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Abstract

Current congestion control approaches that attempt to provide fair bandwidth allocation
among competing flows primarily consider only data rate when making decisions on which
packets to drop. However, responsive flows with high round-trip times (RTTs) can still receive
significantly less bandwidth than responsive flows with low round-trip times. This paper pro-
poses a congestion control scheme called “Chablis” that addresses router unfairness in handling
flows with significantly different RTTs. Using a best-case estimate of a flow’s RT'T provided
in each packet by the flow source or by an edge router, Chablis computes a stabilized average
RTT. The average RTT is then compared with the RTT of each incoming packet, dynamically
adjusting the drop probability so as to protect the bandwidth of flows with high RTTs while
curtailing the bandwidth of flows with low RTTs. We present simulation results and analysis
that demonstrate that Chablis provides better fairness than other rate-based congestion control
strategies over a wide-range of traffic conditions. The improved fairness of Chablis comes close

to the fairness of Fair Queuing without requiring per flow state information at the router.
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Figure 1: Classification of AQMs
1 Introduction

The Internet relies upon cooperation between TCP hosts and subnet routers to adjust source data
rates in the presence of network congestion along the path of the TCP flow. Drop-tail queue
management is the primary queue mechanism used in Internet routers to indicate congestion to
edge hosts. While drop-tail schemes are easy to implement and fit within the best-effort nature of
the Internet, these routers distribute packet drops arbitrarily among competing flows.

For TCP-friendly flows, a flow’s round-trip time (as well as packet size and drop rate) is directly
responsible for determining a flow’s data rate [3, 11]. With TCP’s congestion control algorithms,
a flow’s throughput varies inversely with the round-trip time (RTT). Thus, a router that applies a
uniform drop rate for all flows will result in flows with a high RT'T getting less throughput than
flows with a low RTT.

Current Internet Service Provider user access fees are strictly connection-based and not distance-
based, meaning the cost to access to information on a Web server is not associated with the RTT
from the client to that server. This creates the perception that all clients should receive the same
quality of service from a Web server regardless of their proximity to that server. In fact, servers
often use Content Delivery Networks (CDNs) to move Web server information closer to clients in
order to provide improved, uniform performance, regardless of proximity. Thus, it can be argued
that one of the goals of CDNs is to reduce the inherent bandwidth unfairness due to a client’s large
round-trip time. The approach of the Chablis algorithm presented here is to use RTT information
in a congested router to provide better fairness among TCP clients and reduce the need to use

CDNs to achieve bandwidth equity.

*The term Chablis comes from a play on the acronym RED. Considering “red” as a type of wine, there is a family
of “white wine” active queue management techniques, of which Chablis is one.



There have been numerous approaches to achieving per flow fair bandwidth allocation at con-
gested routers. As noted in [9], there is a continuum of possible per-flow treatments, from complete
per-flow treatment such as in Fair Queuing, to a complete absence of per-flow treatment such as
in drop-tail and RED. Additionally, for queuing mechanisms without per-flow treatment, there is
a continuum of possible per-packet treatments, from no per-packet treatments such as in RED to
complete per packet treatments from CSFQ core routers. Figure 1 depicts the space of possible
flow and packet treatment policies, with the approximate placements of policies evaluated in this
paper.

Random Early Detection (RED) [5], probably the best known Active Queue Management
(AQM) technique, keeps no per flow state information. Packets are dropped probabilistically based
on the long-term average queue size and fixed indicators of congestion (thresholds). RED uses
randomization to drop arriving packets to avoid biases against bursty traffic and roughly drops
packets in proportion to a flow’s data rate at the router. However, flows with high RT'Ts and small
window sizes are bursty, and this burstiness causes high variability in the perceived data rate of
these flows as seen by RED routers.

At the other extreme, Deficit Round Robin (DRR) [12], a variant of Fair Queuing (FQ) [2],
keeps extensive information on every flow. DRR routers send packets approximately in the order
a router would send them if packets could be sent one bit at a time. While DRR and other FQ
variants achieve fairness among flows, the per-flow state information required and overhead needed
to manage priority queues is expensive. Moreover, these schemes do not scale well with increased
number of flows. This study uses DRR as the best case scenario for achieving fairness among
heterogeneous flows; namely the goal being to seek fairness comparable to DRR without DRR
per-flow costs.

Flow Random Early Drop (FRED) [8] uses per-flow preferential dropping to achieve fairer
allocation of bandwidth among flows. FRED builds per-flow state at the router by examining those
packets that are currently in the queue. The packet drop rate for a flow is determined by the
number of packets the flow has in the queue, and is not directly influenced by the flow’s data rate
nor round-trip time. We evaluate the effectiveness of FRED as a less expensive means than FQ of
attempting per-flow fairness.

In Core Stateless Fair Queuing (CSFQ) [13], edge routers classify flows based on their current
sending rates and forward these rates as labels to core routers. Using these labels, core routers

keep a running estimate of the fair share capacity of a flow on an out-going link. The core router



drops packets in a manner aimed at giving each flow its fair share of the link throughput. However,
such preferential dropping based on data rate alone is not sufficient to achieve fairness. Since the
respounse function for TCP-friendly flows is based on the RTT, dropping packets equally between
two flows with the same data rate but different RT'Ts will result in a higher long-term data rate
for the flow with the lower RT'T. While it has been shown that CSFQ achieves fairness for flows
with the same RTT, we demonstrate that it is ineffective in achieving fairness among flows with
heterogeneous RTTs.

This paper presents a new approach to fairness that takes into account a flow’s round-trip time
in determining a router’s responsiveness to congestion avoidance. The primary goal of our work is

I among responsive flows with heterogeneous RT'Ts without negatively impacting

to achieve fairness
overall router performance (i.e., goodput, delay and drop rate).

Active queue management approaches typically rely on packet drops as notification of congestion
in the network. However, packet drops result in a waste of bandwidth in the network because router
resources used to transfer the dropped packet up to the dropping point could have been used to
transfer a different packet instead. ECN [4] proposes a modification to TCP to enable congestion
notification without packet drops. ECN uses a bit in the IP packet header that can be set by the
router to indicate there is congestion in the network. End hosts receiving packets with the ECN
bit set react the same way they would have to a packet drop, typically by reducing their window
sizes. ECN helps to reduce packet drops, thus increasing network goodput.

The framework for our approach, Chablis, is the same edge and core architecture presented in
CSFQ [13] wherein core routers mark packets based on hints sent in packet labels by edge routers.
In practice, the edge can be an ingress router or an end host and the hint can consist of the
estimated data rate, as in CSFQ, the estimated window size, a delay tolerance, or any other flow
attribute. In Chablis, the hint is an edge estimate of the best-case round-trip time.

Using round-trip time hints, the Chablis core router computes an average round-trip time for
all packets arriving at the router. When congestion is indicated by the RED thresholds, packets
are marked based on their round-trip time in relation to the overall average round-trip time. This
mechanism preferentially marks packets with lower than average round-trip times and favors packets
with higher than average round-trip times. This protects fragile flows with high round-trip times

while inhibiting robust flows with low round-trip times from grabbing an unfair share of link

"We focus on min-maz fairness, since it is easy to interpret locally and makes no assumptions about behaviors
elsewhere in the network. For completeness, Jain’s fairness indez[6] is also reported for all experiments.



bandwidth.

Through NS-2 [10] simulations, Chablis’ effectiveness is demonstrated under a wide range of
scenarios. These scenarios include: mixes of flows with round-trip times varying from 20 ms to 400
ms; a disproportionately large numbers of flows in different round trip time clusters; equal clusters
of flows in different round-trip time clusters; and drastic changes in the round-trip times of active
flows.

Our simulation results show that Chablis: provides fairness among flows that is far superior
to RED in all scenarios tested; achieves fairer link capacity allocation among flows than CSFQ
and FRED in all scenarios; provides far better fairness than CSFQ and FRED in many scenarios;
yields DRR equivalent fairness in most scenarios; and approximates DRR equivalent fairness in the
other scenarios tested. These Chablis improvements in fairness are accomplished while providing
performance similar to RED with respect to drop rate, goodput and throughput.

The rest of this paper is organized as follows: Section 2 focuses on the details and derivation
of the Chablis mechanisms; Section 3 describes the set of simulation experiments run to evaluate
Chablis under a wide-range of conditions and includes analysis of the simulation results and de-
tailed comparisons of the performance of Chablis with DRR, CSFQ, RED and FRED. Section 4

summarizes our findings and considers further extensions and future work.

2 Chablis

In this section, we present the Chablis algorithm, summarized in Figure 2. Each packet contains
a round-trip time (RTT) label, as described in Section 2.1. For each incoming packet, the RTT
label is used to update the RTT average kept by the router, as described in Section 2.2. If there is
extreme congestion, indicated by the queue average being above maxy,, the packet is dropped. If
the packet is not dropped, it is enqueued in a normal first-in, first-out fashion. If there is congestion,
as indicated by the queue average being between ming, and mawxy,, the mark probability for the
packet is computed based on the queue parameters, the RTT label, and the RTT average, as

described in Section 2.3.

2.1 Round-Trip Time at the Edge

As in [13], we assume an architecture where edge routers on the ingress of a network cloud label a

packet with additional information, called an edge hint so that core routers on the interior of the



on receiving packet p
if (p.RTT > 0) then
updateAvg(Raverages Bformulas p-RTT)
if (Qavg >= ma:r:th) then
dropPacket(p, 1)
else
if (avg >= miny,) then
d = calcMarkProbability (qaug, ming,, mazy,, p.RTT, Rformula))
markPacket(p, d)
enQueuePacket(p)

Figure 2: Chablis Algorithm

network cloud can make packet marking decisions efficiently. In our case, the edge hint is given
by the sending host using TCP-Reno and it is the lowest RTT recorded, as computed using the
baseRTT computation from TCP Vegas code.

Based on discussion in [14], there are from 4 to 17 bits available that can be used to carry edge
hint information. We store the RT'T in the IP packet using a 16-bit integer, but in practice our
range of RT'Ts would only require about 9 bits. Moreover, 9 bits still allows coverage of up to 80%
of RTTs typically observed [1]. At a granularity of 10 ms, 9 bits would be sufficient to cover RTT

ranges of up to 5 seconds.

2.2 Average Round-Trip Time at the Router

The average RT'T at the router is calculated using an exponential weighted moving average, called
Rgverage- To adjust quickly to changes in the network, the weight wrpr is set to 0.1, which is much
higher than a typical w, of 0.002 used as a weight for a RED queue average. The value of 0.1 is
necessary to quickly detect changes in the RTT of incoming packets, caused by the the addition of
new flows, the termination of old flows or a change in route of some flows. To prevent excessive
variation in RTT under steady state, the algorithm uses a stabilized measure of the RT'T, called
Rformula, t0 compute mark probabilities (see Section 2.3). Rformula 1s only changed when Ryyerqge
has significantly moved, meaning Ryverqge has been out of a range of 4/- 12.5ms over a period
of 100 ms, an approximate RTT. If Ryyerqge has moved from one side of the range to the other,
called crossing over in Figure 3, we reset the time interval. When it is determined that Rgyerage

has moved, Ryorymiq 18 updated to move towards the new Ryyerage-



now = getCurrentTime()
Raverage = (1 - wRTT) Raverage + (wRTT) p.RT'T
if (((Rformuta-12.5) < Raverage AND (Rformuia+12.5) > Raverage) OR Raverage crossed over) then
lasttime = now
else
if ((now - lasttime) > 100ms) then
lasttime = now
update Rforumula towards new Rgperage

Figure 3: Algorithm for Computing Round-Trip Time at the Router

2.3 Mark Probability Based on Round-Trip Time
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Figure 4: Contribution of p-Terms vs. Mark Probability.

In order to compute a mark probability based on a packet’s RTT relative to the average RTT
(Raverage), we start with the TCP response function [11]:

(1)

S
T —
Ry\/2 + trTO\/ 2p (14 32p?)

This provides the upper bound on the sending rate of 1" as a function of the packet size s, steady
state loss rate p, round-trip time R, retransmission time out tgpro. Although the mark probability
in RED is not exactly equivalent to the steady state loss rate p, p will be used to estimate the
relationship between the mark probability and the round-trip time. Combining the three terms

involving p above using a constant and exponent, we get the simplified equation:

S

T —
Rep®

(2)

Counsider two flows with throughputs 77 and 7% and round-trip times R; and Rs, respectively.



In order to achieve fair bandwidth allocation, 77 and 75 should be equal. This leads to the following

derivation:

T =15

S S

Ricp{ — Raocp}

1
b2=p1 (%) ’ (3)
The exponent a needs to summarize the behavior of the denominator of the original equation.
The three terms involving p in Equation (1) have exponents of 1/2, 3/2 and 7/2. Figure 4 depicts
each p-term’s contribution to the sum, and the best fit curve to the sum. When p approaches 0,
p'/2 dominates, but when p approaches 1.0, each p-term contributes nearly equally. Figure 4 shows
that the sum of the p-terms follows closely to square root of p as expected, with the estimated
exponent g in the fitted curve function being about 0.63. Using a = 0.63, the per-packet mark
probability is computed from a base mark probability p based on min,, max,, max, and gu.g, as

in traditional RED [5]:

1
D=0 <Rformula>m
base R
R ! 1.58
P = Dbase <%> (4)

For the rest of the paper, the exponent used for the mark probability for robust flows will be
called « and the exponent used for the mark probability for fragile flows will be called .

For overhead, Chablis has a basic complexity similar to that of RED. In addition, Chablis has
four additional variables (o, 8, Raverage; and Rrormule). For each packet that arrives, Chablis
must read the round-trip time label in each packet, and compute Ryyerage, adjusting Rormuia as

necessary. No per flow state information is required.

3 Experiments

In this section, we evaluate Chablis by comparing its performance with the four additional algo-
rithms mentioned in the introduction: RED, with no explicit attempt at fairness as the current

status quo of (un) fairness; DRR, with packet scheduling to achieve bandwidth fairness as the



model of fairness; and CSFQ and FRED as less complex ways of achieving the fairness sought by

DRR. We used the NS-2 simulator [10], which provides packet-level implementation of many TCP

protocols and many buffer queue management algorithms including DRR and RED. For CSFQ and

FRED, we used the code developed in [13].

AQM Experiment
1 2 3 4 )
A B C D A B C D
RED 0.779 0.845 0.894 0.988 | 0.824 0.879 0.815 0.924 | 0.685 0.737 0.632 0.808
FRED | 0.815 0.855 0.687 0.989 | 0.867 0.927 0.807 0.925 | 0.713 0.807 0.634 0.870
CSFQ | 0.781 0.796 0.860 0.977 | 0.915 0.734 0.965 0.986 | 0.740 0.647 0.641 0.610
DRR 0.927 0975 0.984 0.991 | 0.962 0.972 0.985 0.977 | 0.880 0.933 0.960 0.970
Chablis | 0.994 0.994 0.993 0.997 | 0.990 0.988 0.986 0.992 | 0.904 0.987 0.965 0.993
Figure 5: Jain’s Fairness Index for All Experiments
AQM Experiment
1 2 3 4

RED [0.15,0.82] [1.72,5.17] [0.27,0.92] [0.15, 0.37]

FRED | [0.15,0.75] [1.75,5.09] [0.25,1.47] [0.18, 0.38]

CSFQ [0.14,0.82] [1.98, 5.66] [0.27,1.04] [0.07, 0.38]

DRR | [0.20,0.53] [2.84,3.50] [0.21,0.42] [0.22, 0.37]

Chablis | [0.25, 0.40] [3.14, 3.56] [0.36, 0.53] [0.28, 0.39]
AQM Experiment

5 6
A B C D A B D

RED [1.69, 5.15] [3.19,6.60] [2.61, 7.12] [3.58, 6.41] | [0.76, 5.79] [2.04, 7.79] [1.36, 8.35] [2.67, 7.32]
FRED | [1.73,4.77] [3.57,5.82] [2.51,7.26] [3.59,6.40] | [0.94, 5.58] [2.52,6.92] [1.18,8.55] [3.15, 6.83]
CSFQ | [2.25,4.41] [2.02,7.82] [4.07,5.57] [4.46,5.26] | [1.57, 5.87] [1.36,8.61] [1.20,7.22] [1.07, 8.89]
DRR [2.70, 3.68] [4.66, 5.30] [4.93,4.96] [4.84,5.10] | [1.84,4.57] [4.24,5.71] [4.24,5.63] [4.60, 5.33]
Chablis | [3.07,3.32] [4.72,5.10] [4.76,5.04] [4.72,5.23] | [2.03,3.32] [4.69, 5.18] [4.84,4.98] [4.96, 5.01]

Figure 6: Minimum and Maximum Goodput (Mbps) for All Experiments

We implemented Chablis by extending the existing RED code with the mark probability algo-

rithms described in Section 2. Then we set up the network topology shown in Figure 7. There are

30 sources, Ny through Nag going through a bottleneck router R to destination D. The bottleneck
bandwidth is 10 Mbps and the delay 5 ms. The settings for RED, FRED, CSFQ and Chablis are

in Figure 7. For CSFQ, the averaging constants K (used in estimating the flow rate), K, (used in

estimating the fair rate), and K. (used in making the decision on whether the link is congested or

not) are set as recommended in [13]. Any setting not listed in the figure is set to the default NS-2

configuration. All flows use TCP-Reno with the RTT modification described in Section 2.2 and a

maximum window size of 64 packets.
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Figure 7: Network Topology and Settings

A set of six experiments were run using this topology and all settings were the same across
experiments, except that the latencies between each node N; and the router R differ, and the active
queue management (AQM) technique was one of RED, FRED, CSFQ, DRR or Chablis. We also
collected Jain’s fairness index values (Figure 5) and the minimum and maximum goodput values
(Figure 6).

In general, as our results in Sections 3.1-3.4 show, Chablis achieves reasonable fairness, signifi-
cantly closer to DRR than RED, and Chablis is moderately fairer than CSFQ and FRED. In each
experiment, there are a large number of dynamics, some of them rather complex. Due to space

limitation, we merely highlight the important points, with details available in [7].

3.1 Uniformly Distributed Latencies

Experiment 1 considers many sources with various roundtrip latencies. Each source latency is
calculated by latency (N;) = 2[(i + 1) dms + bms|, which introduces a linear increase in latency
from one source to the next. Therefore, the 30 sources have round-trip latencies ranging from 20
ms to 310 ms. The results of experiment 1 were used to tune the o and 8 parameters for Chablis.
Although the theoretical values derived in Section 2 were 1.578 for both of them, the actual values
used based on the best results from this experiment, as shown in Figure 7, are 1.6 and 1.4.

The experiment simulations were run for 150 seconds and the goodput was averaged over a
120 second period starting 30 seconds after the beginning of each simulation. Figure 8 depicts the
goodput for each flow. With 30 different flows, the fair share of each flow is % Mbps, depicted by
the horizontal line in each graph. Without any fair treatment, RED provides the most bandwidth
(0.82 Mbps) to the most robust source and the least bandwidth (0.15 Mbps) to a fragile source.

10
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Figure 8: Experiment 1 (Uniformly Distributed Latencies). The 30 flows have roundtrip latencies
ranging from 20 ms (left) to 310 ms (right).

FRED does not improve the bandwidth for the most fragile flow at all (0.15 Mbps) but reduces the
bandwidth of the most robust flow (0.75 Mbps). CSFQ provides high bandwidth to every other
robust flow (the largest getting 0.82 Mbps), while the least bandwidth is comparable to that of
RED (0.14 Mbps). Visually, DRR and Chablis perform much better (more sources are near the
horizontal line), with DRR providing reasonable fairness between the most robust flow (0.53 Mbps)
to the most fragile flow (0.20 Mbps), and Chablis providing the best fairness between the most
robust flow (0.37 Mbps) and the most fragile flow (0.27 Mbps).

3.2 Balanced Clustered Latencies

Experiment 2 considers flows uniformly balanced in three clusters of latencies. There are 10 robust
flows with 50 ms of roundtrip latency, 10 average flows with 100 ms of roundtrip latency, and 10
fragile flows with 200 ms of roundtrip latency.

The experiment simulations were run for 150 seconds, but only the region between 30 seconds
and 60 seconds is depicted to show the network in steady state. Figure 9 depicts the goodput
averaged over all the flows in each cluster, measured every 250 ms. For the three clusters of flows,
the fair share of bandwidth is %Mbps.

RED provides the fragile flows with only 1.5 Mbps while the robust flows get 6.0 Mbps. FRED
improves the bandwidth of the fragile flows to 1.9 Mbps and reduces the bandwidth of the robust
flows to 5.0 Mbps. CSFQ yields 2.0 Mbps to the clusters of fragile flows and 5.7 Mbps to the cluster

11
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Figure 9: Experiment 2 (Balanced Clustered Latencies). 10 robust flows (50 ms round-trip latency),
10 average flows (100 ms roundtrip latency), and 10 fragile flows (200 ms of roundtrip latency).

of robust flows. DRR provides reasonably fair bandwidth allocation with the robust flows getting
3.5 Mbps and the fragile flows getting 2.8 Mbps. Chablis performs the best with the robust flows
getting only 3.6 Mbps and the fragile flows getting 3.1 Mbps.
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Figure 10: Experiment 3 (Unbalanced Latencies). 1 robust (flow 0, 20 ms roundtrip latency) and
29 fragile (flows 1-29, 200 ms roundtrip latency)
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Figure 11: Experiment 4 (Unbalanced Latencies). 1 fragile (flow 0, 200 ms roundtrip latency) and
29 robust (flows 1-29, 20 ms round-trip latency)

3.3 Unbalanced Latencies

Experiment 3 and 4 consider cases where most (29) of the flows have the same latency, while one
flow has an extremely different latency. Experiment 3 has 1 robust flow (20 ms) and 29 fragile flows
(200 ms). Experiment 4 has 1 fragile flow (200 ms) and 29 robust flows (20 ms). Both experiments

ran simulations for 150 seconds with the first 30 seconds omitted in order to depict a steady state.

13



For both experiments, we compare all 30 flows individually, so the fair share of network bandwidth
is %Mbps.

Figure 10 depicts the goodput of each flow for the simulations in Experiment 3. RED fails to
reduce the goodput of the robust flow (flow 0) and gives it 0.92 Mbps. FRED and CSFQ perform
worse than RED, giving the robust flow 1.47 Mbps and 1.04 Mbps, respectively. DRR performs
the best, restraining the robust flow to 0.42 Mbps. However, DRR gives as low as 0.21 Mbps to
the fragile flows. Chablis comes close to DRR by only allowing the robust flow 0.41 Mbps, treating
the fragile flows better by giving them at least 0.28 Mbps.

Figure 11 depicts the goodput of each flow for the simulations in Experiment 4. RED does not
assist the fragile flow, giving it only 0.15 Mbps. FRED is able to help the fragile flow get 0.18
Mbps. CSFQ performs worse than RED, giving the fragile flow only 0.07 Mbps. DRR provides
fairness similar to that of FRED, giving the fragile flow 0.22 Mbps. Chablis provides the smallest
bandwidth gap, giving the fragile flow 0.26 Mbps, slightly less bandwidth than the fair share.

3.4 Dynamic Latencies

For Experiments 5 and 6, we consider abrupt changes in the latencies of clusters of flows. We set
up a scenario where the 3 clusters of flows, 30 flows in each cluster, where all run for the first 30
seconds (period A). The robust flows stop for the next 30 seconds (period B). The robust flows
come back and the average flows turn off for 30 seconds (period C). Lastly, the average flows turn
back on and the fragile flows stop for 30 seconds (period D). When there are three clusters of flows,
the fair share of bandwidth is % Mbps. When there are two clusters of flows, the fair share of
bandwidth is 3> Mbps.

Experiment 5 uses 10 robust flows having 50 ms of roundtrip latency, 10 average flows having
100 ms of roundtrip latency, and 10 fragile flows having 200 ms of roundtrip latency. Figure 12
depicts the goodput averaged over all the flows in each cluster, measured every 250 ms. Visually,
RED, FRED and CSFQ are very unfair. Period A is exactly the same as Experiment 2 (Balanced
Clustered Latencies) in Section 3.2. In period B, RED, FRED and CSFQ allow the average flows
to get around 6-7 Mbps while fragile flows to get only around 2-3 Mbps. Chablis provides fairness
very close to that of DRR by giving 4.7 Mbps to the fragile flows and 5.2 Mbps to the average
flows. In period C, the difference in bandwidth grows bigger for RED and FRED, with the robust
flows getting around 7 Mbps and the fragile flows getting only 2.5 Mbps. CSFQ performs better
than RED and FRED, giving 2 Mbps to the fragile flows and 5.6 Mbps to the robust flows. Chablis
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Figure 12: Experiment 5 (Dynamic Latencies). 10 robust (50 ms round-trip latency), 10 average
(100 ms roundtrip latency), and 10 fragile (200 ms of roundtrip latency).

is again comparable to DRR by giving 4.8 Mbps to the fragile flows and 5.0 Mbps to the robust
flows. In period D, RED, FRED and CSFQ provide slightly better fairness by allowing the robust
flows to get around 5-6 Mbps and allowing the fragile flows to get 3-4 Mbps. Chablis is close to
DRR, with both the robust flows and the fragile flows getting 5.0 Mbps.

For Experiment 6, Figure 13 depicts the goodput averaged over all the flows in each cluster,
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Experiment 6 (Dynamic Latencies). 10 robust (20 ms round-trip latency), 10 average

(80 ms roundtrip latency), and 10 fragile (320 ms of roundtrip latency).

measured every 250 ms. Visually, RED, FRED and CSFQ clearly demonstrate unfairness. Both

DRR and Chablis provide slightly worse fairness than in Experiment 5. During period A, DRR

gives the fragile flows 1.8 Mbps and the robust flows 4.5 Mbps. Chablis gave the fragile flows 2.0

Mbps and the robust flows 3.3 Mbps. In period B, RED, FRED and CSFQ allow the average

flows to get around 7-8 Mbps and the fragile flows to get only around 1-2 Mbps. Chablis provides
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fairness similar to that of DRR by giving 4.7 Mbps to the fragile flows and 5.2 Mbps to the average
flows. In period C, RED, FRED and CSFQ are even more unfair, with the robust flows getting
7-8 Mbps while the fragile flows get only around 1 Mbps. Once again, Chablis is comparable to
DRR by giving 4.8 Mbps to the fragile flows and 5.0 Mbps to the robust flows. In period D, RED
and FRED provide a bit more fairness by allowing the robust flows to get around 7 Mbps and the
fragile flows around 3 Mbps. CSFQ provides the worst fairness by ounly giving 1 Mbps to the fragile
flows and 8.9 Mbps to the robust flows. Chablis is close to DRR, with around 5 Mbps for both the

fragile flows and the robust flows.

3.5 Overall Goodput and Drop Rate

It is important that the modifications made to RED for Chablis do not degrade the overall per-
formance of RED. In addition to the fairness results for experiments 1-6, we compared the packet
drop rate in steady state and the total goodput for the bottleneck link.

Experiment RED Chablis

Drop | Goodput | Drop | Goodput
(%) | (Mbps) | (%) | (Mbps)

1 0.00 9.70 | 0.00 9.65
2 0.00 9.75 | 0.00 9.78
3 0.73 9.65 | 0.70 9.97
4 0.37 9.79 | 0.27 9.85

Figure 14: Drop Rate and Total Goodput for RED and Chablis

Figure 14 shows that Chablis’s drop rate is about the same as or slightly lower than RED’s.
The goodput is very comparable between RED and Chablis, and in some cases, Chablis actually
provided more total goodput than RED. In the few cases where Chablis’s total goodput is lower
than RED’s, it is only 50 Kbps lower.

4 Summary

A TCP-friendly flow’s round-trip time (RTT) is directly responsible for determining a flow’s data
rate [3, 11]. Current Internet routers and router congestion control approaches ignore RTT in mak-
ing packet dropping decisions, providing unfair bandwidth allocation for flows with different RT'Ts.
Consequently, Web servers often use Content Delivery Networks (CDNs) to reduce client RTTs

in order to provide improved, uniform performance, regardless of proximity. Instead, we propose

17



using RTT information in a congested router to provide fairness among TCP clients regardless of
RTT and thus reduce the need to use CDNs for bandwidth equity.

This paper presents Chablis, an active queue management approach for achieving fairness among
flows with heterogeneous round-trip times (RTTs). Using the distributed architecture presented
in [14], packets are labeled with their minimum observed RTT, allowing the Chablis router to
make marking decisions based upon the RTT of each flow relative to the average RTT observed
at the router. This provides the potential to protect fragile flows with a high RT'T from receiving
unnecessarily low bandwidth, while curtailing robust flows with a low RT'T to their fair bandwidth
share. Moreover, the use of the RTT label at the network edge allows Chablis to avoid keeping
per-flow information.

We evaluated Chablis over a range of flows and over a wide-range of RTT conditions among
the flows. We find Chablis achieves a significant degree of fairness under all conditions. We also
compared Chablis with CSFQ [13], FRED [8] and DRR [12], algorithms specifically designed to
achieve fairness, as well as to RED [5]. In all cases, Chablis performs far better than RED, and in
many cases, Chablis performs far better than either CSFQ or FRED, often performing nearly as
well as does DRR. We are not aware of any other router queue management techniques that can
achieve better fairness than Chablis without using per-flow information.

Currently, Chablis does not curtail unresponsive flows receiving more than their fair share
of bandwidth. In fact, under Chablis, unresponsive flows with a high RTT will be favored over
responsive flows with a low RTT. The natural extension to Chablis is to combine it with a rate-
based active queue management technique, such as CSFQ [13] or RED-PD [9]. High-bandwidth
flows could be detected and monitored as in [9], or per packet drop probabilities could be computed
based on both the bandwidth used by the flow as well as the RTT.

Chablis relies on ECN to achieve fairness, but most end hosts on the Internet do not yet use
ECN-enabled TCP. Therefore, a new version of Chablis, called Chardonnay, that uses dropping
instead of marking, has shown great promise in providing fairness even with dropping packets.
We are currently in the process of evaluating the Chardonnay mechanism under a broader range
of conditions and discovering router configuration settings appropriate for dropping rather than

marking.
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