
WPI-CS-TR-01-17 July 2001

Detetion and Corretion of Coniting Conurrent Data

Warehouse Updates

by

Songting Chen

Jun Chen

Xin Zhang

Elke A. Rundensteiner

Computer Siene

Tehnial Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Siene Department

100 Institute Road, Worester, Massahusetts 01609-2280

Detetion and Corretion of Coniting Conurrent Data Warehouse Updates

Songting Chen, Jun Chen, Xin Zhang, and Elke A. Rundensteiner

Department of Computer Siene

Worester Polytehni Institute

Worester, MA 01609-2280

fhenst, junhen, xinz, rundenstg�s.wpi.edu

July 23, 2001

Abstrat

A Data Warehouse Management System (DWMS) maintains materialized views derived from one or more

information soures (ISs) under soure hanges. Given the dynami nature of modern distributed environments

suh as the WWW, both soure data and shema hanges are likely to our autonomously and even onurrently.

Strategies proposed in the reent literature to ahieve DW onsisteny typially are based on issuing maintenane

queries to ISs and then applying ompensating queries to orret any errors in the DW refreshs. However, these

solutions are limited to handle pure data updates only, making the restriting assumptions that (1) the shemata

of all soures remain stable over time, and (2) maintenane queries are never broken by soure shema hanges.

In this paper, we introdue a formal framework that suessfully lifts these restritions. In partiular, we

haraterize two lasses of dependenies between onurrent update messages not urrently handled in the

literature. We then propose a two-pronged solution strategy takling these dependenies. One, we introdue

strategies for the detetion of these dependenies between updates based on yli dependeny analysis. Two, we

introdue a onit resolution strategy based on reordering and merging a�eted updates. We have proven the

orretness of our solution, i.e., that the DWMS refreshs the data warehouse orretly in situations not handled

by previously DWMS solutions.

This proposed solution has been suessfully implemented in our Dynami Data Warehousing system, alled

DyDa. DyDa is the �rst system that an orretly maintain a DW under all lasses of onurreny. The experi-

mental results show that our new onurreny handling strategy imposes a minimal (smaller than 5%) overhead

to allow for this extended funtionality. Our advaned onurreny detetion strategy even sueeds in reduing

the expensive ost of maintenane aborts and hene restarts of shema hange proessing under a high system

load, thus ahieving overall improved maintenane performane.

Keywords: Data Warehouse, Maintenane Query, Conurrent Updates, Dependeny Detetion, Dependeny

Corretion, Broken Query.

1 Introdution

1.1 Introdution to Data Warehouse Environment

Data warehouses (DW) [GM95, MD96℄ are built by gathering information from information soures

(ISs) and integrating it into one virtual repository ustomized to users' needs. Data warehousing is

important for many appliations suh as E-ommere, deision support systems and web-site manage-

ment that must funtion in large-sale environments omposed of distributed soures. One important

task of a Data Warehouse Management System (DWMS) is to maintain the DW upon hanges of ISs.

The requirements of an IS system, like most other systems, are likely to hange during its life-

yle. The extent of hanges in a typial working relational database system is illustrated in [Sjo93℄,

whih douments the measurement of shema evolution during the development and initial use of a

health management system used at several hospitals. There was an inrease of 139% in the number

of relations and 274% in the number of attributes in the system during the nineteen-month period of

study. In [Mar93℄, signi�ant hanges (about 59% of attributes on the average) were reported for seven

appliations. These appliations ranged from projet traking, real estate inventory and aounting

and sales management, to government administration of the skill trades and apprentieship programs.

Furthermore, in distributed environments, ISs are typially owned by di�erent information providers

and hene funtion independently from one another. This implies they will update their data and

shemas onurrently without any onern for how this may a�et the materialized views de�ned upon

them [Wid95, RKZ00℄. They are generally not aware of nor willing to synhronize with the DWMS's

refresh proess, thus resulting in onurreny between these updates.

While suh onurreny problems have reeived inreased attention in reent years, pratially all

existing work [ZGMHW95, AASY97, SBCL00, ZRD01℄ fouses on View Maintenane (VM) to refresh

the data warehouse extent under onurrent soure data updates only. All prior work assumes a stati

environment, and would fail under soure shema hanges as we desribe below.

1.2 The Maintenane Anomaly Problem

During the DW maintenane proessing of a soure update the DWMS may need to query the ISs

for more information by issuing so alled maintenane queries [ZGMHW95℄. In a fully onurrent

environment, the relationship between the DWMS and the ISs is loosely-oupled. That is all IS

updates are ommitted without any onern of how the DWMS inorporates them.

Thus new problems arise for DW maintenane. Intuitively, the problem is how to refresh the DW

while the DWMS no longer knows the urrent state of the underlying IS spae. When proessing a

soure update, the DWMS assumes the ISs that it is sending queries to be in the state when that

update was originally ommitted. This is however not neessarily true beause the ISs ould ontinue

1

to hange both their data and shema autonomously. Thus the maintenane queries that the DWMS

generates for that IS may either return erroneous query results [ZGMHW95℄ (if the related data has

meanwhile been hanged by an IS data update) or even fail ompletely (if the shema of the IS referred

in the query has meanwhile been hanged by an IS shema hange). We refer to this as the DW

maintenane anomaly problem.

While reent work in the literature [ZGMHW95, AASY97, SBCL00, ZRD01℄ proposed ompensation-

based solutions that orret the erroneous query results aused by onurrent data updates, we demon-

strate in this paper that these existing solutions will fail under soure shema hanges. The reason of

this new anomaly problem is that neither maintenane queries nor ompensation queries an get any

query response from ISs due to the disrepany of soure shema with the shemata types required by

these queries. A detailed example of this problem is illustrated in Setion 2.

1.3 Our Contributions

In this paper, we now propose the �rst solution apable of dealing all types of onurreny onits

under both soure data and shema hanges. Our system whih we all DyDa (Dynami Data warehouse

maintenane) [CZC

+

01℄ supports for all ISs to operate both independently and autonomously without

any synhronous ooperation. In summary, our ontributions now are:

(1) We identify the problem that the maintenane proessing of a bath of updates in the order

they are reeived by the DWMS may lead to either inorret results or even fail ompletely. We

demonstrate that this maintenane anomaly problem arises due to the violation of dependenies

between soure updates. We ategorize and formalize these dependenies, namely, onurrent

dependenies and semanti dependenies.

(2) We propose three dependeny detetion strategies and a dependeny orretion algorithm. We

design a solution alledDyno that ombines these two tehniques to handle all types of onurreny

in a fully dynami environment. We prove our solution orret, and also analyze it ompletely.

(3) We have implemented the Dyno solution in our DyDa [CZC

+

01℄ system as a proof of onept.

This is the �rst system with a omplete solution to all onurreny problems.

(4) Our experimental results on�rm that our Dyno solution imposes a minimal overhead to allow

for this funtionality of extended onurreny handling. Our advaned onurreny detetion

strategy even sueeds in reduing the expensive ost of maintenane aborts and hene restarts of

shema hange proessing under a high system load, thus ahieving overall improved maintenane

performane.

2

1.4 Outline of Paper

In the next setion we give a motivating example of the maintenane anomaly problem. Setion 3

introdues a brief overview of the DyDa arhiteture. We assume this framework as basis to study the

problem and to formulate our solution. Setion 4 develops a formal haraterization of the onepts of

dependeny. Setion 5 disusses the orretness riteria for dependeny violation orretion. Setion 6

proposes the solution tehniques and integrates them into a omplete Dyno solution strategy. It also

proves the termination and orretness of this approah. Setion 7 disusses the experimental results.

Setion 8 reviews related work, while Setion 9 onludes the paper.

2 The Maintenane Anomaly Problem

We distinguish between three DW maintenane tasks, namely, View Maintenane (VM), View Syn-

hronization (VS) and View Adaptation (VA). VM [ZGMHW95, AASY97, SBCL00℄ aims to maintain

the DW view extent under soure data updates. In ontrast to VM, VS [LNR01, NLR98℄ aims at

rewriting the DW view de�nition when the shema of information soure has been hanged. There-

after, View Adaptation (VA) [GMR95, NR99℄ inrementally adapts the view extent to again math

the newly hanged the view de�nition.

Thus for a single (non-onurrent) data update (DU) or a single shema hange (SC), the proessing

steps of the DWMS have been well de�ned in the literature. For a single DU, DWMS uses one of

the many VM algorithms proposed in the literature to refresh the data warehouse. For a single SC,

DWMS �rst engages the VS to rewrite the a�eted view de�nition(s) and then the VA to inrementally

repopulate the extent of the modi�ed view(s). This relationship is illustrated in Figure 1.

SC DU

VS

VM

VA

DW correctly
maintained.

DW correctly
maintained.

View definition
synchronized.

View extent
refreshed.

View extent
refreshed.

Figure 1: Sequential Proessing of a Single DU/SC

If there is no onurreny, then the VM ould inorporate the soure data update (DU) suessfully

while VS and VA is responsible for inorporating the soure shema hange (SC). In a fully onurrent

3

data warehouse environment, it is unrealisti to require all ISs to always ooperate with the DWMS to

assure suh a sequential proessing order. Thus during the DW maintenane of one update message,

other IS updates may our ausing the DW maintenane problem.

&UHDWH�YLHZ�9�DV

VHOHFW�,6��7��$��,6��7��%

IURP�,6��7���,6��7�

ZKHUH�,6��7��&� �,6��7��&

1 2
3 9
4 5

2 2
7 1
3 5

1 2
4 3

A C B C A B

IS1.T1 IS2.T2 V

� '8������LQVHUW�LQWR�,6��7��YDOXHV�����������

� 2WKHU�8SGDWH�0HVVDJH

� 6&������UHQDPH�,6��7��WR�,6��7�¶���RU��GURS�WDEOH�7��

� 2WKHU�8SGDWH�0HVVDJH

Figure 2: Example of Maintenane Anomaly Problem

Data update by DU(1):

(*)insert into IS2.T2 values(8,9);

To get V1, send down query:

select IS1.T1.A, DU(1).B
from DU(1), IS1.T1

where DU(1).C = IS1.T1.C;
DU(1)

SC(2)

V

V1

Done at DW

Create view V as

select IS1.T1.A, IS2.T2.B

from IS1.T1, IS2.T2

where IS1.T1.C = IS2.T2.C

. .
 .

DU(1)
B C

8 9

Done at IS

Schema changes by SC(2):

(*) rename IS1.T1 to IS1.T1’ (or)

(*) drop table IS1.T1

Break!

. .
 .

Figure 3: Broken Query Problem

Figure 2 details an example of an aborted maintenane proess. We assume the view V de�ned on

IS1.T1 and IS2.T2. Assume the DWMS reeives several update messages about hanges ommitted at

IS1 and at IS2 in the order shown in Figure 2. Figure 3 illustrates what happens when the DWMS tries

to proess DU(1). To proess DU(1) and alulate the delta hange to refresh V into V1, the DWMS

needs to issue a maintenane query [AASY97℄ to the IS1.T1 to feth a delta view extent. But we

notie that IS1.T1 has already been renamed to IS1.T1' (or even dropped ompletely) before the query

arrives at IS1. Thus the query will be broken and the proessing of DU(1) has to be aborted. Note

that the ompensation strategy proposed to takle DU onurreny in [ZGMHW95, AASY97, SBCL00℄

doesn't help in this ase, beause here we annot feth any result at all due to the inompatibility of

the shema.

The timeline of suh a senario is shown in Figure 4. We an see that when DWMS wants to refresh

the DW ontent due to DU(1) at IS2, it may send maintenane queries down to IS1. At that time

another SC is already ommitted at IS1. But the DWMS does not yet know about it. Thus this query

that sent down to IS1 does not sueed due to the hanged shema in IS1.

From the above example we an onlude that in a fully onurrent environment sequential pro-

essing of updates in UMQ is not always feasible, i.e., the maintenane proess may be aborted. The

reason for this is that the DWMS annot always keep synhronized with the urrent state of all ISs.

In the example shown above, the proess of handling DU(1) is dependent on the handling of SC(2). In

other words, DU(1) annot be proessed suessfully until after SC(2) has been proessed, even though

DU(1) was reeived by the DWMS before SC(2).

4

DW

IS2

IS1

DU

SC

Update message (DU or SC) reported by IS

Queries issued by DW to IS

Queries result from IS

DW refresh period

DU or SC process period at IS

VM VS and VA

Unexpected query result or the query is broken

Time

Figure 4: Interleaved Proessing in DWMS

3 The DyDa Framework

DW

VA

Update Message Queue

Assign Time Stamp

Wrapper Wrapper Wrapper

IS IS IS

DW Space

Middle Space

Query Engine

VS VM

LEGEND

Database

Module

Con.
Control

Queue

Data
Flow

Figure 5: DyDa Arhiteture

The solution we propose in this paper has been developed as part of the dynami data warehousing

projet funded by NSF, alled DyDa [CZC

+

01℄ system that aims at resolving the onurreny problems.

To have a better understanding of the ontext of our solution, we �rst introdue our DyDa framework.

Figure 5 depits the arhiteture of the DyDa system. The framework is divided into three spaes:

DW spae, Middle spae, and IS spae. The DW spae houses the extent of the data warehouse. It

reeives queries from the middle spae bundled together with the data to update the data warehouse.

5

The IS spae is omposed of ISs and their orresponding wrappers. We assume that all IS transations

are loal and every data update and shema hange at an IS is reported to the DWMS one ommitted

at the IS (or the delta hanges an be deteted and extrated by, for example the wrapper). Note

that the DW and IS spae setting is similar to that in any of the other related projets, suh as

[ZGMHW95, AASY97, ZRD01℄.

The middle spae is the integrator of the DyDa framework, i.e., the DWMS system that aims

to maintain the DW under soure updates. It an be divided into two subspaes. The higher-level

subspae is alled the DW Management Subspae onsists of the general DW management algorithms,

suh as VS, VA and VM. With the ombination of these three modules, the system is able to handle

non-onurrent data updates and shema hanges. Aording to the type of eah soure update, DyDa

may use either VS, VA, or VM algorithms to update the DW orrespondingly.

The lower layer onsists of the Time Stamp Manager, the Update Message Queue (UMQ) and

the Query Engine. The Time Stamp Manager assigns timestamps to soure updates as soon as they

arrive at the middleware to make it possible to trae sequenes of these updates globally. The Update

Message Queue (UMQ) ollets and manages the ommitted updates from the ISs, whih are either

data updates (DUs) or shema hanges (SCs). The Query Engine in the middleware is responsible for

query proessing, that is, deomposing the view queries into individual IS queries, sending down these

queries to ISs and then olleting and assembling query results.

The onurreny handling of the DWmaintenane anomaly problem resides in the lower layer. There

are various kinds of onurreny as illustrated in Setion 4. Basially, the Query Engine employs a loal

ompensation [AASY97℄ algorithm to handle onurrent DUs. We further extend the funtionalities

of UMQ to �nd an exeutable plan of updates when onurrent SC ours, termed Dyno, whih is the

fous of this paper.

We make the following assumptions in our DyDa framework, as also made by other DW work

[ZGMHW95, ZGMW96, AASY97℄.

Assumption 1 The network ommuniation between an individual IS and the DWMS is FIFO.

Assumption 2 All transations of an IS are loal to this IS (i.e., not distributed). In our urrent

work, every IS transation ontains only one update either a data update or a shema hange. The

study of bathing updates, a relatively straightforward extension, is left for future work.

4 Classes of Dependeny Relationships

The motivating problem in Setion 2 learly illustrates that there are dependenies between soure

updates that make view maintenane impossible. In this setion we �rst analyze these dependenies.

Then we formally de�ne the view maintenane anomaly problem based on the onept of dependeny.

6

4.1 Conurreny Dependeny

There are two kinds of dependenies between soure updates reeived by DWMS: onurreny depen-

deny and semanti dependeny. The example we disussed earlier illustrates onurreny dependen-

ies. As we have seen in Setion 2, onurreny dependenies are aused by the asynhroniity between

the update proesses at the ISs and the DW refresh proesses at the DWMS side. We �rst de�ne some

notations.

De�nition 1 With \i" a unique number for eah IS and \n" a globally unique timestamp value assigned

to eah message (either an soure update, a maintenane query, or query result), we de�ne the following

notations:

(1) Let DU(n)[i℄ and SC(n)[i℄ denote a data update or a shema hange ommitted on IS[i℄ with the

global timestamp \n" assigned by DWMS when this update arrives at DWMS.

(2) Let Q denote the set of maintenane queries generated by the VM (or VA) algorithm if the update

is a DU (or SC). In partiular, we use DU(m)[i℄.Q[k℄ to denote one maintenane query issued

to IS[k℄ when proessing the DU(m)[i℄, and use SC(m)[i℄.Q[k℄ to denote one maintenane query

issued to IS[k℄ when proessing the SC(m)[i℄.

(3) Let QR denote the set of query results returned by ISs. In partiular, we use DU(m)[i℄.QR(n)[k℄

to denote the result of the query DU(m)[i℄.Q[k℄, and use SC(m)[i℄.QR(n)[k℄ to denote the result

of the query SC(m)[i℄.Q[k℄. \n" denotes a global timestamp assigned by DWMS when the query

result arrives at DWMS.

De�nition 2 Given two update messages m1 and m2 in UMQ. If m1 preedes m2 in UMQ, then we

denote this by \pos(m1, UMQ) � pos(m2, UMQ)".

Intuitively, the reason for DW maintenane anomaly problem is that the DW maintenane query is

a�eted by a onurrent IS update. We formalize suh onurreny below.

De�nition 3 Let X(n)[j℄ and Y(m)[i℄ denote DUs and/or SCs ommitted on IS[j℄ and IS[i℄ respe-

tively. We say that Y(m)[i℄ is onurrent dependent (CD) on X(n)[j℄, denoted by:

1. Y(m)[i℄

d

 � X(n)[j℄, if pos(Y(m)[i℄, UMQ) � pos(X(n)[j℄, UMQ)

2. X(n)[j℄

d

�! Y(m)[i℄, if pos(X(n)[j℄, UMQ) � pos(Y(m)[i℄, UMQ)

i�:

1. X(n)[j℄ and Y(m)[i℄.Q[j℄ both refer to a ommon relation on IS[j℄, and

2. there is at least one query result Y(m)[i℄.QR(k)[j℄ suh that n < k. The later means that X(n)[j℄

is reeived by DWMS before the maintenane query result Y(m)[i℄.QR(k)[j℄.

7

For example, assume the time when the DWMS reeives an update DU

i

from some IS

k

is t

1

. To

proess DU

i

, the DWMS issues some maintenane query DU(i)[k℄.Q[m℄ and sends it to some IS

m

. The

time when the DWMS reeives the query result is t

2

. Assume there is another update SC

j

from IS

m

that arrives at the DWMS between t

1

and t

2

. Aording to Assumption 1, SC

j

is ommitted before

the query DU(i)[k℄.Q[m℄ arrives at IS

m

. Thus DU

i

is onurrent dependent (CD) on SC

j

sine

the maintenane query of DU

i

is inuened by SC

j

and thus may fail.

De�nition 4 There are four kinds of CDs:

(1) DU(1)

d

 � DU(2) or DU(2)

d

�! DU(1): The proess of DU(1) is CD on the proess of DU(2);

(2) SC

d

 � DU or DU

d

�! SC: The proess of SC is CD on the proess of DU;

(3) DU

d

 � SC or SC

d

�! DU: The proess of DU is CD on the proess of SC;

(4) SC(1)

d

 � SC(2) or SC(2)

d

�! SC(1): The proess of SC(1) is CD on the proess of SC(2);

Clearly, the example shown in Setion 2 is a CD of type \DU

d

 �SC".

Note that onurrent DUs, (namely the Dependeny ases 1 and 2 in Def 4) modify the ISs' ontent

whih may invalidate the results returned by the maintenane queries. Conurrent SCs, (namely

the Dependeny ases 3 and 4 in Def 4) modify the underlying ISs' shema whih may break the

maintenane queries. As mentioned in Setion 3, the onurreny aused by DUs is handled in the

Query Engine by applying a ompensation-based algorithm [AASY97℄. For ase 2, the DWMS will

send a maintenane query generated by VA [GMR95, NR99℄ that may also get erroneous results due

to onurrent DUs. They an be ompensated similarly. Instead in this paper we fous on solving the

latter two CDs, namely, DU

d

 �SC and SC

d

 �SC, i.e., onurreny triggered by SCs.

The omplexity of building suh CD graph for updates in UMQ is O(n

2

), where n is the number

of updates. Beause in the worst ase, eah pair of updates would have a CD.

4.2 Semanti Dependeny

A semanti dependeny onerns the semanti requirement of the proessing order of the updates

from the same resoures. Figure 6 shows an example of a semanti dependeny. Assume a view V

de�ned on IS1.T1 and IS2.T2. Assume two SCs: SC(1) and SC(2). SC(1) renames IS2.T2 to IS2.TT

and then SC(2) drops IS2.TT.C. On the left side of Figure 6 we an see that the sequential proessing

order of SC(1) and SC(2) is orret. But if we reverse the proessing order, we annot proeed beause

SC(2) annot be proessed before SC(1). That is, the IS2.TT is unde�ned in DWMS if we have not

yet proessed SC(1). The proess of SC(2) is dependent on the proess of SC(1). It's apparent that we

must refresh the DW in the order they are reeived, and not in any other order.

Thus it is neessary to preserve the proessing order of updates from shared resoures suh as the

same relation in this ase. We now formally de�ne that this type of semanti dependeny (SD):

8

Create view V as
select IS1.T1.A, IS2.T2.B
from IS1.T1, IS2.T2
where IS1.T1.C = IS2.T2.C

SC(1) rename IS2.T2 to IS2.TT;
SC(2) alter table IS2.TT drop IS2.TT.C;

SC(1): V is changed to:
 create view V1 as
 select IS1.T1.A, IS2.TT.B
 from IS1.T1, IS2.TT
 where IS1.T1.C = IS2.TT.C

SC(2): V1 is changed to:
 create view V2 as
 select IS1.T1.A, IS2.TT.B
 from IS1.T1, IS2.TT

SC(2): V is unchanged

SC(1) first, then SC(2) SC(2) first, then SC(1)

Error reported
by DyDa as

“Unknown table name in IS2…”

Figure 6: Example of Semanti Dependeny

De�nition 5 Let X(n)[i℄ and Y(m)[i℄ denote either DUs or SCs on the same information sourse IS[i℄,

then X(n)[i℄ is semanti dependent (SD) on Y(m)[i℄, denoted by:

Y(m)[i℄

sd

�! X(n)[i℄, if pos(Y(m)[i℄, UMQ) � pos(X(n)[i℄, UMQ)

i�:

1. m < n, and

2. X(n)[i℄ and Y(m)[i℄ both refer to a shared resoure on IS[i℄, suh as the same relation.

It is lear that the omplexity of building suh a SD graph for updates in UMQ is O(n), where n

is the number of updates.

4.3 Dependeny Properties

The two types of dependenies share an important property: both represent onstraints on the pro-

essing order between updates. Hene we now abstrat them in a ommon manner.

De�nition 6 For two updates m1, m2 in UMQ, we de�ne m1 is dependent on m2, denoted by

m1 m2 if pos(m1, UMQ) � pos(m2, UMQ) or m2!m1 if pos(m2, UMQ) � pos(m1, UMQ), if either

m1 is CD on m2 by Def 4, or m1 is SD on m2 by Def 5. We de�ne the dependeny order between

m1 and m2 to be the diretion of the dependeny arrow. Otherwise we say the dependeny order between

m1 and m2 is null.

Lemma 1 For two updates m1, m2 in UMQ, if m1 is dependent on m2 by Def 5, then m2 must be

proessed before m1.

For example, in Figure 2, the SC(2) has been proessed before DU(1), or the proessing of DU(1) ould

never sueed.

9

De�nition 7 For two update messages m1 and m2 in UMQ, we de�ne the dependeny relationship

between m1 and m2 to be:

1. independent i� there is no dependeny between m1 and m2 by Def 6.

2. safe dependent i� pos(m1, UMQ) � pos(m2, UMQ) and all dependeny orders between m1 and

m2 by Def 6 are from m1 to m2 (m1!m2).

3. unsafe dependent i� pos(m1, UMQ) � pos(m2, UMQ) and and there is at least one dependeny

in UMQ in the order from m2 to m1 (m1 m2).

The CD of the example in Figure 2 is DU(1)

d

 �SC(2), however, sine the pos(DU(1), UMQ) �

pos(SC(2), UMQ), this CD is unsafe and the broken query ours.

4.4 Cyli Dependenies

Given a set of dependenies in UMQ, they may omprise a irle. Figure 7 depits a yli dependeny

example. Below we now illustrate that neither of the two proessing orders, i.e., SC(1) by SC(2) or

SC(2) by SC(1), an sueed.

Create view V as
select IS1.T1.A, IS2.T2.B
from IS1.T1, IS2.T2
where IS1.T1.C = IS2.T2.C;

SC(1) drop table IS1.T1;
SC(2) drop table IS2.T2;

SC(1): V is changed to:
create view V1 as
select IS3.T3.A, IS2.T2.B
from IS3.T3, IS2.T2
where IS3.T3.C = IS2.T2.C

SC(2): drop table IS2.T2

SC(2): V is changed to:
create view V1’ as
select IS1.T1.A, IS4.T4.B
from IS1.T1, IS4.T4;
where IS1.T1.C = IS4.T4.C

Process Sequence 1:
SC(1) first, then SC(2)

Break!

SC(1): drop table IS1.T1;

Break!

Process Sequence 2:
SC(2) first, then SC(1)

Figure 7: Example of Cirle Dependeny

If we proess SC(1) �rst, we annot sueed. When DWMS proesses SC(1), let us assume by VS

[NLR98℄, the DWMS �nds a replaement for this relation, say, IS3.T3, and rewrites the view de�nition

V. After that, it issues a VA [GMR95, NR99℄ query (as shown in the view de�nition of Figure 7) down

to both IS2 and IS3 to adapt the new view extent. But at that time we notie that IS2.T2 has been

dropped by SC(2). The query fails beause it has IS.T2 referred.

If we proess SC(2) �rst, we still annot sueed. This time, assume that the DWMS �nds another

replaement IS4.T4 and rewrites the view de�nition V triggered by SC(2). It issues a VA query both

10

IS1 and IS4 to ompute the new view extent. At that time, it �nds that the IS1.T1 has already been

dropped. So the query breaks and the proessing of SC(2) aborts.

In the example shown in Figure 7, we notie that the two updates are dependent on eah other, i.e.,

the dependeny orders as de�ned in Def 6 between them omprise a irle. We give a formal de�nition

of this dependeny irle onept now.

De�nition 8 For n update messages m[i

1

℄,m[i

2

℄,...,m[i

n

℄ in UMQ with i

j

< i

j+1

, we say the depen-

denies among these update messages omprise a dependeny irle if they satisfy the following:

1. For 1 �k<n:

(a) m[i

k

℄ m[i

k+1

℄ if pos(m[i

k

℄, UMQ) � pos(m[i

k+1

℄, UMQ) or

(b) m[i

k+1

℄!m[i

k

℄ if pos(m[i

k+1

℄, UMQ) � pos(m[i

k

℄, UMQ)

2. and:

(a) m[i

n

℄ m[i

1

℄ if pos(m[i

n

℄, UMQ) � pos(m[i

1

℄, UMQ) or

(b) m[i

1

℄!m[i

n

℄ if pos(m[i

1

℄, UMQ) � pos(m[i

n

℄, UMQ).

Intuitively, suh a \irle" of dependeny edges in a dependeny graph may result in a deadlok in

the sense that we have proesses waiting for eah other. Dependenies in a irle may be all onurreny

dependenies, or may be a mixture of semanti and onurreny dependenies. They an never be all

just semanti dependenies only. This is beause the semanti dependeny diretly relates to the

sequene in whih updates were ommitted by an IS and suh a ommit sequene does never omprise

a irle.

4.5 De�nition of DW Maintenane Anomaly Problem

We now are able to haraterize the DW maintenane anomaly problem.

Theorem 1 The DW maintenane anomaly problem orresponds to the existene of unsafe onur-

reny dependenies between updates.

Thus to resolve the anomaly is to �nd a proessing sequene to make all dependenies safe.

5 Corretness Criteria for Update Message Proessing

We now introdue a series of orretness riteria that a solution to the problem illustrated above should

meet. For simpliity, we �rst give a orretness de�nition assuming a stati state of UMQ. In an atual

environment, the UMQ is of ourse dynami, with updates inoming as well as others being removed at

any time. Later we show the orretness de�nition of a stati state of UMQ is suÆient for a solution,

as long as the solution takes inoming update messages into aount.

11

From the DW's point of view, we all the order of the updates inoming from the ISs the reeiving

order. By Assumption 1, we know that for one spei� IS, its updates arrive at UMQ in a strit

sequential order, namely, in the order in whih they were atually ommitted at the IS. At time t, the

order of messages in UMQ of a DWMS is alled a stati snapshot of the UMQ order at time t.

De�nition 9 We say that a DW refresh proess sueeded if it �nishes the maintenane and updates

the DW's database. Similarly we say that a DW refresh proess failed if it is aborted by a onurrent

SC by Def 4.

De�nition 10 Given a stati snapshot of UMQ, any order of suessfully proessing these updates is

alled a suessful order of this snapshot of UMQ. If we an reorganize the updates in a snapshot

of UMQ to eliminate all unsafe dependenies, any suh resulting reorganization order is alled a legal

order of this snapshot of UMQ.

Def 10 establishes the orretness riteria for a solution strategy of the anomaly problem de�ned

in Setion 4.5. That is, the solution must always be able to �nd a legal order of update messages to

make all dependenies safe.

Theorem 2 Legal orders of a snapshot of UMQ exist i� there are no yli dependenies.

We an onstrut a dependeny graph (DG) of UMQ that inludes both CDs and SDs (as desribed

in Setion 6.1.1). If the graph ontains a yle, obviously we an not �nd a proessing (ayli) order

for these yli-dependent updates. If it is instead a DAG (Direted Ayli Graph), we an easily

obtain an order that does not violate the order imposed by all dependenies by traversing the graph,

whih represents one legal proessing order.

6 A Complete Solution Strategy: Dyno

We now introdue our solution strategy alled Dyno. A omplete solution must inorporate the fol-

lowing three funtionalities: maintenane of soure update, dependeny detetion and error orretion

operations. The Dyno solution entails three omponents: dependeny detetion methods for the two

types of dependenies; dependeny orretion operations that rearrange or merge updates in UMQ in

order to �x unsafe dependenies; and lastly an overall ontrol strategy to integrate the former two

omponents into a omplete one.

12

6.1 Detetion of Dependenies

6.1.1 Dependenies Detetion Method

We an onstrut a dependeny graph (DG) whih inludes both CDs and SDs in the UMQ. Given

a snapshot of UMQ, we an disover the CD between two updates, m1 and m2 using the method

desribed below: If the maintenane query generated for maintenane of m1 refers to the same relation

as m2, then there is a CD, namely m1

d

 � m2. The reason is that m2 may a�et this maintenane

query. Sine the maintenane query is deomposed from DW view de�nition, we an infer if two

updates may have CD by just referring to the view de�nition.

It is straightforward to onstrut SDs between updates, i.e., eah two adjaent updates from the

same relation has a SD. Note that we put both CD and SD in the same graph beause they are

atually both onstraints on proessing order information.

After the onstrution of DG, we an easily hek if a dependeny (or an edge in DG) is safe. by

using Def 7.

6.1.2 Time to Apply Detetion

We further propose three di�erent detetion strategies with the same funtionalities as desribed above,

but only di�er in terms of the time they are applied: pre-exe stati detetion method, in-exe dynami

detetion method and post-exe stati detetion method.

A pre-exe stati detetion method detets the dependeny before the head update in UMQ

is proessed. Its priniple is to analyze the ontent of all other updates in UMQ and the maintenane

queries to be generated by the VM or VS/VA modules respetively to disover potential dependenies

between them. Given a snapshot of the UMQ, this method an detet all the onurreny and semanti

dependenies between update messages in this snapshot. For example, in Figure 3, before DWMS

proesses DU(1), we an disover SC(2) that is already in the UMQ whih forms an unsafe onurrent

dependeny with DU(1). Thus we need not bother to send down a maintenane query to IS1 whih

will surely break. Note that the pre-exe stati detetion method by itself if not suÆient beause

some SC that ours after the pre-exe detetion would still break the maintenane query.

An in-exe dynami detetion method detets the unsafe dependeny during proessing of the

head update in UMQ. Its priniple is to detet if any maintenane query failed due to the inompitable

shema of ISs. However, in some ases, this detetion method annot ath all unsafe dependeny as

illustrated below.

Assume an IS relation is dropped and rereated or two relations swith their names. The mainte-

nane query may sueed but operated on di�erent data. The in-exe dynami detetion method

an not detet suh speial \broken" query problem.

13

A post-exe stati detetion method is thus introdued to ompensate for the previous two

methods. Its task is just to make sure the IS relation whih the maintenane query sueeds in operating

upon is the original one. Note that we do not need to examine update messages whih have arrived

after the returned query results.

6.1.3 An Interpreted Detetion Strategy in Dyno

Based on these three detetion strategies, we distinguish between two kinds of omplete detetion

strategies to our problem: optimisti and pessimisti. Both kinds lead to orret �nal results, and

the hoie of whih kind of strategy to utilize is largely based on the expeted behavior of the data

warehouse environment in terms of onurreny as we experimentally illustrated in a later setion.

1. Optimisti detetion strategy: An optimisti solution aims to minimize the performane

overhead during normal proessing and then has to endure some ost to reover if a problem

atually happens. It employs both in-exe detetion and post-exe detetion strategies. Whenever

a maintenane query fails, the DWMS aborts the on-going proessing of urrent update. After

some neessary reovery, the proess resumes to handle the next update message.

2. Pessimisti detetion strategy: A pessimisti solution aims to minimize or even prevent any

aborts of the maintenane proess at the ost of an added performane overhead during normal

proessing. A pessimisti strategy thus attempts to antiipate, detet and ideally prevent any

unsafe dependeny, thus avoiding aborts and their overheads. Thus it utilizes a pre-exe detetion

method to detet dependenies before proessing as muh as possible, hene the name pessimisti.

But as indiated in Setion 6.1.1, it still needs to employ the in-exe and post-exe detetion as

supplementary detetion methods to assure omplete detetion.

Our Dyno solution employs the \Pessimisti Detetion Strategy" as shown in Figure 8.

1. pre-exec static detection method:

Before the DW maintenance of head update in UMQ: Check if this update is involved in any
unsafe dependency.

2. in-exec dynamic detection method:

Activated only when the maintenance query failed due to the discrepancy of schema: Abort current
processing.

3. post-exec static detection method:

After the success of maintenance query: It aims to make sure the “succeeful” query does operate
upon the desire relation.

Figure 8: Detetion Strategy of Dyno

14

6.2 Stati Corretion of Unsafe Dependenies

After we have deteted an unsafe dependeny between two updates, we need to determine how to

hange the unsafe dependeny into a safe one. Based on the dependeny graph onstruted during the

detetion, we propose a solution that employs two dependeny orretion operations to ahieve this

goal, namely, by either rearranging updates in UMQ, or by merging updates in the UMQ.

In partiular, assume that there is an unsafe dependeny order between two update messages m1

and m2, i.e., m1 is before m2 in UMQ and m1 is dependent on m2 (m1 m2) by Def 7. We propose

operation Op-Preede to preede m2 before m1 thus orret this unsafe dependeny. The intuition of

this method is that after we reorder these two updates, their proessing order would �t their dependeny.

If there exists another dependeny m1!m2, whih omprises a yle, we instead propose operation

Op-MergeForward to merge m2 into m1, i.e., we eliminate the dependeny by merging the two or more

updates into one whih will be proessed by the DWMS in one refresh proess

1

.

The dependeny orretion algorithm SDC for a stati snapshot of UMQ is shown in Figure 9:

Procedure StaticCorrection()

Begin

Given a Snapshot of UMQ;

while(there exists unsafe dependency in this snapshot)

begin

pick one unsafe dependency;

if it forms a cycle with other dependencies then

Op-MergeForward all related updates;

else

Op-Precede one message to another;

end;

end;

Figure 9: SDC: Stati Dependeny Corretion Algorithm

Figure 10 depits the steps of SDC when applying to a snapshot of UMQ. First, SDC �nds that the

CD 1 4 is unsafe, the it preedes 4 before 1. Seond, SDC disovers that SD 4 3 beomes unsafe

now, it preedes 3 before 4. Finally, there is a yle between 4 and 6, then SDC merges them. Now all

the dependenies are now safe, thus the SDC stops.

Proof of Termination of SDC: Assume if the algorithm does not stop, there must be some

orreted dependenies turning bak to unsafe sine there are �nite unsafe dependenies. In this ase,

a yle is found and related updates are merged. This results in the redued number of updates.

Thus in the worst ase we get one big update that ontains all original updates and even though the

algorithm would still stop.

We an further onlude that the termination means there exists no unsafe dependeny, whih

1

We have developed advaned algorithms for VM/VS/VA to proess multiple updates in a time, whih is out of sope of this paper.

This is why we mention that the proessing of bath updates is relatively straightforward and left for future work.

15

orresponds to a legal order. By Def 10, we know that our stati dependeny orretion algorithm is

orret.

1 2 3 4 5 6

1 23 4 5 6

Semantic Dependency.
Concurrency Dependency.

4 2 3 1 5 6

1 23 4 56

1

2
3

Figure 10: Example of Dependeny Corretion

6.3 Dyno Solution: Pulling It All Together

With the aid of dependeny detetion strategies in Setion 6.1.3 and the SDC (stati dependeny

orretion) algorithm in Setion 6.2, we now propose our Dyno solution for dynami dependeny

detetion and orretion. The Dyno �rst uses pre-exe detetion strategy before starting the proessing

of the head update in UMQ. In-exe detetion is used during the DW maintenane. Upon detetion

of any unsafe onurreny dependeny, the Dyno solution uses SDC to turn any unsafe dependenies

to safe.

Figure 11 shows a detailed ow hart of the Dyno algorithm. Eah step is identi�ed by a number.

Just before the proess of the head update in UMQ, Step 1 detets all dependenies and onstruts a

dependeny graph given a snapshop of UMQ. Step 2 heks if the head update in UMQ is involved

in any unsafe dependenies. Step 3 applies stati dependeny orretion algorithm to �nd a legal

proessing order. In Step 4 we start proessing of that head update. During the maintenane, in-

exe dependeny detetion (not shown in the owhart) method is employed to detet any new unsafe

onurrent dependeny by a broken query sheme. If the urrent proess is aborted, Step 5 undoes any

e�et of this aborted proess from step 4 and goes to step 1. Step 6 uses a post-exe stati detetion

method after suessful proessing. Step 7: If any unsafe onurrent dependeny has been deteted

by post-exe dependeny detetion, then Step 7 undoes any e�et aused by the ompleted proess from

step 4 and goes to step 1. Step 8: The head update is removed by Step 8 from UMQ and go to step

1.

The right side of Figure 11 shows the detailed steps to get an \exeutable" head update, i.e.,

an update not involved in any unsafe dependeny. It will �rst onstrut the dependeny graph and

hek if the head update is involved in any unsafe dependenies. If so, it applies SDC to orret the

dependenies thus making the �rst head update exeutable. Note that all of these are done in a stati

16

No

Yes

No

Yes

SC DUDU/SC

4. Get Head Update
in UMQ

5. Undo any influence made
by the aborted maintenance.

8. Remove Head
Update from UMQ

1.Pre-exec
Detection and Correction 1.Building

Dependency Graph

3. Static Dependency
Correction

2. Head Update
Safe?

Yes

7. Violation
Detected?

No

Success?
6. Post-exec

Detection

VMVS & VA

Figure 11: The Dyno Flowhart

snapshop of the UMQ.

6.4 Termination and Corretness of the Dyno Solution

We have already proven the termination and orretness of our stati dependeny orretion strategy

(see Figure 9) given a stati snapshot. We now briey prove the orretness of Dyno in a dynami

ontext with further onsideration of the new inoming updates.

We �rst look at the termination. The only possibility that may ause the Dyno in�nite is that

(1) there are unlimited shema hanges at ISs, and (2) the inoming updates always aborts the DW

maintenane proess ausing the DW never to be refreshed. Suh a degenerate ondition is highly

unlikely and we believe it is in general not addressable.

Similarly, the stati dependeny orretion algorithm fails only when some new onurrent updates

arise. In this ase, our in-exe detetion and post-exe detetion would be suÆient to detet any of

new unsafe dependenies resulting in reorretion of them. Given limited updates, the proessing order

that the stati dependeny orretion algorithm generates would �nally sueed. Thus we an onlude

that Dyno is orret.

6.5 Consisteny Level Ahieved by Dyno

We adopt the de�nitions of orretness and onsisteny levels of the DW from [ZGMHW95℄.

17

� Corretness: Any state of DW orresponds to one valid state of eah IS.

� Convergene: All IS updates will be eventually inorporated into the DW resulting in a orret

�nal state.

� Strong Consisteny: All states of DW are orret and the order of DW states transitions

orresponds to the order of the state transitions of eah of the ISs.

� Complete Consisteny: Strong onsisteny holds plus eah state of one of the ISs is reeted

by a distint DW state.

Clearly, Dyno ahieves \Strong Consisteny". This is beause, �rst, the reordering will keep all

semanti dependenies thus the DWMS would proess the IS updates in the same order as they ommit

at IS. Seond, however, sine Dyno would merge updates thus not every update orresponds to a

distint DW state. Lastly, the orretness of Dyno guarantees that eah state of DW is orret as long

as VM/VS/VA are orret. In onlusion, Dyno reahes \Strong Consisteny".

7 Experimental Evaluation

7.1 Experiment Testbed

We have implemented the Dyno algorithm in our data warehousing system DyDa [CZC

+

01℄. The

integration of this module makes DyDa apable of maintaining the DW even under onurrent data

updates and shema hanges. In the DyDa system, we apply the SWEEP [AASY97℄ algorithm to

ompensate for the onurrent DUs, thus solving the �rst two dependenies problems (see Setion 4.1).

DyDa is implemented using java, jdb to onnet to Orale8i as DW servers and IS servers. In our

experimental setting, there are four information soures with one relation eah. Eah relation has two

attributes and ontains 10, 000 tuples. There is one materialized join view de�ned upon these four

IS relations. We have onduted our experiments on a Pentium III PC with 256M memory, running

Windows NT and Orale8i.

7.2 Study of DU Proessing

Note that our Dyno algorithm extends the system's funtionality to now also deal with onurrent

SCs. We �rst study the overhead suh extended funtionality may bring to the normal system's DU

proessing. Clearly, any extra ost would ome from the detetion proess of Dyno, i.e., it would

examine the UMQ before/after the proessing of urrent DUs, but an abort would not our without

SCs.

The stati pre-exe detetion strategy involves the onstrution dependeny graph of both CDs

and SDs, whih has a time omplexity of O(n

2

). However, sine if there are only DUs in UMQ, no

18

onurrent dependenies would exist thus the maintenane query never breaks. Thus we an optimize

the dependeny graph onstrution by adding a pre-san of the UMQ. Whenever there is no SC, we

an safely avoid the onstrution the whole dependeny graph thus reduing the time omplexity to

O(n). The post-exe detetion strategy also has the time omplexity of O(n). That is so beause it

will trae the relation that the maintenane query operated upon by sanning the UMQ one. The

in-exe detetion strategy would atually not be ativitated sine there is no SC thus no abort would

ever our.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

100 200 300 400 500

Without detection With detection

Time (ms) DU Processing

Figure 12: Comparison of DU Proessing with/without Detetion Enabled

Figure 12 depits the total DW maintenane ost measured in milliseonds (depited on the y-axis)

with or without detetion enabled under di�erent numbers of IS DUs (depited on the x-axis). From

the result, we �nd that the detetion ost (both pre-exe and post-exe detetion) is small for any

number of DUs. It is atually less than 5% of the total ost in the ases observed. We thus onlude

that the Dyno algorithm imposes little extra ost on DU proessing.

7.3 Cost of Broken Query

Reall that a maintenane query would break due to the existene of some onurrent SCs. There are

two kinds of broken query problems, namely, a DU proessing is aborted by an SC or an SC proessing

is aborted by another SC. One suh a broken query ours, the DWMS has to drop all previous

maintenane work and redo it again imposing an extra ost on DW maintenane whih we refer to as

the ost of the broken query, i.e., the maintenane abort ost.

In this experiment, we now study the ost of these two kinds of aborts. To observe the exat ost

of a broken query, we employ simple ase here, i.e., one DU proessing aborted by an SC and an

SC proessing aborted by another one. Three di�erent environment settings are ompared. First, we

measure the maintenane ost of all updates by spaing them far enough, so they won't interfere with

19

eah other

2

. This an be onsidered as the minimum ost sine there is no onurreny handling ost.

Seond, we apply pre-exe detetion strategy to disover the potential onurreny before proessing

thus trying to avoid the ourrene of any broken query. Third, we disable pre-exe detetion strategy

now only after the broken query ours and is deteted, do we orret the dependenies and restart

the maintenane, thus more aborts may our.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

DU/SC SC/SC

No Concurrency With pre-exec detection Without pre-exec detection

Time (ms) Broken Query Processing

Figure 13: Cost of Broken Query

Figure 13 depits the total DW maintenane ost in terms of milliseonds (depited on the y-axis)

under di�erent kinds of onurrent updates. From the �gure, we �nd that the ost of aborting SC

proessing is signi�ant ompared to that of DU proessing, i.e., the white box of SC/SC (where

the abort of SC ours) is muh higher than the other two, while in the ase of DU/SC, the white

box of DU/SC (where the abort of DU ours) is similar to the other two. The reason is that the

VS&VA modules involve rather omplex operations for SC proessing. Thus it is ostly to redo the SC

maintenane proess. Seondly, we �nd that the pre-exe detetion strategy does indeed help to avoid

some of the broken queries to our, i.e., the blak and grey boxes are similar in both ases.

7.4 Mixed Update Proessing

In the previous two experiments, we observe that the most expensive ost besides the normal DW

maintenane proessing is the abort of the SC proessing, i.e., the ost of both dependeny detetion

(Figure 12) and the abort of DU (Figure 13) is minimum in omparsion. Also we �nd that the pre-

exe detetion strategy does help to avoid the aborting of the SC proessing (Figure 13). However, as

mentioned before, the broken query may still happen even when employing pre-exe detetion strategy.

We now study how this strategy helps in a truly mixed update environment with both DUs and SCs.

We employ a mixture of updates with 5% of them being SCs and 95% being DUs, both randomly

generated over all four ISs. In this experiment, we vary the time interval between updates as a

2

Beause the IS updates our after the ompletion of DW maintenane.

20

parameter. When the time interval is short, the DWMS is under a high load and will reeive more

IS updates given a ertain time thus resulting in more onurreny problems. In ontrast, when the

time interval is long, the DWMS is under a low load, i.e., less updates are reeived within a ertain

period and less onurreny would our. Figure 14 depits two lines for the maintenane ost with or

without pre-exe detetion, respetively, when varying the delay between these updates from 100ms to

350ms.

0

10000

20000

30000

40000

50000

60000

70000

80000

100 150 200 250 300 350

With pre-exec detection

Without pre-exec detection

Time (ms)

Time Interval (ms)

Mixed Update Processing

Figure 14: Mixed Update Proessing

From Figure 14, we �nd that the system without pre-exe detetion an never prevent the abort of

SC proessing, thus leading to high maintenane ost even for small time interval. In omparison, when

the time interval between updates is short, the system with the pre-exe detetion is able to disover

the potential onurrent SCs thus avoiding the abort. The reason is that if an SC is propagated to the

DWMS quikly, it's more likely that it an be aught during the pre-exe detetion proess. This leads

to the observation that the pre-exe detetion helps under a high system load. When the time interval

inreases, a onurrent SC may esape the pre-exe detetion period thus the broken query problem is

unavoidable.

8 Related Work

Maintaining materialized views under soure updates in a DW environment is one of the important

issues of data warehousing [Wid95, RKZ00℄. Initially, some researh has studied inremental view

maintenane assuming no onurreny. Suh algorithms for maintaining a data warehouse under soure

data updates are alled view maintenane algorithms [CGL

+

96, GL95, LMSS95℄. The EVE projet

[LKNR99, NR98℄ studied the problem of how to maintain a data warehouse not only under data updates

but also under shema hanges. The essene of EVE is to automatially rewrite the view de�nitions

when the base shema has been hanged, and to try to loate the best replaements for a�eted view

omponents. Suh view rewriting aused by shema hanges of ISs is alled View Synhronization.

21

Thereafter, View Adaptation (VA) [GMR95, NR99℄ inrementally adapts the view extent after the

view de�nition has been rede�ned. View self-maintenane [QGMW96, Huy97℄ is one approah to

maintain DW extent trying to limit the aess the base relations. [MRSR01℄ proposes an optimization

for multiple view maintenane by using some intermediate views with ommon subexpressions.

In approahes that need to send maintenane queries down to the IS spae, onurreny problems an

arise [ZGMHW95℄. In their work, they introdued the ECA algorithm for inremental viewmaintenane

under onurrent IS data updates restrited to a single IS. In Strobe [ZGMW96℄, they extend their

approah to handle multiple ISs. Agrawal et al. [AASY97℄ propose the SWEEP-algorithm that an

ensure onsisteny of the data warehouse in a large number of ases ompared to the Strobe family of

algorithms. [ZRD01℄ improves upon the performane of SWEEP by parallelizing SWEEP. [SBCL00℄

proposes to only materialize delta hanges of both ISs and views with timestamps, so the view is able

to asynhronously refresh its extent. They also introdue an interesting propagation algorithm that

ould signi�antly redue the number of ompensation queries. However, none of them an handle the

soure shema hange and the system would fail when suh shema hange ours.

Our early work [ZR99℄ studies the problems of the DW refresh aused by the onurreny of IS

data updates and shema hanges. However it assumes that eah IS reports a shema hange and

waits for permission from the DWMS before it ommits. In other words, the ISs are assumed to be

fully ooperative. Our work now drops this restriting assumption. [CR00℄ employs a multiversion

onurreny ontrol algorithm to handle the onurreny problem assuming there are enough system

resoures to materialize some extra data.

9 Conlusion

In this paper, we haraterize the DW maintenane anomaly problem orresponds to the fat that the

unsafe dependenies exist between update messages in a fully onurrent environment. We analyze

and ategorize the di�erent types of dependeny relationships between soure updates. Then we

propose di�erent types of detetion methods of these dependenies. Based on the dependeny graph,

we introdue the basi dependeny orretion solution in a stati environment. Finally we propose and

prove a omplete solution strategy named Dyno whih enables a DWMS to handle onurrent DUs

and SCs in a dynami ontext. We have implemented the Dyno solution in our DyDa system. The

experimental results show that our new onurreny handling strategy imposes a minimal overhead

to allow for this extended funtionality. Our advaned onurreny detetion strategy even sueeds

in reduing the expensive ost of maintenane aborts and hene restarts of shema hange proessing

under a high system load, thus ahieving overall improved maintenane performane. Our future work

inludes bath updates proessing and multiple view maintenane.

22

Referenes

[AASY97℄ D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. EÆient View Maintenane at Data

Warehouses. In Proeedings of SIGMOD, pages 417{427, 1997.

[CGL

+

96℄ L. S. Colby, T. GriÆn, L. Libkin, I. S. Mumik, and H. Trikey. Algorithms for Deferred

View Maintenane. In Proeedings of SIGMOD, pages 469{480, 1996.

[CR00℄ Jun Chen and Elke A. Rundensteiner. Txnwrap: A transational approah to data

warehouse maintenane. Tehnial report, Worester Polytehni Institute, November

2000.

[CZC

+

01℄ J. Chen, X. Zhang, S. Chen, K. Andreas, and E. A. Rundensteiner. DyDa: Data Ware-

house Maintenane under Fully Conurrent Environments. In Proeedings of SIGMOD

Demo Session, page 619, Santa Barbara, CA, May 2001.

[GL95℄ T. GriÆn and L. Libkin. Inremental Maintenane of Views with Dupliates. In Pro-

eedings of SIGMOD, pages 328{339, 1995.

[GM95℄ A. Gupta and I.S. Mumik. Maintenane of Materialized Views: Problems, Tehniques,

and Appliations. IEEE Data Engineering Bulletin, Speial Issue on Materialized Views

and Warehousing, 18(2):3{19, 1995.

[GMR95℄ A. Gupta, I.S. Mumik, and K.A. Ross. Adapting Materialized Views after Rede�nition.

In Proeedings of ACM SIGMOD International Conferene on Management of Data,

pages 211{222, 1995.

[Huy97℄ Nam Huyn. Multiple-View Self-Maintenane in Data Warehousing Environment. In

International Conferene on Very Large Data Bases, pages 26{35, 1997.

[LKNR99℄ A. J. Lee, A. Koeller, A. Nia, and E. A. Rundensteiner. Non-Equivalent Query Rewrit-

ings. In International Database Conferene, Hong Kong, July 1999.

[LMSS95℄ James J. Lu, Guido Moerkotte, Joahim Shue, and V. S. Subrahmanian. EÆient

Maintenane of Materialized Mediated Views. In Proeedings of SIGMOD, pages 340{

351, San Jose, California, May 1995.

[LNR01℄ A. M. Lee, A. Nia, and E. A. Rundensteiner. The EVE Approah: View Synhronization

In Dynami Distributed Environments. IEEE Transations on Knowledge and Data

Engineering (TKDE), 2001.

[Mar93℄ S. Marhe. Measuring the Stability of Data Models. European Journal of Information

Systems, 2(1):37{47, January 1993.

[MD96℄ M. Mohania and G. Dong. Algorithms for Adapting Materialized Views in Data Ware-

houses. International Symposium on Cooperative Database Systems for Advaned Appli-

ations, pages 353{354, Deember 1996.

[MRSR01℄ H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized View Seletion and

Maintenane Using Multi-Query Optimization. In Proeedings of SIGMOD'01, pages

307{318, May 2001.

[NLR98℄ A. Nia, A. J. Lee, and E. A. Rundensteiner. The CVS Algorithm for View Synhro-

nization in Evolvable Large-Sale Information Systems. In Proeedings of International

Conferene on Extending Database Tehnology (EDBT'98), pages 359{373, Valenia,

Spain, Marh 1998.

[NR98℄ A. Nia and E. A. Rundensteiner. Using Containment Information for View Evolution in

Dynami Distributed Environments. In Proeedings of International Workshop on Data

Warehouse Design and OLAP Tehnology (DWDOT'98), Vienna, Austria, August 1998.

23

[NR99℄ A. Nia and E. A. Rundensteiner. View Maintenane after View Synhronization. In In-

ternational Database Engineering and Appliations Symposium (IDEAS'99), pages 213{

215, August, Montreal, Canada 1999.

[QGMW96℄ D. Quass, A. Gupta, I. S. Mumik, and J. Widom. Making views self-maintainable for

data warehousing. In Conferene on Parallel and Distributed Information Systems, pages

158{169, 1996.

[RKZ00℄ E. A. Rundensteiner, A. Koeller, and X. Zhang. Maintaining Data Warehouses over

Changing Information Soures. Communiations of the ACM, pages 57{62, June 2000.

[SBCL00℄ K. Salem, K. S. Beyer, R. Cohrane, and B. G. Lindsay. How To Roll a Join: Asyn-

hronous Inremental View Maintenane. In Proeedings of SIGMOD, pages 129{140,

2000.

[Sjo93℄ D. Sjoberg. Quantifying Shema Evolution. Information and Software Tehnology,

35(1):35{54, January 1993.

[Wid95℄ J. Widom. Researh Problems in Data Warehousing. In Proeedings of International

Conferene on Information and Knowledge Management, pages 25{30, 1995.

[ZGMHW95℄ Y. Zhuge, H�etor Gar��a-Molina, J. Hammer, and J. Widom. View Maintenane in a

Warehousing Environment. In Proeedings of SIGMOD, pages 316{327, May 1995.

[ZGMW96℄ Y. Zhuge, H�etor Gar��a-Molina, and J. L. Wiener. The Strobe Algorithms for Multi-

Soure Warehouse Consisteny. In International Conferene on Parallel and Distributed

Information Systems, pages 146{157, Deember 1996.

[ZR99℄ X. Zhang and E. A. Rundensteiner. The SDCC Framework for Integrating Existing

Algorithms for Diverse Data Warehouse Maintenane Tasks. In International Database

Engineering and Appliation Symposium, pages 206{214, Montreal, Canada, August,

1999.

[ZRD01℄ X. Zhang, E. A. Rundensteiner, and L. Ding. PVM: Parallel View Maintenane Under

Conurrent Data Updates of Distributed Soures. In Data Warehousing and Knowledge

Disovery, Proeedings, September, Munih, Germany 2001.

24

