantitative
understanding of this issue, we did a few experiments for different
visualizations, and the results we obtained are presented in table
1. We realized that even in a low dimensional data space - around
10 dimensions - the computational overhead can be significant. If
the dimension number exceeds that, we need to resort to heuristic
approaches. For example, random swapping, nearest-neighbor and
greedy algorithms have been implemented by us.

The random swapping algorithm starts with an initial configu-
ration and randomly chooses two dimensions to switch their posi-
tions. If the new arrangement results in less clutter, then this ar-
rangement is kept and the old one is rejected; otherwise we will
leave the old arrangement intact and go on swapping another pair

of dimensions. Keep doing this a number of times until no better
result is generated for a certain number of swaps. This algorithm
can be applied to all the visualization techniques.

The nearest-neighbor algorithm starts with an initial dimension,
finds the nearest neighbor of it, and adds the new dimension into the
tour. Then, it sets the new dimension to be the current dimension for
searching neighbors. Continue until all the dimensions are added
into the tour. The greedy algorithm [3] keeps adding the nearest
possible pairs of dimensions into the tour, until all the dimensions
are in the tour.

The nearest-neighbor and greedy algorithms are good for paral-
lel coordinates and scatterplot matrices displays, because in those
displays, there is some overall relationship between dimensions that
can be calculated, such as the number of outliers between dimen-
sions and correlation between dimensions. However, in the star
glyph and dimensional stacking visualizations, we don’t have a di-
rect measure of dimension relationship. Thus these algorithms are
not very amenable to the latter two techniques.

With heuristic algorithms, we can work on dimension reordering
with much higher dimensions with relatively good results. Experi-
mental results are presented in Table 2.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed the concept of visual clutter reduc-
tion using dimension reordering in multi-dimensional visualization.
We studied four rather distinct visualization techniques for clutter
reduction. For each of them, we analyzed its characteristics and
then defined an appropriate measure of visual clutter. In order to
obtain the least clutter, we then used reordering algorithms to search

Table 2: Table of computation times using heuristic algorithms
Visualization Dataset Data Number Dimensionality Algorithm Time

Parallel Coordinates Census-Income 200 42 Nearest-Neighbor Algorithm 2secs
Greedy Algorithm 3secs
Random Swapping 2secs

AAUP 1161 14 Nearest-Neighbor Algorithm 7secs
Greedy Algorithm 9secs
Random Swapping 6secs

Scatterplot Matrices Census-Income 200 42 Nearest-Neighbor Algorithm 2secs
Greedy Algorithm 3secs
Random Swapping 2secs

AAUP 1161 14 Nearest-Neighbor Algorithm 8secs
Greedy Algorithm 8secs
Random Swapping 7secs

Star Glyphs Census-Income 200 42 Random Swapping 2secs
AAUP 1161 14 Random Swapping 7secs

Dimensional Stacking Those datasets are too big for dimensional stacking visualization.

for a dimension order that minimizes the clutter in the display.

This represents a first step into the field of automated clutter re-
duction in multi-dimensional visualization. There are many visual-
ization techniques that we haven’t experimented with yet; and cer-
tainly our clutter measures are not the only ones possible. Our hope
is to give users the ability to generate views of their data that will
enable them to discover structure that they will otherwise not find
in a view with the original or a random dimension order.

Future work will include the combination of clutter reduction
approaches with dimension reduction or hierarchical data visual-
ization, to gauge the effectiveness of these techniques in high-
dimensional or high data volume datasets. In this paper, we only
discussed the usage of dimension order for reducing clutter. How-
ever, there are certainly other visual aspects that affect clutter or
structure in a display and thus can help facilitate the interpretation
of a visualization.

REFERENCES

[1] D.F. Andrews. Plots of high dimensional data. Biometrics, 28:125–

136, 1972.

[2] M. Ankerst, S. Berchtold, and D.A. Keim. Similarity clustering of

dimensions for an enhanced visualization of multidimensional data.

Proc. IEEE Symposium on Information Visualization, pages 52–60,

1998.

[3] Thomas H. Cormen, E. Leiserson, Charles, and Ronald L. Rivest. In-

troduction to Algorithms. MIT Press, 1990. COR t 01:1 1.Ex.

[4] S.L. Crawford and T.C. Fall. Projection pursuit techniques for visual-

izing high-dimensional data sets. Visualization in Scientific Comput-

ing, (G.M. Nielson and B. Shriver, eds.), pages 94–108, 1990.

[5] Y. Fua, M.O. Ward, and E.A. Rundensteiner. Hierarchical parallel co-

ordinates for exploration of large datasets. Proc. IEEE Visualization,

pages 43–50, Oct. 1999.

[6] A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for visu-

alizing multidimensional geometry. Proc. IEEE Visualization, pages

361–378, 1990.

[7] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data.

Prentice-Hall, Inc., 1988.

[8] J. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[9] D. A. Keim. Pixel-oriented visualization techniques for exploring very

large databases. Journal of Computational and Graphical Statistics,

5(1):58–77, 1996.

[10] T. Kohonen. The self-organizing map. Proc. IEEE, pages 1464–1480,

1978.

[11] J.B. Kruskal and M. Wish. Multidimensional Scaling. Sage Publica-

tions, 1978.

[12] J. LeBlanc, M.O. Ward, and N. Wittels. Exploring n-dimensional

databases. Proc. IEEE Visualization, pages 230–237, 1990.

[13] Y.K. Leung and M.D. Apperley. A review and taxonomy of distortion-

oriented presentation techniques. ACM Transactions on Computer-

Human Interaction, 1(2):126–160, 1994.

[14] R.J. Littlefield. Using the glyph concept to create user-definable dis-

play formats. Proc. NCGA, pages 697–706, 1983.

[15] S. Y. Lu and K. S. Fu. A sentence-to-sentence clustering procedure

for pattern analysis. IEEE Transactions on Systems, Man and Cyber-

netics, 8:381–389, 1978.

[16] M. Sheelagh, T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia.

Distortion viewing techniques for 3-dimensional data. Proc. IEEE

Symposium on Information Visualization, pages 46–53, 1996.

[17] J.H. Siegel, E.J. Farrell, R.M. Goldwyn, and H.P. Friedman. The surgi-

cal implication of physiologic patterns in myocardial infarction shock.

Surgery, 72:126–141, 1972.

[18] C. Stolte and P. Hanrahan. Polaris: A system for query, analysis, and

visualization of multidimensional relational databases. Proc. IEEE

Symposium on Information Visualization, pages 5–14, 2000.

[19] J.W. Tukey, M.A. Fisherkeller, and J.H. Friedman. Prim-9: An inter-

active multidimensional data display and analysis system. Dynamic

Graphics for Statistics, (W. S. Cleveland and M. E. McGill, eds.),

pages 111–120, 1988.

[20] C. Ware. Information Visualization: Perception for Design. Harcourt

Publishers Ltd, 2000.

[21] S.L. Weinberg. An introduction to multidimensional scaling. Mea-

surement and evaluation in counseling and development, 24:12–36,

1991.

[22] G.J. Wills. An interactive view for hierarchical clustering. Proc. IEEE

Symposium on Information Visualization, pages 26–31, 1998.

[23] P.C. Wong and R.D. Bergeron. Multiresolution multidimensional

wavelet brushing. Proc. IEEE Visualization, pages 141–148, 1996.

[24] Xmdvtool home page. http://davis.wpi.edu/ xmdv/.

http://davis.wpi.edu/˜xmdv.

[25] J. Yang, W. Peng, M.O. Ward, and E.A. Rundensteiner. Interactive

hierarchical dimension ordering, spacing and filtering for exploration

of high dimensional datasets. Proc. IEEE Symposium on Information

Visualization, pages 105–112, 2003.

[26] J. Yang, M.O. Ward, E.A. Rundensteiner, and S. Huang. Visual hi-

erarchical dimension reduction for exploration of high dimensional

datasets. Eurographics/IEEE TCVG Symposium on Visualization,

pages 19–28, 2003.

