
WPI-CS-TR-02-07 Feb 2002

Prefething For Visual Data Exploration

by

Punit R. Doshi

Elke A. Rundensteiner

Matthew O. Ward

Daniel Stroe

Computer Siene

Tehnial Report

Series

 ��

WORCESTER POLYTECHNIC INSTITUTE

Computer Siene Department

100 Institute Road, Worester, Massahusetts 01609-2280

Prefething For Visual Data Exploration

�

Punit R. Doshi, Elke A. Rundensteiner, Matthew O. Ward and Daniel Stroe

Department of Computer Siene

Worester Polytehni Institute

Worester, MA 01609{2280

fpunitdjrundenstjmattg�s.wpi.edu

Abstrat

More and more modern omputer appliations from business deision support to sienti� data analysis

utilize visualization tehniques to support exploratory ativities for large datasets. Various tools have

been proposed in the past deade that help users better interpret data using suh display tehniques.

However, suh exploratory visualization tools do not sale well when applied to huge datasets. Various

features provided by database management systems must be applied to suh appliations to sale them

for huge datasets. To improve the performane of suh visualization systems, ahing the data at lient

side is neessary. We exploit semanti ahing [24, 8℄ for the advantages it o�ers over the traditional

ahing systems. To further improve the performane, we propose to exploit harateristis of visualization

environments to prefeth the data for the visualization tools. We have inorporated these features into

XmdvTool [47, 13, 14, 50℄, a freeware visual tool for multivariate exploration. We also ompare an array of

di�erent prefething strategies to determine their relative e�etiveness for both syntheti user traes and

real users of our system. Our results show that signi�ant improvement an be ahieved for visualization

appliations by ahing and prefething the data on the lient-side.

Keywords: Semanti ahing, Prefething, Large-sale multivariate data visualization, Exploratory data

analysis, Hierarhial data exploration

�

This work is supported in part by several grants from NSF, namely, NSF grant IIS-9732897, NSF CISE Instrumentation

grant IRIS 97-29878, and NSF grant IIS-0119276.

1 Introdution

Whether the domain is stok data, sienti� data, or the distribution of sales, visualization is beoming

an inreasingly popular tehnique for data exploration. Humans an often easily detet patterns, trends

as well as outliers in the underlying data when presented with visual depitions of the data [38℄, whih

may be more diÆult to identify with automati tehniques. The exploration of large information spaes

remains a hallenging task espeially with the growth of the World Wide Web and other huge repositories of

information. Visualization plays an important role in aiding users to �nd their way through suh large data

sets. By presenting information visually and allowing dynami user interation through diret manipulation

paradigms, it is possible to traverse larger information spaes in a shorter time [38℄. In both aademia and

industry alike, signi�ant e�ort has thus been spent on developing e�etive methods to display and visually

explore information [1, 40, 39, 37, 32, 16, 36, 20, 30℄.

Most visualization tehniques nowadays still exeute on data that is �rst fethed from the �le system

into main memory. However, as data is being generated at an ever inreasing rate and typial sizes of

datasets beome larger in the order of giga-bytes, urrent datasets an no longer be held entirely in main

memory, rendering many urrent visualization tools useless.

We thus must sale urrent visual tools to work with large data sets. Issues related to eÆient storage

and retrieval of data, while often ignored in the ontext of visualization appliations, are ritial for the

suess of modern exploration tools. In suh interative environments the user must get the response to his

or her navigation requests with little or no time lag. Furthermore, users wish to interatively explore the

data using visual navigation tools. Eah small movement in the user's navigation tool may mean exeuting

a ompletely new query to retrieve the seleted data, potentially resulting in a high data aess rate.

In this work, we propose to exploit harateristis of visualization environments to improve the per-

formane of visualization tools. An appropriate memory organization is also one ritial omponent in

interative appliations, sine it inuenes the performane of the subsequent operations of maintaining the

ahe. In this vein, we apply semanti ahing tehniques [24, 8℄ for the advantages it o�ers, namely exi-

bility of grouping of data in the ahe to be adjusted to the needs of the urrent query and saving lookup

overhead in the ahe due to the ompat query-based organization of the ahe ontent.

In addition, to further improve the performane of our system, we have designed several methods for

prefething data tuned to visualization appliations. These strategies, working hand in hand with the query-

based ahing sheme, exploit the harateristis of the visualization environment suh as the inremental

re�nement nature of queries formulated via a visual query tool in order to optimize the ontents of the

1

ahe. We support features neessary for visualization, by making our prefething solutions speulative and

non-pure.

The proposed ahing and prefething tehniques have been inorporated into XmdvTool [47, 13, 14, 50℄,

a freeware visual tool for multivariate exploration. We have also ran experiments to evaluate the performane

of the prefething strategies both with various syntheti user traes as well as with real users of our system.

Results show that the proposed strategies indeed improve the performane of the system, making visual

exploration of large-sale data pratial.

In summary, our main ontribution onsists of developing a set of tehniques that together an be

applied to interative visualization tools in order to enable users to explore large datasets. We have designed

a high-level ahe poliy that redues the lateny of the system by inrementally loading and maintaining

data in the memory bu�er. When the system is idle, a prefether will bring data into the ahe that is likely

to be used next. Our experiments on�rm the important role of prefething in visualization appliations and

demonstrate that the bene�t of using prefething signi�antly exeeds the result gained by using ahing

only.

Setion 2 disusses the harateristis of the interative visualization environments. Setion 3 explains

our approah to semanti ahing, while Setion 4 introdues our prefething strategies. In Setion 5 we

disuss the XmdvTool visualization system, while Setion 6 fouses on the experimental evaluation of our

prefething strategies. Setion 7 presents the work related to our researh and �nally we state onlusions

and some areas for future work in Setion 8.

2 Multivariate Data Visualization

Here we briey introdue XmdvTool, an exploration tool for multivariate data, whih represents the driving

fore motivating the need for this work as well as representing the testbed into whih we inorporate and

then evaluate our solutions. XmdvTool is a visualization pakage developed at WPI [50℄ designed for the

exploration of multivariate data whih provides four distint visualization tehniques and support for lus-

tering and analyzing hierarhies [47, 13, 14℄. The tool provides four distint visualization tehniques (parallel

oordinates, satterplot matries, glyphs, and dimensional staking) with interative seletions and linked

views, as depited in Figure 1.

The main idea of XmdvTool is to help users to understand the data by �rst lustering the data points

in the navigation spae based on a distane funtion, and then to assoiate aggregate information with the

resulting lusters [47, 31, 34, 12℄. The lustering proess generates a hierarhy in whih di�erent levels

2

oneptually represent di�erent degrees of abstration of the data. Brushing then onsists of setting the

seletion parameters and in speifying the desired level of detail at whih data is displayed.

Figure 1: Various displays in XmdvTool. Figure 2: Struture-based brush.

In order to improve the support for visual navigation aross large datasets we have designed the

struture-based brush [11℄ tool shown in Figure 2 that supports hierarhial exploration of data for all

four multi-resolution visualization tehniques. The data an then be explored by interatively seleting and

displaying points at di�erent levels of detail of the luster hierarhy. We term this exploration proess hi-

erarhy navigation. The user navigation operations expressed by our brushing tool interfae (Figure 2) get

translated into queries to the database. Brushing tool marked `e' is used to selet luster(s) to be displayed,

while tool marked `b' is used to selet the level of detail for the seleted luster(s). A user an selet data

by moving the brush marked as `e' horizontally or moving the brush marked as `b' vertially, as shown in

Figure 2.

While exploring the data, a user may navigate by sliding the extents of `e' to selet a partiular luster

in the tree hierarhy, or by moving vertially the level brush `b' to display data at a di�erent level of

detail. Thus the queries passed to the database are ontiguous rather than ad-ho, sine the visual interfae

provides limited and ontrolled means of expressing navigational requests from the users. Suh ontiguity of

user queries allows us to ahe the queries in main memory, as there is a high probability of a partial query

result from a prior query still being relevant (and thus in our ahe) for the new user request.

Lastly note that users' exploratory movements are somewhat more preditable when they explore the

3

data using suh visualization tools, as suh explorations are di�erent from say, random aesses via an ad-ho

SQL query based interfae. This gives us the hint that the use of prefething in suh appliations may be a

suitable mehanism for improving the performane of visualization appliations.

Sine the user will be examining the visual displays for interesting patterns in the data, there typially

would be delays between two user operations. These delays between user operations allow us to prefeth the

highly probable data into the main memory before the user expliitly spei�es her next request.

3 Semanti Cahing for Visualization Appliations

Semanti ahing is a popular ahing strategy proposed in reent years [24, 8℄ for providing eÆient support

for aess to data. In ontrast to traditional ahing shemes [10, 25℄, it ahes query desriptors rather than

pages of data or individual objets. It provides the following bene�ts over the traditional syntati ahing

approahes:

� adjusts grouping of queries to the requirements of the inoming query so that no irrelevant data is

ahed along with the relevant ones, thus reduing overhead in managing the ahe,

� minimizes the ost of ahe lookup due to the ompat representation of the ahe ontent based on

semanti query desriptors,

� adapts dynamially to the patterns of user queries rather than just ahing stati lusters of tuples.

A semanti ahing sheme must typially handle the following three tasks. First, it has to be able to

deide whether the answer for a query resides in the ahe or not by omparing the inoming user query with

the ahed query desriptors, alled query ontainment. Seond, the partial answer available in the ahe

must be extrated by formulating appropriate probe queries. Third, it must determine any remaining query

that needs to be passed to the server to feth the remaining data. Although onrete steps towards �nding

ommon tehniques that work in the general ase have been taken [15℄, the task of resolving these issues is

still generally performed on an appliation-by-appliation basis.

3.1 Containment Issues

Semanti ahing shemes exploit the apability of semanti desriptors to desribe the ontent of the ahe

in a onise form. This allows for a fast look-up, sine only a few set-based operations are performed instead

4

of separately heking the ontainment for all individual objets ontained in the ahe against the user

query. However, these approahes then must assume either expliitly or impliitly the following. First, that

it is always possible to test whether the answer for the query an be found in the ahe (i). Seond, that it is

possible to extrat the answer from the ahe (ii). And third, that it is possible to ompute the di�erene (at

the query level) between the requested query and the ahe prediates (iii). These assumptions de�ne the

area of appliability of semanti ahing, sine they are not always true (see for instane [15℄). In our visual

appliation, we are able to map our reursive hierarhial queries into range queries and then an address

these three questions.

3.2 Operational Model of Semanti Cahing

An operational model for our semanti ahing is presented in Figure 3. In this model, the lient proesses a

stream of queries Q

1

; : : : ; Q

N

. Let C

i

= C

i

1

[: : :[C

i

k

denote the ahe ontent in terms of queries at the time

query Q

i

is issued, Q

0

= ;, and O(C

i

) = O(C

i

1

); : : : ; O(C

i

n

) denote the objets that orrespond to the ahe

desriptor C

i

. The ahe desriptors C

i

j

are queries, but ould in priniple be any form of set desriptors.

Objets have individual replaement values, in our ase determined by some probabilisti funtion.

Figure 3: Operational Model for Semanti Cahing.

Proessing query Q

i

involves the following steps:

� Compute the probe query P

i

= Q

i

\ C

i

= (Q

i

\ C

i

1

) [: : : [(Q

i

\ C

i

k

).

� Extrat from ahe objets O(P

i

) = O(P

i

1

); : : : ; O(P

i

m

) that orrespond to the onstraint formula P

i

,

i.e., answer Q

i

partially from the set of tuples that satisfy P

i

.

� Compute the remainder query R

i

= (Q

i

� C

i

1

) [: : : [(Q

i

� C

i

k

).

5

� Feth the tuples O(R

i

) that satisfy the onstraint formula R

i

from the server from C

i

to C

i+1

. Update

C

i

to reet the hanges; this may result in unifying (merging) desriptors.

� If the ahe does not have enough free spae, disard objets O

i

j

in the dereasing order of their replae-

ment value until enough spae is free. Adapt C

i

to reet the hanges; this may result in fragmenting

(splitting) desriptors.

� Update the replaement values of all objets O

i

based on R

i

, P

i

and the replaement poliy.

3.3 Replaement Issues

The �rst step in implementing a replaement poliy is to provide an estimation strategy able to measure the

likelihood that an objet will be needed in the near future. The estimation strategy, also alled a preditor, is

usually based on heuristis, probabilisti models, or some reorded statistis. In our ase we use a probability

funtion. The probability funtion also de�nes a partition on the set of objets.

The main task of a ahe replaement poliy is to �nd the entries in the bu�er that have the lowest

probability of being used and to remove them when more room is needed. This operation needs to be

eÆient, sine it ours frequently. When new objets are brought in they have to omply with the internal

ahe organization.

When a request is issued by the GUI, a ontainment test is performed. The system �rst heks whether

the requested data resides entirely in memory or not. In ase it doesn't, a ompensation query has to be

sent to the loader, an agent that fethes the data from the persistent storage.

In onlusion, the bu�er aess operations an be summarized as:

A: Remove old objets. Get the objets with the lowest probability that reside in the bu�er (and further

remove them one at a time when more room in the bu�er is needed).

B: Retrieve new objets. Plae an objet from the database ursor into the memory bu�er (and rehash

the bu�er entry).

C: Display ative set. Get those objets from the bu�er that form the ative set (and send them to the

graphial interfae to have them displayed).

D: Reompute probabilities. Reompute the probabilities of the objets in the bu�er one the ative

window gets hanged (to ensure aurate preditions in the future).

6

E: Test ontainment. Test whether the new ative set fully resides in the bu�er and get the missing

objets (if any) from the database (when a new request is issued).

Unlike semanti ahing, we have made the ahing system exible enough to replae objets in the

ahe rather than queries in order to ensure that the ahe is full almost all the time. This also adds an

additional overhead of keeping probability values for every objet rather than individual query.

4 Prefething Strategies

To further redue system lateny, we use a speulative prefether that brings data into memory when the

system is idle. The prefether is based on the property of exploratory systems that queries remain \loal",

i.e., given the set of urrently seleted objets we have a small number of hoies for whih objets an

be seleted next. The property therefore provides \impliit hints" to the system. Additional hints an

be extrated from the data set harateristis, its usage over time and the user's exploration patterns as

well. In what follows, we disuss di�erent prefething strategies and how we exploits the harateristis of

visualization tasks.

4.1 Charateristis of our Prefether

In visualization appliations, users spend a signi�ant amount of time interpreting the graphial presentation

of the seleted data, and the proessor and I/O system are typially idle during that period. If the omputer

an predit what data the user will request next, it an start fething that data into the ahe (if not already

there) before the user asks for it. Thus, when the user requests that data later, he or she pereives a faster

response time.

In some interative database appliations, there is suÆient time between user requests for suh prefeth-

ing, and therefore the amount of data that an be prefethed is limited only by the ahe size. This situation

is referred to as pure prefething and onstitutes an important theoretial model in analyzing the bene�t of

prefething. In our target visualization appliation and many others however, prefething requests are often

interrupted by further user requests, resulting in less data being prefethed at a time. In this ase of non-pure

prefething, we also need to onsider issues of ahe replaement. We thus onvert pure prefething strategies

into pratial non-pure ones by ombining them with ahe replaement strategies. In [5℄ for instane, a pure

prefether is used with the least reently used (LRU) ahe replaement strategy, and a signi�ant redution

in the page fault rate was shown. A multi-threaded implementation of a non-pure prefether is reported in

7

[43℄. There, the lateny of the disk operations is improved when using threads.

Visualization appliations require prefething strategies to be speulative, non-pure, and adaptive as

explained below. Prefething must be speulative (on-line) as deisions must be based stritly on the history.

Without apriori knowledge or statistis of the user request patterns, as is the ase of most interative

appliations [7℄, prefething must be speulative. An important requirement of speulative prefething is

that the time spent on making prefething deisions must be minimal. Prefething must be adaptive sine

the prefething poliy has to hange due to run-time events. As the exploration goals and thus the aess

behaviour of a user may vary over time, hanging when to issue prefething requests or the amount of data

to be prefethed may inuene the performane of prefething.

Figure 4: Hierarhy of Prefething Strategies.

We designed and implemented several speulative, non-pure strategies for prefething, as desribed

below in order to perform omparative evaluation. As shown in Figure 4, our approah is to generate

a hierarhy of prefething strategies, based on di�erent prefething hints. We designed �ve prefething

strategies: random (S1), diretion (S2), fous (S3), mean (S4), and exponential weight average (S5). In

experiments, we also onsidered the ase of not prefething, the ase referred to as S0.

4.2 Random Strategy

As shown in Figure 5, strategy S1 (random) is based on randomly hoosing the diretion in whih to prefeth

next. This strategy is appropriate when the preditor either annot extrat prefething hints or provides

hints with a low on�dene measure. This is utilized initially when no other knowledge is available.

8

Figure 5: Random Strategy. Figure 6: Diretion Strategy.

4.3 Diretion Strategy

Strategy S2 (diretion) implies that the most likely diretion of the next operation an be determined. Based

on user's past explorations, the preditor would assign probabilities to all the four diretions. The prefething

strategy (S2) then implies to \prefeth data in this given diretion". The hypothesis that the next diretion

an be determined is not arbitrary. It is intuitive, for instane, that the user will ontinue to use the same

manipulation tool for a while before hanging to another one and (in our system, eah manipulation tool

happens to preisely ontrol one diretion only). As depited in Figure 6, if (m� 1) and m are the last two

loations navigated by the user, then the diretion strategy may predit (m+ 1) as the next loation to be

visited by the user.

4.4 Fous Strategy

Strategy S3 (fous) uses information about the most probable next diretion (by keeping trak of user's

previous movement) as well as hints about regions of high interest in the data spae as identi�ed due to

prior navigations of this same data by other users. This strategy will ontinue to prefeth data in the given

diretion using the above mentioned heuristis in Setion 4.3. However, when a hot region is enountered the

prefether adapts from the default diretion prefething and instead adapts prefething in that new diretion.

The reason is that the user will likely stop there to explore or at least spend more time in that region.

9

Figure 7: Hot Regions (Fous Points).

4.5 Vetor Strategies

All the previous strategies do not take advantage of the history of past user explorations. The next two

strategies are vetor strategies that look at past user explorations.

In this model, we use a three-dimensional vetor to indiate the movement of the users, one for the

start of brush, one for the width of brush and the last one for the level of detail. To enable prefething, we

maintain user trae for eah user, ontaining the set of historial movement vetors, m

1

;m

2

; :::;m

n�1

. Eah

vetor is alulated from the orresponding viewer's loation and orientation, ontaining a move diretion

and a move distane. We predit the n + 1st movement vetor m

n+1

and prefeth objets that would be

required if the user goes that way. This work is similar to a vetor model of prefething objets in distributed

virtual environments introdued by Chim et al [3℄. Basially, it looks at eah movement of the viewer as

a vetor and omputes the average of the previous movement vetors to predit the next movement. They

propose three di�erent methods to predit the next loation of the viewer, alled the mean, window and

exponential weighted average methods.

We utilize two di�erent shemes to predit the next loation of the viewer: mean (S4) and exponential

weighted average (S5), as depited in Figures 8 and 9. We are embedding the window strategy into the

previous strategies S4 and S5 by onsidering past user operations equal to the window size. Our experiments

disussed in Setion 6 have shown that large window size results in wrong data being prefethed.

In the mean sheme, the next movement vetor is predited to be the average of the previous nmovement

vetors. The intuitive meaning of the mean sheme depited in Figure 8 is that we predit the (n + 1)st

movement vetor by averaging the previous n (in this example, n = 3) movement vetors. The magnitude

of the movement is determined by the average of the magnitudes of the previous movements. Let us denote

the movement vetor in the nth step by m

n

and the predited movement vetor for the next step by m

n+1

.

10

Figure 8: Mean Strategy. Figure 9: EWA Strategy.

The predited vetor will then be:

m

n+1

=

P

n

i=1

m

i

=n (1)

To adapt quikly to hanges in viewer's moving patterns, our seond sheme assigns a weight to eah previous

movement vetorm

i

so that reent vetors have higher weights and the weights tail o� as the vetors beome

aged. A parameter in the sheme is the exponentially dereasing weight, �. The most reent vetor will

reeive a weight of 1; the previous vetor will reeive a weight of �; the next previous one will reeive a weight

of �

2

, and so on. A high � will give similar weights to all the movements and predit future movements as a

funtion of many movements, inluding the aged ones. By ontrast using a low �, aged movements will fall

o� quikly and the predition is biased towards ontributions from reent movements. The predited vetor

is:

m

n+1

=

P

n

i=1

�

n�i

m

i

=S

n

(2)

S

n

=

P

n

i=1

�

n�i

(3)

It an be shown that for both the mean and EWA strategies, the size of the history vetors (window) must

be small. Larger values of the window tend to lower the valid data being fethed.

In Setion 6 we perform experimental studies omparing these strategies. The results on�rm our

general assertion that prefething is more eÆient the more information we have available. Thus, hanging

the prefething strategy adaptively as more patterns are disovered is likely to improve the overall system

performane.

11

5 A Visualization Appliation Case Study: Applying Cahing and

Prefething Strategies to XmdvTool

Given that one general algorithm for testing the ontainment or for extrating the answers from a ahe

do not exist (sine the problems are undeidable), implementation of a semanti ahe therefore remains

a hallenge for most appliations. In what follows we present an implementation of our semanti ahing

sheme in XmdvTool. We �rst desribe the visualization environment, then outline the harateristis of the

queries and objets that we deal with, disuss the replaement funtion and show why it is non-fragmenting.

Finally, we introdue the XmdvTool ahe data strutures main memory operations.

5.1 Objets and Queries

Previous researh [41℄ has shown that hierarhial exploration via our brush in XmdvTool [11℄ an be modeled

as a two-dimensional exploration in whih a seletion window, alled the ative window, slides over an n�m

grid of integers, alled the navigation grid. The objets (the data points or data lusters subjet to analysis)

have a spatial representation that makes them seletable by the ative window.

Objets are the data points or data lusters to be analyzed, to whih some preomputed information is

assigned in order to failitate their visual manipulation. As shown in [41, 42℄, this additional information,

onsisting of a level value and two extents values, makes the objets behave like small retangles (e

1

; e

2

)�L =

(e

1

; e

2

; L), yet still preserving their hierarhial struture (Fig. 10).

Objets are thus similar to ative windows: they are both retangular regions of the form (e

1

; e

2

)� L.

The ontainment test of whether an objet belongs to the ative window or not redues to an inlusion test

between retangles. Fig. 11 presents an example SQL query assuming that our N � dimensional data is

stored in a hierarhial table alled HIER(e

1

; e

2

; L; dim

1

; dim

2

; :::; dim

N

), where e

1

and e

2

are the extents,

L the level of detail, and dim

1

; dim

2

; :::; dim

N

the multidimensional values of the data points.

5.2 Replaement Funtion

The replaement values are given by a probability funtion that measures the likelihood that an objet will

belong to the ative set in the near future. The funtion is based on a set of probability values assigned to

the operations that an hange an ative window.

Let's onsider a navigation grid � = (1::I)� (1::K), where I and K are natural numbers. Eah region

12

X2X1

L

selet *

from hier

where e_1 >= :x_1

and e_2 <= :x_2

and L = :L;

Figure 10: Objets as retangles in XmdvTool

and an ative window A = (x

1

; x

2

; L).

Figure 11: SQL Queries in XmdvTool for ative

window A = (x

1

; x

2

; L).

(e

i

; L

k

) from the navigation grid has an assoiated probability P(m; i; k) that measures the likelihood that

the point will belong to the ative set after the user's next m operations. Also, a probability P

�

(m; i; k) will

measure the likelihood that the point will belong to the ative set at any time during the next m operations.

Obviously, we have: P

�

(m; i; k) = �

m

t=0

P(t; i; k), where � is a probability sum, i.e., p

1

� p

2

= p

1

+ p

2

� p

1

p

2

(from the priniple of inlusion and exlusion).

The lookahead parameter (LA) is the number of operations onsidered in advane when omputing the

probabilities P and P

�

, i.e., the parameter m from the de�nitions above. The LA parameter ditates how

many operations the preditor will predit. In general, the bigger LA is the more speulative the system

beomes and thus the more errors may our. We used in our implementation an LA equal to 1.

In our ase we have six possible operations (restriting or enlarging any of the three ative window's

parameters). Let us assume, for example, that we have an ative window ! = (i

1

; i

2

; k) and from this

on�guration, going left with i

1

is 50% probable, going up with k is 25% probable, and so on. Then objets

in (i

1

; i

2

; k) will have a probability of 1.0, objets in (i

1

� 1; i

1

; k) will have a probability of 0.50, objets in

(i

1

; i

2

; k � 1) a probability of 0.25, and so on.

5.3 The Cahe Data Struture

Let us onsider the navigation grid displayed in Fig. 12. We have here twelve regions of equal probability,

and the ative window overs the two middle ones. For simpliity we onsider that only one objet resides in

13

Figure 12: Navigation Grid. Figure 13: Cahe Contents.

eah region. We also number the objets from 1 to 12. The piture presents only three levels (1, 2, and 3).

Assume probabilities are assigned to eah region and impliitly to eah objet, based on a \operation-driven"

probability model. Thus, objets 6 and 7 have a probability of 1.0 as they are in the ative window. There

is 40% hane that the window expands to the left, and so on. The orresponding ahe ontent is shown in

Figure 13. In this example a probability preision of 0.1 is assumed, and onsequently 10 probability-based

bukets are used.

5.4 Arhiteture of Visualization System

The system arhiteture depited in Fig. 14 illustrates the key modules and interations of our XmdvTool

system that inorporates all the ideas desribed in this paper. First, as shown on the top of the �gure, an

o�-line proess transforms the hierarhial data into MinMax trees [41, 42℄, a preoded indexing struture

allowing us to express hierarhial navigation as range queries as explained in Figure 11. The prepared data

is then loaded into the database. The proess implements the MinMax tree approah, the details of whih

are explained in [41℄. Information about the database shema is used later during exploration.

When exploring, users interat via the graphial interfae (GUI) shown on the right side. Details of

the visual exploration interfae have been given in Setion 2. The visual navigation operations orrespond

to hanges in the ative set. When a hange in the ative set is deteted, a produer thread is reated,

while the GUI itself ats as onsumer. Basially, two threads operate onurrently on the bu�er data: the

onsumer and the produer. The ative set information from the GUI is passed to a rewriter. The rewriter

onsults the semantis of the bu�er, expressed by a bu�er query, and then generates a set of sub-requests

to inrementally adjust the data in the bu�er. Eah sub-request is transformed into an SQL query by the

translator, based on the database shema. The queries are passed to the loader, whih fethes the neessary

objets from database and plaes them in the bu�er. From here, the reader reads them and sends them to

14

Figure 14: System arhiteture. Dashed-line retangles show the separation between the on-line and the

o�-line omputation. Solid-line retangles represent the modules. Squares represent meta-knowledge. Solid

arrows show the ontrol ow.

the display. One the reader is done with the reading of data, if time permits, the prefether will signal the

rewriter to prefeth the next most probable data depending on the information that it has been gathered

over time.

6 Experimental Evaluation

6.1 Settings

All experiments were onduted on an Alpha v4.0 878 DEC station, running Orale 8.1.5. We used C as

the host language and embedded SQL statements for aessing the data in the database. Throughout all

phases of testing we used di�erent types of datasets, both real and syntheti, with always onsistent results.

The eleven datasets we used have between 128 (same as the well-known IRIS benhmark) and 10 million

datapoints, between 8 and 20 dimensions, and between 1,024 (2

10

) and 65,536 (2

16

) objets as the maximum

number of points displayed at a time.

We have experimented with di�erent randomly generated harateristis of the dataset, suh as the

number of fous regions, delay fator, \keep diretion" fator, and some system parameters suh as the

prefething strategy, hints to the query optimizer, and size of the data. In all experiments we have used

navigation sripts ontaining between 300 and 3000 user operations. For syntheti users, these sripts were

15

generated by a pseudo-random number generator ode that mimiked the atual user traes we had observed.

We on�rmed the validity of the generated sripts by also experimenting with traes olleted from various

users of our system.

The values we measured during the experiments inluded number of objets displayed during a navigation

session, query-based hit ratio, objets-based hit ratio, and lateny. The display requests are queued and served

when the system is idle. However, if two display requests ome from the same GUI widget, the older one

is anelled. This behavior may result in lost information, when the display requests are very frequent and

thus too lose in time to one another. This is why we have onsidered the number of objets atually being

displayed as a measure of the visual quality. The hit ratio is the number of objets already in the ahe

over the total number of objets requested from the bak-end. The lateny is the total time, expressed in

milli-seonds, that the user had to wait for her requests to be served, i.e., the time required to feth the data

after the user-query has arrived. It also inludes the time in whih the user had to wait, but did not get the

reply as the query was anelled beause of the navigation speed.

6.2 Experiments with Hot Regions

For this experiment, the user simulation �les were generated varying the number of hot regions from 1

to 5. Figure 15 shows the performane of various strategies as the number of hot regions inreases. The

performane is measured on the Y-axis as normalized lateny. Normalized lateny for Lateny

n

is given by

the formula:

Lateny

n

=

AtualLateny�MinLateny

MaxLateny

where MinLateny and MaxLateny are the minimum and maximum value of lateny from the observed

lateny values.

Figure 16 is similar to this hart exept that the performane is shown to indiate the performane in

terms of perentage from zero lateny. This normalized lateny Lateny

n

is given by the formula:

Lateny

n

=

AtualLateny

MaxLateny

As the number of hot regions inreases, most of the diretion-oriented prefething strategies deteriorate in

performane as the user input tends to be a bit random in nature when the person tries to move in the

diretion of hot regions most of the time. The performane of the fous strategy is slightly lower initially

beause most of the time the user is not moving in the diretion of the hot regions. Then the fous prefething

strategy improves in performane as it prefethes in the diretion of those hot regions, thus prefething the

orret data a higher perentage of the time.

16

Latency v/s Number of Hot Regions

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5
Number of Hot Regions

N
o

rm
a
li
z
e
d

 L
a
te

n
c
y No Prefetch

Random

Direction

Focus

Mean

EWA

Latency v/s Number of Hot Regions

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1 2 3 4 5
Number of Hot Regions

N
o

rm
a
li
z
e
d

 L
a
te

n
c
y

No
Prefetch
Random

Direction

Focus

Mean

Figure 15: Performane vs. Number of Hot Re-

gions (Normalized for Zero Lateny).

Figure 16: Performane vs. Number of Hot Re-

gions.

Hit Ratio v/s Number of Hot Regions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
Number of Hot Regions

O
b

je
c

t
H

it
 R

a
ti

o

No Prefetch

Random

Direction

Focus

Mean

EWA

Latency v/s 'Keep Direction' factor

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
'Keep Direction' factor

N
o

rm
a

li
z
e

d
 L

a
te

n
c

y

No Prefetch

Random

Direction

Focus

Mean

EWA

Figure 17: Hit Ratio vs. Number of Hot Regions

(Normalized for Zero Lateny).

Figure 18: Performane vs. `Keep Diretion' fa-

tor.

As shown in Figure 17 as the number of hot regions inreases, the objet hit in the ahe redues for

all the strategies. The reason for this is that the user input tends to beome more random in nature as he

moves towards the hot regions that are lose to the urrent navigation window. Note that there is less e�et

on the fous prefething strategy ompared to the other strategies, as it plaes emphasis on prefething in

the diretion of the hot regions. Also note that all the prefething strategies have a higher hit ratio than not

applying any prefething, justifying the usefulness of prefething for visual appliations.

17

6.3 Experiments with User Diretionality

The user simulation �les were generated for varying navigational strategies, say from random diretion

hanges to using the same diretion most of the time. Figure 18 shows the variation in the performane of

all the strategies (on the Y-axis) when we have navigation whih is more or less diretional (on X-axis). The

performanes of most of the strategies, suh as diretion, fous, mean and ewa, improve, as most of them

are diretional in nature. Although the fous strategy also improves somewhat in performane, it still does

not perform better than the diretion strategy as it tries to get data in the diretion of the hot regions. Also

note that the performane of the random strategy gets worse as the user beomes more diretional as it does

not exploit this newly gained knowledge. We utilize the diretion strategy as the representative prefething

strategy for the rest of this setion as it is an overall good performer ompared to the other strategies.

Hit Ratio v/s Delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8
Delay between User Operations

(seconds)

O
b

je
c

t
H

it
 R

a
ti

o

No Prefetch

Prefetch

Objects Displayed v/s Delay

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8

Delay between User Operations (seconds)

T
o

ta
l

O
b

je
c

ts
 D

is
p

la
y

e
d

No Prefetch

Prefetch

Figure 19: Hit Ratio vs. Delay. Figure 20: Objets Displayed vs. Delay.

Varying delay parameters. The user simulation �les were generated by giving delay fators to the

original user input �le, and then we measured various output parameters, inluding the hit ratio, number of

objets displayed and lateny. The lateny did not require normalization as the navigation path in the �les

remained the same. As Figure 19 points out, the hit ratio inreases with the inrease in the delay between

two onseutive user operations as the prefether gets more time to prefeth the data. The same is true for

the non-prefething sheme as the data fething gets aborted fewer times.

As shown in Figure 20, when the user quikly manipulates the interation tools to navigate, many of the

queries get anelled as the user requires new data, and the old data being fethed is no longer required. As

the delay between the user operations inreases, the amount of data displayed inreases as the anellation

of the queries redues. This improves the performane of the prefether, as the gaps between the user queries

inreases and it gets more time to prefeth data.

18

Latency v/s Delay

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5 6 7 8

Delay between User Operations (seconds)

L
a
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
)

No Prefetch

Prefetch

Effectiveness of Prefetcher

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8
Delay between User Operations (seconds)

P
e
rc

e
n

ta
g

e
 I
m

p
ro

v
e
m

e
n

t
(%

)

Figure 21: Lateny vs. Delay. Figure 22: E�etiveness of Prefether vs. Delay.

In Figure 21, the X-axis shows the delay between the user operations and the Y-axis depits the lateny.

We measure the time taken for the overall fething task, whih inludes both the time taken for queries that

were fethed from the database and the time when queries were not fethed beause of the user speed. When

measuring the lateny, an issue of how to measure lateny omes into the piture. Lateny is the online

waiting time measured whenever the query is answered by the bakend. It does not inlude the time when the

bakend was unable to feth the data from the table due to the anellation of the query when the user issued

a new query prior to the ompletion of the previous one. As seen in Figure 20, the number of objets atually

being displayed initially is low, or in other words, the number of feth requests ompleted satisfatorily is

low. This implies that the amount of unmeasured lateny is high (the amount of the remaining lateny that

would have been added if the query had been answered).

6.4 E�etiveness of Prefether

Figure 22 harts the perentage of improvement in the performane of applying the fous prefething strategy

ompared to not applying prefething for simulated user traes on the simulated data for di�erent delays be-

tween the user operations. The improvement is measured as the perentage of lateny redued in omparison

to when no prefething is done. It is alulated as:

PerentImprove =

(LatenyWithoutPrefeth� LatenyWithPrefeth)

LatenyWithoutPrefeth

� 100

As an be seen, the performane is improved by 28 perent. This improvement is attained when the average

speed of the user input is one single input per seond. Also, the urve attens a bit as the prefething gets

ompleted most of the time and is no longer preempted by user inputs. This indiates that an improvement

in the performane as the delay between the user operations inreases is no longer feasible beyond a ertain

19

point of time.

From the above harts, we �nd that the fous prefething strategy is a reasonable hoie for prefething

the data, as it results in good performane for a variety of user aess patterns. But the fous strategy needs

some pre-requisite knowledge, i.e., the system needs to analyze user traes over a given dataset to identify

potential hot regions. This represents a diÆulty for realizing the fous strategy in some appliations in

pratie. It an be noted that the two vetor strategies, mean and exponential weight average, are less

e�etive than the fous and the diretion prefething strategies for our navigation environment. The reason

for this lower performane is that they try to feth the data aording to the vetor-spei� diretion, but

our navigation tool supports only four diretions. These strategies may perform better in appliations where

the navigation tools are more vetor oriented. The diretion prefething strategy hene turns out to be

seond best ontender. Given that it requires no prior knowledge and due to its simpliity, espeially as

its performane is nearly equal to that of fous prefething strategy, we adopt the diretion solution in our

urrent system.

6.5 Validating our Experiments Using Real User Traes

To bakup our experimental results, we also have performed a user-study where we had olleted traes

from a number of users of our system. These traes onsisted of 30 minutes eah for 20 di�erent users.

These traes were then given as input to the tool and system settings were varied. The values reorded were

averaged out for the same settings respetively.

Latency v/s Strategies

0

5000

10000

15000

20000

25000

30000

35000

No Prefetching Random Direction Focus

Strategy

L
a
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
)

Objects Displayed v/s Strategies

95000

96000

97000

98000

99000

100000

101000

102000

No Prefetching Random Direction Focus

Strategy

#
 o

f
O

b
je

c
ts

 D
is

p
la

y
e
d

Figure 23: Average Lateny vs. Strategies.

Figure 24: Average Objets Displayed vs. Strate-

gies.

Figure 23 shows the average lateny obtained by the atual user traes for di�erent strategies. The hot

20

regions set for the fous strategy were alulated based on averaging aesses from di�erent user traes for

the same dataset and seleting the most frequently aessed regions. As it an be noted, the fous strategy

has slightly higher lateny than the diretion strategy. This is so beause the hot regions for the data were set

simply by averaging aess time of the dataset over all the user traes and then seleting regions that had an

average aess ratio above a partiular threshold. Not all the users have similar hot regions, leading to lower

performane of the fous strategy. We also found that the fous strategy improves the system performane if

the hot regions are alulated for individual user traes, i.e., the preditors are more aurate. This solution

is however not realisti to apply in pratie beause preditors are not likely to be that aurate.

Figure 24 depits the average number of objets displayed for di�erent strategies, as onluded from

Figure 23. Note that the average number of objets displayed (the visual quality) for the fous strategy is

less than that of the diretion strategy.

Figure 25 indiates the average hit ratio for the strategies, based on the previous two harts. The hit

ratio for the fous strategy is slightly lower than that of the diretion strategy. Overall, based on the real

user traes, we thus favor the diretion strategy for prefething.

Hit Ratio v/s Strategies

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

No Prefetching Random Direction Focus

Strategy

H
it

 R
a

ti
o

Latency v/s Caching

0

50000

100000

150000

200000

250000

Client OFF

Server OFF

Client OFF

Server ON

Client ON

Server OFF

Client ON

Server ON

Caching

L
a
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
)

Figure 25: Average Hit Ratio vs. Strategies. Figure 26: Lateny vs. Cahing.

6.6 Experiments with Cahing

Figure 26 shows the improvement in the performane of the system when the ahing is turned ON and

OFF on both the server and lient side. Sine Orale does not provide too �ne support to diretly ontrol

the ahe, we vary the degree in whih tuples are ahed by providing the Orale optimizer with ahe

hints. The ahe hints that we use are \ahe" and \noahe". A \ahe" objet will persist in the database

bu�er as long as possible. A \noahe" objet will not be loaded into the bu�er. However, nothing prevents

21

the optimizer to read a \noahe" objet from the ahe, if the objet is there. Thus, the results of these

experiments have a high degree of deviation. Note that lateny redues by 85 perent just by ahing at the

lient side. This is logial as the hit ratio when lient-side ahing is turned ON is around 85 perent. Also

note that lateny inreases slightly with server-side ahing turned ON as the server ahes the old data that

the lient may already have ahed, but not the new data that lient may need. However, the ahing at the

server when the lient doesn't have a ahe improves the performane a bit more, beause the server ahes

some of the old objets required by the lient.

7 Related Work

7.1 Visual Exploration Systems

Muh work has been done in reent years on visual interation tools, inluding [45, 19, 9, 18, 23, 21, 17℄.

Integrated visualization-database systems suh as Tioga [40℄, IDEA [37℄ and DEVise [32℄ represent the work

most lose related to ours in terms of developing tools for visual data exploration support. The spei�

approahes taken are however di�erent. Tioga [40, 2℄ implements a multiple browser arhiteture for a

reipe, a visual query. The system is able to ahe the omputed data; however, the problem of translating

front-end operations into database queries is not present sine database queries are expliitly spei�ed by the

graphial interfae. Also, they do not ahe the queries in their system. VIDA [49℄ is a visualization tool (an

extension of DataSplash [2℄) that is developed in an attempt to solve the luttering problem by providing

goal-direted zooming. Infostill [4℄ is a data analysis appliation that fouses on assisting users on all stages

of data analysis. It does not take lient-side ahing into onsideration for improving the performane of the

tool. IDEA [37℄ is an integrated set of tools that supports interative data analysis and exploration. This tool

fouses on multiple display views like XmdvTool, but on-line query translation and memory management

are not addressed in that work. In DEVise [32℄, a set of query and visualization primitives to support data

analysis is provided. The number of primitives supported is relatively large. However, ahing data is done

at the database level using default mehanisms only; speial memory management tehniques as in our work

are not studied. Unlike prior work, we aim to fous on the interations between the two areas: Visualization

and Databases.

22

7.2 Cahing

Semanti ahing is used for lient-side ahing and replaement in a lient-server database system. It is

aimed in large at providing support for navigational aess to data (like visualization appliations). We

have implemented a ahing struture inspired by [24, 8℄ as it provides eÆient support for aess to data.

In partiular, we have developed a hash-based look-up struture that allows replaement at the objet-

granularity level. Though ahing is neessary for visualization appliations and neessarily a prerequisite

for support of prefething, our researh onentrates on the trade-o�s between di�erent prefething strategies.

7.3 Prefething

Most of the reent work on prefething an broadly be lassi�ed into one of the three lasses: web prefething

[44, 46, 27, 33, 29℄, prefething for memory ahes by operating systems [26, 35, 22℄, and I/O prefething

[6, 28, 48℄. From our literature searh, no work has been done to date foussed on prefething for visualization

appliations, although there are some similarities with the work done in these �elds. Web prefething

typially uses the idle time when the user is thinking what to do. We utilize the same priniple. Similarly,

the works done in I/O prefething use the I/O idle time to prefeth the data in the memory. The prefething

tehniques desribed in web prefething shemes in the literature [44, 46, 27, 33, 29℄ typially prefeth the

most frequently visited page by the user. This is similar to our fous strategy, in the sense of assoiating

usage values with the objet spae instead of foussing on user trae analysis. Hene our idea ould be

extended to web prefething as well. Mean and exponential weight average strategies have been inspired

from [3℄.

8 Conlusions

With the inreasing amount of data being aumulated nowadays, the need for visually exploring large

datasets beomes more and more important. A viable way to ahieve salability in visualization is to integrate

visualization appliations with database management systems. A good memory management strategy should

be employed in order to redue the overhead of I/O intensive database aesses and thus make the use of

the persistent storage transparent to end-users. This paper presents a solution to this problem by:

1. Semanti ahing - Cahing queries rather than individual objets or pages of tuples.

2. Prefething - Use of prefething to further improve the performane of the ahing system.

23

The approah is being used in oupling XmdvTool, a visualization appliation for interative exploration of

multivariate data, with an Orale8i database management system.

Experiments for ahing and prefething have shown that ahing at the lient-side improves the per-

formane of visual environments to a great extent. To further redue the response time in the system, we

have designed a speulative non-pure prefether that brings data into memory when the system is idle. We

have introdued a family of �ve prefething tehniques based on our hypotheses about the harateristis of

di�erent user navigation styles. Our evaluation have shown that diretion strategy outperforms the other

strategies in terms of various parameters. Navigation patterns simulated data spei�ity as well as user

spei�ity. These simulated user sessions were on�rmed to be similar to that of atual users by the user

study.

Diretions for further researh inlude using data mining tools for analysis of user traes. If we an on-

�dently predit navigation patterns, then the task of extrating the exat parameters from a real navigation

sript beomes a tratable statistial problem. In the future, we plan to also onsider dynami hanges in

the data as well as rapid hanges of the interation tools.

Referenes

[1℄ C. Ahlberg and B. Shneiderman. Alphaslider: A ompat and rapid seletor. Proeedings of the ACM

Conferene on Human Fators in Computing Systems (CHI'94), p. 365-371, 1994.

[2℄ A. Aiken, J. Chen, M. Lin, and M. Spalding. The Tioga-2 database visualization environment. Leture

Notes in Computer Siene, 1183:181{??, 1996.

[3℄ J. Chim, M. Green, R. Lau, H. V. Leong, and A. Si. On ahing and prefething of virtual objets in

distributed virtual environments. In Proeedings of the sixth ACM international onferene on Multi-

media, 1998, pages 171{180, Sept. 1998.

[4℄ K. Cox, S. Hibino, L. Hong, A. Mokus, and G. Wills. Infostill:a task-oriented framework for analyzing

data through information visualization. In IEEE Information Visualization Symposium 1999, Late

Breaking Hot Topis, pages 19{22. ACM Press, Jan. 9{11 1999.

[5℄ K. M. Curewitz, P. Krishnan, and J. S. Vitter. Pratial prefething via data ompression. In Pro

of the 1993 ACM SIGMOD Intl Conf on Management of Data, Washington, D.C., May 26-28, 1993,

pages 257{266. ACM Press, 1993.

[6℄ K. M. Curewitz, P. Krishnan, and J. S. Vitter. Pratial prefething via data ompression. pages

257{266, 1993.

[7℄ F. D., L. A., S. D., and Y. K. Optimization of run-time management of data intensive web-sites. In

Proeedings of the 25th International Conferene on Very Large Data Bases (VLDB '99), pages 627{638,

San Franiso, Sept. 1999. Morgan Kaufmann.

24

[8℄ S. Dar, M. J. Franklin, B. T. J�onsson, D. Srivastava, and M. Tan. Semanti data ahing and replae-

ment. In Pro of 22th Intl Conf on Very Large Data Bases, Sept 3-6, 1996, Mumbai (Bombay), India,

pages 330{341. Morgan Kaufmann, 1996.

[9℄ M. Derthik, J. Harrison, A. Moore, and S. Roth. EÆient multi-objet dynami query histograms.

Pro. of Information Visualization, pages 58{64, Ot. 1999.

[10℄ D. DeWitt, D. Mayer, P. Futtersak, and F. Velez. A study of three alternative workstation-server

arhitetures for objet-oriented database systems. In Pro of VLDB'90 16th Intl Conf on Very Large

Data Bases, Brisbane, Australia, 1990. Morgan Kaufmann, 1990.

[11℄ Y. Fua, M. Ward, and E. Rundensteiner. Struture-based brushes: A mehanism for navigating hier-

arhially organized data and information spaes. IEEE Visualization and Computer Graphis, Vol. 6,

No. 2, p. 150-159, 2000.

[12℄ Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner. Hierarhial parallel oordinates. Tehnial Re-

port ??, Worester Polytehni Institute, Computer Siene Department, 1999.

[13℄ Y. H. Fua, M. O. Ward, and E. A. Rundensteiner. Hierarhial parallel oordinates for exploration of

large datasets. IEEE Pro. of Visualization, pages 43{50, Ot. 1999.

[14℄ Y. H. Fua, M. O. Ward, and E. A. Rundensteiner. Navigating hierarhies with struture-based brushes.

Pro. of Information Visualization, pages 58{64, Ot. 1999.

[15℄ P. Godfrey and J. Gryz. Answering queries by semanti ahes. In Pro of Database and Expert

Systems Appliations, Florene, Italy, pages 485{498, Sept. 1999.

[16℄ S. Hibino and E. A. Rundensteiner. MMVIS: A multimedia visual information seeking environment for

video analysis. In Proeedings of ACM CHI 96 Conferene on Human Fators in Computing Systems,

volume 2 of DEMONSTRATIONS: Video: Authoring and Indexing, pages 15{16, 1996.

[17℄ S. Hibino and E. A. Rundensteiner. Proessing inremental multidimensional range queries in a diret

manipulation visual query. In Pro of the Fourteenth Intl Conf on Data Engineering, Orlando, Florida,

USA, pages 458{465, 1998.

[18℄ S. Hibino and E. Rundersteiner. User interfae evaluation of a diret manipulation temporal visual

query language. In Pro of The Fifth ACM Intl Multimedia Conf (MULTIMEDIA '97), pages 99{108,

New York/Reading, Nov. 1998. ACM Press/Addison-Wesley.

[19℄ Y. Ioannidis. Dynami information visualization. SIGMOD Reord (ACM Speial Interest Group on

Management of Data), 25(4):16{16, De. 1996.

[20℄ C. Jeong and A. Pang. Reon�gurable dis trees for visualizing large hierarhial information spae.

Pro. of Information Visualization '98, p. 19-25, 1998.

[21℄ N. Jing, Y. Huang, and E. A. Rundensteiner. Hierarhial enoded path views for path query pro-

essing: An optimal model and its performane evaluation. IEEE Transation on Data and Knowledge

Engineering, 10(3):409{432, May 1998.

[22℄ D. Joseph and D. Grunwald. Prefething using Markov preditors. In Pro of the 24th Annual Intl

Symposium on Computer Arhiteture (ISCA-97), Computer Arhiteture News, pages 252{263, New

York, June 1997. ACM Press.

[23℄ S. Kaushik and E. Rundensteiner. SVIQUEL: A spatial visual query and exploration language. DEXA,

1460:290{299, 1998.

[24℄ A. M. Keller and J. Basu. A prediate-based ahing sheme for lient-server database arhitetures.

VLDB Journal, 5(1):35{47, 1996.

[25℄ A. Kemper and D. Kossmann. Dual-bu�ering strategies in objet bases. In Pro of VLDB'94 20th

Intl Conf on Very Large Data Bases. Morgan Kaufmann, 1994.

[26℄ A. Ki and A. E. Knowles. Adaptive data prefething using ahe information. In International Con-

ferene on Superomputing, pages 204{212, 1997.

[27℄ A. Kraiss and G. Weikum. Integrated doument ahing and prefething in storage hierarhies based

on Markov-hain preditions. VLDB Journal: Very Large Data Bases, 7(3):141{162, 1998.

25

[28℄ Krishnan and Vitter. Optimal predition for prefething in the worst ase. In SODA: ACM-SIAM

Symposium on Disrete Algorithms (A Conferene on Theoretial and Experimental Analysis of Disrete

Algorithms), 1994.

[29℄ T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring the bounds of Web lateny redution

from ahing and prefething. In Proeedings of the USENIX Symposium on Internet Tehnologies and

Systems (ITS-97), pages 13{22, Berkeley, De. 8{11 1997. USENIX Assoiation.

[30℄ Y. Leung and M. Apperley. A review and taxonomy of distortion-oriented presentation tehniques.

ACM Transations on Computer-Human Interation Vol. 1(2), June 1994, p. 126-160, 1994.

[31℄ B. Liphak and M. Ward. Visualization of yli multivariate data. Pro. of Visualization '97, Late

Breaking Hot Topis, p. 61-4, 1997.

[32℄ M. Livny, R. Ramakrishnan, K. S. Beyer, G. Chen, D. Donjerkovi, S. Lawande, J. Myllymaki, and R. K.

Wenger. DEVise: Integrated querying and visualization of large datasets. In Pro ACM SIGMOD Intl

Conf on Management of Data, May 13-15, 1997, Tuson, Arizona, USA, pages 301{312. ACM Press,

1997.

[33℄ E. Markatos and C. Chronaki. A top-10 approah to prefething on the web. Tehnial Report TR96-

0173, 1996.

[34℄ J. Y. Matthew O. Ward and E. A. Rundensteiner. Hierarhial exploration of large multivariate data

sets. Proeedings Dagstuhl '00: Sienti� Visualization, May 2001.

[35℄ R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefething and

ahing. In Proeedings of the Fifteenth ACM Symposium on Operating Systems Priniples, pages

79{95, Copper Mountain, CO, 1995. ACM Press.

[36℄ G. Robertson, J. Makinlay, and S. Card. Cone trees: Animated 3d visualization of hierarhial infor-

mation. Pro. of Computer-Human Interation '91, p. 189-194, 1991.

[37℄ P. G. Selfridge, D. Srivastava, and L. O. Wilson. Idea: Interative data exploration and analysis. In

Pro of the 1996 ACM SIGMOD Intl Conf on Management of Data, Montreal, Quebe, Canada, June

4-6, 1996, pages 24{34. ACM Press, 1996.

[38℄ B. Shneiderman. Designing the User Interfae: Strategies for E�etive Human-Computer Interation.

Addison-Wesley Publishing, third edition, 1997.

[39℄ B. Shneiderman. Tree visualization with tree-maps: A 2d spae-�lling approah. ACM Transations

on Graphis, Vol. 11(1), p. 92-99, Jan. 1992.

[40℄ M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and J. Wu. Tioga: Providing data management

support for sienti� visualization appliations. In 19th Intl Conf on Very Large Data Bases, 1993,

Dublin, Ireland, pages 25{38. Morgan Kaufmann, 1993.

[41℄ I. D. Stroe, E. A. Rundensteiner, and M. O. Ward. Minmax trees: EÆient relational operation support

for hierarhy data exploration. Tehnial Report TR-99-37, Worester Polytehni Institute, Computer

Siene Department, 1999.

[42℄ I. D. Stroe, E. A. Rundensteiner, and M. O. Ward. Salable visual hierarhy exploration. In Database

and Expert Systems Appliations, Greenwih, UK, pages 784{793, Sept. 2000.

[43℄ P. Sulatyke and K. Ghose. A fast multithreaded out-of-ore visualization tehnique. In 13th Intl

Parallel Proessing Symposium and 10th Symposium on Parallel and Distributed Proessing, Apr. 1999.

[44℄ N. Swaminathan and S. Raghavan. Intelligent prefething in www using lient behavior harateriza-

tion, 2000.

[45℄ E. Tanin, R. Beigel, and B. Shneiderman. Inremental data strutures and algorithms for dynami

query interfaes. ACM Speial Interest Group on Management of Data, 25(4), De. 1996.

[46℄ A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. The potential osts and

bene�ts of long term prefething for ontent distribution. Tehnial Report TR-01-13, UT, Austin,

2001., 2001.

[47℄ M. Ward. Xmdvtool: Integrating multiple methods for visualizing multivariate data. Pro. of Visual-

ization '94, p. 326-33, 1994.

26

[48℄ H. Wedekind and G. Zoerntlein. Prefething in realtime database appliations. In ACM SIGMOD,

1986.

[49℄ A. Woodru� and M. Stonebraker. Visual information density adjuster (VIDA). Tehnial Report

CSD-97-968, University of California, Berkeley, Nov. 24, 1997.

[50℄ Xmdvtool home page. http://davis.wpi.edu/~xmdv.

27

