
WPI-CS-TR-01-17 July 2001

Dete
tion and Corre
tion of Con
i
ting Con
urrent Data

Warehouse Updates

by

Songting Chen

Jun Chen

Xin Zhang

Elke A. Rundensteiner

Computer S
ien
e

Te
hni
al Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer S
ien
e Department

100 Institute Road, Wor
ester, Massa
husetts 01609-2280

Dete
tion and Corre
tion of Con
i
ting Con
urrent Data Warehouse Updates

Songting Chen, Jun Chen, Xin Zhang, and Elke A. Rundensteiner

Department of Computer S
ien
e

Wor
ester Polyte
hni
 Institute

Wor
ester, MA 01609-2280

f
henst, jun
hen, xinz, rundenstg�
s.wpi.edu

July 23, 2001

Abstra
t

A Data Warehouse Management System (DWMS) maintains materialized views derived from one or more

information sour
es (ISs) under sour
e
hanges. Given the dynami
 nature of modern distributed environments

su
h as the WWW, both sour
e data and s
hema
hanges are likely to o

ur autonomously and even
on
urrently.

Strategies proposed in the re
ent literature to a
hieve DW
onsisten
y typi
ally are based on issuing maintenan
e

queries to ISs and then applying
ompensating queries to
orre
t any errors in the DW refreshs. However, these

solutions are limited to handle pure data updates only, making the restri
ting assumptions that (1) the s
hemata

of all sour
es remain stable over time, and (2) maintenan
e queries are never broken by sour
e s
hema
hanges.

In this paper, we introdu
e a formal framework that su

essfully lifts these restri
tions. In parti
ular, we

hara
terize two
lasses of dependen
ies between
on
urrent update messages not
urrently handled in the

literature. We then propose a two-pronged solution strategy ta
kling these dependen
ies. One, we introdu
e

strategies for the dete
tion of these dependen
ies between updates based on
y
li
 dependen
y analysis. Two, we

introdu
e a
on
i
t resolution strategy based on reordering and merging a�e
ted updates. We have proven the

orre
tness of our solution, i.e., that the DWMS refreshs the data warehouse
orre
tly in situations not handled

by previously DWMS solutions.

This proposed solution has been su

essfully implemented in our Dynami
 Data Warehousing system,
alled

DyDa. DyDa is the �rst system that
an
orre
tly maintain a DW under all
lasses of
on
urren
y. The experi-

mental results show that our new
on
urren
y handling strategy imposes a minimal (smaller than 5%) overhead

to allow for this extended fun
tionality. Our advan
ed
on
urren
y dete
tion strategy even su

eeds in redu
ing

the expensive
ost of maintenan
e aborts and hen
e restarts of s
hema
hange pro
essing under a high system

load, thus a
hieving overall improved maintenan
e performan
e.

Keywords: Data Warehouse, Maintenan
e Query, Con
urrent Updates, Dependen
y Dete
tion, Dependen
y

Corre
tion, Broken Query.

1 Introdu
tion

1.1 Introdu
tion to Data Warehouse Environment

Data warehouses (DW) [GM95, MD96℄ are built by gathering information from information sour
es

(ISs) and integrating it into one virtual repository
ustomized to users' needs. Data warehousing is

important for many appli
ations su
h as E-
ommer
e, de
ision support systems and web-site manage-

ment that must fun
tion in large-s
ale environments
omposed of distributed sour
es. One important

task of a Data Warehouse Management System (DWMS) is to maintain the DW upon
hanges of ISs.

The requirements of an IS system, like most other systems, are likely to
hange during its life-

y
le. The extent of
hanges in a typi
al working relational database system is illustrated in [Sjo93℄,

whi
h do
uments the measurement of s
hema evolution during the development and initial use of a

health management system used at several hospitals. There was an in
rease of 139% in the number

of relations and 274% in the number of attributes in the system during the nineteen-month period of

study. In [Mar93℄, signi�
ant
hanges (about 59% of attributes on the average) were reported for seven

appli
ations. These appli
ations ranged from proje
t tra
king, real estate inventory and a

ounting

and sales management, to government administration of the skill trades and apprenti
eship programs.

Furthermore, in distributed environments, ISs are typi
ally owned by di�erent information providers

and hen
e fun
tion independently from one another. This implies they will update their data and

s
hemas
on
urrently without any
on
ern for how this may a�e
t the materialized views de�ned upon

them [Wid95, RKZ00℄. They are generally not aware of nor willing to syn
hronize with the DWMS's

refresh pro
ess, thus resulting in
on
urren
y between these updates.

While su
h
on
urren
y problems have re
eived in
reased attention in re
ent years, pra
ti
ally all

existing work [ZGMHW95, AASY97, SBCL00, ZRD01℄ fo
uses on View Maintenan
e (VM) to refresh

the data warehouse extent under
on
urrent sour
e data updates only. All prior work assumes a stati

environment, and would fail under sour
e s
hema
hanges as we des
ribe below.

1.2 The Maintenan
e Anomaly Problem

During the DW maintenan
e pro
essing of a sour
e update the DWMS may need to query the ISs

for more information by issuing so
alled maintenan
e queries [ZGMHW95℄. In a fully
on
urrent

environment, the relationship between the DWMS and the ISs is loosely-
oupled. That is all IS

updates are
ommitted without any
on
ern of how the DWMS in
orporates them.

Thus new problems arise for DW maintenan
e. Intuitively, the problem is how to refresh the DW

while the DWMS no longer knows the
urrent state of the underlying IS spa
e. When pro
essing a

sour
e update, the DWMS assumes the ISs that it is sending queries to be in the state when that

update was originally
ommitted. This is however not ne
essarily true be
ause the ISs
ould
ontinue

1

to
hange both their data and s
hema autonomously. Thus the maintenan
e queries that the DWMS

generates for that IS may either return erroneous query results [ZGMHW95℄ (if the related data has

meanwhile been
hanged by an IS data update) or even fail
ompletely (if the s
hema of the IS referred

in the query has meanwhile been
hanged by an IS s
hema
hange). We refer to this as the DW

maintenan
e anomaly problem.

While re
ent work in the literature [ZGMHW95, AASY97, SBCL00, ZRD01℄ proposed
ompensation-

based solutions that
orre
t the erroneous query results
aused by
on
urrent data updates, we demon-

strate in this paper that these existing solutions will fail under sour
e s
hema
hanges. The reason of

this new anomaly problem is that neither maintenan
e queries nor
ompensation queries
an get any

query response from ISs due to the dis
repan
y of sour
e s
hema with the s
hemata types required by

these queries. A detailed example of this problem is illustrated in Se
tion 2.

1.3 Our Contributions

In this paper, we now propose the �rst solution
apable of dealing all types of
on
urren
y
on
i
ts

under both sour
e data and s
hema
hanges. Our system whi
h we
all DyDa (Dynami
 Data warehouse

maintenan
e) [CZC

+

01℄ supports for all ISs to operate both independently and autonomously without

any syn
hronous
ooperation. In summary, our
ontributions now are:

(1) We identify the problem that the maintenan
e pro
essing of a bat
h of updates in the order

they are re
eived by the DWMS may lead to either in
orre
t results or even fail
ompletely. We

demonstrate that this maintenan
e anomaly problem arises due to the violation of dependen
ies

between sour
e updates. We
ategorize and formalize these dependen
ies, namely,
on
urrent

dependen
ies and semanti
 dependen
ies.

(2) We propose three dependen
y dete
tion strategies and a dependen
y
orre
tion algorithm. We

design a solution
alledDyno that
ombines these two te
hniques to handle all types of
on
urren
y

in a fully dynami
 environment. We prove our solution
orre
t, and also analyze it
ompletely.

(3) We have implemented the Dyno solution in our DyDa [CZC

+

01℄ system as a proof of
on
ept.

This is the �rst system with a
omplete solution to all
on
urren
y problems.

(4) Our experimental results
on�rm that our Dyno solution imposes a minimal overhead to allow

for this fun
tionality of extended
on
urren
y handling. Our advan
ed
on
urren
y dete
tion

strategy even su

eeds in redu
ing the expensive
ost of maintenan
e aborts and hen
e restarts of

s
hema
hange pro
essing under a high system load, thus a
hieving overall improved maintenan
e

performan
e.

2

1.4 Outline of Paper

In the next se
tion we give a motivating example of the maintenan
e anomaly problem. Se
tion 3

introdu
es a brief overview of the DyDa ar
hite
ture. We assume this framework as basis to study the

problem and to formulate our solution. Se
tion 4 develops a formal
hara
terization of the
on
epts of

dependen
y. Se
tion 5 dis
usses the
orre
tness
riteria for dependen
y violation
orre
tion. Se
tion 6

proposes the solution te
hniques and integrates them into a
omplete Dyno solution strategy. It also

proves the termination and
orre
tness of this approa
h. Se
tion 7 dis
usses the experimental results.

Se
tion 8 reviews related work, while Se
tion 9
on
ludes the paper.

2 The Maintenan
e Anomaly Problem

We distinguish between three DW maintenan
e tasks, namely, View Maintenan
e (VM), View Syn-

hronization (VS) and View Adaptation (VA). VM [ZGMHW95, AASY97, SBCL00℄ aims to maintain

the DW view extent under sour
e data updates. In
ontrast to VM, VS [LNR01, NLR98℄ aims at

rewriting the DW view de�nition when the s
hema of information sour
e has been
hanged. There-

after, View Adaptation (VA) [GMR95, NR99℄ in
rementally adapts the view extent to again mat
h

the newly
hanged the view de�nition.

Thus for a single (non-
on
urrent) data update (DU) or a single s
hema
hange (SC), the pro
essing

steps of the DWMS have been well de�ned in the literature. For a single DU, DWMS uses one of

the many VM algorithms proposed in the literature to refresh the data warehouse. For a single SC,

DWMS �rst engages the VS to rewrite the a�e
ted view de�nition(s) and then the VA to in
rementally

repopulate the extent of the modi�ed view(s). This relationship is illustrated in Figure 1.

SC DU

VS

VM

VA

DW correctly
maintained.

DW correctly
maintained.

View definition
synchronized.

View extent
refreshed.

View extent
refreshed.

Figure 1: Sequential Pro
essing of a Single DU/SC

If there is no
on
urren
y, then the VM
ould in
orporate the sour
e data update (DU) su

essfully

while VS and VA is responsible for in
orporating the sour
e s
hema
hange (SC). In a fully
on
urrent

3

data warehouse environment, it is unrealisti
 to require all ISs to always
ooperate with the DWMS to

assure su
h a sequential pro
essing order. Thus during the DW maintenan
e of one update message,

other IS updates may o

ur
ausing the DW maintenan
e problem.

&UHDWH�YLHZ�9�DV

VHOHFW�,6��7��$��,6��7��%

IURP�,6��7���,6��7�

ZKHUH�,6��7��&� �,6��7��&

1 2
3 9
4 5

2 2
7 1
3 5

1 2
4 3

A C B C A B

IS1.T1 IS2.T2 V

� '8������LQVHUW�LQWR�,6��7��YDOXHV�����������

� 2WKHU�8SGDWH�0HVVDJH

� 6&������UHQDPH�,6��7��WR�,6��7�¶���RU��GURS�WDEOH�7��

� 2WKHU�8SGDWH�0HVVDJH

Figure 2: Example of Maintenan
e Anomaly Problem

Data update by DU(1):

(*)insert into IS2.T2 values(8,9);

To get V1, send down query:

select IS1.T1.A, DU(1).B
from DU(1), IS1.T1

where DU(1).C = IS1.T1.C;
DU(1)

SC(2)

V

V1

Done at DW

Create view V as

select IS1.T1.A, IS2.T2.B

from IS1.T1, IS2.T2

where IS1.T1.C = IS2.T2.C

. .
 .

DU(1)
B C

8 9

Done at IS

Schema changes by SC(2):

(*) rename IS1.T1 to IS1.T1’ (or)

(*) drop table IS1.T1

Break!

. .
 .

Figure 3: Broken Query Problem

Figure 2 details an example of an aborted maintenan
e pro
ess. We assume the view V de�ned on

IS1.T1 and IS2.T2. Assume the DWMS re
eives several update messages about
hanges
ommitted at

IS1 and at IS2 in the order shown in Figure 2. Figure 3 illustrates what happens when the DWMS tries

to pro
ess DU(1). To pro
ess DU(1) and
al
ulate the delta
hange to refresh V into V1, the DWMS

needs to issue a maintenan
e query [AASY97℄ to the IS1.T1 to fet
h a delta view extent. But we

noti
e that IS1.T1 has already been renamed to IS1.T1' (or even dropped
ompletely) before the query

arrives at IS1. Thus the query will be broken and the pro
essing of DU(1) has to be aborted. Note

that the
ompensation strategy proposed to ta
kle DU
on
urren
y in [ZGMHW95, AASY97, SBCL00℄

doesn't help in this
ase, be
ause here we
annot fet
h any result at all due to the in
ompatibility of

the s
hema.

The timeline of su
h a s
enario is shown in Figure 4. We
an see that when DWMS wants to refresh

the DW
ontent due to DU(1) at IS2, it may send maintenan
e queries down to IS1. At that time

another SC is already
ommitted at IS1. But the DWMS does not yet know about it. Thus this query

that sent down to IS1 does not su

eed due to the
hanged s
hema in IS1.

From the above example we
an
on
lude that in a fully
on
urrent environment sequential pro-

essing of updates in UMQ is not always feasible, i.e., the maintenan
e pro
ess may be aborted. The

reason for this is that the DWMS
annot always keep syn
hronized with the
urrent state of all ISs.

In the example shown above, the pro
ess of handling DU(1) is dependent on the handling of SC(2). In

other words, DU(1)
annot be pro
essed su

essfully until after SC(2) has been pro
essed, even though

DU(1) was re
eived by the DWMS before SC(2).

4

DW

IS2

IS1

DU

SC

Update message (DU or SC) reported by IS

Queries issued by DW to IS

Queries result from IS

DW refresh period

DU or SC process period at IS

VM VS and VA

Unexpected query result or the query is broken

Time

Figure 4: Interleaved Pro
essing in DWMS

3 The DyDa Framework

DW

VA

Update Message Queue

Assign Time Stamp

Wrapper Wrapper Wrapper

IS IS IS

DW Space

Middle Space

Query Engine

VS VM

LEGEND

Database

Module

Con.
Control

Queue

Data
Flow

Figure 5: DyDa Ar
hite
ture

The solution we propose in this paper has been developed as part of the dynami
 data warehousing

proje
t funded by NSF,
alled DyDa [CZC

+

01℄ system that aims at resolving the
on
urren
y problems.

To have a better understanding of the
ontext of our solution, we �rst introdu
e our DyDa framework.

Figure 5 depi
ts the ar
hite
ture of the DyDa system. The framework is divided into three spa
es:

DW spa
e, Middle spa
e, and IS spa
e. The DW spa
e houses the extent of the data warehouse. It

re
eives queries from the middle spa
e bundled together with the data to update the data warehouse.

5

The IS spa
e is
omposed of ISs and their
orresponding wrappers. We assume that all IS transa
tions

are lo
al and every data update and s
hema
hange at an IS is reported to the DWMS on
e
ommitted

at the IS (or the delta
hanges
an be dete
ted and extra
ted by, for example the wrapper). Note

that the DW and IS spa
e setting is similar to that in any of the other related proje
ts, su
h as

[ZGMHW95, AASY97, ZRD01℄.

The middle spa
e is the integrator of the DyDa framework, i.e., the DWMS system that aims

to maintain the DW under sour
e updates. It
an be divided into two subspa
es. The higher-level

subspa
e is
alled the DW Management Subspa
e
onsists of the general DW management algorithms,

su
h as VS, VA and VM. With the
ombination of these three modules, the system is able to handle

non-
on
urrent data updates and s
hema
hanges. A

ording to the type of ea
h sour
e update, DyDa

may use either VS, VA, or VM algorithms to update the DW
orrespondingly.

The lower layer
onsists of the Time Stamp Manager, the Update Message Queue (UMQ) and

the Query Engine. The Time Stamp Manager assigns timestamps to sour
e updates as soon as they

arrive at the middleware to make it possible to tra
e sequen
es of these updates globally. The Update

Message Queue (UMQ)
olle
ts and manages the
ommitted updates from the ISs, whi
h are either

data updates (DUs) or s
hema
hanges (SCs). The Query Engine in the middleware is responsible for

query pro
essing, that is, de
omposing the view queries into individual IS queries, sending down these

queries to ISs and then
olle
ting and assembling query results.

The
on
urren
y handling of the DWmaintenan
e anomaly problem resides in the lower layer. There

are various kinds of
on
urren
y as illustrated in Se
tion 4. Basi
ally, the Query Engine employs a lo
al

ompensation [AASY97℄ algorithm to handle
on
urrent DUs. We further extend the fun
tionalities

of UMQ to �nd an exe
utable plan of updates when
on
urrent SC o

urs, termed Dyno, whi
h is the

fo
us of this paper.

We make the following assumptions in our DyDa framework, as also made by other DW work

[ZGMHW95, ZGMW96, AASY97℄.

Assumption 1 The network
ommuni
ation between an individual IS and the DWMS is FIFO.

Assumption 2 All transa
tions of an IS are lo
al to this IS (i.e., not distributed). In our
urrent

work, every IS transa
tion
ontains only one update either a data update or a s
hema
hange. The

study of bat
hing updates, a relatively straightforward extension, is left for future work.

4 Classes of Dependen
y Relationships

The motivating problem in Se
tion 2
learly illustrates that there are dependen
ies between sour
e

updates that make view maintenan
e impossible. In this se
tion we �rst analyze these dependen
ies.

Then we formally de�ne the view maintenan
e anomaly problem based on the
on
ept of dependen
y.

6

4.1 Con
urren
y Dependen
y

There are two kinds of dependen
ies between sour
e updates re
eived by DWMS:
on
urren
y depen-

den
y and semanti
 dependen
y. The example we dis
ussed earlier illustrates
on
urren
y dependen-

ies. As we have seen in Se
tion 2,
on
urren
y dependen
ies are
aused by the asyn
hroni
ity between

the update pro
esses at the ISs and the DW refresh pro
esses at the DWMS side. We �rst de�ne some

notations.

De�nition 1 With \i" a unique number for ea
h IS and \n" a globally unique timestamp value assigned

to ea
h message (either an sour
e update, a maintenan
e query, or query result), we de�ne the following

notations:

(1) Let DU(n)[i℄ and SC(n)[i℄ denote a data update or a s
hema
hange
ommitted on IS[i℄ with the

global timestamp \n" assigned by DWMS when this update arrives at DWMS.

(2) Let Q denote the set of maintenan
e queries generated by the VM (or VA) algorithm if the update

is a DU (or SC). In parti
ular, we use DU(m)[i℄.Q[k℄ to denote one maintenan
e query issued

to IS[k℄ when pro
essing the DU(m)[i℄, and use SC(m)[i℄.Q[k℄ to denote one maintenan
e query

issued to IS[k℄ when pro
essing the SC(m)[i℄.

(3) Let QR denote the set of query results returned by ISs. In parti
ular, we use DU(m)[i℄.QR(n)[k℄

to denote the result of the query DU(m)[i℄.Q[k℄, and use SC(m)[i℄.QR(n)[k℄ to denote the result

of the query SC(m)[i℄.Q[k℄. \n" denotes a global timestamp assigned by DWMS when the query

result arrives at DWMS.

De�nition 2 Given two update messages m1 and m2 in UMQ. If m1 pre
edes m2 in UMQ, then we

denote this by \pos(m1, UMQ) � pos(m2, UMQ)".

Intuitively, the reason for DW maintenan
e anomaly problem is that the DW maintenan
e query is

a�e
ted by a
on
urrent IS update. We formalize su
h
on
urren
y below.

De�nition 3 Let X(n)[j℄ and Y(m)[i℄ denote DUs and/or SCs
ommitted on IS[j℄ and IS[i℄ respe
-

tively. We say that Y(m)[i℄ is
on
urrent dependent (CD) on X(n)[j℄, denoted by:

1. Y(m)[i℄

d

 � X(n)[j℄, if pos(Y(m)[i℄, UMQ) � pos(X(n)[j℄, UMQ)

2. X(n)[j℄

d

�! Y(m)[i℄, if pos(X(n)[j℄, UMQ) � pos(Y(m)[i℄, UMQ)

i�:

1. X(n)[j℄ and Y(m)[i℄.Q[j℄ both refer to a
ommon relation on IS[j℄, and

2. there is at least one query result Y(m)[i℄.QR(k)[j℄ su
h that n < k. The later means that X(n)[j℄

is re
eived by DWMS before the maintenan
e query result Y(m)[i℄.QR(k)[j℄.

7

For example, assume the time when the DWMS re
eives an update DU

i

from some IS

k

is t

1

. To

pro
ess DU

i

, the DWMS issues some maintenan
e query DU(i)[k℄.Q[m℄ and sends it to some IS

m

. The

time when the DWMS re
eives the query result is t

2

. Assume there is another update SC

j

from IS

m

that arrives at the DWMS between t

1

and t

2

. A

ording to Assumption 1, SC

j

is
ommitted before

the query DU(i)[k℄.Q[m℄ arrives at IS

m

. Thus DU

i

is
on
urrent dependent (CD) on SC

j

sin
e

the maintenan
e query of DU

i

is in
uen
ed by SC

j

and thus may fail.

De�nition 4 There are four kinds of CDs:

(1) DU(1)

d

 � DU(2) or DU(2)

d

�! DU(1): The pro
ess of DU(1) is CD on the pro
ess of DU(2);

(2) SC

d

 � DU or DU

d

�! SC: The pro
ess of SC is CD on the pro
ess of DU;

(3) DU

d

 � SC or SC

d

�! DU: The pro
ess of DU is CD on the pro
ess of SC;

(4) SC(1)

d

 � SC(2) or SC(2)

d

�! SC(1): The pro
ess of SC(1) is CD on the pro
ess of SC(2);

Clearly, the example shown in Se
tion 2 is a CD of type \DU

d

 �SC".

Note that
on
urrent DUs, (namely the Dependen
y
ases 1 and 2 in Def 4) modify the ISs'
ontent

whi
h may invalidate the results returned by the maintenan
e queries. Con
urrent SCs, (namely

the Dependen
y
ases 3 and 4 in Def 4) modify the underlying ISs' s
hema whi
h may break the

maintenan
e queries. As mentioned in Se
tion 3, the
on
urren
y
aused by DUs is handled in the

Query Engine by applying a
ompensation-based algorithm [AASY97℄. For
ase 2, the DWMS will

send a maintenan
e query generated by VA [GMR95, NR99℄ that may also get erroneous results due

to
on
urrent DUs. They
an be
ompensated similarly. Instead in this paper we fo
us on solving the

latter two CDs, namely, DU

d

 �SC and SC

d

 �SC, i.e.,
on
urren
y triggered by SCs.

The
omplexity of building su
h CD graph for updates in UMQ is O(n

2

), where n is the number

of updates. Be
ause in the worst
ase, ea
h pair of updates would have a CD.

4.2 Semanti
 Dependen
y

A semanti
 dependen
y
on
erns the semanti
 requirement of the pro
essing order of the updates

from the same resour
es. Figure 6 shows an example of a semanti
 dependen
y. Assume a view V

de�ned on IS1.T1 and IS2.T2. Assume two SCs: SC(1) and SC(2). SC(1) renames IS2.T2 to IS2.TT

and then SC(2) drops IS2.TT.C. On the left side of Figure 6 we
an see that the sequential pro
essing

order of SC(1) and SC(2) is
orre
t. But if we reverse the pro
essing order, we
annot pro
eed be
ause

SC(2)
annot be pro
essed before SC(1). That is, the IS2.TT is unde�ned in DWMS if we have not

yet pro
essed SC(1). The pro
ess of SC(2) is dependent on the pro
ess of SC(1). It's apparent that we

must refresh the DW in the order they are re
eived, and not in any other order.

Thus it is ne
essary to preserve the pro
essing order of updates from shared resour
es su
h as the

same relation in this
ase. We now formally de�ne that this type of semanti
 dependen
y (SD):

8

Create view V as
select IS1.T1.A, IS2.T2.B
from IS1.T1, IS2.T2
where IS1.T1.C = IS2.T2.C

SC(1) rename IS2.T2 to IS2.TT;
SC(2) alter table IS2.TT drop IS2.TT.C;

SC(1): V is changed to:
 create view V1 as
 select IS1.T1.A, IS2.TT.B
 from IS1.T1, IS2.TT
 where IS1.T1.C = IS2.TT.C

SC(2): V1 is changed to:
 create view V2 as
 select IS1.T1.A, IS2.TT.B
 from IS1.T1, IS2.TT

SC(2): V is unchanged

SC(1) first, then SC(2) SC(2) first, then SC(1)

Error reported
by DyDa as

“Unknown table name in IS2…”

Figure 6: Example of Semanti
 Dependen
y

De�nition 5 Let X(n)[i℄ and Y(m)[i℄ denote either DUs or SCs on the same information sourse IS[i℄,

then X(n)[i℄ is semanti
 dependent (SD) on Y(m)[i℄, denoted by:

Y(m)[i℄

sd

�! X(n)[i℄, if pos(Y(m)[i℄, UMQ) � pos(X(n)[i℄, UMQ)

i�:

1. m < n, and

2. X(n)[i℄ and Y(m)[i℄ both refer to a shared resour
e on IS[i℄, su
h as the same relation.

It is
lear that the
omplexity of building su
h a SD graph for updates in UMQ is O(n), where n

is the number of updates.

4.3 Dependen
y Properties

The two types of dependen
ies share an important property: both represent
onstraints on the pro-

essing order between updates. Hen
e we now abstra
t them in a
ommon manner.

De�nition 6 For two updates m1, m2 in UMQ, we de�ne m1 is dependent on m2, denoted by

m1 m2 if pos(m1, UMQ) � pos(m2, UMQ) or m2!m1 if pos(m2, UMQ) � pos(m1, UMQ), if either

m1 is CD on m2 by Def 4, or m1 is SD on m2 by Def 5. We de�ne the dependen
y order between

m1 and m2 to be the dire
tion of the dependen
y arrow. Otherwise we say the dependen
y order between

m1 and m2 is null.

Lemma 1 For two updates m1, m2 in UMQ, if m1 is dependent on m2 by Def 5, then m2 must be

pro
essed before m1.

For example, in Figure 2, the SC(2) has been pro
essed before DU(1), or the pro
essing of DU(1)
ould

never su

eed.

9

De�nition 7 For two update messages m1 and m2 in UMQ, we de�ne the dependen
y relationship

between m1 and m2 to be:

1. independent i� there is no dependen
y between m1 and m2 by Def 6.

2. safe dependent i� pos(m1, UMQ) � pos(m2, UMQ) and all dependen
y orders between m1 and

m2 by Def 6 are from m1 to m2 (m1!m2).

3. unsafe dependent i� pos(m1, UMQ) � pos(m2, UMQ) and and there is at least one dependen
y

in UMQ in the order from m2 to m1 (m1 m2).

The CD of the example in Figure 2 is DU(1)

d

 �SC(2), however, sin
e the pos(DU(1), UMQ) �

pos(SC(2), UMQ), this CD is unsafe and the broken query o

urs.

4.4 Cy
li
 Dependen
ies

Given a set of dependen
ies in UMQ, they may
omprise a
ir
le. Figure 7 depi
ts a
y
li
 dependen
y

example. Below we now illustrate that neither of the two pro
essing orders, i.e., SC(1) by SC(2) or

SC(2) by SC(1),
an su

eed.

Create view V as
select IS1.T1.A, IS2.T2.B
from IS1.T1, IS2.T2
where IS1.T1.C = IS2.T2.C;

SC(1) drop table IS1.T1;
SC(2) drop table IS2.T2;

SC(1): V is changed to:
create view V1 as
select IS3.T3.A, IS2.T2.B
from IS3.T3, IS2.T2
where IS3.T3.C = IS2.T2.C

SC(2): drop table IS2.T2

SC(2): V is changed to:
create view V1’ as
select IS1.T1.A, IS4.T4.B
from IS1.T1, IS4.T4;
where IS1.T1.C = IS4.T4.C

Process Sequence 1:
SC(1) first, then SC(2)

Break!

SC(1): drop table IS1.T1;

Break!

Process Sequence 2:
SC(2) first, then SC(1)

Figure 7: Example of Cir
le Dependen
y

If we pro
ess SC(1) �rst, we
annot su

eed. When DWMS pro
esses SC(1), let us assume by VS

[NLR98℄, the DWMS �nds a repla
ement for this relation, say, IS3.T3, and rewrites the view de�nition

V. After that, it issues a VA [GMR95, NR99℄ query (as shown in the view de�nition of Figure 7) down

to both IS2 and IS3 to adapt the new view extent. But at that time we noti
e that IS2.T2 has been

dropped by SC(2). The query fails be
ause it has IS.T2 referred.

If we pro
ess SC(2) �rst, we still
annot su

eed. This time, assume that the DWMS �nds another

repla
ement IS4.T4 and rewrites the view de�nition V triggered by SC(2). It issues a VA query both

10

IS1 and IS4 to
ompute the new view extent. At that time, it �nds that the IS1.T1 has already been

dropped. So the query breaks and the pro
essing of SC(2) aborts.

In the example shown in Figure 7, we noti
e that the two updates are dependent on ea
h other, i.e.,

the dependen
y orders as de�ned in Def 6 between them
omprise a
ir
le. We give a formal de�nition

of this dependen
y
ir
le
on
ept now.

De�nition 8 For n update messages m[i

1

℄,m[i

2

℄,...,m[i

n

℄ in UMQ with i

j

< i

j+1

, we say the depen-

den
ies among these update messages
omprise a dependen
y
ir
le if they satisfy the following:

1. For 1 �k<n:

(a) m[i

k

℄ m[i

k+1

℄ if pos(m[i

k

℄, UMQ) � pos(m[i

k+1

℄, UMQ) or

(b) m[i

k+1

℄!m[i

k

℄ if pos(m[i

k+1

℄, UMQ) � pos(m[i

k

℄, UMQ)

2. and:

(a) m[i

n

℄ m[i

1

℄ if pos(m[i

n

℄, UMQ) � pos(m[i

1

℄, UMQ) or

(b) m[i

1

℄!m[i

n

℄ if pos(m[i

1

℄, UMQ) � pos(m[i

n

℄, UMQ).

Intuitively, su
h a \
ir
le" of dependen
y edges in a dependen
y graph may result in a deadlo
k in

the sense that we have pro
esses waiting for ea
h other. Dependen
ies in a
ir
le may be all
on
urren
y

dependen
ies, or may be a mixture of semanti
 and
on
urren
y dependen
ies. They
an never be all

just semanti
 dependen
ies only. This is be
ause the semanti
 dependen
y dire
tly relates to the

sequen
e in whi
h updates were
ommitted by an IS and su
h a
ommit sequen
e does never
omprise

a
ir
le.

4.5 De�nition of DW Maintenan
e Anomaly Problem

We now are able to
hara
terize the DW maintenan
e anomaly problem.

Theorem 1 The DW maintenan
e anomaly problem
orresponds to the existen
e of unsafe
on
ur-

ren
y dependen
ies between updates.

Thus to resolve the anomaly is to �nd a pro
essing sequen
e to make all dependen
ies safe.

5 Corre
tness Criteria for Update Message Pro
essing

We now introdu
e a series of
orre
tness
riteria that a solution to the problem illustrated above should

meet. For simpli
ity, we �rst give a
orre
tness de�nition assuming a stati
 state of UMQ. In an a
tual

environment, the UMQ is of
ourse dynami
, with updates in
oming as well as others being removed at

any time. Later we show the
orre
tness de�nition of a stati
 state of UMQ is suÆ
ient for a solution,

as long as the solution takes in
oming update messages into a

ount.

11

From the DW's point of view, we
all the order of the updates in
oming from the ISs the re
eiving

order. By Assumption 1, we know that for one spe
i�
 IS, its updates arrive at UMQ in a stri
t

sequential order, namely, in the order in whi
h they were a
tually
ommitted at the IS. At time t, the

order of messages in UMQ of a DWMS is
alled a stati
 snapshot of the UMQ order at time t.

De�nition 9 We say that a DW refresh pro
ess su

eeded if it �nishes the maintenan
e and updates

the DW's database. Similarly we say that a DW refresh pro
ess failed if it is aborted by a
on
urrent

SC by Def 4.

De�nition 10 Given a stati
 snapshot of UMQ, any order of su

essfully pro
essing these updates is

alled a su

essful order of this snapshot of UMQ. If we
an reorganize the updates in a snapshot

of UMQ to eliminate all unsafe dependen
ies, any su
h resulting reorganization order is
alled a legal

order of this snapshot of UMQ.

Def 10 establishes the
orre
tness
riteria for a solution strategy of the anomaly problem de�ned

in Se
tion 4.5. That is, the solution must always be able to �nd a legal order of update messages to

make all dependen
ies safe.

Theorem 2 Legal orders of a snapshot of UMQ exist i� there are no
y
li
 dependen
ies.

We
an
onstru
t a dependen
y graph (DG) of UMQ that in
ludes both CDs and SDs (as des
ribed

in Se
tion 6.1.1). If the graph
ontains a
y
le, obviously we
an not �nd a pro
essing (a
y
li
) order

for these
y
li
-dependent updates. If it is instead a DAG (Dire
ted A
y
li
 Graph), we
an easily

obtain an order that does not violate the order imposed by all dependen
ies by traversing the graph,

whi
h represents one legal pro
essing order.

6 A Complete Solution Strategy: Dyno

We now introdu
e our solution strategy
alled Dyno. A
omplete solution must in
orporate the fol-

lowing three fun
tionalities: maintenan
e of sour
e update, dependen
y dete
tion and error
orre
tion

operations. The Dyno solution entails three
omponents: dependen
y dete
tion methods for the two

types of dependen
ies; dependen
y
orre
tion operations that rearrange or merge updates in UMQ in

order to �x unsafe dependen
ies; and lastly an overall
ontrol strategy to integrate the former two

omponents into a
omplete one.

12

6.1 Dete
tion of Dependen
ies

6.1.1 Dependen
ies Dete
tion Method

We
an
onstru
t a dependen
y graph (DG) whi
h in
ludes both CDs and SDs in the UMQ. Given

a snapshot of UMQ, we
an dis
over the CD between two updates, m1 and m2 using the method

des
ribed below: If the maintenan
e query generated for maintenan
e of m1 refers to the same relation

as m2, then there is a CD, namely m1

d

 � m2. The reason is that m2 may a�e
t this maintenan
e

query. Sin
e the maintenan
e query is de
omposed from DW view de�nition, we
an infer if two

updates may have CD by just referring to the view de�nition.

It is straightforward to
onstru
t SDs between updates, i.e., ea
h two adja
ent updates from the

same relation has a SD. Note that we put both CD and SD in the same graph be
ause they are

a
tually both
onstraints on pro
essing order information.

After the
onstru
tion of DG, we
an easily
he
k if a dependen
y (or an edge in DG) is safe. by

using Def 7.

6.1.2 Time to Apply Dete
tion

We further propose three di�erent dete
tion strategies with the same fun
tionalities as des
ribed above,

but only di�er in terms of the time they are applied: pre-exe
 stati
 dete
tion method, in-exe
 dynami

dete
tion method and post-exe
 stati
 dete
tion method.

A pre-exe
 stati
 dete
tion method dete
ts the dependen
y before the head update in UMQ

is pro
essed. Its prin
iple is to analyze the
ontent of all other updates in UMQ and the maintenan
e

queries to be generated by the VM or VS/VA modules respe
tively to dis
over potential dependen
ies

between them. Given a snapshot of the UMQ, this method
an dete
t all the
on
urren
y and semanti

dependen
ies between update messages in this snapshot. For example, in Figure 3, before DWMS

pro
esses DU(1), we
an dis
over SC(2) that is already in the UMQ whi
h forms an unsafe
on
urrent

dependen
y with DU(1). Thus we need not bother to send down a maintenan
e query to IS1 whi
h

will surely break. Note that the pre-exe
 stati
 dete
tion method by itself if not suÆ
ient be
ause

some SC that o

urs after the pre-exe
 dete
tion would still break the maintenan
e query.

An in-exe
 dynami
 dete
tion method dete
ts the unsafe dependen
y during pro
essing of the

head update in UMQ. Its prin
iple is to dete
t if any maintenan
e query failed due to the in
ompitable

s
hema of ISs. However, in some
ases, this dete
tion method
annot
at
h all unsafe dependen
y as

illustrated below.

Assume an IS relation is dropped and re
reated or two relations swit
h their names. The mainte-

nan
e query may su

eed but operated on di�erent data. The in-exe
 dynami
 dete
tion method

an not dete
t su
h spe
ial \broken" query problem.

13

A post-exe
 stati
 dete
tion method is thus introdu
ed to
ompensate for the previous two

methods. Its task is just to make sure the IS relation whi
h the maintenan
e query su

eeds in operating

upon is the original one. Note that we do not need to examine update messages whi
h have arrived

after the returned query results.

6.1.3 An Interpreted Dete
tion Strategy in Dyno

Based on these three dete
tion strategies, we distinguish between two kinds of
omplete dete
tion

strategies to our problem: optimisti
 and pessimisti
. Both kinds lead to
orre
t �nal results, and

the
hoi
e of whi
h kind of strategy to utilize is largely based on the expe
ted behavior of the data

warehouse environment in terms of
on
urren
y as we experimentally illustrated in a later se
tion.

1. Optimisti
 dete
tion strategy: An optimisti
 solution aims to minimize the performan
e

overhead during normal pro
essing and then has to endure some
ost to re
over if a problem

a
tually happens. It employs both in-exe
 dete
tion and post-exe
 dete
tion strategies. Whenever

a maintenan
e query fails, the DWMS aborts the on-going pro
essing of
urrent update. After

some ne
essary re
overy, the pro
ess resumes to handle the next update message.

2. Pessimisti
 dete
tion strategy: A pessimisti
 solution aims to minimize or even prevent any

aborts of the maintenan
e pro
ess at the
ost of an added performan
e overhead during normal

pro
essing. A pessimisti
 strategy thus attempts to anti
ipate, dete
t and ideally prevent any

unsafe dependen
y, thus avoiding aborts and their overheads. Thus it utilizes a pre-exe
 dete
tion

method to dete
t dependen
ies before pro
essing as mu
h as possible, hen
e the name pessimisti
.

But as indi
ated in Se
tion 6.1.1, it still needs to employ the in-exe
 and post-exe
 dete
tion as

supplementary dete
tion methods to assure
omplete dete
tion.

Our Dyno solution employs the \Pessimisti
 Dete
tion Strategy" as shown in Figure 8.

1. pre-exec static detection method:

Before the DW maintenance of head update in UMQ: Check if this update is involved in any
unsafe dependency.

2. in-exec dynamic detection method:

Activated only when the maintenance query failed due to the discrepancy of schema: Abort current
processing.

3. post-exec static detection method:

After the success of maintenance query: It aims to make sure the “succeeful” query does operate
upon the desire relation.

Figure 8: Dete
tion Strategy of Dyno

14

6.2 Stati
 Corre
tion of Unsafe Dependen
ies

After we have dete
ted an unsafe dependen
y between two updates, we need to determine how to

hange the unsafe dependen
y into a safe one. Based on the dependen
y graph
onstru
ted during the

dete
tion, we propose a solution that employs two dependen
y
orre
tion operations to a
hieve this

goal, namely, by either rearranging updates in UMQ, or by merging updates in the UMQ.

In parti
ular, assume that there is an unsafe dependen
y order between two update messages m1

and m2, i.e., m1 is before m2 in UMQ and m1 is dependent on m2 (m1 m2) by Def 7. We propose

operation Op-Pre
ede to pre
ede m2 before m1 thus
orre
t this unsafe dependen
y. The intuition of

this method is that after we reorder these two updates, their pro
essing order would �t their dependen
y.

If there exists another dependen
y m1!m2, whi
h
omprises a
y
le, we instead propose operation

Op-MergeForward to merge m2 into m1, i.e., we eliminate the dependen
y by merging the two or more

updates into one whi
h will be pro
essed by the DWMS in one refresh pro
ess

1

.

The dependen
y
orre
tion algorithm SDC for a stati
 snapshot of UMQ is shown in Figure 9:

Procedure StaticCorrection()

Begin

Given a Snapshot of UMQ;

while(there exists unsafe dependency in this snapshot)

begin

pick one unsafe dependency;

if it forms a cycle with other dependencies then

Op-MergeForward all related updates;

else

Op-Precede one message to another;

end;

end;

Figure 9: SDC: Stati
 Dependen
y Corre
tion Algorithm

Figure 10 depi
ts the steps of SDC when applying to a snapshot of UMQ. First, SDC �nds that the

CD 1 4 is unsafe, the it pre
edes 4 before 1. Se
ond, SDC dis
overs that SD 4 3 be
omes unsafe

now, it pre
edes 3 before 4. Finally, there is a
y
le between 4 and 6, then SDC merges them. Now all

the dependen
ies are now safe, thus the SDC stops.

Proof of Termination of SDC: Assume if the algorithm does not stop, there must be some

orre
ted dependen
ies turning ba
k to unsafe sin
e there are �nite unsafe dependen
ies. In this
ase,

a
y
le is found and related updates are merged. This results in the redu
ed number of updates.

Thus in the worst
ase we get one big update that
ontains all original updates and even though the

algorithm would still stop.

We
an further
on
lude that the termination means there exists no unsafe dependen
y, whi
h

1

We have developed advan
ed algorithms for VM/VS/VA to pro
ess multiple updates in a time, whi
h is out of s
ope of this paper.

This is why we mention that the pro
essing of bat
h updates is relatively straightforward and left for future work.

15

orresponds to a legal order. By Def 10, we know that our stati
 dependen
y
orre
tion algorithm is

orre
t.

1 2 3 4 5 6

1 23 4 5 6

Semantic Dependency.
Concurrency Dependency.

4 2 3 1 5 6

1 23 4 56

1

2
3

Figure 10: Example of Dependen
y Corre
tion

6.3 Dyno Solution: Pulling It All Together

With the aid of dependen
y dete
tion strategies in Se
tion 6.1.3 and the SDC (stati
 dependen
y

orre
tion) algorithm in Se
tion 6.2, we now propose our Dyno solution for dynami
 dependen
y

dete
tion and
orre
tion. The Dyno �rst uses pre-exe
 dete
tion strategy before starting the pro
essing

of the head update in UMQ. In-exe
 dete
tion is used during the DW maintenan
e. Upon dete
tion

of any unsafe
on
urren
y dependen
y, the Dyno solution uses SDC to turn any unsafe dependen
ies

to safe.

Figure 11 shows a detailed
ow
hart of the Dyno algorithm. Ea
h step is identi�ed by a number.

Just before the pro
ess of the head update in UMQ, Step 1 dete
ts all dependen
ies and
onstru
ts a

dependen
y graph given a snapshop of UMQ. Step 2
he
ks if the head update in UMQ is involved

in any unsafe dependen
ies. Step 3 applies stati
 dependen
y
orre
tion algorithm to �nd a legal

pro
essing order. In Step 4 we start pro
essing of that head update. During the maintenan
e, in-

exe
 dependen
y dete
tion (not shown in the
ow
hart) method is employed to dete
t any new unsafe

on
urrent dependen
y by a broken query s
heme. If the
urrent pro
ess is aborted, Step 5 undoes any

e�e
t of this aborted pro
ess from step 4 and goes to step 1. Step 6 uses a post-exe
 stati
 dete
tion

method after su

essful pro
essing. Step 7: If any unsafe
on
urrent dependen
y has been dete
ted

by post-exe
 dependen
y dete
tion, then Step 7 undoes any e�e
t
aused by the
ompleted pro
ess from

step 4 and goes to step 1. Step 8: The head update is removed by Step 8 from UMQ and go to step

1.

The right side of Figure 11 shows the detailed steps to get an \exe
utable" head update, i.e.,

an update not involved in any unsafe dependen
y. It will �rst
onstru
t the dependen
y graph and

he
k if the head update is involved in any unsafe dependen
ies. If so, it applies SDC to
orre
t the

dependen
ies thus making the �rst head update exe
utable. Note that all of these are done in a stati

16

No

Yes

No

Yes

SC DUDU/SC

4. Get Head Update
in UMQ

5. Undo any influence made
by the aborted maintenance.

8. Remove Head
Update from UMQ

1.Pre-exec
Detection and Correction 1.Building

Dependency Graph

3. Static Dependency
Correction

2. Head Update
Safe?

Yes

7. Violation
Detected?

No

Success?
6. Post-exec

Detection

VMVS & VA

Figure 11: The Dyno Flow
hart

snapshop of the UMQ.

6.4 Termination and Corre
tness of the Dyno Solution

We have already proven the termination and
orre
tness of our stati
 dependen
y
orre
tion strategy

(see Figure 9) given a stati
 snapshot. We now brie
y prove the
orre
tness of Dyno in a dynami

ontext with further
onsideration of the new in
oming updates.

We �rst look at the termination. The only possibility that may
ause the Dyno in�nite is that

(1) there are unlimited s
hema
hanges at ISs, and (2) the in
oming updates always aborts the DW

maintenan
e pro
ess
ausing the DW never to be refreshed. Su
h a degenerate
ondition is highly

unlikely and we believe it is in general not addressable.

Similarly, the stati
 dependen
y
orre
tion algorithm fails only when some new
on
urrent updates

arise. In this
ase, our in-exe
 dete
tion and post-exe
 dete
tion would be suÆ
ient to dete
t any of

new unsafe dependen
ies resulting in re
orre
tion of them. Given limited updates, the pro
essing order

that the stati
 dependen
y
orre
tion algorithm generates would �nally su

eed. Thus we
an
on
lude

that Dyno is
orre
t.

6.5 Consisten
y Level A
hieved by Dyno

We adopt the de�nitions of
orre
tness and
onsisten
y levels of the DW from [ZGMHW95℄.

17

� Corre
tness: Any state of DW
orresponds to one valid state of ea
h IS.

� Convergen
e: All IS updates will be eventually in
orporated into the DW resulting in a
orre
t

�nal state.

� Strong Consisten
y: All states of DW are
orre
t and the order of DW states transitions

orresponds to the order of the state transitions of ea
h of the ISs.

� Complete Consisten
y: Strong
onsisten
y holds plus ea
h state of one of the ISs is re
e
ted

by a distin
t DW state.

Clearly, Dyno a
hieves \Strong Consisten
y". This is be
ause, �rst, the reordering will keep all

semanti
 dependen
ies thus the DWMS would pro
ess the IS updates in the same order as they
ommit

at IS. Se
ond, however, sin
e Dyno would merge updates thus not every update
orresponds to a

distin
t DW state. Lastly, the
orre
tness of Dyno guarantees that ea
h state of DW is
orre
t as long

as VM/VS/VA are
orre
t. In
on
lusion, Dyno rea
hes \Strong Consisten
y".

7 Experimental Evaluation

7.1 Experiment Testbed

We have implemented the Dyno algorithm in our data warehousing system DyDa [CZC

+

01℄. The

integration of this module makes DyDa
apable of maintaining the DW even under
on
urrent data

updates and s
hema
hanges. In the DyDa system, we apply the SWEEP [AASY97℄ algorithm to

ompensate for the
on
urrent DUs, thus solving the �rst two dependen
ies problems (see Se
tion 4.1).

DyDa is implemented using java, jdb
 to
onne
t to Ora
le8i as DW servers and IS servers. In our

experimental setting, there are four information sour
es with one relation ea
h. Ea
h relation has two

attributes and
ontains 10, 000 tuples. There is one materialized join view de�ned upon these four

IS relations. We have
ondu
ted our experiments on a Pentium III PC with 256M memory, running

Windows NT and Ora
le8i.

7.2 Study of DU Pro
essing

Note that our Dyno algorithm extends the system's fun
tionality to now also deal with
on
urrent

SCs. We �rst study the overhead su
h extended fun
tionality may bring to the normal system's DU

pro
essing. Clearly, any extra
ost would
ome from the dete
tion pro
ess of Dyno, i.e., it would

examine the UMQ before/after the pro
essing of
urrent DUs, but an abort would not o

ur without

SCs.

The stati
 pre-exe
 dete
tion strategy involves the
onstru
tion dependen
y graph of both CDs

and SDs, whi
h has a time
omplexity of O(n

2

). However, sin
e if there are only DUs in UMQ, no

18

on
urrent dependen
ies would exist thus the maintenan
e query never breaks. Thus we
an optimize

the dependen
y graph
onstru
tion by adding a pre-s
an of the UMQ. Whenever there is no SC, we

an safely avoid the
onstru
tion the whole dependen
y graph thus redu
ing the time
omplexity to

O(n). The post-exe
 dete
tion strategy also has the time
omplexity of O(n). That is so be
ause it

will tra
e the relation that the maintenan
e query operated upon by s
anning the UMQ on
e. The

in-exe
 dete
tion strategy would a
tually not be a
tivitated sin
e there is no SC thus no abort would

ever o

ur.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

100 200 300 400 500

Without detection With detection

Time (ms) DU Processing

Figure 12: Comparison of DU Pro
essing with/without Dete
tion Enabled

Figure 12 depi
ts the total DW maintenan
e
ost measured in millise
onds (depi
ted on the y-axis)

with or without dete
tion enabled under di�erent numbers of IS DUs (depi
ted on the x-axis). From

the result, we �nd that the dete
tion
ost (both pre-exe
 and post-exe
 dete
tion) is small for any

number of DUs. It is a
tually less than 5% of the total
ost in the
ases observed. We thus
on
lude

that the Dyno algorithm imposes little extra
ost on DU pro
essing.

7.3 Cost of Broken Query

Re
all that a maintenan
e query would break due to the existen
e of some
on
urrent SCs. There are

two kinds of broken query problems, namely, a DU pro
essing is aborted by an SC or an SC pro
essing

is aborted by another SC. On
e su
h a broken query o

urs, the DWMS has to drop all previous

maintenan
e work and redo it again imposing an extra
ost on DW maintenan
e whi
h we refer to as

the
ost of the broken query, i.e., the maintenan
e abort
ost.

In this experiment, we now study the
ost of these two kinds of aborts. To observe the exa
t
ost

of a broken query, we employ simple
ase here, i.e., one DU pro
essing aborted by an SC and an

SC pro
essing aborted by another one. Three di�erent environment settings are
ompared. First, we

measure the maintenan
e
ost of all updates by spa
ing them far enough, so they won't interfere with

19

ea
h other

2

. This
an be
onsidered as the minimum
ost sin
e there is no
on
urren
y handling
ost.

Se
ond, we apply pre-exe
 dete
tion strategy to dis
over the potential
on
urren
y before pro
essing

thus trying to avoid the o

urren
e of any broken query. Third, we disable pre-exe
 dete
tion strategy

now only after the broken query o

urs and is dete
ted, do we
orre
t the dependen
ies and restart

the maintenan
e, thus more aborts may o

ur.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

DU/SC SC/SC

No Concurrency With pre-exec detection Without pre-exec detection

Time (ms) Broken Query Processing

Figure 13: Cost of Broken Query

Figure 13 depi
ts the total DW maintenan
e
ost in terms of millise
onds (depi
ted on the y-axis)

under di�erent kinds of
on
urrent updates. From the �gure, we �nd that the
ost of aborting SC

pro
essing is signi�
ant
ompared to that of DU pro
essing, i.e., the white box of SC/SC (where

the abort of SC o

urs) is mu
h higher than the other two, while in the
ase of DU/SC, the white

box of DU/SC (where the abort of DU o

urs) is similar to the other two. The reason is that the

VS&VA modules involve rather
omplex operations for SC pro
essing. Thus it is
ostly to redo the SC

maintenan
e pro
ess. Se
ondly, we �nd that the pre-exe
 dete
tion strategy does indeed help to avoid

some of the broken queries to o

ur, i.e., the bla
k and grey boxes are similar in both
ases.

7.4 Mixed Update Pro
essing

In the previous two experiments, we observe that the most expensive
ost besides the normal DW

maintenan
e pro
essing is the abort of the SC pro
essing, i.e., the
ost of both dependen
y dete
tion

(Figure 12) and the abort of DU (Figure 13) is minimum in
omparsion. Also we �nd that the pre-

exe
 dete
tion strategy does help to avoid the aborting of the SC pro
essing (Figure 13). However, as

mentioned before, the broken query may still happen even when employing pre-exe
 dete
tion strategy.

We now study how this strategy helps in a truly mixed update environment with both DUs and SCs.

We employ a mixture of updates with 5% of them being SCs and 95% being DUs, both randomly

generated over all four ISs. In this experiment, we vary the time interval between updates as a

2

Be
ause the IS updates o

ur after the
ompletion of DW maintenan
e.

20

parameter. When the time interval is short, the DWMS is under a high load and will re
eive more

IS updates given a
ertain time thus resulting in more
on
urren
y problems. In
ontrast, when the

time interval is long, the DWMS is under a low load, i.e., less updates are re
eived within a
ertain

period and less
on
urren
y would o

ur. Figure 14 depi
ts two lines for the maintenan
e
ost with or

without pre-exe
 dete
tion, respe
tively, when varying the delay between these updates from 100ms to

350ms.

0

10000

20000

30000

40000

50000

60000

70000

80000

100 150 200 250 300 350

With pre-exec detection

Without pre-exec detection

Time (ms)

Time Interval (ms)

Mixed Update Processing

Figure 14: Mixed Update Pro
essing

From Figure 14, we �nd that the system without pre-exe
 dete
tion
an never prevent the abort of

SC pro
essing, thus leading to high maintenan
e
ost even for small time interval. In
omparison, when

the time interval between updates is short, the system with the pre-exe
 dete
tion is able to dis
over

the potential
on
urrent SCs thus avoiding the abort. The reason is that if an SC is propagated to the

DWMS qui
kly, it's more likely that it
an be
aught during the pre-exe
 dete
tion pro
ess. This leads

to the observation that the pre-exe
 dete
tion helps under a high system load. When the time interval

in
reases, a
on
urrent SC may es
ape the pre-exe
 dete
tion period thus the broken query problem is

unavoidable.

8 Related Work

Maintaining materialized views under sour
e updates in a DW environment is one of the important

issues of data warehousing [Wid95, RKZ00℄. Initially, some resear
h has studied in
remental view

maintenan
e assuming no
on
urren
y. Su
h algorithms for maintaining a data warehouse under sour
e

data updates are
alled view maintenan
e algorithms [CGL

+

96, GL95, LMSS95℄. The EVE proje
t

[LKNR99, NR98℄ studied the problem of how to maintain a data warehouse not only under data updates

but also under s
hema
hanges. The essen
e of EVE is to automati
ally rewrite the view de�nitions

when the base s
hema has been
hanged, and to try to lo
ate the best repla
ements for a�e
ted view

omponents. Su
h view rewriting
aused by s
hema
hanges of ISs is
alled View Syn
hronization.

21

Thereafter, View Adaptation (VA) [GMR95, NR99℄ in
rementally adapts the view extent after the

view de�nition has been rede�ned. View self-maintenan
e [QGMW96, Huy97℄ is one approa
h to

maintain DW extent trying to limit the a

ess the base relations. [MRSR01℄ proposes an optimization

for multiple view maintenan
e by using some intermediate views with
ommon subexpressions.

In approa
hes that need to send maintenan
e queries down to the IS spa
e,
on
urren
y problems
an

arise [ZGMHW95℄. In their work, they introdu
ed the ECA algorithm for in
remental viewmaintenan
e

under
on
urrent IS data updates restri
ted to a single IS. In Strobe [ZGMW96℄, they extend their

approa
h to handle multiple ISs. Agrawal et al. [AASY97℄ propose the SWEEP-algorithm that
an

ensure
onsisten
y of the data warehouse in a large number of
ases
ompared to the Strobe family of

algorithms. [ZRD01℄ improves upon the performan
e of SWEEP by parallelizing SWEEP. [SBCL00℄

proposes to only materialize delta
hanges of both ISs and views with timestamps, so the view is able

to asyn
hronously refresh its extent. They also introdu
e an interesting propagation algorithm that

ould signi�
antly redu
e the number of
ompensation queries. However, none of them
an handle the

sour
e s
hema
hange and the system would fail when su
h s
hema
hange o

urs.

Our early work [ZR99℄ studies the problems of the DW refresh
aused by the
on
urren
y of IS

data updates and s
hema
hanges. However it assumes that ea
h IS reports a s
hema
hange and

waits for permission from the DWMS before it
ommits. In other words, the ISs are assumed to be

fully
ooperative. Our work now drops this restri
ting assumption. [CR00℄ employs a multiversion

on
urren
y
ontrol algorithm to handle the
on
urren
y problem assuming there are enough system

resour
es to materialize some extra data.

9 Con
lusion

In this paper, we
hara
terize the DW maintenan
e anomaly problem
orresponds to the fa
t that the

unsafe dependen
ies exist between update messages in a fully
on
urrent environment. We analyze

and
ategorize the di�erent types of dependen
y relationships between sour
e updates. Then we

propose di�erent types of dete
tion methods of these dependen
ies. Based on the dependen
y graph,

we introdu
e the basi
 dependen
y
orre
tion solution in a stati
 environment. Finally we propose and

prove a
omplete solution strategy named Dyno whi
h enables a DWMS to handle
on
urrent DUs

and SCs in a dynami

ontext. We have implemented the Dyno solution in our DyDa system. The

experimental results show that our new
on
urren
y handling strategy imposes a minimal overhead

to allow for this extended fun
tionality. Our advan
ed
on
urren
y dete
tion strategy even su

eeds

in redu
ing the expensive
ost of maintenan
e aborts and hen
e restarts of s
hema
hange pro
essing

under a high system load, thus a
hieving overall improved maintenan
e performan
e. Our future work

in
ludes bat
h updates pro
essing and multiple view maintenan
e.

22

Referen
es

[AASY97℄ D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. EÆ
ient View Maintenan
e at Data

Warehouses. In Pro
eedings of SIGMOD, pages 417{427, 1997.

[CGL

+

96℄ L. S. Colby, T. GriÆn, L. Libkin, I. S. Mumi
k, and H. Tri
key. Algorithms for Deferred

View Maintenan
e. In Pro
eedings of SIGMOD, pages 469{480, 1996.

[CR00℄ Jun Chen and Elke A. Rundensteiner. Txnwrap: A transa
tional approa
h to data

warehouse maintenan
e. Te
hni
al report, Wor
ester Polyte
hni
 Institute, November

2000.

[CZC

+

01℄ J. Chen, X. Zhang, S. Chen, K. Andreas, and E. A. Rundensteiner. DyDa: Data Ware-

house Maintenan
e under Fully Con
urrent Environments. In Pro
eedings of SIGMOD

Demo Session, page 619, Santa Barbara, CA, May 2001.

[GL95℄ T. GriÆn and L. Libkin. In
remental Maintenan
e of Views with Dupli
ates. In Pro-

eedings of SIGMOD, pages 328{339, 1995.

[GM95℄ A. Gupta and I.S. Mumi
k. Maintenan
e of Materialized Views: Problems, Te
hniques,

and Appli
ations. IEEE Data Engineering Bulletin, Spe
ial Issue on Materialized Views

and Warehousing, 18(2):3{19, 1995.

[GMR95℄ A. Gupta, I.S. Mumi
k, and K.A. Ross. Adapting Materialized Views after Rede�nition.

In Pro
eedings of ACM SIGMOD International Conferen
e on Management of Data,

pages 211{222, 1995.

[Huy97℄ Nam Huyn. Multiple-View Self-Maintenan
e in Data Warehousing Environment. In

International Conferen
e on Very Large Data Bases, pages 26{35, 1997.

[LKNR99℄ A. J. Lee, A. Koeller, A. Ni
a, and E. A. Rundensteiner. Non-Equivalent Query Rewrit-

ings. In International Database Conferen
e, Hong Kong, July 1999.

[LMSS95℄ James J. Lu, Guido Moerkotte, Joa
him S
hue, and V. S. Subrahmanian. EÆ
ient

Maintenan
e of Materialized Mediated Views. In Pro
eedings of SIGMOD, pages 340{

351, San Jose, California, May 1995.

[LNR01℄ A. M. Lee, A. Ni
a, and E. A. Rundensteiner. The EVE Approa
h: View Syn
hronization

In Dynami
 Distributed Environments. IEEE Transa
tions on Knowledge and Data

Engineering (TKDE), 2001.

[Mar93℄ S. Mar
he. Measuring the Stability of Data Models. European Journal of Information

Systems, 2(1):37{47, January 1993.

[MD96℄ M. Mohania and G. Dong. Algorithms for Adapting Materialized Views in Data Ware-

houses. International Symposium on Cooperative Database Systems for Advan
ed Appli-

ations, pages 353{354, De
ember 1996.

[MRSR01℄ H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized View Sele
tion and

Maintenan
e Using Multi-Query Optimization. In Pro
eedings of SIGMOD'01, pages

307{318, May 2001.

[NLR98℄ A. Ni
a, A. J. Lee, and E. A. Rundensteiner. The CVS Algorithm for View Syn
hro-

nization in Evolvable Large-S
ale Information Systems. In Pro
eedings of International

Conferen
e on Extending Database Te
hnology (EDBT'98), pages 359{373, Valen
ia,

Spain, Mar
h 1998.

[NR98℄ A. Ni
a and E. A. Rundensteiner. Using Containment Information for View Evolution in

Dynami
 Distributed Environments. In Pro
eedings of International Workshop on Data

Warehouse Design and OLAP Te
hnology (DWDOT'98), Vienna, Austria, August 1998.

23

[NR99℄ A. Ni
a and E. A. Rundensteiner. View Maintenan
e after View Syn
hronization. In In-

ternational Database Engineering and Appli
ations Symposium (IDEAS'99), pages 213{

215, August, Montreal, Canada 1999.

[QGMW96℄ D. Quass, A. Gupta, I. S. Mumi
k, and J. Widom. Making views self-maintainable for

data warehousing. In Conferen
e on Parallel and Distributed Information Systems, pages

158{169, 1996.

[RKZ00℄ E. A. Rundensteiner, A. Koeller, and X. Zhang. Maintaining Data Warehouses over

Changing Information Sour
es. Communi
ations of the ACM, pages 57{62, June 2000.

[SBCL00℄ K. Salem, K. S. Beyer, R. Co
hrane, and B. G. Lindsay. How To Roll a Join: Asyn-

hronous In
remental View Maintenan
e. In Pro
eedings of SIGMOD, pages 129{140,

2000.

[Sjo93℄ D. Sjoberg. Quantifying S
hema Evolution. Information and Software Te
hnology,

35(1):35{54, January 1993.

[Wid95℄ J. Widom. Resear
h Problems in Data Warehousing. In Pro
eedings of International

Conferen
e on Information and Knowledge Management, pages 25{30, 1995.

[ZGMHW95℄ Y. Zhuge, H�e
tor Gar
��a-Molina, J. Hammer, and J. Widom. View Maintenan
e in a

Warehousing Environment. In Pro
eedings of SIGMOD, pages 316{327, May 1995.

[ZGMW96℄ Y. Zhuge, H�e
tor Gar
��a-Molina, and J. L. Wiener. The Strobe Algorithms for Multi-

Sour
e Warehouse Consisten
y. In International Conferen
e on Parallel and Distributed

Information Systems, pages 146{157, De
ember 1996.

[ZR99℄ X. Zhang and E. A. Rundensteiner. The SDCC Framework for Integrating Existing

Algorithms for Diverse Data Warehouse Maintenan
e Tasks. In International Database

Engineering and Appli
ation Symposium, pages 206{214, Montreal, Canada, August,

1999.

[ZRD01℄ X. Zhang, E. A. Rundensteiner, and L. Ding. PVM: Parallel View Maintenan
e Under

Con
urrent Data Updates of Distributed Sour
es. In Data Warehousing and Knowledge

Dis
overy, Pro
eedings, September, Muni
h, Germany 2001.

24

