
WPI-CS-TR-02-07 Feb 2002

Prefet
hing For Visual Data Exploration

by

Punit R. Doshi

Elke A. Rundensteiner

Matthew O. Ward

Daniel Stroe

Computer S
ien
e

Te
hni
al Report

Series

 ��

WORCESTER POLYTECHNIC INSTITUTE

Computer S
ien
e Department

100 Institute Road, Wor
ester, Massa
husetts 01609-2280

Prefet
hing For Visual Data Exploration

�

Punit R. Doshi, Elke A. Rundensteiner, Matthew O. Ward and Daniel Stroe

Department of Computer S
ien
e

Wor
ester Polyte
hni
 Institute

Wor
ester, MA 01609{2280

fpunitdjrundenstjmattg�
s.wpi.edu

Abstra
t

More and more modern
omputer appli
ations from business de
ision support to s
ienti�
 data analysis

utilize visualization te
hniques to support exploratory a
tivities for large datasets. Various tools have

been proposed in the past de
ade that help users better interpret data using su
h display te
hniques.

However, su
h exploratory visualization tools do not s
ale well when applied to huge datasets. Various

features provided by database management systems must be applied to su
h appli
ations to s
ale them

for huge datasets. To improve the performan
e of su
h visualization systems,
a
hing the data at
lient

side is ne
essary. We exploit semanti

a
hing [24, 8℄ for the advantages it o�ers over the traditional

a
hing systems. To further improve the performan
e, we propose to exploit
hara
teristi
s of visualization

environments to prefet
h the data for the visualization tools. We have in
orporated these features into

XmdvTool [47, 13, 14, 50℄, a freeware visual tool for multivariate exploration. We also
ompare an array of

di�erent prefet
hing strategies to determine their relative e�e
tiveness for both syntheti
 user tra
es and

real users of our system. Our results show that signi�
ant improvement
an be a
hieved for visualization

appli
ations by
a
hing and prefet
hing the data on the
lient-side.

Keywords: Semanti

a
hing, Prefet
hing, Large-s
ale multivariate data visualization, Exploratory data

analysis, Hierar
hi
al data exploration

�

This work is supported in part by several grants from NSF, namely, NSF grant IIS-9732897, NSF CISE Instrumentation

grant IRIS 97-29878, and NSF grant IIS-0119276.

1 Introdu
tion

Whether the domain is sto
k data, s
ienti�
 data, or the distribution of sales, visualization is be
oming

an in
reasingly popular te
hnique for data exploration. Humans
an often easily dete
t patterns, trends

as well as outliers in the underlying data when presented with visual depi
tions of the data [38℄, whi
h

may be more diÆ
ult to identify with automati
 te
hniques. The exploration of large information spa
es

remains a
hallenging task espe
ially with the growth of the World Wide Web and other huge repositories of

information. Visualization plays an important role in aiding users to �nd their way through su
h large data

sets. By presenting information visually and allowing dynami
 user intera
tion through dire
t manipulation

paradigms, it is possible to traverse larger information spa
es in a shorter time [38℄. In both a
ademia and

industry alike, signi�
ant e�ort has thus been spent on developing e�e
tive methods to display and visually

explore information [1, 40, 39, 37, 32, 16, 36, 20, 30℄.

Most visualization te
hniques nowadays still exe
ute on data that is �rst fet
hed from the �le system

into main memory. However, as data is being generated at an ever in
reasing rate and typi
al sizes of

datasets be
ome larger in the order of giga-bytes,
urrent datasets
an no longer be held entirely in main

memory, rendering many
urrent visualization tools useless.

We thus must s
ale
urrent visual tools to work with large data sets. Issues related to eÆ
ient storage

and retrieval of data, while often ignored in the
ontext of visualization appli
ations, are
riti
al for the

su

ess of modern exploration tools. In su
h intera
tive environments the user must get the response to his

or her navigation requests with little or no time lag. Furthermore, users wish to intera
tively explore the

data using visual navigation tools. Ea
h small movement in the user's navigation tool may mean exe
uting

a
ompletely new query to retrieve the sele
ted data, potentially resulting in a high data a

ess rate.

In this work, we propose to exploit
hara
teristi
s of visualization environments to improve the per-

forman
e of visualization tools. An appropriate memory organization is also one
riti
al
omponent in

intera
tive appli
ations, sin
e it in
uen
es the performan
e of the subsequent operations of maintaining the

a
he. In this vein, we apply semanti

a
hing te
hniques [24, 8℄ for the advantages it o�ers, namely
exi-

bility of grouping of data in the
a
he to be adjusted to the needs of the
urrent query and saving lookup

overhead in the
a
he due to the
ompa
t query-based organization of the
a
he
ontent.

In addition, to further improve the performan
e of our system, we have designed several methods for

prefet
hing data tuned to visualization appli
ations. These strategies, working hand in hand with the query-

based
a
hing s
heme, exploit the
hara
teristi
s of the visualization environment su
h as the in
remental

re�nement nature of queries formulated via a visual query tool in order to optimize the
ontents of the

1

a
he. We support features ne
essary for visualization, by making our prefet
hing solutions spe
ulative and

non-pure.

The proposed
a
hing and prefet
hing te
hniques have been in
orporated into XmdvTool [47, 13, 14, 50℄,

a freeware visual tool for multivariate exploration. We have also ran experiments to evaluate the performan
e

of the prefet
hing strategies both with various syntheti
 user tra
es as well as with real users of our system.

Results show that the proposed strategies indeed improve the performan
e of the system, making visual

exploration of large-s
ale data pra
ti
al.

In summary, our main
ontribution
onsists of developing a set of te
hniques that together
an be

applied to intera
tive visualization tools in order to enable users to explore large datasets. We have designed

a high-level
a
he poli
y that redu
es the laten
y of the system by in
rementally loading and maintaining

data in the memory bu�er. When the system is idle, a prefet
her will bring data into the
a
he that is likely

to be used next. Our experiments
on�rm the important role of prefet
hing in visualization appli
ations and

demonstrate that the bene�t of using prefet
hing signi�
antly ex
eeds the result gained by using
a
hing

only.

Se
tion 2 dis
usses the
hara
teristi
s of the intera
tive visualization environments. Se
tion 3 explains

our approa
h to semanti

a
hing, while Se
tion 4 introdu
es our prefet
hing strategies. In Se
tion 5 we

dis
uss the XmdvTool visualization system, while Se
tion 6 fo
uses on the experimental evaluation of our

prefet
hing strategies. Se
tion 7 presents the work related to our resear
h and �nally we state
on
lusions

and some areas for future work in Se
tion 8.

2 Multivariate Data Visualization

Here we brie
y introdu
e XmdvTool, an exploration tool for multivariate data, whi
h represents the driving

for
e motivating the need for this work as well as representing the testbed into whi
h we in
orporate and

then evaluate our solutions. XmdvTool is a visualization pa
kage developed at WPI [50℄ designed for the

exploration of multivariate data whi
h provides four distin
t visualization te
hniques and support for
lus-

tering and analyzing hierar
hies [47, 13, 14℄. The tool provides four distin
t visualization te
hniques (parallel

oordinates, s
atterplot matri
es, glyphs, and dimensional sta
king) with intera
tive sele
tions and linked

views, as depi
ted in Figure 1.

The main idea of XmdvTool is to help users to understand the data by �rst
lustering the data points

in the navigation spa
e based on a distan
e fun
tion, and then to asso
iate aggregate information with the

resulting
lusters [47, 31, 34, 12℄. The
lustering pro
ess generates a hierar
hy in whi
h di�erent levels

2

on
eptually represent di�erent degrees of abstra
tion of the data. Brushing then
onsists of setting the

sele
tion parameters and in spe
ifying the desired level of detail at whi
h data is displayed.

Figure 1: Various displays in XmdvTool. Figure 2: Stru
ture-based brush.

In order to improve the support for visual navigation a
ross large datasets we have designed the

stru
ture-based brush [11℄ tool shown in Figure 2 that supports hierar
hi
al exploration of data for all

four multi-resolution visualization te
hniques. The data
an then be explored by intera
tively sele
ting and

displaying points at di�erent levels of detail of the
luster hierar
hy. We term this exploration pro
ess hi-

erar
hy navigation. The user navigation operations expressed by our brushing tool interfa
e (Figure 2) get

translated into queries to the database. Brushing tool marked `e' is used to sele
t
luster(s) to be displayed,

while tool marked `b' is used to sele
t the level of detail for the sele
ted
luster(s). A user
an sele
t data

by moving the brush marked as `e' horizontally or moving the brush marked as `b' verti
ally, as shown in

Figure 2.

While exploring the data, a user may navigate by sliding the extents of `e' to sele
t a parti
ular
luster

in the tree hierar
hy, or by moving verti
ally the level brush `b' to display data at a di�erent level of

detail. Thus the queries passed to the database are
ontiguous rather than ad-ho
, sin
e the visual interfa
e

provides limited and
ontrolled means of expressing navigational requests from the users. Su
h
ontiguity of

user queries allows us to
a
he the queries in main memory, as there is a high probability of a partial query

result from a prior query still being relevant (and thus in our
a
he) for the new user request.

Lastly note that users' exploratory movements are somewhat more predi
table when they explore the

3

data using su
h visualization tools, as su
h explorations are di�erent from say, random a

esses via an ad-ho

SQL query based interfa
e. This gives us the hint that the use of prefet
hing in su
h appli
ations may be a

suitable me
hanism for improving the performan
e of visualization appli
ations.

Sin
e the user will be examining the visual displays for interesting patterns in the data, there typi
ally

would be delays between two user operations. These delays between user operations allow us to prefet
h the

highly probable data into the main memory before the user expli
itly spe
i�es her next request.

3 Semanti
 Ca
hing for Visualization Appli
ations

Semanti

a
hing is a popular
a
hing strategy proposed in re
ent years [24, 8℄ for providing eÆ
ient support

for a

ess to data. In
ontrast to traditional
a
hing s
hemes [10, 25℄, it
a
hes query des
riptors rather than

pages of data or individual obje
ts. It provides the following bene�ts over the traditional synta
ti

a
hing

approa
hes:

� adjusts grouping of queries to the requirements of the in
oming query so that no irrelevant data is

a
hed along with the relevant ones, thus redu
ing overhead in managing the
a
he,

� minimizes the
ost of
a
he lookup due to the
ompa
t representation of the
a
he
ontent based on

semanti
 query des
riptors,

� adapts dynami
ally to the patterns of user queries rather than just
a
hing stati

lusters of tuples.

A semanti

a
hing s
heme must typi
ally handle the following three tasks. First, it has to be able to

de
ide whether the answer for a query resides in the
a
he or not by
omparing the in
oming user query with

the
a
hed query des
riptors,
alled query
ontainment. Se
ond, the partial answer available in the
a
he

must be extra
ted by formulating appropriate probe queries. Third, it must determine any remaining query

that needs to be passed to the server to fet
h the remaining data. Although
on
rete steps towards �nding

ommon te
hniques that work in the general
ase have been taken [15℄, the task of resolving these issues is

still generally performed on an appli
ation-by-appli
ation basis.

3.1 Containment Issues

Semanti

a
hing s
hemes exploit the
apability of semanti
 des
riptors to des
ribe the
ontent of the
a
he

in a
on
ise form. This allows for a fast look-up, sin
e only a few set-based operations are performed instead

4

of separately
he
king the
ontainment for all individual obje
ts
ontained in the
a
he against the user

query. However, these approa
hes then must assume either expli
itly or impli
itly the following. First, that

it is always possible to test whether the answer for the query
an be found in the
a
he (i). Se
ond, that it is

possible to extra
t the answer from the
a
he (ii). And third, that it is possible to
ompute the di�eren
e (at

the query level) between the requested query and the
a
he predi
ates (iii). These assumptions de�ne the

area of appli
ability of semanti

a
hing, sin
e they are not always true (see for instan
e [15℄). In our visual

appli
ation, we are able to map our re
ursive hierar
hi
al queries into range queries and then
an address

these three questions.

3.2 Operational Model of Semanti
 Ca
hing

An operational model for our semanti

a
hing is presented in Figure 3. In this model, the
lient pro
esses a

stream of queries Q

1

; : : : ; Q

N

. Let C

i

= C

i

1

[: : :[C

i

k

denote the
a
he
ontent in terms of queries at the time

query Q

i

is issued, Q

0

= ;, and O(C

i

) = O(C

i

1

); : : : ; O(C

i

n

) denote the obje
ts that
orrespond to the
a
he

des
riptor C

i

. The
a
he des
riptors C

i

j

are queries, but
ould in prin
iple be any form of set des
riptors.

Obje
ts have individual repla
ement values, in our
ase determined by some probabilisti
 fun
tion.

Figure 3: Operational Model for Semanti
 Ca
hing.

Pro
essing query Q

i

involves the following steps:

� Compute the probe query P

i

= Q

i

\ C

i

= (Q

i

\ C

i

1

) [: : : [(Q

i

\ C

i

k

).

� Extra
t from
a
he obje
ts O(P

i

) = O(P

i

1

); : : : ; O(P

i

m

) that
orrespond to the
onstraint formula P

i

,

i.e., answer Q

i

partially from the set of tuples that satisfy P

i

.

� Compute the remainder query R

i

= (Q

i

� C

i

1

) [: : : [(Q

i

� C

i

k

).

5

� Fet
h the tuples O(R

i

) that satisfy the
onstraint formula R

i

from the server from C

i

to C

i+1

. Update

C

i

to re
e
t the
hanges; this may result in unifying (merging) des
riptors.

� If the
a
he does not have enough free spa
e, dis
ard obje
ts O

i

j

in the de
reasing order of their repla
e-

ment value until enough spa
e is free. Adapt C

i

to re
e
t the
hanges; this may result in fragmenting

(splitting) des
riptors.

� Update the repla
ement values of all obje
ts O

i

based on R

i

, P

i

and the repla
ement poli
y.

3.3 Repla
ement Issues

The �rst step in implementing a repla
ement poli
y is to provide an estimation strategy able to measure the

likelihood that an obje
t will be needed in the near future. The estimation strategy, also
alled a predi
tor, is

usually based on heuristi
s, probabilisti
 models, or some re
orded statisti
s. In our
ase we use a probability

fun
tion. The probability fun
tion also de�nes a partition on the set of obje
ts.

The main task of a
a
he repla
ement poli
y is to �nd the entries in the bu�er that have the lowest

probability of being used and to remove them when more room is needed. This operation needs to be

eÆ
ient, sin
e it o

urs frequently. When new obje
ts are brought in they have to
omply with the internal

a
he organization.

When a request is issued by the GUI, a
ontainment test is performed. The system �rst
he
ks whether

the requested data resides entirely in memory or not. In
ase it doesn't, a
ompensation query has to be

sent to the loader, an agent that fet
hes the data from the persistent storage.

In
on
lusion, the bu�er a

ess operations
an be summarized as:

A: Remove old obje
ts. Get the obje
ts with the lowest probability that reside in the bu�er (and further

remove them one at a time when more room in the bu�er is needed).

B: Retrieve new obje
ts. Pla
e an obje
t from the database
ursor into the memory bu�er (and rehash

the bu�er entry).

C: Display a
tive set. Get those obje
ts from the bu�er that form the a
tive set (and send them to the

graphi
al interfa
e to have them displayed).

D: Re
ompute probabilities. Re
ompute the probabilities of the obje
ts in the bu�er on
e the a
tive

window gets
hanged (to ensure a

urate predi
tions in the future).

6

E: Test
ontainment. Test whether the new a
tive set fully resides in the bu�er and get the missing

obje
ts (if any) from the database (when a new request is issued).

Unlike semanti

a
hing, we have made the
a
hing system
exible enough to repla
e obje
ts in the

a
he rather than queries in order to ensure that the
a
he is full almost all the time. This also adds an

additional overhead of keeping probability values for every obje
t rather than individual query.

4 Prefet
hing Strategies

To further redu
e system laten
y, we use a spe
ulative prefet
her that brings data into memory when the

system is idle. The prefet
her is based on the property of exploratory systems that queries remain \lo
al",

i.e., given the set of
urrently sele
ted obje
ts we have a small number of
hoi
es for whi
h obje
ts
an

be sele
ted next. The property therefore provides \impli
it hints" to the system. Additional hints
an

be extra
ted from the data set
hara
teristi
s, its usage over time and the user's exploration patterns as

well. In what follows, we dis
uss di�erent prefet
hing strategies and how we exploits the
hara
teristi
s of

visualization tasks.

4.1 Chara
teristi
s of our Prefet
her

In visualization appli
ations, users spend a signi�
ant amount of time interpreting the graphi
al presentation

of the sele
ted data, and the pro
essor and I/O system are typi
ally idle during that period. If the
omputer

an predi
t what data the user will request next, it
an start fet
hing that data into the
a
he (if not already

there) before the user asks for it. Thus, when the user requests that data later, he or she per
eives a faster

response time.

In some intera
tive database appli
ations, there is suÆ
ient time between user requests for su
h prefet
h-

ing, and therefore the amount of data that
an be prefet
hed is limited only by the
a
he size. This situation

is referred to as pure prefet
hing and
onstitutes an important theoreti
al model in analyzing the bene�t of

prefet
hing. In our target visualization appli
ation and many others however, prefet
hing requests are often

interrupted by further user requests, resulting in less data being prefet
hed at a time. In this
ase of non-pure

prefet
hing, we also need to
onsider issues of
a
he repla
ement. We thus
onvert pure prefet
hing strategies

into pra
ti
al non-pure ones by
ombining them with
a
he repla
ement strategies. In [5℄ for instan
e, a pure

prefet
her is used with the least re
ently used (LRU)
a
he repla
ement strategy, and a signi�
ant redu
tion

in the page fault rate was shown. A multi-threaded implementation of a non-pure prefet
her is reported in

7

[43℄. There, the laten
y of the disk operations is improved when using threads.

Visualization appli
ations require prefet
hing strategies to be spe
ulative, non-pure, and adaptive as

explained below. Prefet
hing must be spe
ulative (on-line) as de
isions must be based stri
tly on the history.

Without apriori knowledge or statisti
s of the user request patterns, as is the
ase of most intera
tive

appli
ations [7℄, prefet
hing must be spe
ulative. An important requirement of spe
ulative prefet
hing is

that the time spent on making prefet
hing de
isions must be minimal. Prefet
hing must be adaptive sin
e

the prefet
hing poli
y has to
hange due to run-time events. As the exploration goals and thus the a

ess

behaviour of a user may vary over time,
hanging when to issue prefet
hing requests or the amount of data

to be prefet
hed may in
uen
e the performan
e of prefet
hing.

Figure 4: Hierar
hy of Prefet
hing Strategies.

We designed and implemented several spe
ulative, non-pure strategies for prefet
hing, as des
ribed

below in order to perform
omparative evaluation. As shown in Figure 4, our approa
h is to generate

a hierar
hy of prefet
hing strategies, based on di�erent prefet
hing hints. We designed �ve prefet
hing

strategies: random (S1), dire
tion (S2), fo
us (S3), mean (S4), and exponential weight average (S5). In

experiments, we also
onsidered the
ase of not prefet
hing, the
ase referred to as S0.

4.2 Random Strategy

As shown in Figure 5, strategy S1 (random) is based on randomly
hoosing the dire
tion in whi
h to prefet
h

next. This strategy is appropriate when the predi
tor either
annot extra
t prefet
hing hints or provides

hints with a low
on�den
e measure. This is utilized initially when no other knowledge is available.

8

Figure 5: Random Strategy. Figure 6: Dire
tion Strategy.

4.3 Dire
tion Strategy

Strategy S2 (dire
tion) implies that the most likely dire
tion of the next operation
an be determined. Based

on user's past explorations, the predi
tor would assign probabilities to all the four dire
tions. The prefet
hing

strategy (S2) then implies to \prefet
h data in this given dire
tion". The hypothesis that the next dire
tion

an be determined is not arbitrary. It is intuitive, for instan
e, that the user will
ontinue to use the same

manipulation tool for a while before
hanging to another one and (in our system, ea
h manipulation tool

happens to pre
isely
ontrol one dire
tion only). As depi
ted in Figure 6, if (m� 1) and m are the last two

lo
ations navigated by the user, then the dire
tion strategy may predi
t (m+ 1) as the next lo
ation to be

visited by the user.

4.4 Fo
us Strategy

Strategy S3 (fo
us) uses information about the most probable next dire
tion (by keeping tra
k of user's

previous movement) as well as hints about regions of high interest in the data spa
e as identi�ed due to

prior navigations of this same data by other users. This strategy will
ontinue to prefet
h data in the given

dire
tion using the above mentioned heuristi
s in Se
tion 4.3. However, when a hot region is en
ountered the

prefet
her adapts from the default dire
tion prefet
hing and instead adapts prefet
hing in that new dire
tion.

The reason is that the user will likely stop there to explore or at least spend more time in that region.

9

Figure 7: Hot Regions (Fo
us Points).

4.5 Ve
tor Strategies

All the previous strategies do not take advantage of the history of past user explorations. The next two

strategies are ve
tor strategies that look at past user explorations.

In this model, we use a three-dimensional ve
tor to indi
ate the movement of the users, one for the

start of brush, one for the width of brush and the last one for the level of detail. To enable prefet
hing, we

maintain user tra
e for ea
h user,
ontaining the set of histori
al movement ve
tors, m

1

;m

2

; :::;m

n�1

. Ea
h

ve
tor is
al
ulated from the
orresponding viewer's lo
ation and orientation,
ontaining a move dire
tion

and a move distan
e. We predi
t the n + 1st movement ve
tor m

n+1

and prefet
h obje
ts that would be

required if the user goes that way. This work is similar to a ve
tor model of prefet
hing obje
ts in distributed

virtual environments introdu
ed by Chim et al [3℄. Basi
ally, it looks at ea
h movement of the viewer as

a ve
tor and
omputes the average of the previous movement ve
tors to predi
t the next movement. They

propose three di�erent methods to predi
t the next lo
ation of the viewer,
alled the mean, window and

exponential weighted average methods.

We utilize two di�erent s
hemes to predi
t the next lo
ation of the viewer: mean (S4) and exponential

weighted average (S5), as depi
ted in Figures 8 and 9. We are embedding the window strategy into the

previous strategies S4 and S5 by
onsidering past user operations equal to the window size. Our experiments

dis
ussed in Se
tion 6 have shown that large window size results in wrong data being prefet
hed.

In the mean s
heme, the next movement ve
tor is predi
ted to be the average of the previous nmovement

ve
tors. The intuitive meaning of the mean s
heme depi
ted in Figure 8 is that we predi
t the (n + 1)st

movement ve
tor by averaging the previous n (in this example, n = 3) movement ve
tors. The magnitude

of the movement is determined by the average of the magnitudes of the previous movements. Let us denote

the movement ve
tor in the nth step by m

n

and the predi
ted movement ve
tor for the next step by m

n+1

.

10

Figure 8: Mean Strategy. Figure 9: EWA Strategy.

The predi
ted ve
tor will then be:

m

n+1

=

P

n

i=1

m

i

=n (1)

To adapt qui
kly to
hanges in viewer's moving patterns, our se
ond s
heme assigns a weight to ea
h previous

movement ve
torm

i

so that re
ent ve
tors have higher weights and the weights tail o� as the ve
tors be
ome

aged. A parameter in the s
heme is the exponentially de
reasing weight, �. The most re
ent ve
tor will

re
eive a weight of 1; the previous ve
tor will re
eive a weight of �; the next previous one will re
eive a weight

of �

2

, and so on. A high � will give similar weights to all the movements and predi
t future movements as a

fun
tion of many movements, in
luding the aged ones. By
ontrast using a low �, aged movements will fall

o� qui
kly and the predi
tion is biased towards
ontributions from re
ent movements. The predi
ted ve
tor

is:

m

n+1

=

P

n

i=1

�

n�i

m

i

=S

n

(2)

S

n

=

P

n

i=1

�

n�i

(3)

It
an be shown that for both the mean and EWA strategies, the size of the history ve
tors (window) must

be small. Larger values of the window tend to lower the valid data being fet
hed.

In Se
tion 6 we perform experimental studies
omparing these strategies. The results
on�rm our

general assertion that prefet
hing is more eÆ
ient the more information we have available. Thus,
hanging

the prefet
hing strategy adaptively as more patterns are dis
overed is likely to improve the overall system

performan
e.

11

5 A Visualization Appli
ation Case Study: Applying Ca
hing and

Prefet
hing Strategies to XmdvTool

Given that one general algorithm for testing the
ontainment or for extra
ting the answers from a
a
he

do not exist (sin
e the problems are unde
idable), implementation of a semanti

a
he therefore remains

a
hallenge for most appli
ations. In what follows we present an implementation of our semanti

a
hing

s
heme in XmdvTool. We �rst des
ribe the visualization environment, then outline the
hara
teristi
s of the

queries and obje
ts that we deal with, dis
uss the repla
ement fun
tion and show why it is non-fragmenting.

Finally, we introdu
e the XmdvTool
a
he data stru
tures main memory operations.

5.1 Obje
ts and Queries

Previous resear
h [41℄ has shown that hierar
hi
al exploration via our brush in XmdvTool [11℄
an be modeled

as a two-dimensional exploration in whi
h a sele
tion window,
alled the a
tive window, slides over an n�m

grid of integers,
alled the navigation grid. The obje
ts (the data points or data
lusters subje
t to analysis)

have a spatial representation that makes them sele
table by the a
tive window.

Obje
ts are the data points or data
lusters to be analyzed, to whi
h some pre
omputed information is

assigned in order to fa
ilitate their visual manipulation. As shown in [41, 42℄, this additional information,

onsisting of a level value and two extents values, makes the obje
ts behave like small re
tangles (e

1

; e

2

)�L =

(e

1

; e

2

; L), yet still preserving their hierar
hi
al stru
ture (Fig. 10).

Obje
ts are thus similar to a
tive windows: they are both re
tangular regions of the form (e

1

; e

2

)� L.

The
ontainment test of whether an obje
t belongs to the a
tive window or not redu
es to an in
lusion test

between re
tangles. Fig. 11 presents an example SQL query assuming that our N � dimensional data is

stored in a hierar
hi
al table
alled HIER(e

1

; e

2

; L; dim

1

; dim

2

; :::; dim

N

), where e

1

and e

2

are the extents,

L the level of detail, and dim

1

; dim

2

; :::; dim

N

the multidimensional values of the data points.

5.2 Repla
ement Fun
tion

The repla
ement values are given by a probability fun
tion that measures the likelihood that an obje
t will

belong to the a
tive set in the near future. The fun
tion is based on a set of probability values assigned to

the operations that
an
hange an a
tive window.

Let's
onsider a navigation grid � = (1::I)� (1::K), where I and K are natural numbers. Ea
h region

12

X2X1

L

sele
t *

from hier

where e_1 >= :x_1

and e_2 <= :x_2

and L = :L;

Figure 10: Obje
ts as re
tangles in XmdvTool

and an a
tive window A = (x

1

; x

2

; L).

Figure 11: SQL Queries in XmdvTool for a
tive

window A = (x

1

; x

2

; L).

(e

i

; L

k

) from the navigation grid has an asso
iated probability P(m; i; k) that measures the likelihood that

the point will belong to the a
tive set after the user's next m operations. Also, a probability P

�

(m; i; k) will

measure the likelihood that the point will belong to the a
tive set at any time during the next m operations.

Obviously, we have: P

�

(m; i; k) = �

m

t=0

P(t; i; k), where � is a probability sum, i.e., p

1

� p

2

= p

1

+ p

2

� p

1

p

2

(from the prin
iple of in
lusion and ex
lusion).

The lookahead parameter (LA) is the number of operations
onsidered in advan
e when
omputing the

probabilities P and P

�

, i.e., the parameter m from the de�nitions above. The LA parameter di
tates how

many operations the predi
tor will predi
t. In general, the bigger LA is the more spe
ulative the system

be
omes and thus the more errors may o

ur. We used in our implementation an LA equal to 1.

In our
ase we have six possible operations (restri
ting or enlarging any of the three a
tive window's

parameters). Let us assume, for example, that we have an a
tive window ! = (i

1

; i

2

; k) and from this

on�guration, going left with i

1

is 50% probable, going up with k is 25% probable, and so on. Then obje
ts

in (i

1

; i

2

; k) will have a probability of 1.0, obje
ts in (i

1

� 1; i

1

; k) will have a probability of 0.50, obje
ts in

(i

1

; i

2

; k � 1) a probability of 0.25, and so on.

5.3 The Ca
he Data Stru
ture

Let us
onsider the navigation grid displayed in Fig. 12. We have here twelve regions of equal probability,

and the a
tive window
overs the two middle ones. For simpli
ity we
onsider that only one obje
t resides in

13

Figure 12: Navigation Grid. Figure 13: Ca
he Contents.

ea
h region. We also number the obje
ts from 1 to 12. The pi
ture presents only three levels (1, 2, and 3).

Assume probabilities are assigned to ea
h region and impli
itly to ea
h obje
t, based on a \operation-driven"

probability model. Thus, obje
ts 6 and 7 have a probability of 1.0 as they are in the a
tive window. There

is 40%
han
e that the window expands to the left, and so on. The
orresponding
a
he
ontent is shown in

Figure 13. In this example a probability pre
ision of 0.1 is assumed, and
onsequently 10 probability-based

bu
kets are used.

5.4 Ar
hite
ture of Visualization System

The system ar
hite
ture depi
ted in Fig. 14 illustrates the key modules and intera
tions of our XmdvTool

system that in
orporates all the ideas des
ribed in this paper. First, as shown on the top of the �gure, an

o�-line pro
ess transforms the hierar
hi
al data into MinMax trees [41, 42℄, a pre
oded indexing stru
ture

allowing us to express hierar
hi
al navigation as range queries as explained in Figure 11. The prepared data

is then loaded into the database. The pro
ess implements the MinMax tree approa
h, the details of whi
h

are explained in [41℄. Information about the database s
hema is used later during exploration.

When exploring, users intera
t via the graphi
al interfa
e (GUI) shown on the right side. Details of

the visual exploration interfa
e have been given in Se
tion 2. The visual navigation operations
orrespond

to
hanges in the a
tive set. When a
hange in the a
tive set is dete
ted, a produ
er thread is
reated,

while the GUI itself a
ts as
onsumer. Basi
ally, two threads operate
on
urrently on the bu�er data: the

onsumer and the produ
er. The a
tive set information from the GUI is passed to a rewriter. The rewriter

onsults the semanti
s of the bu�er, expressed by a bu�er query, and then generates a set of sub-requests

to in
rementally adjust the data in the bu�er. Ea
h sub-request is transformed into an SQL query by the

translator, based on the database s
hema. The queries are passed to the loader, whi
h fet
hes the ne
essary

obje
ts from database and pla
es them in the bu�er. From here, the reader reads them and sends them to

14

Figure 14: System ar
hite
ture. Dashed-line re
tangles show the separation between the on-line and the

o�-line
omputation. Solid-line re
tangles represent the modules. Squares represent meta-knowledge. Solid

arrows show the
ontrol
ow.

the display. On
e the reader is done with the reading of data, if time permits, the prefet
her will signal the

rewriter to prefet
h the next most probable data depending on the information that it has been gathered

over time.

6 Experimental Evaluation

6.1 Settings

All experiments were
ondu
ted on an Alpha v4.0 878 DEC station, running Ora
le 8.1.5. We used C as

the host language and embedded SQL statements for a

essing the data in the database. Throughout all

phases of testing we used di�erent types of datasets, both real and syntheti
, with always
onsistent results.

The eleven datasets we used have between 128 (same as the well-known IRIS ben
hmark) and 10 million

datapoints, between 8 and 20 dimensions, and between 1,024 (2

10

) and 65,536 (2

16

) obje
ts as the maximum

number of points displayed at a time.

We have experimented with di�erent randomly generated
hara
teristi
s of the dataset, su
h as the

number of fo
us regions, delay fa
tor, \keep dire
tion" fa
tor, and some system parameters su
h as the

prefet
hing strategy, hints to the query optimizer, and size of the data. In all experiments we have used

navigation s
ripts
ontaining between 300 and 3000 user operations. For syntheti
 users, these s
ripts were

15

generated by a pseudo-random number generator
ode that mimi
ked the a
tual user tra
es we had observed.

We
on�rmed the validity of the generated s
ripts by also experimenting with tra
es
olle
ted from various

users of our system.

The values we measured during the experiments in
luded number of obje
ts displayed during a navigation

session, query-based hit ratio, obje
ts-based hit ratio, and laten
y. The display requests are queued and served

when the system is idle. However, if two display requests
ome from the same GUI widget, the older one

is
an
elled. This behavior may result in lost information, when the display requests are very frequent and

thus too
lose in time to one another. This is why we have
onsidered the number of obje
ts a
tually being

displayed as a measure of the visual quality. The hit ratio is the number of obje
ts already in the
a
he

over the total number of obje
ts requested from the ba
k-end. The laten
y is the total time, expressed in

milli-se
onds, that the user had to wait for her requests to be served, i.e., the time required to fet
h the data

after the user-query has arrived. It also in
ludes the time in whi
h the user had to wait, but did not get the

reply as the query was
an
elled be
ause of the navigation speed.

6.2 Experiments with Hot Regions

For this experiment, the user simulation �les were generated varying the number of hot regions from 1

to 5. Figure 15 shows the performan
e of various strategies as the number of hot regions in
reases. The

performan
e is measured on the Y-axis as normalized laten
y. Normalized laten
y for Laten
y

n

is given by

the formula:

Laten
y

n

=

A
tualLaten
y�MinLaten
y

MaxLaten
y

where MinLaten
y and MaxLaten
y are the minimum and maximum value of laten
y from the observed

laten
y values.

Figure 16 is similar to this
hart ex
ept that the performan
e is shown to indi
ate the performan
e in

terms of per
entage from zero laten
y. This normalized laten
y Laten
y

n

is given by the formula:

Laten
y

n

=

A
tualLaten
y

MaxLaten
y

As the number of hot regions in
reases, most of the dire
tion-oriented prefet
hing strategies deteriorate in

performan
e as the user input tends to be a bit random in nature when the person tries to move in the

dire
tion of hot regions most of the time. The performan
e of the fo
us strategy is slightly lower initially

be
ause most of the time the user is not moving in the dire
tion of the hot regions. Then the fo
us prefet
hing

strategy improves in performan
e as it prefet
hes in the dire
tion of those hot regions, thus prefet
hing the

orre
t data a higher per
entage of the time.

16

Latency v/s Number of Hot Regions

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5
Number of Hot Regions

N
o

rm
a
li
z
e
d

 L
a
te

n
c
y No Prefetch

Random

Direction

Focus

Mean

EWA

Latency v/s Number of Hot Regions

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1 2 3 4 5
Number of Hot Regions

N
o

rm
a
li
z
e
d

 L
a
te

n
c
y

No
Prefetch
Random

Direction

Focus

Mean

Figure 15: Performan
e vs. Number of Hot Re-

gions (Normalized for Zero Laten
y).

Figure 16: Performan
e vs. Number of Hot Re-

gions.

Hit Ratio v/s Number of Hot Regions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
Number of Hot Regions

O
b

je
c

t
H

it
 R

a
ti

o

No Prefetch

Random

Direction

Focus

Mean

EWA

Latency v/s 'Keep Direction' factor

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
'Keep Direction' factor

N
o

rm
a

li
z
e

d
 L

a
te

n
c

y

No Prefetch

Random

Direction

Focus

Mean

EWA

Figure 17: Hit Ratio vs. Number of Hot Regions

(Normalized for Zero Laten
y).

Figure 18: Performan
e vs. `Keep Dire
tion' fa
-

tor.

As shown in Figure 17 as the number of hot regions in
reases, the obje
t hit in the
a
he redu
es for

all the strategies. The reason for this is that the user input tends to be
ome more random in nature as he

moves towards the hot regions that are
lose to the
urrent navigation window. Note that there is less e�e
t

on the fo
us prefet
hing strategy
ompared to the other strategies, as it pla
es emphasis on prefet
hing in

the dire
tion of the hot regions. Also note that all the prefet
hing strategies have a higher hit ratio than not

applying any prefet
hing, justifying the usefulness of prefet
hing for visual appli
ations.

17

6.3 Experiments with User Dire
tionality

The user simulation �les were generated for varying navigational strategies, say from random dire
tion

hanges to using the same dire
tion most of the time. Figure 18 shows the variation in the performan
e of

all the strategies (on the Y-axis) when we have navigation whi
h is more or less dire
tional (on X-axis). The

performan
es of most of the strategies, su
h as dire
tion, fo
us, mean and ewa, improve, as most of them

are dire
tional in nature. Although the fo
us strategy also improves somewhat in performan
e, it still does

not perform better than the dire
tion strategy as it tries to get data in the dire
tion of the hot regions. Also

note that the performan
e of the random strategy gets worse as the user be
omes more dire
tional as it does

not exploit this newly gained knowledge. We utilize the dire
tion strategy as the representative prefet
hing

strategy for the rest of this se
tion as it is an overall good performer
ompared to the other strategies.

Hit Ratio v/s Delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8
Delay between User Operations

(seconds)

O
b

je
c

t
H

it
 R

a
ti

o

No Prefetch

Prefetch

Objects Displayed v/s Delay

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8

Delay between User Operations (seconds)

T
o

ta
l

O
b

je
c

ts
 D

is
p

la
y

e
d

No Prefetch

Prefetch

Figure 19: Hit Ratio vs. Delay. Figure 20: Obje
ts Displayed vs. Delay.

Varying delay parameters. The user simulation �les were generated by giving delay fa
tors to the

original user input �le, and then we measured various output parameters, in
luding the hit ratio, number of

obje
ts displayed and laten
y. The laten
y did not require normalization as the navigation path in the �les

remained the same. As Figure 19 points out, the hit ratio in
reases with the in
rease in the delay between

two
onse
utive user operations as the prefet
her gets more time to prefet
h the data. The same is true for

the non-prefet
hing s
heme as the data fet
hing gets aborted fewer times.

As shown in Figure 20, when the user qui
kly manipulates the intera
tion tools to navigate, many of the

queries get
an
elled as the user requires new data, and the old data being fet
hed is no longer required. As

the delay between the user operations in
reases, the amount of data displayed in
reases as the
an
ellation

of the queries redu
es. This improves the performan
e of the prefet
her, as the gaps between the user queries

in
reases and it gets more time to prefet
h data.

18

Latency v/s Delay

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5 6 7 8

Delay between User Operations (seconds)

L
a
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
)

No Prefetch

Prefetch

Effectiveness of Prefetcher

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8
Delay between User Operations (seconds)

P
e
rc

e
n

ta
g

e
 I
m

p
ro

v
e
m

e
n

t
(%

)

Figure 21: Laten
y vs. Delay. Figure 22: E�e
tiveness of Prefet
her vs. Delay.

In Figure 21, the X-axis shows the delay between the user operations and the Y-axis depi
ts the laten
y.

We measure the time taken for the overall fet
hing task, whi
h in
ludes both the time taken for queries that

were fet
hed from the database and the time when queries were not fet
hed be
ause of the user speed. When

measuring the laten
y, an issue of how to measure laten
y
omes into the pi
ture. Laten
y is the online

waiting time measured whenever the query is answered by the ba
kend. It does not in
lude the time when the

ba
kend was unable to fet
h the data from the table due to the
an
ellation of the query when the user issued

a new query prior to the
ompletion of the previous one. As seen in Figure 20, the number of obje
ts a
tually

being displayed initially is low, or in other words, the number of fet
h requests
ompleted satisfa
torily is

low. This implies that the amount of unmeasured laten
y is high (the amount of the remaining laten
y that

would have been added if the query had been answered).

6.4 E�e
tiveness of Prefet
her

Figure 22
harts the per
entage of improvement in the performan
e of applying the fo
us prefet
hing strategy

ompared to not applying prefet
hing for simulated user tra
es on the simulated data for di�erent delays be-

tween the user operations. The improvement is measured as the per
entage of laten
y redu
ed in
omparison

to when no prefet
hing is done. It is
al
ulated as:

Per
entImprove =

(Laten
yWithoutPrefet
h� Laten
yWithPrefet
h)

Laten
yWithoutPrefet
h

� 100

As
an be seen, the performan
e is improved by 28 per
ent. This improvement is attained when the average

speed of the user input is one single input per se
ond. Also, the
urve
attens a bit as the prefet
hing gets

ompleted most of the time and is no longer preempted by user inputs. This indi
ates that an improvement

in the performan
e as the delay between the user operations in
reases is no longer feasible beyond a
ertain

19

point of time.

From the above
harts, we �nd that the fo
us prefet
hing strategy is a reasonable
hoi
e for prefet
hing

the data, as it results in good performan
e for a variety of user a

ess patterns. But the fo
us strategy needs

some pre-requisite knowledge, i.e., the system needs to analyze user tra
es over a given dataset to identify

potential hot regions. This represents a diÆ
ulty for realizing the fo
us strategy in some appli
ations in

pra
ti
e. It
an be noted that the two ve
tor strategies, mean and exponential weight average, are less

e�e
tive than the fo
us and the dire
tion prefet
hing strategies for our navigation environment. The reason

for this lower performan
e is that they try to fet
h the data a

ording to the ve
tor-spe
i�
 dire
tion, but

our navigation tool supports only four dire
tions. These strategies may perform better in appli
ations where

the navigation tools are more ve
tor oriented. The dire
tion prefet
hing strategy hen
e turns out to be

se
ond best
ontender. Given that it requires no prior knowledge and due to its simpli
ity, espe
ially as

its performan
e is nearly equal to that of fo
us prefet
hing strategy, we adopt the dire
tion solution in our

urrent system.

6.5 Validating our Experiments Using Real User Tra
es

To ba
kup our experimental results, we also have performed a user-study where we had
olle
ted tra
es

from a number of users of our system. These tra
es
onsisted of 30 minutes ea
h for 20 di�erent users.

These tra
es were then given as input to the tool and system settings were varied. The values re
orded were

averaged out for the same settings respe
tively.

Latency v/s Strategies

0

5000

10000

15000

20000

25000

30000

35000

No Prefetching Random Direction Focus

Strategy

L
a
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
)

Objects Displayed v/s Strategies

95000

96000

97000

98000

99000

100000

101000

102000

No Prefetching Random Direction Focus

Strategy

#
 o

f
O

b
je

c
ts

 D
is

p
la

y
e
d

Figure 23: Average Laten
y vs. Strategies.

Figure 24: Average Obje
ts Displayed vs. Strate-

gies.

Figure 23 shows the average laten
y obtained by the a
tual user tra
es for di�erent strategies. The hot

20

regions set for the fo
us strategy were
al
ulated based on averaging a

esses from di�erent user tra
es for

the same dataset and sele
ting the most frequently a

essed regions. As it
an be noted, the fo
us strategy

has slightly higher laten
y than the dire
tion strategy. This is so be
ause the hot regions for the data were set

simply by averaging a

ess time of the dataset over all the user tra
es and then sele
ting regions that had an

average a

ess ratio above a parti
ular threshold. Not all the users have similar hot regions, leading to lower

performan
e of the fo
us strategy. We also found that the fo
us strategy improves the system performan
e if

the hot regions are
al
ulated for individual user tra
es, i.e., the predi
tors are more a

urate. This solution

is however not realisti
 to apply in pra
ti
e be
ause predi
tors are not likely to be that a

urate.

Figure 24 depi
ts the average number of obje
ts displayed for di�erent strategies, as
on
luded from

Figure 23. Note that the average number of obje
ts displayed (the visual quality) for the fo
us strategy is

less than that of the dire
tion strategy.

Figure 25 indi
ates the average hit ratio for the strategies, based on the previous two
harts. The hit

ratio for the fo
us strategy is slightly lower than that of the dire
tion strategy. Overall, based on the real

user tra
es, we thus favor the dire
tion strategy for prefet
hing.

Hit Ratio v/s Strategies

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

No Prefetching Random Direction Focus

Strategy

H
it

 R
a

ti
o

Latency v/s Caching

0

50000

100000

150000

200000

250000

Client OFF

Server OFF

Client OFF

Server ON

Client ON

Server OFF

Client ON

Server ON

Caching

L
a
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
)

Figure 25: Average Hit Ratio vs. Strategies. Figure 26: Laten
y vs. Ca
hing.

6.6 Experiments with Ca
hing

Figure 26 shows the improvement in the performan
e of the system when the
a
hing is turned ON and

OFF on both the server and
lient side. Sin
e Ora
le does not provide too �ne support to dire
tly
ontrol

the
a
he, we vary the degree in whi
h tuples are
a
hed by providing the Ora
le optimizer with
a
he

hints. The
a
he hints that we use are \
a
he" and \no
a
he". A \
a
he" obje
t will persist in the database

bu�er as long as possible. A \no
a
he" obje
t will not be loaded into the bu�er. However, nothing prevents

21

the optimizer to read a \no
a
he" obje
t from the
a
he, if the obje
t is there. Thus, the results of these

experiments have a high degree of deviation. Note that laten
y redu
es by 85 per
ent just by
a
hing at the

lient side. This is logi
al as the hit ratio when
lient-side
a
hing is turned ON is around 85 per
ent. Also

note that laten
y in
reases slightly with server-side
a
hing turned ON as the server
a
hes the old data that

the
lient may already have
a
hed, but not the new data that
lient may need. However, the
a
hing at the

server when the
lient doesn't have a
a
he improves the performan
e a bit more, be
ause the server
a
hes

some of the old obje
ts required by the
lient.

7 Related Work

7.1 Visual Exploration Systems

Mu
h work has been done in re
ent years on visual intera
tion tools, in
luding [45, 19, 9, 18, 23, 21, 17℄.

Integrated visualization-database systems su
h as Tioga [40℄, IDEA [37℄ and DEVise [32℄ represent the work

most
lose related to ours in terms of developing tools for visual data exploration support. The spe
i�

approa
hes taken are however di�erent. Tioga [40, 2℄ implements a multiple browser ar
hite
ture for a

re
ipe, a visual query. The system is able to
a
he the
omputed data; however, the problem of translating

front-end operations into database queries is not present sin
e database queries are expli
itly spe
i�ed by the

graphi
al interfa
e. Also, they do not
a
he the queries in their system. VIDA [49℄ is a visualization tool (an

extension of DataSplash [2℄) that is developed in an attempt to solve the
luttering problem by providing

goal-dire
ted zooming. Infostill [4℄ is a data analysis appli
ation that fo
uses on assisting users on all stages

of data analysis. It does not take
lient-side
a
hing into
onsideration for improving the performan
e of the

tool. IDEA [37℄ is an integrated set of tools that supports intera
tive data analysis and exploration. This tool

fo
uses on multiple display views like XmdvTool, but on-line query translation and memory management

are not addressed in that work. In DEVise [32℄, a set of query and visualization primitives to support data

analysis is provided. The number of primitives supported is relatively large. However,
a
hing data is done

at the database level using default me
hanisms only; spe
ial memory management te
hniques as in our work

are not studied. Unlike prior work, we aim to fo
us on the intera
tions between the two areas: Visualization

and Databases.

22

7.2 Ca
hing

Semanti

a
hing is used for
lient-side
a
hing and repla
ement in a
lient-server database system. It is

aimed in large at providing support for navigational a

ess to data (like visualization appli
ations). We

have implemented a
a
hing stru
ture inspired by [24, 8℄ as it provides eÆ
ient support for a

ess to data.

In parti
ular, we have developed a hash-based look-up stru
ture that allows repla
ement at the obje
t-

granularity level. Though
a
hing is ne
essary for visualization appli
ations and ne
essarily a prerequisite

for support of prefet
hing, our resear
h
on
entrates on the trade-o�s between di�erent prefet
hing strategies.

7.3 Prefet
hing

Most of the re
ent work on prefet
hing
an broadly be
lassi�ed into one of the three
lasses: web prefet
hing

[44, 46, 27, 33, 29℄, prefet
hing for memory
a
hes by operating systems [26, 35, 22℄, and I/O prefet
hing

[6, 28, 48℄. From our literature sear
h, no work has been done to date fo
ussed on prefet
hing for visualization

appli
ations, although there are some similarities with the work done in these �elds. Web prefet
hing

typi
ally uses the idle time when the user is thinking what to do. We utilize the same prin
iple. Similarly,

the works done in I/O prefet
hing use the I/O idle time to prefet
h the data in the memory. The prefet
hing

te
hniques des
ribed in web prefet
hing s
hemes in the literature [44, 46, 27, 33, 29℄ typi
ally prefet
h the

most frequently visited page by the user. This is similar to our fo
us strategy, in the sense of asso
iating

usage values with the obje
t spa
e instead of fo
ussing on user tra
e analysis. Hen
e our idea
ould be

extended to web prefet
hing as well. Mean and exponential weight average strategies have been inspired

from [3℄.

8 Con
lusions

With the in
reasing amount of data being a

umulated nowadays, the need for visually exploring large

datasets be
omes more and more important. A viable way to a
hieve s
alability in visualization is to integrate

visualization appli
ations with database management systems. A good memory management strategy should

be employed in order to redu
e the overhead of I/O intensive database a

esses and thus make the use of

the persistent storage transparent to end-users. This paper presents a solution to this problem by:

1. Semanti

a
hing - Ca
hing queries rather than individual obje
ts or pages of tuples.

2. Prefet
hing - Use of prefet
hing to further improve the performan
e of the
a
hing system.

23

The approa
h is being used in
oupling XmdvTool, a visualization appli
ation for intera
tive exploration of

multivariate data, with an Ora
le8i database management system.

Experiments for
a
hing and prefet
hing have shown that
a
hing at the
lient-side improves the per-

forman
e of visual environments to a great extent. To further redu
e the response time in the system, we

have designed a spe
ulative non-pure prefet
her that brings data into memory when the system is idle. We

have introdu
ed a family of �ve prefet
hing te
hniques based on our hypotheses about the
hara
teristi
s of

di�erent user navigation styles. Our evaluation have shown that dire
tion strategy outperforms the other

strategies in terms of various parameters. Navigation patterns simulated data spe
i�
ity as well as user

spe
i�
ity. These simulated user sessions were
on�rmed to be similar to that of a
tual users by the user

study.

Dire
tions for further resear
h in
lude using data mining tools for analysis of user tra
es. If we
an
on-

�dently predi
t navigation patterns, then the task of extra
ting the exa
t parameters from a real navigation

s
ript be
omes a tra
table statisti
al problem. In the future, we plan to also
onsider dynami

hanges in

the data as well as rapid
hanges of the intera
tion tools.

Referen
es

[1℄ C. Ahlberg and B. Shneiderman. Alphaslider: A
ompa
t and rapid sele
tor. Pro
eedings of the ACM

Conferen
e on Human Fa
tors in Computing Systems (CHI'94), p. 365-371, 1994.

[2℄ A. Aiken, J. Chen, M. Lin, and M. Spalding. The Tioga-2 database visualization environment. Le
ture

Notes in Computer S
ien
e, 1183:181{??, 1996.

[3℄ J. Chim, M. Green, R. Lau, H. V. Leong, and A. Si. On
a
hing and prefet
hing of virtual obje
ts in

distributed virtual environments. In Pro
eedings of the sixth ACM international
onferen
e on Multi-

media, 1998, pages 171{180, Sept. 1998.

[4℄ K. Cox, S. Hibino, L. Hong, A. Mo
kus, and G. Wills. Infostill:a task-oriented framework for analyzing

data through information visualization. In IEEE Information Visualization Symposium 1999, Late

Breaking Hot Topi
s, pages 19{22. ACM Press, Jan. 9{11 1999.

[5℄ K. M. Curewitz, P. Krishnan, and J. S. Vitter. Pra
ti
al prefet
hing via data
ompression. In Pro

of the 1993 ACM SIGMOD Intl Conf on Management of Data, Washington, D.C., May 26-28, 1993,

pages 257{266. ACM Press, 1993.

[6℄ K. M. Curewitz, P. Krishnan, and J. S. Vitter. Pra
ti
al prefet
hing via data
ompression. pages

257{266, 1993.

[7℄ F. D., L. A., S. D., and Y. K. Optimization of run-time management of data intensive web-sites. In

Pro
eedings of the 25th International Conferen
e on Very Large Data Bases (VLDB '99), pages 627{638,

San Fran
is
o, Sept. 1999. Morgan Kaufmann.

24

[8℄ S. Dar, M. J. Franklin, B. T. J�onsson, D. Srivastava, and M. Tan. Semanti
 data
a
hing and repla
e-

ment. In Pro
 of 22th Intl Conf on Very Large Data Bases, Sept 3-6, 1996, Mumbai (Bombay), India,

pages 330{341. Morgan Kaufmann, 1996.

[9℄ M. Derthi
k, J. Harrison, A. Moore, and S. Roth. EÆ
ient multi-obje
t dynami
 query histograms.

Pro
. of Information Visualization, pages 58{64, O
t. 1999.

[10℄ D. DeWitt, D. Mayer, P. Futtersa
k, and F. Velez. A study of three alternative workstation-server

ar
hite
tures for obje
t-oriented database systems. In Pro
 of VLDB'90 16th Intl Conf on Very Large

Data Bases, Brisbane, Australia, 1990. Morgan Kaufmann, 1990.

[11℄ Y. Fua, M. Ward, and E. Rundensteiner. Stru
ture-based brushes: A me
hanism for navigating hier-

ar
hi
ally organized data and information spa
es. IEEE Visualization and Computer Graphi
s, Vol. 6,

No. 2, p. 150-159, 2000.

[12℄ Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner. Hierar
hi
al parallel
oordinates. Te
hni
al Re-

port ??, Wor
ester Polyte
hni
 Institute, Computer S
ien
e Department, 1999.

[13℄ Y. H. Fua, M. O. Ward, and E. A. Rundensteiner. Hierar
hi
al parallel
oordinates for exploration of

large datasets. IEEE Pro
. of Visualization, pages 43{50, O
t. 1999.

[14℄ Y. H. Fua, M. O. Ward, and E. A. Rundensteiner. Navigating hierar
hies with stru
ture-based brushes.

Pro
. of Information Visualization, pages 58{64, O
t. 1999.

[15℄ P. Godfrey and J. Gryz. Answering queries by semanti

a
hes. In Pro
 of Database and Expert

Systems Appli
ations, Floren
e, Italy, pages 485{498, Sept. 1999.

[16℄ S. Hibino and E. A. Rundensteiner. MMVIS: A multimedia visual information seeking environment for

video analysis. In Pro
eedings of ACM CHI 96 Conferen
e on Human Fa
tors in Computing Systems,

volume 2 of DEMONSTRATIONS: Video: Authoring and Indexing, pages 15{16, 1996.

[17℄ S. Hibino and E. A. Rundensteiner. Pro
essing in
remental multidimensional range queries in a dire
t

manipulation visual query. In Pro
 of the Fourteenth Intl Conf on Data Engineering, Orlando, Florida,

USA, pages 458{465, 1998.

[18℄ S. Hibino and E. Rundersteiner. User interfa
e evaluation of a dire
t manipulation temporal visual

query language. In Pro
 of The Fifth ACM Intl Multimedia Conf (MULTIMEDIA '97), pages 99{108,

New York/Reading, Nov. 1998. ACM Press/Addison-Wesley.

[19℄ Y. Ioannidis. Dynami
 information visualization. SIGMOD Re
ord (ACM Spe
ial Interest Group on

Management of Data), 25(4):16{16, De
. 1996.

[20℄ C. Jeong and A. Pang. Re
on�gurable dis
 trees for visualizing large hierar
hi
al information spa
e.

Pro
. of Information Visualization '98, p. 19-25, 1998.

[21℄ N. Jing, Y. Huang, and E. A. Rundensteiner. Hierar
hi
al en
oded path views for path query pro-

essing: An optimal model and its performan
e evaluation. IEEE Transa
tion on Data and Knowledge

Engineering, 10(3):409{432, May 1998.

[22℄ D. Joseph and D. Grunwald. Prefet
hing using Markov predi
tors. In Pro
 of the 24th Annual Intl

Symposium on Computer Ar
hite
ture (ISCA-97), Computer Ar
hite
ture News, pages 252{263, New

York, June 1997. ACM Press.

[23℄ S. Kaushik and E. Rundensteiner. SVIQUEL: A spatial visual query and exploration language. DEXA,

1460:290{299, 1998.

[24℄ A. M. Keller and J. Basu. A predi
ate-based
a
hing s
heme for
lient-server database ar
hite
tures.

VLDB Journal, 5(1):35{47, 1996.

[25℄ A. Kemper and D. Kossmann. Dual-bu�ering strategies in obje
t bases. In Pro
 of VLDB'94 20th

Intl Conf on Very Large Data Bases. Morgan Kaufmann, 1994.

[26℄ A. Ki and A. E. Knowles. Adaptive data prefet
hing using
a
he information. In International Con-

feren
e on Super
omputing, pages 204{212, 1997.

[27℄ A. Kraiss and G. Weikum. Integrated do
ument
a
hing and prefet
hing in storage hierar
hies based

on Markov-
hain predi
tions. VLDB Journal: Very Large Data Bases, 7(3):141{162, 1998.

25

[28℄ Krishnan and Vitter. Optimal predi
tion for prefet
hing in the worst
ase. In SODA: ACM-SIAM

Symposium on Dis
rete Algorithms (A Conferen
e on Theoreti
al and Experimental Analysis of Dis
rete

Algorithms), 1994.

[29℄ T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring the bounds of Web laten
y redu
tion

from
a
hing and prefet
hing. In Pro
eedings of the USENIX Symposium on Internet Te
hnologies and

Systems (ITS-97), pages 13{22, Berkeley, De
. 8{11 1997. USENIX Asso
iation.

[30℄ Y. Leung and M. Apperley. A review and taxonomy of distortion-oriented presentation te
hniques.

ACM Transa
tions on Computer-Human Intera
tion Vol. 1(2), June 1994, p. 126-160, 1994.

[31℄ B. Lip
hak and M. Ward. Visualization of
y
li
 multivariate data. Pro
. of Visualization '97, Late

Breaking Hot Topi
s, p. 61-4, 1997.

[32℄ M. Livny, R. Ramakrishnan, K. S. Beyer, G. Chen, D. Donjerkovi
, S. Lawande, J. Myllymaki, and R. K.

Wenger. DEVise: Integrated querying and visualization of large datasets. In Pro
 ACM SIGMOD Intl

Conf on Management of Data, May 13-15, 1997, Tu
son, Arizona, USA, pages 301{312. ACM Press,

1997.

[33℄ E. Markatos and C. Chronaki. A top-10 approa
h to prefet
hing on the web. Te
hni
al Report TR96-

0173, 1996.

[34℄ J. Y. Matthew O. Ward and E. A. Rundensteiner. Hierar
hi
al exploration of large multivariate data

sets. Pro
eedings Dagstuhl '00: S
ienti�
 Visualization, May 2001.

[35℄ R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefet
hing and

a
hing. In Pro
eedings of the Fifteenth ACM Symposium on Operating Systems Prin
iples, pages

79{95, Copper Mountain, CO, 1995. ACM Press.

[36℄ G. Robertson, J. Ma
kinlay, and S. Card. Cone trees: Animated 3d visualization of hierar
hi
al infor-

mation. Pro
. of Computer-Human Intera
tion '91, p. 189-194, 1991.

[37℄ P. G. Selfridge, D. Srivastava, and L. O. Wilson. Idea: Intera
tive data exploration and analysis. In

Pro
 of the 1996 ACM SIGMOD Intl Conf on Management of Data, Montreal, Quebe
, Canada, June

4-6, 1996, pages 24{34. ACM Press, 1996.

[38℄ B. Shneiderman. Designing the User Interfa
e: Strategies for E�e
tive Human-Computer Intera
tion.

Addison-Wesley Publishing, third edition, 1997.

[39℄ B. Shneiderman. Tree visualization with tree-maps: A 2d spa
e-�lling approa
h. ACM Transa
tions

on Graphi
s, Vol. 11(1), p. 92-99, Jan. 1992.

[40℄ M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and J. Wu. Tioga: Providing data management

support for s
ienti�
 visualization appli
ations. In 19th Intl Conf on Very Large Data Bases, 1993,

Dublin, Ireland, pages 25{38. Morgan Kaufmann, 1993.

[41℄ I. D. Stroe, E. A. Rundensteiner, and M. O. Ward. Minmax trees: EÆ
ient relational operation support

for hierar
hy data exploration. Te
hni
al Report TR-99-37, Wor
ester Polyte
hni
 Institute, Computer

S
ien
e Department, 1999.

[42℄ I. D. Stroe, E. A. Rundensteiner, and M. O. Ward. S
alable visual hierar
hy exploration. In Database

and Expert Systems Appli
ations, Greenwi
h, UK, pages 784{793, Sept. 2000.

[43℄ P. Sulaty
ke and K. Ghose. A fast multithreaded out-of-
ore visualization te
hnique. In 13th Intl

Parallel Pro
essing Symposium and 10th Symposium on Parallel and Distributed Pro
essing, Apr. 1999.

[44℄ N. Swaminathan and S. Raghavan. Intelligent prefet
hing in www using
lient behavior
hara
teriza-

tion, 2000.

[45℄ E. Tanin, R. Beigel, and B. Shneiderman. In
remental data stru
tures and algorithms for dynami

query interfa
es. ACM Spe
ial Interest Group on Management of Data, 25(4), De
. 1996.

[46℄ A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. The potential
osts and

bene�ts of long term prefet
hing for
ontent distribution. Te
hni
al Report TR-01-13, UT, Austin,

2001., 2001.

[47℄ M. Ward. Xmdvtool: Integrating multiple methods for visualizing multivariate data. Pro
. of Visual-

ization '94, p. 326-33, 1994.

26

[48℄ H. Wedekind and G. Zoerntlein. Prefet
hing in realtime database appli
ations. In ACM SIGMOD,

1986.

[49℄ A. Woodru� and M. Stonebraker. Visual information density adjuster (VIDA). Te
hni
al Report

CSD-97-968, University of California, Berkeley, Nov. 24, 1997.

[50℄ Xmdvtool home page. http://davis.wpi.edu/~xmdv.

27

