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Abstract— End-hosts on wireless ad hoc networks typi-

cally use TCP as their transport layer protocol. Being de-

signed for wired networks, TCP can perform poorly over

wireless networks. Work that has proposed ways to improve

TCP performance over wireless networks has concentrated

primarily on improving TCP throughput only. Emerging

applications, such as interactive multimedia and network

games, require reduced delay at least as much as increased

throughput. In this paper, we propose LDM1, an IP layer

queue marking mechanism that estimates the number of

hops and flows at each wireless node to computes the op-

timal marking probability. We present simulation results

and analysis that demonstrate that LDM greatly reduces

the round-trip time of TCP connections while improving

throughput under many configurations.
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I. INTRODUCTION

Wireless ad hoc networks currently carry traffic using

the Transmission Control Protocol (TCP), the de facto

standard for most applications. However, TCP was de-

signed for wired networks and thus can perform poorly in

ad hoc wireless environments including IEEE 802.11 [1]

networks, as noted in many research papers [2], [3], [4],

[5], [6], [7], [8].

The Media Access Control (MAC) layer of IEEE 802.11

wireless ad hoc networks uses the Carrier Sense Multi-

ple Access with Collision Avoidance (CSMA/CA) with a

Request-to-Send/Clear-to-Send (RTS/CTS) mechanism to

avoid data packet collisions. The RTS/CTS pre-exchange

greatly reduces data packet collisions due to the hidden

terminal problem but also causes some side effects when

the MAC layer becomes over-saturated. The primary rea-

sons for TCP performance degradation are the contention

delays and contention drops that the RTS/CTS mechanism

causes, which have been identified as RTS/CTS jamming

[9] and RTS/CTS-induced congestion [10].

Previous research on the improvement of TCP perfor-

mance over wireless ad hoc networks includes the investi-

gation of link breakage and routing failure related prob-

1LDM stands Low Delay Marking

lems such as in [2], [4], [6], link layer solutions, such

as in [3], [8], MAC layer solutions, such as in [5], and

TCP protocol modifications, such as in [7]. A few recent

papers present techniques to improve TCP throughput by

controlling the total number of packets in flight. Fu et

al. [8] present a link layer approach, Link-RED (LRED),

that limits the TCP sending window to reduce MAC layer

collisions, and Adaptive Pacing (AP), which adds a ran-

dom delay when sending packets to reduce the probability

of MAC layer collisions. Chen et al. [5] attempt a similar

improvement by limiting TCP’s window size directly.

Most proposed improvements to TCP are link layer op-

timizations which are difficult to deploy since they are tied

to network card-specific device drivers rather than the op-

erating system. Furthermore, improved throughput has

been the most common metric, especially as traditional ap-

plications such as File Transfer (FTP) and electronic mail

demand maximum throughput. However, emerging appli-

cations such as streaming multimedia and network games,

demand lower round-trip times. Moreover, we project with

the steady increase in maximum wireless network band-

width (currently up to 54 Mbps for the 802.11g standard),

end-to-end delays will become increasingly important rel-

ative to throughput.

We propose a technique we call Low Delay Marking

(LDM) which modifies the packet queue manager at the

IP layer to improve TCP performance. The goal is to im-

prove round-trip times, loss rates and collisions with mini-

mal degradation (and perhaps even some improvement) to

TCP throughput. Our choice of an IP layer modification is

to facilitate easier deployment since operating system up-

grades and patches can be used independently of a hard-

ware change in the wireless network devices.

The rest of this paper is organized as follows: Section II

reviews background literature such as the hidden terminal

problem, LRED and AP; Section III focuses on the LDM

mechanisms; Section IV describes the simulation setup

and analyzes the simulation results and compares them to

AP; and Section V summarizes our findings and mentions

some possible future work.
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II. BACKGROUND

This section briefly introduces background relevant to

our research, including the hidden terminal problem, TCP

with Explicit Congestion Notification (ECN), and the Link

RED and Adaptive Pacing algorithms for dealing with

wireless MAC layer retransmissions.

A. The Hidden Terminal Problem
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Fig. 1. Simulation Topology

Figure 1 illustrates the hidden terminal problem in IEEE

802.11 wireless Local Area Networks. Node 1 and node 3

are within the transmission (or power) range of node 2,

but are out of range of each other. Hence, while they can

both receive transmissions from node 2, they cannot re-

ceive each other’s transmissions. If node 1 and node 3

simultaneously start transmission to node 2, their trans-

missions collide.

To mitigate the hidden terminal effect, IEEE 802.11 [1]

mandates an RTS-CTS pre-exchange before any data pack-

ets can be sent. In the above scenario, if node 1 senses

an idle channel and sends an RTS to node 2, its intended

destination node, all nodes within node 1’s range hear the

RTS and backoff. When node 2 responds with a CTS mes-

sage, all nodes within nodes 2 range, including node 3,

become aware of the imminent data transmission and also

backoff, thus solving the hidden terminal problem. RTS

and CTS frames also contain duration information, called

a Net Allocation Vector (NAV), on how long the data ex-

change will take. This allows other nodes that hear either

the RTS or CTS frames to determine how long the channel

will be busy, and hence backoff accordingly.

An RTS sender may receive no CTS either because its

RTS packet collided with another transmission at the re-

ceiver or because the receiver’s NAV indicated that the net-

work is not available. The sender of the RTS packet even-

tually times out and does an exponential backoff before

re-sending the RTS, up to a limit of seven times, as pre-

scribed by the IEEE 802.11 standard. Since RTS and CTS

packets are small in comparison to data packets, the wasted

bandwidth incurred when RTS and CTS packets collide is

minimal. However, RTS collisions increase network load

which ultimately results in larger contention delays due to

repeated exponential backoffs and RTS contention drops

when the number of retransmissions exceeds the specified

threshold of seven.

Moreover, TCP, left unconstrained, can saturate the

MAC layer and cause numerous RTS collisions and drops,

producing less than optimal throughput and high round-

trip times. To briefly illustrate that an unconstrained TCP

produces less than optimal performance, and hence mo-

tivate our proposed enhancements, we ran NS-2 simula-

tions that restricted the maximum window size of a single

TCP sender in a 7-hop ad hoc network using IEEE 802.11.

Figure 2 shows the effect of the maximum TCP window

size on throughput and round-trip time. The default, un-

constrained TCP flow would have a window size towards

the far right of the graphs. However, by constraining the

window size to a maximum window size of about 3, TCP

achieves higher throughput. Equally important, we can

see that the round-trip time also increases as the maximum

TCP window size increases, a measure of performance that

has not been examined by previous researchers [8], [5].
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Fig. 2. Throughput and Round-Trip Time vs. Maximum TCP

Window Size

B. Explicit Congestion Notification

Traditionally, TCP has relied on dropped packets at the

router as an indication of network congestion. When a

TCP sender receives three duplicate acknowledgments, it

assumes a packet has been lost and it reduces its window
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size. However, when the congestion window of the TCP

source is below four, it cannot receive three duplicate ac-

knowledgments so a dropped packet triggers a retransmis-

sion timeout and a possible subsequent exponential back-

off that causes significant throughput degradation.

[11] proposed Explicit Congestion Notification (ECN)

as a TCP improvement in which packets are marked in-

stead of dropped. Marking uses two bits in the IP header:

one to indicate that then end-host is capable of detecting

marks and the other by a congested IP router to signal

congestion. If a router detects congestion, it marks pack-

ets that are ECN capable instead of dropping them. The

TCP destination echos the mark (the ECN bit) back to the

source which then takes the same set of actions it would

take if the dropped packets had been detected. The key ad-

vantage of marking is that the TCP source receives the ex-

plicit congestion indicator much sooner than when packets

are dropped.

The critical point for our work is that for ad hoc net-

works with a small diameter (about 20 hops or fewer), the

window size of a TCP flow needs to be small for optimal

performance, as show in Section II-A. With these small

window sizes, an IP router that drops a packet from a TCP

flow forces a timeout since the sender can not get three du-

plicate acknowledgments. With these same window sizes,

an IP router that marks a packet from a TCP flow allows

the TCP source to continue transmitting at a reduced rate

since three duplicate acknowledgments are not required.

We assume that all future TCP sources will be ECN en-

abled.

C. Link RED and Adaptive Pacing

Random Early Detection (RED) [12] is an Active Queue

Management (AQM) scheme that uses the average queue

length to determine the dropping or marking probability

of packets in the queue. The probability is 0 if the average

queue size is less than min

th

, linearly increases from 0 to

max

p

from min

th

to max

th

and is 1 when the average

queue size exceeds max

th

.

LRED [8] is a data link layer strategy based on RED

that keys on the average number of IEEE 802.11 retries

instead of queue length. Analogous to RED, LRED does

not drop any packets when the average link layer retries

is less than min

th

and linearly increases from 0 to 1 from

min

th

to max

th

. LRED then drops packets with the min-

imum of the drop probability based on link layer retrans-

missions or the parameter max

p

. LRED can achieve the

optimal window size desired by TCP flows on wireless

LANs for some configurations, but it shares RED’s tuning

weaknesses, noted in [13], [14], [15]. Moreover, the fact

that LRED drops packets makes it difficult to configure

when TCP windows are small, as described in Section II-

B and if marking at the IP layer based on MAC layer data

poses possible network layer violations.

Along with LRED, [8] presents Adaptive Pacing (AP)

which is activated by LRED when the average number of

retries is less than min

th

and deactivated when the average

number of retries exceeds min

th

. AP increases MAC layer

backoff intervals by the retransmission time of one data

frame every time an ACK frame is received. Our analysis

in [16] indicates that most of the throughput improvements

from LRED coupled with AP are due to AP and not LRED.

Unfortunately, the downside of AP is that the additional

backoff time between transmissions increases round-trip

times.

III. PROPOSED MECHANISM

This section presents the Low Delay Marking (LDM)

algorithm which is run at each node along a TCP flow on a

multihop ad hoc wireless network as illustrated in Figure 1

Each node counts the number of flows traveling through it,

as explained in Section III-C, and maintains per-flow state

information on the number of hops per flow, as described

in Section III-B. For each arriving packet, the node com-

putes the optimal window size for the flow, as described in

Section III-A, and marks the packet with the marking prob-

ability required to meet this window size, as described in

Section III-D. Figure 3 summarizes the LDM algorithm.

In the algorithm, f
i

is the i-th flow; h
i

is the number of

wireless hops f
i

makes in going from source to destina-

tion; p
mark

is the marking probability calculated by the IP

packet queue management; n is the total number of flows

going through the node; w
opt

is the optimal window size

for f
i

; and p is the packet that arrived at the node.

at each node, on receiving packet p

identify flow f

i

to which p belongs

estimate h
i

for f
i

estimate n

calculate w
opt

calculate p
mark

mark p with probability p

mark

Fig. 3. The LDM Algorithm

A. Optimal Window Size of a TCP Flow

[7] and [8] derive expressions for the optimal TCP win-

dow size as a function of the number of hops between the

source and destination nodes in a multihop wireless net-

work. Summarizing these results, a TCP flow achieves

maximum throughput when its window size is about one-
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fourth of the number of hops in a wireless network chain.

This restricted window size limits the number of packets

in the network, thereby reducing MAC layer congestion

(RTS/CTS collisions). However, in determining this opti-

mal TCP window size, neither [7] nor [8] take into account

the number of flows. Intuitively, the aggregate window

size among all flows should be one-fourth of the number

of hops (h). Thus, each flow should have a window size of

one-fourth of the number of hops divided by the number

of flows (n):

w

opt

=

h

4

n

(1)

B. Number of Hops for a Flow

To estimate the number of hops from the source to a

destination for a flow, each node keeps per-flow state in-

formation, where a flow is identified by an IP source-

destination pair. For each active flow, a node records the

average time-to-live (TTL) values in the data packets it

routes. It also observes destination-source acknowledg-

ment packets for the same flow and records their average

TTL value. Since the default TTL values set by modern

operating system are typically 128 or 256, each node can

compute the number of hops from the node to the source

and the number of hops from the node to the destination,

thus determining the total number of hops for each flow

from source to destination. For example, if a node ob-

serves a data packet with a TTL value of 250 and then a

corresponding acknowledgment packet with a TTL value

of 251, it can compute the number of hops for that flow

(h
i

) as (256 � 250) + (256 � 251) = 11.

C. Number of Flows at a Node

Based on Morris’ calculations[17], the number of flows

at a node can be counted using a fixed-length bit vector

v. When a packet arrives, it is hashed based on source-

destination address and port number and the corresponding

bit in v is set. The count of bits in v is an approximation of

the number of active flows. The bits in v are cleared at a

rate so as to reset every bit in v every few seconds. When a

bit is cleared, the corresponding per-flow state information

kept (for example, number of hops for the flow) is also

cleared. This method of tracking flows is very accurate

when the number of bits in v is significantly larger than

the number of flows and it does not require any explicit

modification of TCP.

D. Marking Probability

TCP performance models under congestion marking

come from work in [18] and [19], with more detailed per-

formance models in [20] and [21]. Based on results from

pilot studies (see [16] for full details), we use the relation-

ship between marking rate (p) and window size (w) de-

rived in [17]:

p =

0:76

w

2

(2)

From algorithms described in the previous sections and

the state information kept on each active TCP flow, an

LDM node calculates the optimal window size for each

TCP flow and, using Equation 2, the appropriate marking

probability to achieve that window size as:

p

mark

=

0:76

�

h

4�n

�

2

=

12:16 � n

2

h

2

(3)

However, a w
opt

of 1 results in a marking marking prob-

ability of 0.76 which, even with packet marking, causes

timeouts. Therefore, if w
opt

is calculated to be 1 or less,

an optimal window size of 2 is used for w
opt

instead.

Equation 3 represents the overall marking probability

that needs to be applied to each flow. We propose that

each ad hoc node contributes to this total equally, although

alternate policies where the first node in a route applies the

full marking probability are also possible. Since a packet

has to go through h � 1 nodes from source to destination,

LDM distributes the probability evenly over h � 1 nodes.

Let p
node

be the per-node marking probability. We can

relate p
node

to p
mark

by:

p

mark

= 1� (1� p

node

)

(h�1)

p

node

= (1� p

mark

)

1

h�1

p

node

=

 

1�

12:16 � n

2

h

2

!

1

h�1

(4)

Thus, the overall marking probability, p
mark

is the same

as the probability of the packet not being marked through

all h�1 nodes with probability of p
node

. Using Equation 4,

each node calculates the per-node marking probability for

all incoming packets.

For evaluation purposes, the mechanisms described in

Section III-B and Section III-C have been hard-coded into

the simulation code used to evaluate LDM, with imple-

mentation and evaluation of the per-flow record keeping

being future work.
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IV. EVALUATION

This section discusses our simulation setup and analyzes

the experimental results. Experiments presented include

default TCP performance, TCP performance with window

restrictions, TCP performance with adaptive pacing, and

TCP performance with the LDM algorithm.

A. Simulation Setup

To evaluate the effectiveness of LDM, the NS-2 simula-

tor [22] was enhanced to include code for the LDM algo-

rithm as described in Section III. Due to the unavailability

of Adaptive Pacing code from [8], we also had to imple-

ment Adaptive Pacing in NS-2 so as to be able to com-

pare it with LDM. The simulated wireless ad-hoc network

topology used in our investigations is shown in Figure 1.

In general, there are h+1 wireless nodes, N
0

through N
h

,

connected over an IEEE 802.11 chain topology. Default

IEEE 802.11 layer settings are used with a wireless ca-

pacity of 2 Mbps and AODV routing. All flows use TCP-

NewReno with maximum window size of 32, except in the

window constrained case.

The experiments reported in this paper include: regular

TCP, which represents current practice in ad hoc network

performance; TCP with a manually constrained window

size which represents the optimal performance by manu-

ally constraining each TCP flow with full network knowl-

edge; Adaptive Pacing where all MAC frames are delayed

by an additional amount, as described in Section II-C, and

LDM, the marking mechanism presented in Section III.

Each of these cases was simulated with 7 hop, 15 hop and

24 hop ad hoc chain topologies where all nodes are immo-

bile. Each simulation was run five times, with the graphs

depicting the averages and minimum and maximum val-

ues shown with error bars. While the graphs report per-

formance in absolute terms for round-trip time, loss rate,

and total number of RTS collisions, throughput has been

normalized to that of regular TCP case to help clarify the

performance differences.

B. Single Flow

The first experiment has a single TCP NewReno flow

going through a multihop chain wireless network. Fig-

ure 4 presents the normalized throughput, the loss rate, the

round-trip time and the number of RTS collisions.

Over the 7-hop chain, regular TCP flow achieves 193

Kbps throughput, TCP with a restrained window size

of three averages 260 Kbps (+29.5%), Adaptive Pacing

improves throughput to 234 Kbps (+17.1%), and LDM

achieves a throughput of 232 Kbps (+11.2%). The number

of RTS collisions stay nearly the same with restrained TCP,

but Adaptive pacing causes a 48.6% increase and LDM re-

duces RTS collisions by 9.9%. Restrained TCP reduces

the round-trip time from 323 ms to 148 ms (�54.1%),

Adaptive Pacing increases the round-trip time to 489 ms

(+51.4%) and LDM reduces the round-trip time to 162ms

(�52.0%), close to the restrained TCP level. The re-

strained TCP has the lowest loss rate and the original TCP

the highest loss rate. Both Adaptive Pacing and LDM have

slightly higher loss rates compared to the restrained TCP

but LDM offers a lower loss rate compared to Adaptive

Pacing.

With the 15 hop chain topology, regular TCP achieves

184 Kbps, restrained TCP with window size of 5 achieves

209 Kbps (+15.2%), Adaptive Pacing improves through-

put to 213 Kbps (+19.8%) and LDM achieves 185 Kbps

(+4.5%). Restrained TCP reduces the number of RTS col-

lisions by 28.7%, Adaptive Pacing has about the same

number of RTS collisions while LDM reduces RTS col-

lisions by 17.9%. Restrained TCP reduces the round-trip

time from 491 ms to 265 ms (�46.1%), Adaptive Pacing

increases the round-trip time to 692 ms (+41.0%), LDM

reduces the round-trip time to 327 ms (�33.3%), close to

the restrained TCP. Restrained TCP has the lowest loss

rate and regular TCP the highest. Both Adaptive Pacing

and LDM have slightly higher loss rates compared to re-

strained TCP but LDM offers a lower loss rate compared

to Adaptive Pacing.

Over the 24 hop chain, regular TCP achieves 176 Kbps,

restrained TCP with a window size of 7 achieves 201 Kbps

(+13.6%), Adaptive Pacing improves throughput to 228

Kbps (+28.4%), and LDM achieves 173 Kbps (+1.8%).

Restrained TCP reduces the number of RTS collisions by

25.8% over that of regular TCP, Adaptive Pacing has about

the same number of RTS collisions, and LDM reduces RTS

collisions by 15.1%. Restrained TCP reduces the round-

trip time from 626 ms to 394 ms (�37.0%), Adaptive Pac-

ing increases the round-trip time to 887 ms (+41.8%), and

LDM reduces the round-trip time to 459 ms (�26.6%),

much closer to that of restrained TCP. Restrained TCP has

the lowest loss rate and original TCP the highest. Both

Adaptive Pacing and LDM have slightly higher loss rates

compared to restrained TCP but LDM offers a lower loss

rate compared to Adaptive Pacing.

C. Multiple Flows

This experiment involves three TCP flows going

through a multihop wireless network. Figure 5 depicts the

total throughput normalized to that of regular TCP, the to-

tal loss rate, the total number of RTS collisions and the

round-trip time of one of the flows.

Over the 7 hop chain, regular TCP achieves 179 Kbps,
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Fig. 4. Single Flow over Multihop Chain Topology
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Fig. 5. 3 Flows over Multihop Chain Topology

restrained TCP with a window size of 1 achieve 262 Kbps

(+51.6%), Adaptive Pacing improves throughput to 231

Kbps (+33.4%), and LDM achieves 220 Kbps (+29.22%).

The number of RTS collisions increases by 7.2% for re-

strained TCP, Adaptive Pacing increases RTS collisions by

72.6%, and LDM stays around the same as restrained TCP
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(9.8%). Restrained TCP reduces the round-trip time from

464 ms to 148 ms (-68.1%), Adaptive Pacing increases the

round-trip time to 489 ms (+51.4%), and LDM reduces the

round-trip time 237 ms (-49.0%), closer to the restrained

TCP. Restrained TCP has the lowest loss rate and regular

TCP the highest. Both Adaptive Pacing and LDM have

slightly higher loss rates compared to restrained TCP but

LDM offers a lower loss rate compared to Adaptive Pac-

ing.

Over the 15 hop chain, regular TCP achieve 148 Kbps,

restrained TCP with window size of 2 achieve 213 Kbps

(+29.9%), Adaptive Pacing improves throughput to 215

Kbps (+35.2%), and LDM achieves 188 Kbps (+14.0%).

The number of RTS collisions decreases by 11.5% for re-

strained TCP, Adaptive Pacing increases the number of

RTS collisions by 15.7%, and LDM reduces RTS colli-

sions by 21.8%. Restrained TCP reduces the round-trip

time from 755 ms to 330 ms (-56.31%), Adaptive Pac-

ing increases the round-trip time to 976 ms (+29.3%), and

LDM reduces the round-trip time by to 320 ms (-57.6%),

close to restrained TCP. LDM has the lowest loss rate and

original TCP the highest. Both Adaptive Pacing and re-

strained TCP have slightly higher loss rates compared to

LDM, but Adaptive Pacing offers a higher loss rate com-

pared to restrained TCP.

Over the 24 hop chain, regular TCP achieves 176 Kbps,

restrained TCP with a window size of 2 achieves 202 Kbps

(+18.9%), Adaptive Pacing improves throughput to 227

Kbps (+29.1%), and LDM achieves 186 Kbps (+6.2%).

The number of RTS collisions is reduced by 8.9% for re-

strained TCP, Adaptive Pacing has about the same number

of RTS collisions, and LDM reduces RTS collisions by

15.3%. Restrained TCP reduces the round-trip time from

866 ms to 486 ms (-43.9%), Adaptive Pacing increases the

round-trip time to 1155 ms (+33.4%), LDM reduces the

round-trip time to 529 ms (-38.9%), much closer to the re-

strained TCP. Restrained TCP has the lowest loss rate and

original TCP the highest. Adaptive Pacing has higher loss

rates compared to the restrained TCP while LDM offers a

slightly higher loss rate compared to the restrained TCP,

yet a lower loss rate compared to Adaptive Pacing.

D. Summary

We summarize the performance of LDM compared with

regular TCP from Section IV-B and Section IV-C into a

table in Figure 6. A ‘+’ denotes cases where LDM’s per-

formance is better by more than 10%, a ‘0’ where LDM’s

performance is with within 10%, and a ‘-’ where LDM is

worse by more than 10%. From the table, LDM provides

about the same or better throughput compared to regular

TCP but provides a much lower round-trip time, loss rate

Category Single Flow Multiple Flows

Hops 7 15 24 7 15 24

Throughput + 0 0 + + 0

RTS Collisions 0 + + 0 + +

Round-Trip Time + + + + + +

Loss Rate + + + + + +

Fig. 6. Performance of LDM compared to Regular TCP

and number of RTS collisions.

Category Single Flow Multiple Flows

Hops 7 15 24 7 15 24

Throughput 0 � � 0 � �

RTS Collisions + + + + + +

Round-Trip Time + + + + + +

Loss Rate 0 0 0 + + +

Fig. 7. Performance of LDM compared to Adaptive Pacing

We summarize the performance of LDM compared with

Adaptive Pacing in the table in Figure 7. LDM provides

about the same or less throughput compared to adaptive

pacing, but provides greatly reduced round-trip times, loss

rates and RTS collisions. These results are especially sig-

nificant for applications that are sensitive to high delays.

V. CONCLUSION

The RTS/CTS mechanism in IEEE 802.11 was designed

to mitigate the hidden terminal problem in wireless net-

works. RTS/CTS can reduce packet loss due to collisions

in the MAC layer and works well for infrastructure wire-

less networks. However, in wireless ad hoc networks, the

side effects of RTS/CTS mechanism include congestion

and jamming in the MAC layer, which are hidden from

higher layer protocols such as TCP. Consequently, trans-

port layer protocols which do not account for MAC layer

delays, such as TCP, will overestimate the available capac-

ity and use too large a window size. Subsequently, this will

further congest the MAC layer, leading to an increase in

packet loss and round-trip time and a decrease in through-

put.

This paper presents Low Delay Marking (LDM), an

IP layer approach to enhance TCP performance towards

lower delay and loss rate without sacrificing throughput.

Building on knowledge of the optimal TCP window size

discussed in [8], LDM marks packets with the probabil-

ity calculated with the estimated number of hops and the

number of flows. This forces the TCP flows to reduce their

window size closer to an optimal value, thus resulting in a

less congestion at the MAC layer. Less MAC layer con-
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gestion leads to fewer collisions and therefore decreases

round-trip times and loss rates for all flows in the network.

We simulated and evaluated LDM over multiple chain

topologies with a single and multiple-flows. The results

show that LDM provides significantly better round-trip

times (up to a 57.6% reduction) and loss rates (up to a

59.5% reduction) while still providing the same or better

throughput compared to regular TCP. LDM also provides

much better round-trip times (up to a 67.2% reduction) and

loss rates (up to a 33.8% reduction) compared to Adaptive

Pacing.

Currently, our evaluation is done over with the number

of hops and number of flows known ahead of time by each

router. Implementation of hop and flow counting tech-

niques presented in Section III is our current ongoing in-

vestigation. Additionally, evaluations with more complex

topologies such as crosses and grids is also under investi-

gation.

APPENDIX

I. LRED INVESTIGATION

We implemented Link RED (LRED) and Adaptive Pac-

ing from [8] in NS [22]. Unfortunately, we were not able

to get the exact parameters used in the simulations from

[8]. We tried various combinations of min

th

, max

th

and

max

p

without success at reproducing LRED results. In

order to help finding the right parameters, we ran a sin-

gle TCP flow simulation over a 7-hop chain topology.

We graphed the cumulative distribution of the number of

RTS retransmissions per frame in Figure 8. As the Figure

shows, over 85% of the frames were successfully trans-

mitted without any retransmissions. This results in a small

range of min

th

and max

th

over which LRED can operate.

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5 6 7

RTS Retransmissions

Fig. 8. CDF of RTS Retransmissions

Moreover, [8] tunes LRED based on a 7-hop chain wire-

less network topology. This requires a singe TCP flow

to operate with a window size of 3 for optimal perfor-

mance. However, packet loss for such a flow results in

TCP timeouts which would decrease its throughput signif-

icantly. We suspect, but have not proven, that the bene-

fits to TCP shown in [8] come from Adaptive Pacing, not

LRED.

II. CROSS TOPOLOGY

In order to evaluate LDM over a more complex topology

than a chain, we created a 6-hop cross topology as shown

in Figure 9. This experiment involves two flows: one go-

ing the left to the right and the other going from the top

to the bottom. Figure 10 depicts the total throughput nor-

malized to that of regular TCP, the sum of roundtrip times,

Jain’s fariness [23] of throughputs and roundtrip times and

the total number of RTS collisions.

Flow 1

Flow 2

Fig. 9. Cross Simulation Topology

Regular TCP achieves 203 Kbps, restrained TCP with

a window size of 2 achieves 261 Kbps (+28.7%), Adap-

tive Pacing improves throughput to 238 Kbps (+17.4%),

and LDM achieves 198 Kbps (-2.3%). Restrained TCP re-

duces the number of RTS collisions by 15.2% over that

of regular TCP, Adaptive Pacing increases the number of

RTS collisions by 48.1%, and LDM reduces RTS colli-

sions by 26.7%. Restrained TCP reduces the round-trip

time from 604 ms to 121 ms (�79.9%), Adaptive Pac-

ing increases the round-trip time to 912 ms (+51.1%), and

LDM reduces the round-trip time to 315 ms (�68.5%),

much closer to that of restrained TCP. Restrained TCP has

the lowest loss rate and original TCP the highest. Reg-

ular TCP provides Jain’s fairness index of throughputs of

0.873, restrained TCP produces 0.721 (�17.4%), Adaptive

pacing 0.755 (�13.5%) and LDM 0.931 (+6.7%). Regu-

lar TCP provides Jain’s fairness index of roundtrip times

of 0.999, retrained TCP 0.900 (�9.9%), Adaptive Pacing

0.876 (�12.2%) and LDM 0.990 (�0.8%).
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