WPI-CS-TR-01-03 March 2001

Change and Relationship-Driven Content Caching;,
Distribution and Assembly!
by

Mikhail Mikhailov
Craig E. Wills

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

! This work is partially supported by the National Science Foundation Grant CCR-9988250.

Abstract

Web caching and Content Distribution Networks (CDNs) seek to reduce retrieval
latency, lower bandwidth usage and reduce load on the origin servers by moving the
offered content closer to the end users. Historically, the content replicated to the
edges of the network in this way has been mostly static, such as images. As more
dynamic and personalized content is being offered on the Web, there is a growing need
for mechanisms capable of caching and replicating content that changes frequently
and is user-specific. In addition, existing caches heuristically estimate object freshness
lifetimes, which results in unnecessary validation traffic between caches and origin
servers, and does not prevent caches from serving stale objects to their clients.

In this work we describe a mechanism that makes caching of Web objects more
deterministic, reduces validation traffic, increases the amount of content that may be
cached, and reduces the amount of dynamic content that must be retrieved from the
origin server. Our mechanism uses a number of techniques in concert. First, objects
that constitute a page are classified based on their change characteristics. Next, servers
analyze relationships between objects in conjunction with object change characteristics
and compile them into Content Control Commands. Caches and servers then use these
commands to manage objects. Finally, caching and CDN servers construct frequently
changing, personalized, or any other pages from individual components using a powerful
Content Assembly technique.

Keywords: Web Caching, Content Distribution, Change Characteristics, Object Rela-
tionships, Object Composition, Content Assembly

1 Introduction

The sheer size and explosive growth of the World Wide Web demands powerful techniques
to scale the Web and improve its performance. Since the early days of the Web organizations
successfully deployed caching proxy servers to lower the usage of bandwidth on their Internet
connections and decrease the response time for their internal users. Academic and industrial
efforts to advance the state-of-the-art in Web performance led to the introduction of caching
hierarchies, interception proxies, surrogate servers and more recently to the deployment of
CDNss.

While caching and content delivery infrastructures are integral parts of the Web, they lack
a mechanism for caching frequently changing and personalized content. Servers compute that
content upon request and cannot assign it a useful expiration or last modification time—the
two parameters currently used by caches in determining content freshness lifetime. Caching
and CDN servers store objects that change infrequently, many of which are images. However,
even these cacheable objects are managed heuristically because there is no efficient cache
consistency mechanism.

In our previous work [16] we proposed an alternative approach to caching of Web objects
that addresses these problems. The idea is to classify objects based on their types and
change characteristics, compose Web pages from such objects, and expose the page structure
to caches. Our approach also combines the relationships between objects with object change
characteristics to better manage individual objects. In our previous work we evaluated
potential gains of our approach and reported encouraging results. In this paper we describe
elements of the design of a system implementing our approach.

The paper is organized as follows. We introduce our classification of object change
characteristics and show how servers better manage their objects by controlling caches with
object-specific Content Control Commands (CCCs). Then we describe a powerful Content
Assembly (CA) technique that enables caching and CDN servers to construct frequently
changing, personalized, or other pages from individual components. We illustrate how the
addition of Content Assembly increases the amount of content that can be cached and also
show specific examples of how CA-enabled caches can personalize pages. We report on the
status of a prototype system implementing our approach, and also compare our ideas to those
proposed by others, concluding the paper with a summary and a discussion of directions for
future work.

2 Current Practice

Let us consider an example of a Web page, shown in Figure 1. This example is motivated by
home pages of popular news portals. The container object C'O is changing frequently—every
few minutes—because content designers update the top story, add and remove links leading
to the major news articles. Irrespective of the manual updates, every request for CO results
in a different response because the origin server dynamically generates C'O, changing which
ad banner image to display and where on the page to place it. Embedded objects FOI—
EO3 change only occasionally. Such changes are applied by a human, occur at unpredictable
points in time, and are saved under the same name as the previous version of the object.

Objects £O4 and EOS5 never change. If changes are required, they are saved under a different
name, effectively resulting in a new object being created.

CO index.html |

EO3 CO - HTML page (container)
; EOI - CSS object
togel-eir |E05 adbanner.gif EO?2 - JavaScript code

EO3 - site logo image

EO4 top.photo. jpg | EO4 - top story photo
EOQ5 - ad banner image

I EOl main.css
| EO2 main.js

Figure 1: Home Page of a Popular News Site

Let us now consider how these objects are currently managed within a proxy-style caching
architecture. Caches cannot store the container C'O because it changes frequently and either
carries an explicit indication that it is uncacheable or has no cache control meta information
associated with it. The five embedded objects EOQ1—FEQ5 change rarely or never and may
be cached. Currently, the more cache-friendly origin servers assign cacheable objects an
expiration or a last modification time, via Expires and Last-Modified HTTP response
headers respectively. When an explicit expiration time is not available, caches, such as
Squid [14], consider a configurable fraction of object’s age to be a reasonable estimate for
the freshness lifetime for that object. Age of an object is the difference between current
time and that object’s last modification time. The heuristic used here, referred to as Alex
protocol [4], suggests that the younger files are likely to change sooner than the older files. It
is impossible for caches to deterministically know when cached objects FOI—FEQO5 become
stale because servers can not accurately predict object expiration times and heuristic TTLs
are imprecise by definition. Also, servers can inadvertantly provide misleading expiration
and last modification times [15]. As a result, caches may serve stale objects to their clients.
Caches also generate unnecessary traffic and place additional load on the origin servers when
they validate objects that have expired in the cache but are unchanged at the origin server.
Studies show that such validation requests represent 15-18% [9], 30% [12] and 37% [2] of all
requests served by origin servers.

3 Object Change Characteristics

As illustrated in Figure 1, Web objects not only have different content types, but also exhibit
distinct change characteristics. Our classification of object change characteristics is given in
Figure 2. The three categories on the left—Static, Periodic and BoA—represent predictable
changes. Objects in these predictable categories can be managed deterministically: cached
and never validated, cached for a predetermined period, and always retrieved from the origin
server respectively. The two categories on the right—RDyn and RSt—cover objects that can

be cached but change unpredictably and, therefore, cannot be managed deterministically.
Caches consider RSt objects, which change rarely, fresh until a heuristically assigned TTL
expires, and validate RDyn objects, which change frequently, on each request.

52 % 4 Legend:
g % Orn}%rlo_Afcess O Cacheable
% > RDelatively OUncacheable ‘ Class ‘ Example
s 5 namic T AT
E ;% § (IygDy,,) Periodic | periodically updated weather map
2 1\3 e BoA container CO in Figure 1
@ = elatively n n i :
) & ?'Iteasgl)c Static objects £O4 and EQJ5 in Figure 1
1 - —
s e RSt objects EOI1—FEQS3 in Figure 1
(o}
- RDyn list of latest news stories
yes no
Changes predictably?
(Can be managed deterministically?)

Figure 2: Classification of Object Change Characteristics

Ideally, parts of BoA content that do not change on every access should be factored
out of BoA into any other category so that they can be cached, whether deterministically
or heuristically. Non-BoA content that changes predictably should be classified as such so
that it can be cached deterministically. Also, portions of RDyn content that change rarely
should be factored out and classified as RSt to avoid validations on every access. Finally,
to minimize the reliance on heuristics and reduce validation traffic while managing objects
in the unpredictable categories, RDyn and RSt, we propose to exploit the relationships that
these objects have with objects in the predictable categories.

We believe unpredictably changing content can be managed more deterministically and
with fewer transferred messages and bytes than currently if servers use object change char-
acteristics in deciding which management strategies to use. A key question is whether it
is possible and feasible to classify a large number of objects at a Web site into these cate-
gories. Our viewpoint is that many objects are already automatically generated based on
measurable events or at regular intervals. It is a trivial addition to these automated tasks to
mark the resulting objects with appropriate change characteristics. In addition, the type of
an object may define its change characteristic. For example, a manually created image may
be marked as static. Another observation, that we believe makes this approach possible, is
that only the most popular objects require classification, with others being classified as RSt
by default.

4 Object Management

In this section we use the example in Figure 1 to illustrate our approach to the problem
of managing Web objects more deterministically and efficiently. First, objects at a site are
classified based on their change characteristics. Second, the server compiles the relationships
between objects constituting a page in conjunction with change characteristics of these ob-
jects into Content Control Commands (CCCs), which it then associates with the appropriate
objects.

In our example, servers notify caches that objects FO4 and FOJ5 are Static. Caches store
Static objects for as long as they deem necessary, without ever generating validation requests.
Objects EO1—EOS3 belong to the RSt category and would be managed heuristically if they
were standalone. In our case, however, these RSt objects are embedded in the container that
is retrieved on every access. Servers use the deterministic retrieval of the container C'O to
invalidate the RSt objects embedded in it so that caches can store these RSt objects and
treat them as fresh until the server sends an invalidation. Servers treat objects FO1—FEO3
as a volume [9, 7] and assign each of them a CCC, an example of which is shown in Figure 3.
The CCC associated with the container C'O is shown in Figure 4, it instructs caches that
they may keep only meta information about the C'O. If servers did not use the container to
manage RSt objects, they would instruct caches not to cache it.

HTTP/1.1 200 OK HTTP/1.1 200 OK

Server: Apache/1.3.12 (Unix) Server: Apache/1.3.12 (Unix)

ETag: 4321 ETag: 1234

CCC: MAY cache until INV CCC: MAY cache METAINFO

Date: Sun, 04 Mar 2001 10:01:00 GMT Date: Sun, 04 Mar 2001 10:00:00 GMT

Figure 3: Server Response with CCC for Figure 4: Server Response with CCC for
EO1—EO38 container C'O

The server reply to a request for the container C'O looks slightly different if the server
sends an invalidation. Suppose a client requested and cached the objects shown in Fig-
ure 1. Object EO was later updated, and the same client is requesting the container CO
again, indicating to the server that it had previously seen version 1234 of the CO. The
server determines which objects the container CO embedded at the time of the first request
and invalidates those RSt objects that have been updated—FQ02. For efficiency, the server
piggybacks invalidation information onto its response to the client [9]:

HTTP/1.1 200 OK

Server: Apache/1.3.12 (Unix)

ETag: 5678

CCC: MAY cache METAINFO; INV main.js
Date: Mon, 05 Mar 2001 10:00:00 GMT

The client invalidates object FOZ2 in its cache, retrieves a new copy of FO2, and reuses
cached copies of those RSt objects that the server did not explicitly invalidate: FOI and
EQO3. Since RSt objects change infrequently, we expect few invalidations. If the client does
not indicate to the server that it had previously seen the C'O object, the server can either
provide no invalidation information at all, as is done currently, or inform the client about
the current versions of the RSt objects embedded in the CO.

Our approach to object management allows us to deterministically manage all objects
in Figure 1, even the RSt ones. Except for the container that is changing on every access,
caches store all objects and re-retrieve them only when they truly change. In our exam-
ple, caches generate no validation requests—a significant improvement over current practice.

Evaluation of our approach on proxy logs in our earlier work, where we had to make sim-
plifying assumptions regarding object relationships, showed that 75-89% of all validation
requests could be eliminated if servers sent invalidations for objects that have not changed
while serving requests for related objects that have changed [16].

5 Content Assembly

Page construction is a two-step process. The first step is content generation. Designers often
use multiple heterogeneous data sources with different change characteristics to generate
timely and personalized content. Web site building tools, such as PHP [13] and Mason [10],
assist designers in placing content that changes differently from the rest or content shared
between multiple pages into separate files or components. These tools even provide server-
side caching mechanisms that cache the results of component execution. The second step is
assembly of the final page from a set of components. Currently origin servers perform both
steps before serving pages to clients. Clients receive monolithic pages that inherit the most
dominant change characteristic of all of their original constituent parts. When one underlying
data source changes the entire page changes and must be retrieved anew. Furthermore,
currently only origin servers are equipped to perform both steps of page construction.

We propose to enable other entities, such as L7 switches, caching and content distribution
servers, browsers, in addition to origin servers, to carry out page assembly, while keeping
content generation an origin server’s prerogative. Most of the components can be cached,
and page assembly can be done as close to the end users as possible, with only frequently
changing components obtained from the origin server as needed.

Content designers expose the structure of their pages to authorized clients by placing
environment-specific placeholders within objects where components must be inserted. In
the context of HI'ML, a placeholder could be a new tag, such as INSERT. We attempted to
utilize the existing HTML tags, ilayer and iframe, but discovered that they both treat
the inserted content as structurally separate from the container. Currently browsers do not
understand the INSERT tag, and may not be allowed to receive raw components in the future.
We envision that trusted intermediate devices, such as certain caching proxy servers and CDN
servers, are customized to perform Content Assembly (CA) and deliver fully assembled pages
to browsers.

Content Assembly is the process of parsing components and replacing all occurrences
of INSERT tags with the contents of the components that they include. CA also involves
combining cache control information associated with each component to produce cache con-
trol information for the assembled object. When serving requests from CA-unaware clients,
origin servers can also assemble pages from components or generate content using existing
mechanisms. In general, any CA-enabled server may forward unassembled components only
to clients that are known to have the CA capability and are authorized to receive raw com-
ponents from a particular content provider. While the issues of security and authorization
are important, we have not focused on them thus far.

Components can recursively embed other components via INSERT tags, and INSERT tags
can recursively embed other INSERT tags. In practice there should be a limit to the number
of recursion levels. CA servers may choose to perform either full or partial assembly. This

decision could depend on a number of conditions. An overloaded caching server could skip
the assembly or assemble only those components that are present in the cache and are fresh.
In a CA-enabled caching hierarchy, only servers at the client-side edge of the network may be
allowed to assemble content. A CA server may cache the result of the assembly and reuse it
on the subsequent requests, thus amortizing the cost of the assembly over multiple requests.

6 Object Management with Components

Let us modify the example in Figure 1 so that the container is not a monolithic object, but a
composition of multiple components (objects). The modified page is shown in Figure 5. We
placed parts of the original BoA container C'O that change frequently or on every access in
separate components: CMP1 and CMP2 are BoA, and are the only objects in our modified
page that must be retrieved from the server on every access; CMP4 and CMP5 are RDyn,
they can be cached, but must be validated on every access. We relocated cacheable and
deterministically manageable content—a daily opinion poll on a controversial question—
into Periodic component CMP6. We also moved RSt content that is shared between many
pages at the site into components CMP3 and CMP7. This content, as well as the new RSt
container C'O’, can now be cached.

CO’ index.html’ | CO’ - HTML page (container)
] EOI - CSS object
EO3 CMPI1 CMP2 ad.cm
1 1. gif P EO2 - JavaScript code
°90=-9% usernams.cmp |EO5 CEIECEOERES EO3 - site logo image
CMP4 top_story.cmp EO4 - top story photo
EO4 top.photo. jpg | CMP5 EO5 - ad bannér 1mage .
CMP3 top_articles. CMPI - personalized greeting
navmenu.cmp vogi/lpgm CMP2 - personalized ad banner
i 4 CMP3 - site navigation menu
CMP7 policy.cmp CMP4 - top story headline

CMP5 - links to latest news articles
|_EOI main.css CMP6 - opinion poll form
| EO2 main.js CMP7 - site usage policy

Figure 5: Objects and Components Composing Home Page of a Popular News Site

The transition of the container object from BoA to RSt fundamentally affects how we
manage our set of objects. Since there is no need to retrieve C'O’ on every access, caches can
not expect the origin server to invalidate RSt objects contained or embedded in the container.
The server selects one of the two objects that are retrieved on every access to assist caches in
managing the container CO’ and other non-deterministically changing objects contained or
embedded in C'O’. The server associates the following CCC with C'O’, instructing caches that
they may cache the container but should always satisfy the provided precondition—retrieval
of CMP2 in this case—before reusing the cached copy of the container:

HTTP/1.1 200 OK

Server: Apache/1.3.12 (Unix)

ETag: 1234

CCC: MAY cache, PRECOND=GET ad.cmp
Date: Sun, 04 Mar 2001 10:00:00 GMT

The server also associates a CCC with the CMP2 component. Upon receiving a request
for CMP2, referred from the RSt container C'O’, the server attempts to invalidate the con-
tainer and the RSt objects embedded in it. The server may also validate RDyn objects
embedded in the C'O’. This last rule is useful because RDyn objects are expected to change
frequently, but not necessarily on every access, and validating the ones that have not changed
avoids an unnecessary freshness inquiry that the cache must send to the server.

Extending our basic object management approach, discussed in Section 4, with the page
composition technique not only preserves all the advantages of the basic approach over the
current practice—deterministic management of objects composing a page and elimination of
validations generated by caches—but also allows more page content to be cached. Evalua-
tion of our extended approach on home pages of popular Web sites showed that the page
composition technique increases the amount of content that can be cached by 50% [16]. Fur-
thermore, since some of our RSt components, such as the site navigation menu CMP3, are
likely to be used on many pages at the site, benefits are derived from retrieving and caching
these components only once.

Additional benefits of the page composition technique, however, come at a cost. The
componentized page in Figure 5 contains two, not one, BoA objects, and also two RDyn ob-
jects that change frequently and must be retrieved anew. How a site’s content is decomposed
into components in practice is up to the content designers. For example, CMP1 and CMP2
could be merged into a single component. If BoA components are interspersed throughout
an RSt container so that they can not be merged content designers could advertize a single
aggregate BoA object that is used to generate all the required BoA objects at once. Once
a client receives such an aggregate object, or a bundle [17], it recovers all individual BoA
objects encapsulated in it. Also, in the next section we show how to transform personalized
and customized content from BoA into a cacheable category.

7 Assembling Customized Content

Personalized objects are currently treated as BoA because origin servers generate them based
on the information in the client request, such as a cookie identifying a particular user,
parameters that follow a ‘?” in the requested URL, or an HT'TP request header. Personalized
objects form the Input Dependent (InpDep) category of change characteristics, which is
separate from the BoA category. Objects in the InpDep category also belong to one of
the categories depicted in Figure 2. For example, an object can be both RSt and InpDep.
That object should be treated as an RSt object as long as requests supply the same input
parameter. This property of InpDep objects allows us to remove the dependency on input
parameters at the origin server, cache the resulting non-InpDep object, and later on have
the cache reintroduce the dependency on input during the content assembly process. The
three examples that follow illustrate this approach.

7

7.1 Personalization

Consider the personalized greeting component CMPI in Figure 5. Instead of having the
server generate this component on every request, content designers could remove the depen-
dency on input and make the new CMP1’ component of the category RSt and cacheable by
changing greeting.cmp to:

Welcome, <INSERT SRC=userprofile/<INSERT ISRC=userid DEFAULT=new-user-id>#Name>!

As a CA-enabled cache assembles a page with the CMP1’ component it replaces the inner
INSERT construct with the value of the userid object that the current request supplies in
the cookie. For example, if a request contains the “Cookie: userid=ID1” HTTP request
header, the assembler replaces the inner INSERT tag with ID1. Trusted caches and origin
servers manage the resulting userprofile/ID1 as any other object. If the client request
contains no userid object then the origin server provides the cache with an id for a new
user.

User profiles may contain a number of distinct fields, not all of which may be required
for a particular component. To access only the required field we propose to use a mechanism
similar to that used by Web browsers to navigate to a specific named part of a page. We
append ‘# and the name of the required field to the name of the object. After obtaining
userprofile/ID1 from the origin server, the assembler replaces the outer INSERT tag with
the content of the userprofile/ID1 that is located between the Name and the next field,
finishing the assembly. To prevent input parameters from masking those objects that should
be retrieved from the origin server we use the ISRC attribute of the INSERT tag, instead of
SRC, to explicitly inform assemblers that the included object may be available in the request.

The real strength of treating an entire user profile as any other object is that caches can
avoid contacting the origin server when the same client requests pages that depend on other
fields in the profile, such as address, e-mail or company name. Unless the profile changes at
the origin server, caches continue using it to personalize pages that depend on it.

7.2 URL Re-Writing

Many Web sites wish to identify unique visitors and track paths that they follow through the
site. Cookies often can not be used because many users turn cookies off in their browsers,
and Web crawlers do not always support cookies. A more robust technique of differentiat-
ing between clients is URL re-writing, where for each client the server generates a unique
identifier and dynamically appends it to each traversal link on each page that it serves to
that client. Pages with re-written URLs are uncacheable even though their content does not
change on every request.

Caches enhanced with our CA mechanism can re-write traversal links in cached pages
by performing simple substitutions and can propagate unique IDs between cached pages
without contacting the origin server. Content designers change traversal links in their pages
from

to

<a href="link.html?sessionid=<INSERT ISRC=sessionid>">

effectively decoupling the InpDep part from the rest of the page. The modified page now
belongs to one of the categories in Figure 2, and can be cached if the category is not
BoA. Upon receiving a request for such a page, a cache replaces the entire INSERT tag
with the value of the sessionid found in the client’s request. For example, a request
for page.html?sessionid=ID1 results in the re-written page.html containing the link . If the client follows re-written links within that page,
the cache re-writes those pages as well, assuming it has them cached, using the same
sessionid. If another client requests the same pages, the cache re-writes them with the
sessionid taken from that client’s request. If a request does not contain a sessionid ob-
ject, the cache obtains a new ID from the origin server. Cache can also prefetch a block of
new IDs from the origin server in advance.

The reason sites deploy URL-re-writing is to log all requests and differentiate between
unique visitors. CA-enabled caches annul the usefulness of the URL-re-writing to servers
by shielding them from client requests. We propose to decouple serving cached content
from propagating requests to the origin servers. Servers inform caches via a CCC command
whether they wants to see each request for a given object right away, at some later point
in time or never. If real-time feedback is not required, caches can aggregate requests for a
given object and notify the server later, perhaps during off peak hours.

7.3 Input-Based Object Selection

When a Web site is offering content in more than one language encoding, the server de-
cides on the correct encoding at the time of the access by examining the Accept-Language
HTTP request header. The default installation of the Apache Web server [1], for exam-
ple, comes with the default home page in a few languages index.html.de, index.html.en,
index.html.fr, etc. Currently, such language-specific server responses can be cached with
the addition of the Vary field that a subsequent client request must satisty to receive the
cached page.

Using our CA mechanism, caches can cache all objects that may result from a server
making a selection from a finite set of choices, while the Vary field supports caching of only
one object. Content providers add another object, index.html, that contains a single line:

<INSERT SRC=index.html.<INSERT ISRC=Accept-Language DEFAULT=en>>
Upon receiving a request for index.html, caches either use the language preference of the
browser or the default value of en and construct the name of the object with the language-
specific content.

8 Current Status

We are building a system based on the approach discussed in this paper. We have built a
prototype Web Object Cache Compiler (WOCC). For each page at a Web site WOCC builds
a graph representing relationships between objects composing a page. It then analyzes
each graph and assigns appropriate CCCs to Static and Periodic objects, if any. WOCC
also determines which object, the manager, should be used to manage non-deterministically
changing objects on the page. Then it consults the matrix of all possible combinations of

object change characteristics for parent-child relationship and extracts a template for the
correct CCC for the manager and for each non-deterministically changing object on the
page. WOCC expands the templates and assigns the resulting CCCs to the objects. WOCC
generates CCCs for all objects as needed.

We have also implemented a prototype Content Assembler (CASM). CASM is a stand-
alone proxy server capable of serving client requests by fetching the top-level component
from the origin server, parsing it, and then recursively fetching all the included components
and assembling the final page. CASM performs simple HT'TP response header adjustment
so that Web browsers can handle the assembled pages as regular HI'ML pages. We have also
added basic in-memory caching of components and embedded objects. CASM behaves as a
regular proxy server when a page requested by a client does not require assembly: it fetches
the page and forwards it to the client. Initial testing shows that CASM does not introduce
a noticeable delay.

9 Related Work

Challenger et. al. [5, 6] in their work on the IBM 1998 Olympics Web site developed Data
Update Propagation mechanism to automatically update cache contents at the origin severs
when underlying data changes. The same authors also proposed constructing pages from
fragments that change at different rates and encapsulate semantically coherent content.
These ideas are similar to ours. However, while the authors postulated that their work can
be extended to proxy server environment, the main focus of their research was on improving
Web server performance for serving frequently changing content to a large number of users.
Our focus is on deterministic and efficient management of objects close to the users.

Authors of the Cachuma caching system [18] advocate grouping dynamic pages into
classes based on URL patterns and exploiting coarse-grain dependencies between the re-
sulting groups and underlying data. Servers invalidate a group of dynamic pages when
underlying data changes. While Cachuma approach may require servers to maintain less
state than our finer-grain approach, we believe invalidating entire pages when only a portion
of underlying data changes is inefficient. Our approach in such situations invalidates only a
single changing component, shared between all pages in a group.

Web site building tools, such as PHP [13] and Mason [10], allow designers to place
content shared between multiple pages or content that changes differently from the rest
into separate files or components. These tools also provide server-side caching mechanisms
that cache the results of component execution. We are not aware of any work, however,
that explicitly explored combining object change characteristics with object relationships
for more deterministic object management.

Two main works on caching frequently changing Web pages are HPP and Active Cache.
Douglis et. al. in their HPP work [8] proposed to treat rarely changing part of a page as
a cacheable template and separate frequently changing portions of the page into a set of
bindings that must be retrieved on every access and then expanded within the template by
a modified browser of proxy. Our work suggests using a finer granularity of object change
characteristics than just static and dynamic, giving caches better control over which content
needs to be retrieved and which can be taken from the cache. Splitting each page in two

10

parts does not allow the reuse of shared content between two pages. Also, if only one value
in a set of bindings changes, the entire set must be retrieved. We propose to use a simple
substitution for content assembly, while HPP handles custom macro language complete with
conditional statements and loops.

Cao et. al. [3] in their Active Cache work and more recently Myers et.al in their Gemini
work [11] proposed a more general method of handling small changes to cached objects.
Content providers, in addition to content, provide specialized code that intermediate caching
servers execute to produce a new version of the cached object. A possibility of malicious or
badly written code supplied by origin servers raises security concerns. Java implementations
of both Active Cache and Gemini also incurred non-trivial computational costs. Unlike
the idea of having caches execute code provided by publishers, our CA mechanism requires
intermediate nodes to perform only a single pre-defined task of tag substitution and avoids
security and performance issues introduced by external code.

10 Summary and Future Work

In this paper we have presented the techniques that constitute our approach to Web ob-
ject management and illustrate the improvements over current practice that each technique
brings. First, we discuss the mechanics of how servers combine the relationships between
objects composing Web pages with object change characteristics to produce object-specific
CCCs. We show how the use of appropriate CCCs leads to more deterministic management
of objects and eliminates unnecessary validation requests that are currently due to ineffi-
cient cache consistency mechanisms and have to be handled by servers. These are significant
improvements over current practice.

Second, our powerful Content Assembly technique enables caches to construct pages
from individual components. Each component encapsulates homogeneously changing and
semantically coherent content, and only those components that change on every access must
always be retrieved from the server. Servers and caches treat components just like objects
and deterministically manage them via CCCs. Relocation of page assembly away from the
servers and closer to the users allows more content to be cached.

Third, we demonstrated how CA-enabled caches can cache components that are currently
uncacheable due to being personalized or customized based on the input parameters. CA-
enabled caches perform the required customization upon a client request. This capability
further increases the amount of currently uncacheble content that can now be cached.

Our Content Assembly technique is not only powerful, but also simple. Our content as-
semblers perform only a single pre-defined task of tag substitution thus avoiding the security
and performance issues raised by alternative proposals advocating more complex methods
of page construction by caches.

Current and future work on the prototype implementation includes extending CASM to
support CCCs, integrating CASM with an existing Web proxy server, such as Squid [14], and
integrating WOCC with an existing Web server, such as Apache [1]. We will also continue
to evaluate performance of our system.

11

References

[
2]

3]

[12]

[13]
[14]

The Apache Server Project. http://www.apache.org.

Martin Arlitt and Tai Jin. A Workload Characterization Study of the 1998 World Cup
Web Site. IEEE Network, May /June 2000.

Pei Cao, Jin Zhang, and Kevin Beach. Active Cache: Caching dynamic contents (ob-
jects) on the Web. In Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware "98), The Lake Dis-
trict, England, September 1998.

Vincent Cate. Alex - a Global Filesystem. In Proceedings of the USENIX File Systems
Workshop, pages 1-12, May 1992.

Jim Challenger, Arun Iyengar, and Paul Dantzig. A scalable system for consistently
caching dynamic web data. In Proceedings of the IEEE Infocom 99 Conference, New
York, NY, March 1999. IEEE.

Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed. A
publishing system for efficiently creating dynamic web content. In Proceedings of the
IEEE Infocom 2000 Conference, Tel Aviv, Israel, March 2000. IEEE.

Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford. Improving end-to-end
performance of the Web using server volumes and proxy filters. In ACM SIGCOMM’98
Conference, September 1998.

Fred Douglis, Antonio Haro, and Michael Rabinovich. HPP: HTML macro-pre-
processing to support dynamic document caching. In USENIX Symposium on Internet
Technologies and Systems, Monterey, California, USA, December 1997.

Balachander Krishnamurthy and Craig E. Wills. Piggyback server invalidation for proxy
cache coherency. In Seventh International World Wide Web Conference, pages 185-193,
Brisbane, Australia, April 1998.

Mason. http://www.masonhq.com.

Andy Myers, John Chuang, Urs Hengartner, Yinglian Xie, Weiqiang Zhuang, and Hui
Zhang. A Secure and Publisher-Centric Web Caching Infrastructure. In Proceedings of
the IEEE Infocom 2001 Conference, Anchorage, Alaska USA, April 2001.

Erich M. Nahum. WWW Workload characterization work at IBM Research. In Web
Characterization Workshop, Cambridge, MA, November 1998. World Wide Web Con-
sortium. http://www.w3.0rg/1998/11/05/WC-workshop/Papers/nahum.html.

PHP Hypertext Preprocessor. http://www.php.net.

Duane Wessels. Squid Internet Object Cache. http://squid.nlanr.net/Squid/.

12

[15]

[16]

[17]

18]

Craig E. Wills and Mikhail Mikhailov. Towards a better understanding of Web resources
and server responses for improved caching. In FEighth International World Wide Web
Conference, Toronto, Canada, May 1999.

Craig E. Wills and Mikhail Mikhailov. Studying the Impact of More Complete Server
Information on Web Caching. In Proceedings of the 5th International Web Caching and
Content Delivery Workshop, Lisbon, Portugal, May 2000.

Craig E. Wills, Mikhail Mikhailov, and Hao Shang. N for the Price of 1: Bundling Web
Objects for More Efficient Content Delivery. In Tenth International World Wide Web
Conference, Hong Kong, May 2001.

Huican Zhu and Tao Yang. Class-Based Cache Management for Dynamic Web Content.
In Proceedings of the IEEE Infocom 2001 Conference, Anchorage, Alaska USA, April
2001.

13

