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Abstract

The use of networked applications on the Internet is increasing, both in the number of ap-

plications and the amount of network flow traffic they generate. These applications include

the Web, streaming media, games, peer-to-peer and grid computing where each application

generates its own network flow dynamics between nodes in the Internet. A single application

often causes other network flows, such as DNS and authentication, apart from those that it

generates directly. With the ever-increasing number and variety of network applications avail-

able, an interesting, but unexplored direction for research is understanding the relationships

among network flows between hosts and sites on the Internet and how these relationships can

be exploited for improved application performance.

In this work, we present results on the degree to which relationships between network

flows exist between host and site pairs. We go on to study relationships for flows of specific

network applications. We use these relationships as a basis to propose a new approach for

packet transmission using an “active network layer” where packet transmissions from respec-

tive transport layer protocols are passed down to this active network layer with a deadline

for transmission. The inclusion of a deadline allows the network layer to perform real-time

scheduling from a pool of packets and to encapsulate multiple less-than-full packets into the

same transmitted frame thus exploiting concurrent flow relationships while not introducing

additional frames that need to be routed. The availability of this network layer also allows

the possibility of speculative packet transmission when these packets can be combined with

other network traffic for improved reliability of applications without introduction of additional

transmitted frames.

1



1 Introduction

With an increasing number and variety of networked applications on the Internet there is oppor-

tunity to examine the relationships between the network flows of these applications to improve

network and application performance. In this work we study the relationships among network

flows between hosts and between clusters of hosts.

We define a flow as the collection of all packets over a period of time using the same transport

protocol (e.g. TCP, UDP) between source and destination hosts where all packets share the same

source and destination port. For a TCP flow, it is normally bounded by SYN and FIN/RST packets.

For flows of other types including UDP, the end of a flow is decided when a period of idle time (we

use five minutes in our experiment) is observed. To facilitate our study, we define a flow to include

traffic in both directions.

We define a relationship to exist between two flows if the flows exhibit temporal proximity

within the same scope. The scope may either be between two hosts or between two clusters of hosts

where a cluster is the set of hosts at a site sharing the same end router. We define a relationship

to be concurrent if the beginning of a flow coincides with an active flow in the same scope. We

define a relationship to be sequential if the beginning of a flow follows a recently concluded flow

in the same scope.

Relationships occur between the flows of networked applications for a number of reasons:

1. Application behavior. One example of a host-to-host concurrent relationship is when a

streaming application creates separate network connections for control and data flow. An-

other example of a cluster-to-cluster sequential relationship is when the application network

flow is preceded by a DNS (Domain Name System) lookup causing a network flow between

a local DNS server and a remote authoritative DNS server.

2. Content relationships. An example is when multiple servers at a Web site serve content for a

page leading to concurrent cluster-to-cluster network flows when a Web browser downloads

the page content.

3. User behavior. Cluster-to-cluster relationships occur when multiple users at a site are inter-

acting with the same remote server such as playing a network game using the same game

server.

With these definitions of relationships and enumerated cases where they exist, we study the

extent that flow relationships are observed in current network traffic and measure the flow rela-

tionships of specific networked applications. In light of these relationships and the fact that 70-

90% [25, 8] packets are smaller in size than the MTU (maximum transmission unit) of the network,

we propose a novel approach to change how network transmission is currently done. We explore

the introduction of an “active network layer” where packet transmissions from respective transport

layer protocols are passed down to this active network layer with a deadline for transmission. The

inclusion of a deadline allows the network layer to perform real-time scheduling from a pool of

packets and to encapsulate multiple less-than-full packets into the same transmitted frame thus

exploiting concurrent flow relationships and reducing the number of frames to be routed.

Such an active network layer could be used for transmissions between two hosts or could be

used to pool all packets for transmission from one cluster to another. The availability of this
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network layer also allows the the possibility of speculative packet transmission when these packets

can be combined with other network traffic to the same destination host or cluster. The possibility

of piggybacking additional packets on existing traffic affords applications the capability of sending

duplicate copies of important packets for better reliability.

As part of presenting this approach, we describe specific examples of how this approach can

reduce the number of round trips between sender and receiver, remove packet exchanges from the

critical path of application response, and improve the reliability of network applications. We go on

to describe the current status of this work. We conclude with a discussion of related work that has

used techniques to exploit flow relationships and finish with a summary of our work to date.

2 Existence of Flow Relationships

Our initial work examined the extent to which relationships exist among network flows between

the same hosts and the same clusters. For this work we used the set of hosts on the WPI campus

as a cluster and obtained logs of network flow data to and from the WPI campus network for a

full day on July 7, November 30 and December 17, 2003. The tool argus [1] was used to trace IP

packets and combine these packets into flows based on common host, port and transport protocol.

For the analysis we focused on TCP and UDP flows with roughly 80% of these flows for TCP

traffic. The July log was collected during summer vacation and contained only 3.9 million flows

while the November and December logs have 12.3m and 15.5m flows, respectively.

We examined the percentage of flows for each of the three days in which a flow follows a

previous flow between the same host pairs using different time thresholds. The results are shown

in Table 1. The threshold of zero seconds in the table indicates a concurrent flow where an existing

flow between the same hosts exists when a new flow begins. The larger threshold values include

flows that begin within the given time interval after a previous flow between the same hosts. We

see a significant relationship between flows even with thresholds as small as 10 seconds.

Table 1: Percentage of Host-to-Host Network Flows within a Specified Time Threshold of a Pre-

vious Flow

Time Threshold

Period 0 Sec 10 Sec 30 Sec 180 Sec

Jul ’03 28.2% 47.2% 51.2% 61.0%

Nov ’03 38.5% 53.7% 58.6% 68.3%

Dec ’03 27.4% 41.6% 46.4% 56.9%

We also studied the same data by grouping the set of non-WPI hosts into clusters (all WPI

hosts form a single cluster). Ideally, we would have used a clustering tool based on BGP routing

information as done in [14], but such a tool is not available in the public domain. Consequently we

used an approximate classification defined by traditional Class B and Class C addresses. While we

know such an approach is not accurate in all cases, we believe it is good enough when examining

traffic with a common end-cluster (WPI) over narrow windows of time. We used this approach

to gain an understanding on the number of potential relationships that exist on a cluster-to-cluster

basis. These results are shown in Table 2.
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Table 2: Percentage of Cluster-to-Cluster Network Flows within a Specified Time Threshold of a

Previous Flow

Time Threshold

Period 0 Sec 10 Sec 30 Sec 180 Sec

Jul ’03 47.5% 68.4% 73.1% 82.5%

Nov ’03 60.9% 76.3% 80.4% 87.1%

Dec ’03 52.8% 78.2% 82.0% 89.1%

These results show that more than half of flows exist in parallel with other flows from the same

cluster and three-fourths of flows exist within 10 seconds of a previous flow from the same cluster.

Since the last two logs are collected when school was in session and include more network flows,

they show more relationships than those in the first log in the cluster-to-cluster scope.

3 Relationships for Specific Applications

The results in Tables 1 and 2 show the existence of a significant number of relationships among

network flows between hosts and clusters. We further broke down the network flows according to

their related applications and studied the relationship between each type of flows. We found the

relationships between different types of flows to be relatively stable and to exhibit a similar pattern

for all three logs. Table 3 shows the results for a small sample of applications from the December

2003 log.

The first column in Table 3 is the application type based on transport protocol (“t” for TCP and

“u” for UDP) and port number. Columns 2 and 3 show related flows that exist between two hosts

for thresholds of 0 seconds (concurrent flows) and 30 seconds (a previous flow existed within the

last 30 seconds). Similarly, columns 4 and 5 show related flows that exist between hosts in two

clusters. We again show results for a threshold of 0 and 30 seconds.

The results shown in each cell of the table are the percentages of flows for the flow type in the

first column that are related to other types of flows (including its own type). To conserve space we

only list specific flow types when the relationship occurs for more than 10% of flows. In addition,

we show cumulative percentages for all TCP and UDP flows.

The results in Table 3 show a number of relationships. A FTP (File Transfer Protocol) or SSH

(Secure SHell) flow follows a previous flow of the same type in about 15% of cases within the

same host pairs. The percentages become much larger within the scope of the same cluster pairs,

where a FTP flow starts within 30 seconds of another FTP flow for over 90% of cases. Other types

of flows like security key exchange (using UDP port 500), Web (using port 80 and 443), are also

often observed before a FTP or SSH flow within the same cluster pairs.

The authentication protocol using TCP port 113 is used 86.9% of the time with the SMTP

protocol (t25). The DNS protocol (u53) precedes all applications when we consider cluster-to-

cluster sequential relationships. HTTP flows (t80) are used 43% of the time concurrent with a

previous HTTP flow between the same hosts and over 60% of the time concurrent with hosts in the

same cluster. The last column shows that over 90% of HTTP flows occur within 30 seconds of a

previous HTTP flow between hosts in the same cluster.
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Table 3: Relationship between Selected Flow Types
AppPort h2h:0s h2h:30s c2c:0s c2c:30s

t21

(ftp)

tcp:3.3%

udp:0.0%

t21:13.8%

tcp:14.5%

udp:0.0%

t21:63.1%

tcp:64.7%

udp:14.3%

t113:26.8%

t21:93.7%

tcp:95.0%

u500:11.2%

udp:25.5%

t22

(ssh)

tcp:9.1%

udp:0.1%

t22:15.9%

tcp:17.0%

udp:0.1%

t22:24.7%

tcp:44.0%

u500:12.5%

udp:18.5%

t110:18.1%

t22:33.5%

t443:14.6%

t80:12.1%

tcp:57.5%

u500:15.1%

udp:23.6%

t25

(smtp)

tcp:5.2%

udp:0.0%

t25:18.0%

tcp:18.1%

udp:0.0%

t25:11.7%

tcp:15.4%

udp:9.4%

t25:30.0%

tcp:34.9%

u53:15.8%

udp:16.9%

t80

(http)

t80:43.0%

tcp:43.1%

udp:0.1%

t80:58.6%

tcp:58.7%

udp:0.1%

t80:61.1%

tcp:62.2%

u53:10.0%

udp:11.4%

t80:91.9%

tcp:92.4%

u53:14.1%

udp:15.7%

t113

(auth)

t25:86.9%

tcp:98.4%

udp:0.0%

t25:86.9%

tcp:98.5%

udp:0.0%

t25:87.7%

tcp:99.2%

udp:5.3%

t113:11.2%

t25:87.8%

tcp:99.7%

u53:13.7%

udp:15.5%

t554

(rtsp)

t554:10.5%

tcp:13.8%

udp:4.5%

t554:53.1%

tcp:55.7%

u6970-

7170:10.4%

udp:11.8%

t554:47.3%

t80:16.8%

tcp:63.7%

u6970-

7170:38.8%

udp:49.5%

t554:72.6%

t80:23.0%

tcp:82.2%

u53:16.4%

u6970-

7170:42.6%

udp:60.8%

t7070

(real-stream)

t554:40.0%

t7070:36.0%

t80:68.0%

t8080:56.0%

tcp:84.0%

udp:0.0%

t554:76.0%

t7070:72.0%

t80:82.0%

t8080:76.0%

tcp:86.0%

udp:0.0%

t554:40.0%

t7070:36.0%

t80:86.0%

t8080:56.0%

tcp:92.0%

udp:2.0%

t554:76.0%

t7070:74.0%

t80:92.0%

t8080:76.0%

tcp:92.0%

u53:10.0%

udp:10.0%

u6970-7170

(real-stream)

t554:53.9%

tcp:54.5%

udp:6.7%

t554:54.0%

tcp:54.6%

u6970-

7170:32.4%

udp:34.2%

t554:54.0%

tcp:54.7%

u6970-

7170:42.6%

udp:45.2%

t554:54.1%

tcp:54.9%

u6970-

7170:69.6%

udp:74.5%

u27015-27017

(halflife)

tcp:0.0%

udp:2.8%

tcp:0.0%

udp:5.1%

tcp:1.5%

u27015-

27017:11.0%

udp:12.3%

tcp:2.2%

u27015-

27017:30.9%

udp:32.2%

u41170

(blubster)

tcp:0.0%

udp:1.2%

tcp:0.0%

u41170:13.0%

udp:13.0%

tcp:5.1%

udp:2.6%

tcp:7.3%

u41170:15.5%

udp:16.8%
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Real stream application normally uses multiple flows. The control flow using RTSP protocol

(t554) is frequently seen in parallel with the data flows using either TCP (t7070) or UDP (u6970-

7170). We also observe the TCP-based Real player streaming frequently occurs in temporal prox-

imity to HTTP.

“halflife”, a popular on-line game, is used often concurrently or sequentially by different hosts,

but within the same cluster. Network flows generated by a peer-to-peer file sharing application

“blubster” have a certain amount of sequential relationships to its own type.

4 Application Traffic Behavior

The application-specific results again show that significant relationships do exist between network

flows, although the results do not reflect the specific traffic pattern of packets within a flow, which is

not available in the log. Knowledge of specific traffic behavior is important as we look at exploiting

the relationships between network flows. We studied the packet and flow behavior for a number of

sample applications such as ssh, the Internet Explorer browser, RealAudio, RealVideo, Windows

Media Player, QuickTime, network games, instant messaging and electronic mail applications.

From the results of this study we make a number of observations about the behavior of applications:

� A single application often causes multiple flows to be created to the same host or hosts within

the same cluster.

� Interactive applications such as ssh, games and instant messaging generally use small pack-

ets. Applications using TCP use small packets in setting up a connection and sending ac-

knowledgments.

� Many applications that use TCP have the PUSH flag set if the packet has a less-than-full-

MTU, even if the packet may not need to be sent immediately to avoid control by Nagle’s

algorithm, which attempts to aggregate small amounts of TCP data [16]. The setting of the

PUSH flag causes the data to be immediately sent.

� The packet size for streaming applications depends on the encoding, but most packets we

observed are not full. When TCP is used for streaming, the server always uses the PUSH

flag.

While these observations are not novel, each of these is a factor as we examine exploiting the

relationships between flows. In the following we describe an approach that takes these observations

into account.

5 Proposed Approach

The observation that many transmitted packets are less than full (previous studies have found 70-

90% of packets are less than 1500 bytes [25, 8]) and because the cost of routing packets on the

Internet is dominated by the number of packets and not the size, we are motivated to explore an

approach that makes use of this unused capacity in packet transfer. As technology improves and

network MTUs grow larger this wasted capacity will become more pronounced.
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The approach of aggregating packets for delivery is an obvious direction to explore, particularly

given the significant number of related flows. The natural point to do such aggregation is at the

network layer—whether on a single host or at an end router for a cluster of hosts. However, an

inhibiting problem with current transmission design is that applications and the transport layer

have no means of specifying deadline constraints on when data must be sent. UDP data is always

sent immediately while by default TCP transmitted data is collected and sent when a full packet is

available or delayed until all transmitted data has been ACKed. For a TCP application to avoid this

delay, it must use the PUSH flag to send the data immediately, which as observed is often used by

applications. Without a means for specifying appropriate deadline constraints there is no “pool” of

packets that can be potentially aggregated for delivery.

As an alternate approach to the traditional transmission mechanism, we propose a new ap-

proach as shown in Figure 1 where in addition to the packet data, the transport layer passes a

deadline to specify the latest that the network layer can transmit a packet. The network layer then

becomes an active entity that schedules packet transmission based on deadlines.

Transport Layer

Network Layer

send(pkt)

Transport Layer

Active Network Layer

send(pkt,deadline)

Traditional Network Layer Active Network Layer 

Transport Layer

Network Layer

send(pkt)

Transport Layer

Active Network Layer

send(pkt,deadline)

Traditional Network Layer Active Network Layer 

Figure 1: Addition of a Deadline Requirement When Sending a Packet

The deadline value can be set by either the application or transport protocols depending on

their particular needs. For example, an application such as ssh may set an immediate deadline,

but because its packets are small there is much potential for piggybacking additional packets in

the transmitted frame. TCP SYN packets also would have an immediate deadline for delivery, but

are small. A real-time stream application may be willing to tolerate a fixed lag in the delivery

of its packets to allow possible aggregation with other traffic (possibly its own). A file transfer

application may set all its packets with a much larger deadline indicating the traffic is not urgent.

The active network layer maintains a pool of packets and deadlines, using real-time schedul-

ing to transmit the packets. In the case of less-than-full packets, the network layer can potentially

aggregate other waiting packets. Delivery of such aggregated packets could be done through encap-

sulation of multiple IP packets into a single IP packet as is currently done for tunnelling [18]. This

approach also preserves upper-level data boundaries as advocated by Clark and Tennenhouse [4].

The availability of such an approach affords a number of opportunities:

1. Acknowledgment mechanisms are an obvious use of this approach. When a packet arrives

an acknowledgment can be immediately sent with a deadline corresponding to a desired

ACK time-out. Such a time-out mechanism is built-in to the TCP protocol, but this approach

would handle acknowledgments in a general way and take advantage of other traffic.

2. The introduction of deadline-based transmission gives applications more precise control over

when data is sent. Under current protocols data can only be sent immediately or with TCP it

is buffered without control by the application on exactly when it is sent.
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3. Use of the approach below the transport layer allows independent, but related flows to be

aggregated. Data from scenarios such as playing of an audio stream with one protocol con-

current with delivery of Web objects can be potentially aggregated.

4. The approach allows interactive and non-interactive traffic to naturally aggregated where

packets for interactive traffic are often small, but have immediate deadlines while packets

for non-interactive traffic are often larger, but have relaxed transmission deadlines.

6 Extension of the Approach

While potential aggregation of packet traffic is an attractive feature of this approach, it can be

extended to allow additional features for upper layers. We also propose to include a “hard/soft”

flag argument to the send() function in Figure 1 indicating whether the transmission must occur

or should occur if possible. A “hard” value indicates a normal transmission with the given dead-

line. However a “soft” value indicates the packet will only be sent if it can be piggybacked. The

introduction of a “soft send” allows for improving performance and reliability of applications and

transport protocols without introducing additional transmissions.

One scenario of using a soft send is to protect critical packets by sending them in duplicate.

For example, the loss of TCP SYN packet can have a more negative impact than the loss of a

regular packet in the middle of the connection. In order to improve reliability, one approach is

to soft send a duplicate SYN packet after the original SYN packet is sent. Another example of

improving application reliability is for a streaming application to soft send duplicate copies of

important packets of data. Duplicate DNS requests could be soft sent with a shorter timeout than

normal where the DNS application can retract the soft send if a response for the original request is

received.

The use of a soft send can also be combined with prediction. For example, a Web browser may

predict the need of an additional TCP connection and use the soft send feature to set it up. The

active network layer needs to notify the upper layer if a packet requested for a soft send is actually

sent.

7 Current Status

Overall, we are currently working to better understand the relationships between network flows

and how they can be exploited for improved performance. For example, we need to expand the

range of log data we analyze and need to investigate the extent of host-to-cluster and cluster-to-host

relationships.

Specifically, we are looking to better define the approach of an active network layer and eval-

uate its impact on both a host-to-host and cluster-to-cluster basis. There are outstanding issues

of how this active network layer interacts with transport layer control, specifically how it handles

or does not handle congestion control. As discussed in the next section, many mechanisms have

been proposed to schedule packet transmission for congestion control, but have not investigated

the opportunities of combining traffic to common hosts or clusters of hosts. Our active network

layer could also be used to schedule transmissions of data under a particular rate control, but it

may then need to notify the transport layer if a requested deadline cannot be met.
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Other issues include adjusting the MTU of packets received from the transport layer so that

space is available to aggregate these large packets with small packets. On the other hand, the

transport layer should not need to deliver packets smaller than the MTU if there is no concurrent

traffic.

8 Related Work

Previous work has examined techniques for exploiting relationships at a number of layers in the

protocol hierarchy. In the following we look at three broad categories of how the techniques have

been used at different layers, the types of relationships they exploit, and how they compare with

our approach.

8.1 Shared or Centralized State Information

Much previous work has looked at shared or centralized state, primarily for purposes of congestion

control. Applications, such as Web browsers, create multiple network flows to the same host for

parallel retrieval of objects. Work on Ensemble-TCP [6] and shared TCP control blocks [26] are

ways for these multiple TCP connections to share network information and better inform the TCP

congestion control mechanism avoiding slow-start. This approach to congestion control is been

implemented as part of the Linux kernel [20]. This technique is good for concurrent TCP flows

and is also useful for sequential flows if the shared information is retained. This approach is

limited to traffic of one (the most prevalent) transport protocol and does not reduce the number of

transmitted packets.

Another approach to sharing is centralized scheduling of flows and packets. Work on the Con-

gestion Manager (CM) [2] and the Internet Traffic Manager (ITM) [15, 5, 11] are examples of this

approach where a manager schedules the transmission of packets taking into account congestion

and QoS concerns. Several other studies discussed about sharing information among a cluster of

hosts. In Ott and Mayer-Patel’s coordination mechanism [17], they used an aggregate point (AP)

on each cluster and inserted a coordination protocol (CP) layer between the IP and Transport lay-

ers. An AP calculates network conditions based on all flows passing through it and conveys the

information to end hosts by CP. Pradhan et al. proposed an Aggregated TCP (ATCP) architecture

[19], in which one TCP connection is segmented into two and joined by a local ATCP router on the

sender’s side. As a transparent TCP connection proxy, the ATCP router controls transmission rate

on both sides based on information got from all connections going through it. In [21], Savage et

al. introduced an overlay network called “Detour” and each node in “Detour” can aggregate traffic

from its local hosts over tunnels (TCP connections).

8.2 Aggregation and Multiplexing

Another class of work has looked at aggregating traffic above the transport layer. An approach to

aggregate traffic at the application layer is to multiplex data streams on top of a TCP connection.

HTTP/1.1 [7] is an object-wise multiplexing scheme, which uses a persistent TCP connection to

fetch multiple objects. Another approach to this same problem is to bundle multiple objects in one

response [27]. Gilbert and Brodersen used layer-wise and byte-wise multiplexing schemes between
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a proxy server and a client [10]. SCP [23] and SMUX [9] are two general-purpose session control

protocols that multiplex data from applications on one TCP connection.

The Stream Control Transmission Protocol (SCTP) [24] has multi-streams support, which per-

mits bundling of more than one user message into a single SCTP packet, although SCTP can

introduce a small delay as it tries to bundle. Users may disable bundling (like the PUSH flag is

used in TCP) in order to avoid any delay. The use of bundling is similar to the approach we pro-

pose, but the protocol does not allow the application to set deadlines thus forcing applications with

time dependencies to disable the mechanism.

8.3 Prediction

A third approach to using relationships between flows and packets is to perform work in anticipa-

tion of future work. At the transport layer, T/TCP [3] is one proposal to combine the TCP SYN and

initial payload packet of a TCP connection setup therefore avoiding a round-trip between sender

and receiver. T/TCP was proposed for transactions, but currently only FreeBSD has implemented

it and its usage is still under experimental stage. Linux does not have plans for the implementa-

tion due to T/TCP’s potential security problems [12]. In terms of number of transmitted frames,

it is possible to emulate the transmission of multiple transactions by using the soft send feature to

piggyback the creation of future TCP connections on current data transmissions.

Prediction is more commonly done at the application layer. Krishnamurthy et al. proposed a

DNS-enabled Web approach that uses DNS messages to piggyback Web content in anticipation

of future use [13]. In previous work, we have examined reducing DNS requests by piggybacking

predicted future DNS responses [22].

9 Summary

The results of this work show a significant number of relationships exist among the network flows

between pairs of hosts and host clusters. 40-50% of network flows between two hosts occurred

within 10 seconds of a previous network flow between the same hosts while over 75% of flows

exhibited this same relationship between two clusters.

Based on these relationships and on the fact that many packets delivered on the Internet are not

full, we propose the idea of an active network layer that schedules the delivery of packets according

to deadlines set by the application and transport layers while aggregating less-than-full packets as

allowed by the MTU of the physical network. The availability of this network layer also allows

the possibility of piggybacking duplicates of important packets on an as-available basis in order to

improve the reliability of applications. We are currently working to more completely define and

evaluate this approach on a host-to-host and cluster-to-cluster basis.
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