
WPI-CS-TR-01-03 Mar
h 2001

Change and Relationship-Driven Content Ca
hing,

Distribution and Assembly

1

by

Mikhail Mikhailov

Craig E. Wills

Computer S
ien
e

Te
hni
al Report

Series

 ��

WORCESTER POLYTECHNIC INSTITUTE

Computer S
ien
e Department

100 Institute Road, Wor
ester, Massa
husetts 01609-2280

1

This work is partially supported by the National S
ien
e Foundation Grant CCR-9988250.

Abstra
t

Web
a
hing and Content Distribution Networks (CDNs) seek to redu
e retrieval

laten
y, lower bandwidth usage and redu
e load on the origin servers by moving the

o�ered
ontent
loser to the end users. Histori
ally, the
ontent repli
ated to the

edges of the network in this way has been mostly stati
, su
h as images. As more

dynami
 and personalized
ontent is being o�ered on the Web, there is a growing need

for me
hanisms
apable of
a
hing and repli
ating
ontent that
hanges frequently

and is user-spe
i�
. In addition, existing
a
hes heuristi
ally estimate obje
t freshness

lifetimes, whi
h results in unne
essary validation traÆ
 between
a
hes and origin

servers, and does not prevent
a
hes from serving stale obje
ts to their
lients.

In this work we des
ribe a me
hanism that makes
a
hing of Web obje
ts more

deterministi
, redu
es validation traÆ
, in
reases the amount of
ontent that may be

a
hed, and redu
es the amount of dynami

ontent that must be retrieved from the

origin server. Our me
hanism uses a number of te
hniques in
on
ert. First, obje
ts

that
onstitute a page are
lassi�ed based on their
hange
hara
teristi
s. Next, servers

analyze relationships between obje
ts in
onjun
tion with obje
t
hange
hara
teristi
s

and
ompile them into Content Control Commands. Ca
hes and servers then use these

ommands to manage obje
ts. Finally,
a
hing and CDN servers
onstru
t frequently

hanging, personalized, or any other pages from individual
omponents using a powerful

Content Assembly te
hnique.

Keywords: Web Ca
hing, Content Distribution, Change Chara
teristi
s, Obje
t Rela-

tionships, Obje
t Composition, Content Assembly

1

1 Introdu
tion

The sheer size and explosive growth of the World Wide Web demands powerful te
hniques

to s
ale the Web and improve its performan
e. Sin
e the early days of the Web organizations

su

essfully deployed
a
hing proxy servers to lower the usage of bandwidth on their Internet

onne
tions and de
rease the response time for their internal users. A
ademi
 and industrial

e�orts to advan
e the state-of-the-art in Web performan
e led to the introdu
tion of
a
hing

hierar
hies, inter
eption proxies, surrogate servers and more re
ently to the deployment of

CDNs.

While
a
hing and
ontent delivery infrastru
tures are integral parts of the Web, they la
k

a me
hanism for
a
hing frequently
hanging and personalized
ontent. Servers
ompute that

ontent upon request and
annot assign it a useful expiration or last modi�
ation time|the

two parameters
urrently used by
a
hes in determining
ontent freshness lifetime. Ca
hing

and CDN servers store obje
ts that
hange infrequently, many of whi
h are images. However,

even these
a
heable obje
ts are managed heuristi
ally be
ause there is no eÆ
ient
a
he

onsisten
y me
hanism.

In our previous work [16℄ we proposed an alternative approa
h to
a
hing of Web obje
ts

that addresses these problems. The idea is to
lassify obje
ts based on their types and

hange
hara
teristi
s,
ompose Web pages from su
h obje
ts, and expose the page stru
ture

to
a
hes. Our approa
h also
ombines the relationships between obje
ts with obje
t
hange

hara
teristi
s to better manage individual obje
ts. In our previous work we evaluated

potential gains of our approa
h and reported en
ouraging results. In this paper we des
ribe

elements of the design of a system implementing our approa
h.

The paper is organized as follows. We introdu
e our
lassi�
ation of obje
t
hange

hara
teristi
s and show how servers better manage their obje
ts by
ontrolling
a
hes with

obje
t-spe
i�
 Content Control Commands (CCCs). Then we des
ribe a powerful Content

Assembly (CA) te
hnique that enables
a
hing and CDN servers to
onstru
t frequently

hanging, personalized, or other pages from individual
omponents. We illustrate how the

addition of Content Assembly in
reases the amount of
ontent that
an be
a
hed and also

show spe
i�
 examples of how CA-enabled
a
hes
an personalize pages. We report on the

status of a prototype system implementing our approa
h, and also
ompare our ideas to those

proposed by others,
on
luding the paper with a summary and a dis
ussion of dire
tions for

future work.

2 Current Pra
ti
e

Let us
onsider an example of a Web page, shown in Figure 1. This example is motivated by

home pages of popular news portals. The
ontainer obje
t CO is
hanging frequently|every

few minutes|be
ause
ontent designers update the top story, add and remove links leading

to the major news arti
les. Irrespe
tive of the manual updates, every request for CO results

in a di�erent response be
ause the origin server dynami
ally generates CO,
hanging whi
h

ad banner image to display and where on the page to pla
e it. Embedded obje
ts EO1|

EO3
hange only o

asionally. Su
h
hanges are applied by a human, o

ur at unpredi
table

points in time, and are saved under the same name as the previous version of the obje
t.

1

Obje
ts EO4 and EO5 never
hange. If
hanges are required, they are saved under a di�erent

name, e�e
tively resulting in a new obje
t being
reated.

- CSS object

- JavaScript code
logo1.gif

EO2

EO1 main.css

CO

EO3

index.html

main.js

top.photo.jpg

- site logo imageEO3

- top story photo

- ad banner image

- HTML page (container)

EO1

EO2

EO4

EO5

CO

EO4

adbanner.gifEO5

Figure 1: Home Page of a Popular News Site

Let us now
onsider how these obje
ts are
urrently managed within a proxy-style
a
hing

ar
hite
ture. Ca
hes
annot store the
ontainer CO be
ause it
hanges frequently and either

arries an expli
it indi
ation that it is un
a
heable or has no
a
he
ontrol meta information

asso
iated with it. The �ve embedded obje
ts EO1|EO5
hange rarely or never and may

be
a
hed. Currently, the more
a
he-friendly origin servers assign
a
heable obje
ts an

expiration or a last modi�
ation time, via Expires and Last-Modified HTTP response

headers respe
tively. When an expli
it expiration time is not available,
a
hes, su
h as

Squid [14℄,
onsider a
on�gurable fra
tion of obje
t's age to be a reasonable estimate for

the freshness lifetime for that obje
t. Age of an obje
t is the di�eren
e between
urrent

time and that obje
t's last modi�
ation time. The heuristi
 used here, referred to as Alex

proto
ol [4℄, suggests that the younger �les are likely to
hange sooner than the older �les. It

is impossible for
a
hes to deterministi
ally know when
a
hed obje
ts EO1|EO5 be
ome

stale be
ause servers
an not a

urately predi
t obje
t expiration times and heuristi
 TTLs

are impre
ise by de�nition. Also, servers
an inadvertantly provide misleading expiration

and last modi�
ation times [15℄. As a result,
a
hes may serve stale obje
ts to their
lients.

Ca
hes also generate unne
essary traÆ
 and pla
e additional load on the origin servers when

they validate obje
ts that have expired in the
a
he but are un
hanged at the origin server.

Studies show that su
h validation requests represent 15-18% [9℄, 30% [12℄ and 37% [2℄ of all

requests served by origin servers.

3 Obje
t Change Chara
teristi
s

As illustrated in Figure 1, Web obje
ts not only have di�erent
ontent types, but also exhibit

distin
t
hange
hara
teristi
s. Our
lassi�
ation of obje
t
hange
hara
teristi
s is given in

Figure 2. The three
ategories on the left|Stati
, Periodi
 and BoA|represent predi
table

hanges. Obje
ts in these predi
table
ategories
an be managed deterministi
ally:
a
hed

and never validated,
a
hed for a predetermined period, and always retrieved from the origin

server respe
tively. The two
ategories on the right|RDyn and RSt|
over obje
ts that
an

2

be
a
hed but
hange unpredi
tably and, therefore,
annot be managed deterministi
ally.

Ca
hes
onsider RSt obje
ts, whi
h
hange rarely, fresh until a heuristi
ally assigned TTL

expires, and validate RDyn obje
ts, whi
h
hange frequently, on ea
h request.

a
c
c
e
s
s

P
er

io
d
ic

Static

Changes predictably?
(Can be managed deterministically?)

o
n
 e

a
c
h

Relatively
Dynamic

Relatively
Static
(RSt)

(RDyn)

Cacheable

Uncacheable

Legend:

fr
e
q
u
e
n
tl
y

ra
re

ly
n
e
v
e
r

yes no

Born-on-Access
(BoA)

C
h
an

g
es

 h
o
w

 o
ft

en
?

Class Example

Periodi
 periodi
ally updated weather map

BoA
ontainer CO in Figure 1

Stati
 obje
ts EO4 and EO5 in Figure 1

RSt obje
ts EO1|EO3 in Figure 1

RDyn list of latest news stories

Figure 2: Classi�
ation of Obje
t Change Chara
teristi
s

Ideally, parts of BoA
ontent that do not
hange on every a

ess should be fa
tored

out of BoA into any other
ategory so that they
an be
a
hed, whether deterministi
ally

or heuristi
ally. Non-BoA
ontent that
hanges predi
tably should be
lassi�ed as su
h so

that it
an be
a
hed deterministi
ally. Also, portions of RDyn
ontent that
hange rarely

should be fa
tored out and
lassi�ed as RSt to avoid validations on every a

ess. Finally,

to minimize the relian
e on heuristi
s and redu
e validation traÆ
 while managing obje
ts

in the unpredi
table
ategories, RDyn and RSt, we propose to exploit the relationships that

these obje
ts have with obje
ts in the predi
table
ategories.

We believe unpredi
tably
hanging
ontent
an be managed more deterministi
ally and

with fewer transferred messages and bytes than
urrently if servers use obje
t
hange
har-

a
teristi
s in de
iding whi
h management strategies to use. A key question is whether it

is possible and feasible to
lassify a large number of obje
ts at a Web site into these
ate-

gories. Our viewpoint is that many obje
ts are already automati
ally generated based on

measurable events or at regular intervals. It is a trivial addition to these automated tasks to

mark the resulting obje
ts with appropriate
hange
hara
teristi
s. In addition, the type of

an obje
t may de�ne its
hange
hara
teristi
. For example, a manually
reated image may

be marked as stati
. Another observation, that we believe makes this approa
h possible, is

that only the most popular obje
ts require
lassi�
ation, with others being
lassi�ed as RSt

by default.

4 Obje
t Management

In this se
tion we use the example in Figure 1 to illustrate our approa
h to the problem

of managing Web obje
ts more deterministi
ally and eÆ
iently. First, obje
ts at a site are

lassi�ed based on their
hange
hara
teristi
s. Se
ond, the server
ompiles the relationships

between obje
ts
onstituting a page in
onjun
tion with
hange
hara
teristi
s of these ob-

je
ts into Content Control Commands (CCCs), whi
h it then asso
iates with the appropriate

obje
ts.

3

In our example, servers notify
a
hes that obje
ts EO4 and EO5 are Stati
. Ca
hes store

Stati
 obje
ts for as long as they deem ne
essary, without ever generating validation requests.

Obje
ts EO1|EO3 belong to the RSt
ategory and would be managed heuristi
ally if they

were standalone. In our
ase, however, these RSt obje
ts are embedded in the
ontainer that

is retrieved on every a

ess. Servers use the deterministi
 retrieval of the
ontainer CO to

invalidate the RSt obje
ts embedded in it so that
a
hes
an store these RSt obje
ts and

treat them as fresh until the server sends an invalidation. Servers treat obje
ts EO1|EO3

as a volume [9, 7℄ and assign ea
h of them a CCC, an example of whi
h is shown in Figure 3.

The CCC asso
iated with the
ontainer CO is shown in Figure 4, it instru
ts
a
hes that

they may keep only meta information about the CO. If servers did not use the
ontainer to

manage RSt obje
ts, they would instru
t
a
hes not to
a
he it.

HTTP/1.1 200 OK

Server: Apa
he/1.3.12 (Unix)

ETag: 4321

CCC: MAY
a
he until INV

Date: Sun, 04 Mar 2001 10:01:00 GMT

Figure 3: Server Response with CCC for

EO1|EO3

HTTP/1.1 200 OK

Server: Apa
he/1.3.12 (Unix)

ETag: 1234

CCC: MAY
a
he METAINFO

Date: Sun, 04 Mar 2001 10:00:00 GMT

Figure 4: Server Response with CCC for

ontainer CO

The server reply to a request for the
ontainer CO looks slightly di�erent if the server

sends an invalidation. Suppose a
lient requested and
a
hed the obje
ts shown in Fig-

ure 1. Obje
t EO was later updated, and the same
lient is requesting the
ontainer CO

again, indi
ating to the server that it had previously seen version 1234 of the CO. The

server determines whi
h obje
ts the
ontainer CO embedded at the time of the �rst request

and invalidates those RSt obje
ts that have been updated|EO2. For eÆ
ien
y, the server

piggyba
ks invalidation information onto its response to the
lient [9℄:

HTTP/1.1 200 OK

Server: Apa
he/1.3.12 (Unix)

ETag: 5678

CCC: MAY
a
he METAINFO; INV main.js

Date: Mon, 05 Mar 2001 10:00:00 GMT

The
lient invalidates obje
t EO2 in its
a
he, retrieves a new
opy of EO2, and reuses

a
hed
opies of those RSt obje
ts that the server did not expli
itly invalidate: EO1 and

EO3 . Sin
e RSt obje
ts
hange infrequently, we expe
t few invalidations. If the
lient does

not indi
ate to the server that it had previously seen the CO obje
t, the server
an either

provide no invalidation information at all, as is done
urrently, or inform the
lient about

the
urrent versions of the RSt obje
ts embedded in the CO.

Our approa
h to obje
t management allows us to deterministi
ally manage all obje
ts

in Figure 1, even the RSt ones. Ex
ept for the
ontainer that is
hanging on every a

ess,

a
hes store all obje
ts and re-retrieve them only when they truly
hange. In our exam-

ple,
a
hes generate no validation requests|a signi�
ant improvement over
urrent pra
ti
e.

4

Evaluation of our approa
h on proxy logs in our earlier work, where we had to make sim-

plifying assumptions regarding obje
t relationships, showed that 75-89% of all validation

requests
ould be eliminated if servers sent invalidations for obje
ts that have not
hanged

while serving requests for related obje
ts that have
hanged [16℄.

5 Content Assembly

Page
onstru
tion is a two-step pro
ess. The �rst step is
ontent generation. Designers often

use multiple heterogeneous data sour
es with di�erent
hange
hara
teristi
s to generate

timely and personalized
ontent. Web site building tools, su
h as PHP [13℄ and Mason [10℄,

assist designers in pla
ing
ontent that
hanges di�erently from the rest or
ontent shared

between multiple pages into separate �les or
omponents. These tools even provide server-

side
a
hing me
hanisms that
a
he the results of
omponent exe
ution. The se
ond step is

assembly of the �nal page from a set of
omponents. Currently origin servers perform both

steps before serving pages to
lients. Clients re
eive monolithi
 pages that inherit the most

dominant
hange
hara
teristi
 of all of their original
onstituent parts. When one underlying

data sour
e
hanges the entire page
hanges and must be retrieved anew. Furthermore,

urrently only origin servers are equipped to perform both steps of page
onstru
tion.

We propose to enable other entities, su
h as L7 swit
hes,
a
hing and
ontent distribution

servers, browsers, in addition to origin servers, to
arry out page assembly, while keeping

ontent generation an origin server's prerogative. Most of the
omponents
an be
a
hed,

and page assembly
an be done as
lose to the end users as possible, with only frequently

hanging
omponents obtained from the origin server as needed.

Content designers expose the stru
ture of their pages to authorized
lients by pla
ing

environment-spe
i�
 pla
eholders within obje
ts where
omponents must be inserted. In

the
ontext of HTML, a pla
eholder
ould be a new tag, su
h as INSERT. We attempted to

utilize the existing HTML tags, ilayer and iframe, but dis
overed that they both treat

the inserted
ontent as stru
turally separate from the
ontainer. Currently browsers do not

understand the INSERT tag, and may not be allowed to re
eive raw
omponents in the future.

We envision that trusted intermediate devi
es, su
h as
ertain
a
hing proxy servers and CDN

servers, are
ustomized to perform Content Assembly (CA) and deliver fully assembled pages

to browsers.

Content Assembly is the pro
ess of parsing
omponents and repla
ing all o

urren
es

of INSERT tags with the
ontents of the
omponents that they in
lude. CA also involves

ombining
a
he
ontrol information asso
iated with ea
h
omponent to produ
e
a
he
on-

trol information for the assembled obje
t. When serving requests from CA-unaware
lients,

origin servers
an also assemble pages from
omponents or generate
ontent using existing

me
hanisms. In general, any CA-enabled server may forward unassembled
omponents only

to
lients that are known to have the CA
apability and are authorized to re
eive raw
om-

ponents from a parti
ular
ontent provider. While the issues of se
urity and authorization

are important, we have not fo
used on them thus far.

Components
an re
ursively embed other
omponents via INSERT tags, and INSERT tags

an re
ursively embed other INSERT tags. In pra
ti
e there should be a limit to the number

of re
ursion levels. CA servers may
hoose to perform either full or partial assembly. This

5

de
ision
ould depend on a number of
onditions. An overloaded
a
hing server
ould skip

the assembly or assemble only those
omponents that are present in the
a
he and are fresh.

In a CA-enabled
a
hing hierar
hy, only servers at the
lient-side edge of the network may be

allowed to assemble
ontent. A CA server may
a
he the result of the assembly and reuse it

on the subsequent requests, thus amortizing the
ost of the assembly over multiple requests.

6 Obje
t Management with Components

Let us modify the example in Figure 1 so that the
ontainer is not a monolithi
 obje
t, but a

omposition of multiple
omponents (obje
ts). The modi�ed page is shown in Figure 5. We

pla
ed parts of the original BoA
ontainer CO that
hange frequently or on every a

ess in

separate
omponents: CMP1 and CMP2 are BoA, and are the only obje
ts in our modi�ed

page that must be retrieved from the server on every a

ess; CMP4 and CMP5 are RDyn,

they
an be
a
hed, but must be validated on every a

ess. We relo
ated
a
heable and

deterministi
ally manageable
ontent|a daily opinion poll on a
ontroversial question|

into Periodi

omponent CMP6. We also moved RSt
ontent that is shared between many

pages at the site into
omponents CMP3 and CMP7. This
ontent, as well as the new RSt

ontainer CO',
an now be
a
hed.

EO1

EO2

EO3

EO4

EO5

CO’

CMP3

CMP4

CMP5

CMP1

CMP6

CMP2

CMP7

- CSS object

- JavaScript code

- site logo image

- top story photo

- ad banner image

- HTML page (container)

- personalized ad banner

- site navigation menu

- top story headline

- links to latest news articles

- personalized greeting

- opinion poll form

- site usage policy

ad.cmp

CMP5

CMP1

username.cmp

EO3

logo1.gif

CMP4 top_story.cmp

CMP6
vote.cmp

CMP2

policy.cmp

index.html’

CMP7

EO2

EO1 main.css

main.js

CO’

top.photo.jpgEO4

adbanner.gifEO5

navmenu.cmp

CMP3 top_articles.cmp

Figure 5: Obje
ts and Components Composing Home Page of a Popular News Site

The transition of the
ontainer obje
t from BoA to RSt fundamentally a�e
ts how we

manage our set of obje
ts. Sin
e there is no need to retrieve CO' on every a

ess,
a
hes
an

not expe
t the origin server to invalidate RSt obje
ts
ontained or embedded in the
ontainer.

The server sele
ts one of the two obje
ts that are retrieved on every a

ess to assist
a
hes in

managing the
ontainer CO' and other non-deterministi
ally
hanging obje
ts
ontained or

embedded in CO'. The server asso
iates the following CCC with CO', instru
ting
a
hes that

they may
a
he the
ontainer but should always satisfy the provided pre
ondition|retrieval

of CMP2 in this
ase|before reusing the
a
hed
opy of the
ontainer:

6

HTTP/1.1 200 OK

Server: Apa
he/1.3.12 (Unix)

ETag: 1234

CCC: MAY
a
he, PRECOND=GET ad.
mp

Date: Sun, 04 Mar 2001 10:00:00 GMT

The server also asso
iates a CCC with the CMP2
omponent. Upon re
eiving a request

for CMP2 , referred from the RSt
ontainer CO', the server attempts to invalidate the
on-

tainer and the RSt obje
ts embedded in it. The server may also validate RDyn obje
ts

embedded in the CO'. This last rule is useful be
ause RDyn obje
ts are expe
ted to
hange

frequently, but not ne
essarily on every a

ess, and validating the ones that have not
hanged

avoids an unne
essary freshness inquiry that the
a
he must send to the server.

Extending our basi
 obje
t management approa
h, dis
ussed in Se
tion 4, with the page

omposition te
hnique not only preserves all the advantages of the basi
 approa
h over the

urrent pra
ti
e|deterministi
 management of obje
ts
omposing a page and elimination of

validations generated by
a
hes|but also allows more page
ontent to be
a
hed. Evalua-

tion of our extended approa
h on home pages of popular Web sites showed that the page

omposition te
hnique in
reases the amount of
ontent that
an be
a
hed by 50% [16℄. Fur-

thermore, sin
e some of our RSt
omponents, su
h as the site navigation menu CMP3, are

likely to be used on many pages at the site, bene�ts are derived from retrieving and
a
hing

these
omponents only on
e.

Additional bene�ts of the page
omposition te
hnique, however,
ome at a
ost. The

omponentized page in Figure 5
ontains two, not one, BoA obje
ts, and also two RDyn ob-

je
ts that
hange frequently and must be retrieved anew. How a site's
ontent is de
omposed

into
omponents in pra
ti
e is up to the
ontent designers. For example, CMP1 and CMP2

ould be merged into a single
omponent. If BoA
omponents are interspersed throughout

an RSt
ontainer so that they
an not be merged
ontent designers
ould advertize a single

aggregate BoA obje
t that is used to generate all the required BoA obje
ts at on
e. On
e

a
lient re
eives su
h an aggregate obje
t, or a bundle [17℄, it re
overs all individual BoA

obje
ts en
apsulated in it. Also, in the next se
tion we show how to transform personalized

and
ustomized
ontent from BoA into a
a
heable
ategory.

7 Assembling Customized Content

Personalized obje
ts are
urrently treated as BoA be
ause origin servers generate them based

on the information in the
lient request, su
h as a
ookie identifying a parti
ular user,

parameters that follow a `?' in the requested URL, or an HTTP request header. Personalized

obje
ts form the Input Dependent (InpDep)
ategory of
hange
hara
teristi
s, whi
h is

separate from the BoA
ategory. Obje
ts in the InpDep
ategory also belong to one of

the
ategories depi
ted in Figure 2. For example, an obje
t
an be both RSt and InpDep.

That obje
t should be treated as an RSt obje
t as long as requests supply the same input

parameter. This property of InpDep obje
ts allows us to remove the dependen
y on input

parameters at the origin server,
a
he the resulting non-InpDep obje
t, and later on have

the
a
he reintrodu
e the dependen
y on input during the
ontent assembly pro
ess. The

three examples that follow illustrate this approa
h.

7

7.1 Personalization

Consider the personalized greeting
omponent CMP1 in Figure 5. Instead of having the

server generate this
omponent on every request,
ontent designers
ould remove the depen-

den
y on input and make the new CMP1'
omponent of the
ategory RSt and
a
heable by

hanging greeting.
mp to:

Wel
ome, <INSERT SRC=userprofile/<INSERT ISRC=userid DEFAULT=new-user-id>#Name>!

As a CA-enabled
a
he assembles a page with the CMP1'
omponent it repla
es the inner

INSERT
onstru
t with the value of the userid obje
t that the
urrent request supplies in

the
ookie. For example, if a request
ontains the \Cookie: userid=ID1" HTTP request

header, the assembler repla
es the inner INSERT tag with ID1. Trusted
a
hes and origin

servers manage the resulting userprofile/ID1 as any other obje
t. If the
lient request

ontains no userid obje
t then the origin server provides the
a
he with an id for a new

user.

User pro�les may
ontain a number of distin
t �elds, not all of whi
h may be required

for a parti
ular
omponent. To a

ess only the required �eld we propose to use a me
hanism

similar to that used by Web browsers to navigate to a spe
i�
 named part of a page. We

append `#' and the name of the required �eld to the name of the obje
t. After obtaining

userprofile/ID1 from the origin server, the assembler repla
es the outer INSERT tag with

the
ontent of the userprofile/ID1 that is lo
ated between the Name and the next �eld,

�nishing the assembly. To prevent input parameters from masking those obje
ts that should

be retrieved from the origin server we use the ISRC attribute of the INSERT tag, instead of

SRC, to expli
itly inform assemblers that the in
luded obje
t may be available in the request.

The real strength of treating an entire user pro�le as any other obje
t is that
a
hes
an

avoid
onta
ting the origin server when the same
lient requests pages that depend on other

�elds in the pro�le, su
h as address, e-mail or
ompany name. Unless the pro�le
hanges at

the origin server,
a
hes
ontinue using it to personalize pages that depend on it.

7.2 URL Re-Writing

Many Web sites wish to identify unique visitors and tra
k paths that they follow through the

site. Cookies often
an not be used be
ause many users turn
ookies o� in their browsers,

and Web
rawlers do not always support
ookies. A more robust te
hnique of di�erentiat-

ing between
lients is URL re-writing, where for ea
h
lient the server generates a unique

identi�er and dynami
ally appends it to ea
h traversal link on ea
h page that it serves to

that
lient. Pages with re-written URLs are un
a
heable even though their
ontent does not

hange on every request.

Ca
hes enhan
ed with our CA me
hanism
an re-write traversal links in
a
hed pages

by performing simple substitutions and
an propagate unique IDs between
a
hed pages

without
onta
ting the origin server. Content designers
hange traversal links in their pages

from

to

<a href="link.html?sessionid=<INSERT ISRC=sessionid>"> ,

8

e�e
tively de
oupling the InpDep part from the rest of the page. The modi�ed page now

belongs to one of the
ategories in Figure 2, and
an be
a
hed if the
ategory is not

BoA. Upon re
eiving a request for su
h a page, a
a
he repla
es the entire INSERT tag

with the value of the sessionid found in the
lient's request. For example, a request

for page.html?sessionid=ID1 results in the re-written page.html
ontaining the link . If the
lient follows re-written links within that page,

the
a
he re-writes those pages as well, assuming it has them
a
hed, using the same

sessionid. If another
lient requests the same pages, the
a
he re-writes them with the

sessionid taken from that
lient's request. If a request does not
ontain a sessionid ob-

je
t, the
a
he obtains a new ID from the origin server. Ca
he
an also prefet
h a blo
k of

new IDs from the origin server in advan
e.

The reason sites deploy URL-re-writing is to log all requests and di�erentiate between

unique visitors. CA-enabled
a
hes annul the usefulness of the URL-re-writing to servers

by shielding them from
lient requests. We propose to de
ouple serving
a
hed
ontent

from propagating requests to the origin servers. Servers inform
a
hes via a CCC
ommand

whether they wants to see ea
h request for a given obje
t right away, at some later point

in time or never. If real-time feedba
k is not required,
a
hes
an aggregate requests for a

given obje
t and notify the server later, perhaps during o� peak hours.

7.3 Input-Based Obje
t Sele
tion

When a Web site is o�ering
ontent in more than one language en
oding, the server de-

ides on the
orre
t en
oding at the time of the a

ess by examining the A

ept-Language

HTTP request header. The default installation of the Apa
he Web server [1℄, for exam-

ple,
omes with the default home page in a few languages index.html.de, index.html.en,

index.html.fr, et
. Currently, su
h language-spe
i�
 server responses
an be
a
hed with

the addition of the Vary �eld that a subsequent
lient request must satisfy to re
eive the

a
hed page.

Using our CA me
hanism,
a
hes
an
a
he all obje
ts that may result from a server

making a sele
tion from a �nite set of
hoi
es, while the Vary �eld supports
a
hing of only

one obje
t. Content providers add another obje
t, index.html, that
ontains a single line:

<INSERT SRC=index.html.<INSERT ISRC=A

ept-Language DEFAULT=en>>

Upon re
eiving a request for index.html,
a
hes either use the language preferen
e of the

browser or the default value of en and
onstru
t the name of the obje
t with the language-

spe
i�

ontent.

8 Current Status

We are building a system based on the approa
h dis
ussed in this paper. We have built a

prototype Web Obje
t Ca
he Compiler (WOCC). For ea
h page at a Web site WOCC builds

a graph representing relationships between obje
ts
omposing a page. It then analyzes

ea
h graph and assigns appropriate CCCs to Stati
 and Periodi
 obje
ts, if any. WOCC

also determines whi
h obje
t, the manager, should be used to manage non-deterministi
ally

hanging obje
ts on the page. Then it
onsults the matrix of all possible
ombinations of

9

obje
t
hange
hara
teristi
s for parent-
hild relationship and extra
ts a template for the

orre
t CCC for the manager and for ea
h non-deterministi
ally
hanging obje
t on the

page. WOCC expands the templates and assigns the resulting CCCs to the obje
ts. WOCC

generates CCCs for all obje
ts as needed.

We have also implemented a prototype Content Assembler (CASM). CASM is a stand-

alone proxy server
apable of serving
lient requests by fet
hing the top-level
omponent

from the origin server, parsing it, and then re
ursively fet
hing all the in
luded
omponents

and assembling the �nal page. CASM performs simple HTTP response header adjustment

so that Web browsers
an handle the assembled pages as regular HTML pages. We have also

added basi
 in-memory
a
hing of
omponents and embedded obje
ts. CASM behaves as a

regular proxy server when a page requested by a
lient does not require assembly: it fet
hes

the page and forwards it to the
lient. Initial testing shows that CASM does not introdu
e

a noti
eable delay.

9 Related Work

Challenger et. al. [5, 6℄ in their work on the IBM 1998 Olympi
s Web site developed Data

Update Propagation me
hanism to automati
ally update
a
he
ontents at the origin severs

when underlying data
hanges. The same authors also proposed
onstru
ting pages from

fragments that
hange at di�erent rates and en
apsulate semanti
ally
oherent
ontent.

These ideas are similar to ours. However, while the authors postulated that their work
an

be extended to proxy server environment, the main fo
us of their resear
h was on improving

Web server performan
e for serving frequently
hanging
ontent to a large number of users.

Our fo
us is on deterministi
 and eÆ
ient management of obje
ts
lose to the users.

Authors of the Ca
huma
a
hing system [18℄ advo
ate grouping dynami
 pages into

lasses based on URL patterns and exploiting
oarse-grain dependen
ies between the re-

sulting groups and underlying data. Servers invalidate a group of dynami
 pages when

underlying data
hanges. While Ca
huma approa
h may require servers to maintain less

state than our �ner-grain approa
h, we believe invalidating entire pages when only a portion

of underlying data
hanges is ineÆ
ient. Our approa
h in su
h situations invalidates only a

single
hanging
omponent, shared between all pages in a group.

Web site building tools, su
h as PHP [13℄ and Mason [10℄, allow designers to pla
e

ontent shared between multiple pages or
ontent that
hanges di�erently from the rest

into separate �les or
omponents. These tools also provide server-side
a
hing me
hanisms

that
a
he the results of
omponent exe
ution. We are not aware of any work, however,

that expli
itly explored
ombining obje
t
hange
hara
teristi
s with obje
t relationships

for more deterministi
 obje
t management.

Two main works on
a
hing frequently
hanging Web pages are HPP and A
tive Ca
he.

Douglis et. al. in their HPP work [8℄ proposed to treat rarely
hanging part of a page as

a
a
heable template and separate frequently
hanging portions of the page into a set of

bindings that must be retrieved on every a

ess and then expanded within the template by

a modi�ed browser of proxy. Our work suggests using a �ner granularity of obje
t
hange

hara
teristi
s than just stati
 and dynami
, giving
a
hes better
ontrol over whi
h
ontent

needs to be retrieved and whi
h
an be taken from the
a
he. Splitting ea
h page in two

10

parts does not allow the reuse of shared
ontent between two pages. Also, if only one value

in a set of bindings
hanges, the entire set must be retrieved. We propose to use a simple

substitution for
ontent assembly, while HPP handles
ustom ma
ro language
omplete with

onditional statements and loops.

Cao et. al. [3℄ in their A
tive Ca
he work and more re
ently Myers et.al in their Gemini

work [11℄ proposed a more general method of handling small
hanges to
a
hed obje
ts.

Content providers, in addition to
ontent, provide spe
ialized
ode that intermediate
a
hing

servers exe
ute to produ
e a new version of the
a
hed obje
t. A possibility of mali
ious or

badly written
ode supplied by origin servers raises se
urity
on
erns. Java implementations

of both A
tive Ca
he and Gemini also in
urred non-trivial
omputational
osts. Unlike

the idea of having
a
hes exe
ute
ode provided by publishers, our CA me
hanism requires

intermediate nodes to perform only a single pre-de�ned task of tag substitution and avoids

se
urity and performan
e issues introdu
ed by external
ode.

10 Summary and Future Work

In this paper we have presented the te
hniques that
onstitute our approa
h to Web ob-

je
t management and illustrate the improvements over
urrent pra
ti
e that ea
h te
hnique

brings. First, we dis
uss the me
hani
s of how servers
ombine the relationships between

obje
ts
omposing Web pages with obje
t
hange
hara
teristi
s to produ
e obje
t-spe
i�

CCCs. We show how the use of appropriate CCCs leads to more deterministi
 management

of obje
ts and eliminates unne
essary validation requests that are
urrently due to ineÆ-

ient
a
he
onsisten
y me
hanisms and have to be handled by servers. These are signi�
ant

improvements over
urrent pra
ti
e.

Se
ond, our powerful Content Assembly te
hnique enables
a
hes to
onstru
t pages

from individual
omponents. Ea
h
omponent en
apsulates homogeneously
hanging and

semanti
ally
oherent
ontent, and only those
omponents that
hange on every a

ess must

always be retrieved from the server. Servers and
a
hes treat
omponents just like obje
ts

and deterministi
ally manage them via CCCs. Relo
ation of page assembly away from the

servers and
loser to the users allows more
ontent to be
a
hed.

Third, we demonstrated how CA-enabled
a
hes
an
a
he
omponents that are
urrently

un
a
heable due to being personalized or
ustomized based on the input parameters. CA-

enabled
a
hes perform the required
ustomization upon a
lient request. This
apability

further in
reases the amount of
urrently un
a
heble
ontent that
an now be
a
hed.

Our Content Assembly te
hnique is not only powerful, but also simple. Our
ontent as-

semblers perform only a single pre-de�ned task of tag substitution thus avoiding the se
urity

and performan
e issues raised by alternative proposals advo
ating more
omplex methods

of page
onstru
tion by
a
hes.

Current and future work on the prototype implementation in
ludes extending CASM to

support CCCs, integrating CASM with an existing Web proxy server, su
h as Squid [14℄, and

integrating WOCC with an existing Web server, su
h as Apa
he [1℄. We will also
ontinue

to evaluate performan
e of our system.

11

Referen
es

[1℄ The Apa
he Server Proje
t. http://www.apa
he.org.

[2℄ Martin Arlitt and Tai Jin. A Workload Chara
terization Study of the 1998 World Cup

Web Site. IEEE Network, May/June 2000.

[3℄ Pei Cao, Jin Zhang, and Kevin Bea
h. A
tive Ca
he: Ca
hing dynami

ontents (ob-

je
ts) on the Web. In Pro
eedings of the IFIP International Conferen
e on Distributed

Systems Platforms and Open Distributed Pro
essing (Middleware '98), The Lake Dis-

tri
t, England, September 1998.

[4℄ Vin
ent Cate. Alex - a Global Filesystem. In Pro
eedings of the USENIX File Systems

Workshop, pages 1{12, May 1992.

[5℄ Jim Challenger, Arun Iyengar, and Paul Dantzig. A s
alable system for
onsistently

a
hing dynami
 web data. In Pro
eedings of the IEEE Info
om '99 Conferen
e, New

York, NY, Mar
h 1999. IEEE.

[6℄ Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed. A

publishing system for eÆ
iently
reating dynami
 web
ontent. In Pro
eedings of the

IEEE Info
om 2000 Conferen
e, Tel Aviv, Israel, Mar
h 2000. IEEE.

[7℄ Edith Cohen, Bala
hander Krishnamurthy, and Jennifer Rexford. Improving end-to-end

performan
e of the Web using server volumes and proxy �lters. In ACM SIGCOMM'98

Conferen
e, September 1998.

[8℄ Fred Douglis, Antonio Haro, and Mi
hael Rabinovi
h. HPP: HTML ma
ro-pre-

pro
essing to support dynami
 do
ument
a
hing. In USENIX Symposium on Internet

Te
hnologies and Systems, Monterey, California, USA, De
ember 1997.

[9℄ Bala
hander Krishnamurthy and Craig E. Wills. Piggyba
k server invalidation for proxy

a
he
oheren
y. In Seventh International World Wide Web Conferen
e, pages 185{193,

Brisbane, Australia, April 1998.

[10℄ Mason. http://www.masonhq.
om.

[11℄ Andy Myers, John Chuang, Urs Hengartner, Yinglian Xie, Weiqiang Zhuang, and Hui

Zhang. A Se
ure and Publisher-Centri
 Web Ca
hing Infrastru
ture. In Pro
eedings of

the IEEE Info
om 2001 Conferen
e, An
horage, Alaska USA, April 2001.

[12℄ Eri
h M. Nahum. WWW Workload
hara
terization work at IBM Resear
h. In Web

Chara
terization Workshop, Cambridge, MA, November 1998. World Wide Web Con-

sortium. http://www.w3.org/1998/11/05/WC-workshop/Papers/nahum.html.

[13℄ PHP Hypertext Prepro
essor. http://www.php.net.

[14℄ Duane Wessels. Squid Internet Obje
t Ca
he. http://squid.nlanr.net/Squid/.

12

[15℄ Craig E. Wills and Mikhail Mikhailov. Towards a better understanding of Web resour
es

and server responses for improved
a
hing. In Eighth International World Wide Web

Conferen
e, Toronto, Canada, May 1999.

[16℄ Craig E. Wills and Mikhail Mikhailov. Studying the Impa
t of More Complete Server

Information on Web Ca
hing. In Pro
eedings of the 5th International Web Ca
hing and

Content Delivery Workshop, Lisbon, Portugal, May 2000.

[17℄ Craig E. Wills, Mikhail Mikhailov, and Hao Shang. N for the Pri
e of 1: Bundling Web

Obje
ts for More EÆ
ient Content Delivery. In Tenth International World Wide Web

Conferen
e, Hong Kong, May 2001.

[18℄ Hui
an Zhu and Tao Yang. Class-Based Ca
he Management for Dynami
 Web Content.

In Pro
eedings of the IEEE Info
om 2001 Conferen
e, An
horage, Alaska USA, April

2001.

13

