
WPI-CS-TR-01-03 Marh 2001

Change and Relationship-Driven Content Cahing,

Distribution and Assembly

1

by

Mikhail Mikhailov

Craig E. Wills

Computer Siene

Tehnial Report

Series

 ��

WORCESTER POLYTECHNIC INSTITUTE

Computer Siene Department

100 Institute Road, Worester, Massahusetts 01609-2280

1

This work is partially supported by the National Siene Foundation Grant CCR-9988250.

Abstrat

Web ahing and Content Distribution Networks (CDNs) seek to redue retrieval

lateny, lower bandwidth usage and redue load on the origin servers by moving the

o�ered ontent loser to the end users. Historially, the ontent repliated to the

edges of the network in this way has been mostly stati, suh as images. As more

dynami and personalized ontent is being o�ered on the Web, there is a growing need

for mehanisms apable of ahing and repliating ontent that hanges frequently

and is user-spei�. In addition, existing ahes heuristially estimate objet freshness

lifetimes, whih results in unneessary validation traÆ between ahes and origin

servers, and does not prevent ahes from serving stale objets to their lients.

In this work we desribe a mehanism that makes ahing of Web objets more

deterministi, redues validation traÆ, inreases the amount of ontent that may be

ahed, and redues the amount of dynami ontent that must be retrieved from the

origin server. Our mehanism uses a number of tehniques in onert. First, objets

that onstitute a page are lassi�ed based on their hange harateristis. Next, servers

analyze relationships between objets in onjuntion with objet hange harateristis

and ompile them into Content Control Commands. Cahes and servers then use these

ommands to manage objets. Finally, ahing and CDN servers onstrut frequently

hanging, personalized, or any other pages from individual omponents using a powerful

Content Assembly tehnique.

Keywords: Web Cahing, Content Distribution, Change Charateristis, Objet Rela-

tionships, Objet Composition, Content Assembly

1

1 Introdution

The sheer size and explosive growth of the World Wide Web demands powerful tehniques

to sale the Web and improve its performane. Sine the early days of the Web organizations

suessfully deployed ahing proxy servers to lower the usage of bandwidth on their Internet

onnetions and derease the response time for their internal users. Aademi and industrial

e�orts to advane the state-of-the-art in Web performane led to the introdution of ahing

hierarhies, intereption proxies, surrogate servers and more reently to the deployment of

CDNs.

While ahing and ontent delivery infrastrutures are integral parts of the Web, they lak

a mehanism for ahing frequently hanging and personalized ontent. Servers ompute that

ontent upon request and annot assign it a useful expiration or last modi�ation time|the

two parameters urrently used by ahes in determining ontent freshness lifetime. Cahing

and CDN servers store objets that hange infrequently, many of whih are images. However,

even these aheable objets are managed heuristially beause there is no eÆient ahe

onsisteny mehanism.

In our previous work [16℄ we proposed an alternative approah to ahing of Web objets

that addresses these problems. The idea is to lassify objets based on their types and

hange harateristis, ompose Web pages from suh objets, and expose the page struture

to ahes. Our approah also ombines the relationships between objets with objet hange

harateristis to better manage individual objets. In our previous work we evaluated

potential gains of our approah and reported enouraging results. In this paper we desribe

elements of the design of a system implementing our approah.

The paper is organized as follows. We introdue our lassi�ation of objet hange

harateristis and show how servers better manage their objets by ontrolling ahes with

objet-spei� Content Control Commands (CCCs). Then we desribe a powerful Content

Assembly (CA) tehnique that enables ahing and CDN servers to onstrut frequently

hanging, personalized, or other pages from individual omponents. We illustrate how the

addition of Content Assembly inreases the amount of ontent that an be ahed and also

show spei� examples of how CA-enabled ahes an personalize pages. We report on the

status of a prototype system implementing our approah, and also ompare our ideas to those

proposed by others, onluding the paper with a summary and a disussion of diretions for

future work.

2 Current Pratie

Let us onsider an example of a Web page, shown in Figure 1. This example is motivated by

home pages of popular news portals. The ontainer objet CO is hanging frequently|every

few minutes|beause ontent designers update the top story, add and remove links leading

to the major news artiles. Irrespetive of the manual updates, every request for CO results

in a di�erent response beause the origin server dynamially generates CO, hanging whih

ad banner image to display and where on the page to plae it. Embedded objets EO1|

EO3 hange only oasionally. Suh hanges are applied by a human, our at unpreditable

points in time, and are saved under the same name as the previous version of the objet.

1

Objets EO4 and EO5 never hange. If hanges are required, they are saved under a di�erent

name, e�etively resulting in a new objet being reated.

- CSS object

- JavaScript code
logo1.gif

EO2

EO1 main.css

CO

EO3

index.html

main.js

top.photo.jpg

- site logo imageEO3

- top story photo

- ad banner image

- HTML page (container)

EO1

EO2

EO4

EO5

CO

EO4

adbanner.gifEO5

Figure 1: Home Page of a Popular News Site

Let us now onsider how these objets are urrently managed within a proxy-style ahing

arhiteture. Cahes annot store the ontainer CO beause it hanges frequently and either

arries an expliit indiation that it is unaheable or has no ahe ontrol meta information

assoiated with it. The �ve embedded objets EO1|EO5 hange rarely or never and may

be ahed. Currently, the more ahe-friendly origin servers assign aheable objets an

expiration or a last modi�ation time, via Expires and Last-Modified HTTP response

headers respetively. When an expliit expiration time is not available, ahes, suh as

Squid [14℄, onsider a on�gurable fration of objet's age to be a reasonable estimate for

the freshness lifetime for that objet. Age of an objet is the di�erene between urrent

time and that objet's last modi�ation time. The heuristi used here, referred to as Alex

protool [4℄, suggests that the younger �les are likely to hange sooner than the older �les. It

is impossible for ahes to deterministially know when ahed objets EO1|EO5 beome

stale beause servers an not aurately predit objet expiration times and heuristi TTLs

are impreise by de�nition. Also, servers an inadvertantly provide misleading expiration

and last modi�ation times [15℄. As a result, ahes may serve stale objets to their lients.

Cahes also generate unneessary traÆ and plae additional load on the origin servers when

they validate objets that have expired in the ahe but are unhanged at the origin server.

Studies show that suh validation requests represent 15-18% [9℄, 30% [12℄ and 37% [2℄ of all

requests served by origin servers.

3 Objet Change Charateristis

As illustrated in Figure 1, Web objets not only have di�erent ontent types, but also exhibit

distint hange harateristis. Our lassi�ation of objet hange harateristis is given in

Figure 2. The three ategories on the left|Stati, Periodi and BoA|represent preditable

hanges. Objets in these preditable ategories an be managed deterministially: ahed

and never validated, ahed for a predetermined period, and always retrieved from the origin

server respetively. The two ategories on the right|RDyn and RSt|over objets that an

2

be ahed but hange unpreditably and, therefore, annot be managed deterministially.

Cahes onsider RSt objets, whih hange rarely, fresh until a heuristially assigned TTL

expires, and validate RDyn objets, whih hange frequently, on eah request.

a
c
c
e
s
s

P
er

io
d
ic

Static

Changes predictably?
(Can be managed deterministically?)

o
n
 e

a
c
h

Relatively
Dynamic

Relatively
Static
(RSt)

(RDyn)

Cacheable

Uncacheable

Legend:

fr
e
q
u
e
n
tl
y

ra
re

ly
n
e
v
e
r

yes no

Born-on-Access
(BoA)

C
h
an

g
es

 h
o
w

 o
ft

en
?

Class Example

Periodi periodially updated weather map

BoA ontainer CO in Figure 1

Stati objets EO4 and EO5 in Figure 1

RSt objets EO1|EO3 in Figure 1

RDyn list of latest news stories

Figure 2: Classi�ation of Objet Change Charateristis

Ideally, parts of BoA ontent that do not hange on every aess should be fatored

out of BoA into any other ategory so that they an be ahed, whether deterministially

or heuristially. Non-BoA ontent that hanges preditably should be lassi�ed as suh so

that it an be ahed deterministially. Also, portions of RDyn ontent that hange rarely

should be fatored out and lassi�ed as RSt to avoid validations on every aess. Finally,

to minimize the reliane on heuristis and redue validation traÆ while managing objets

in the unpreditable ategories, RDyn and RSt, we propose to exploit the relationships that

these objets have with objets in the preditable ategories.

We believe unpreditably hanging ontent an be managed more deterministially and

with fewer transferred messages and bytes than urrently if servers use objet hange har-

ateristis in deiding whih management strategies to use. A key question is whether it

is possible and feasible to lassify a large number of objets at a Web site into these ate-

gories. Our viewpoint is that many objets are already automatially generated based on

measurable events or at regular intervals. It is a trivial addition to these automated tasks to

mark the resulting objets with appropriate hange harateristis. In addition, the type of

an objet may de�ne its hange harateristi. For example, a manually reated image may

be marked as stati. Another observation, that we believe makes this approah possible, is

that only the most popular objets require lassi�ation, with others being lassi�ed as RSt

by default.

4 Objet Management

In this setion we use the example in Figure 1 to illustrate our approah to the problem

of managing Web objets more deterministially and eÆiently. First, objets at a site are

lassi�ed based on their hange harateristis. Seond, the server ompiles the relationships

between objets onstituting a page in onjuntion with hange harateristis of these ob-

jets into Content Control Commands (CCCs), whih it then assoiates with the appropriate

objets.

3

In our example, servers notify ahes that objets EO4 and EO5 are Stati. Cahes store

Stati objets for as long as they deem neessary, without ever generating validation requests.

Objets EO1|EO3 belong to the RSt ategory and would be managed heuristially if they

were standalone. In our ase, however, these RSt objets are embedded in the ontainer that

is retrieved on every aess. Servers use the deterministi retrieval of the ontainer CO to

invalidate the RSt objets embedded in it so that ahes an store these RSt objets and

treat them as fresh until the server sends an invalidation. Servers treat objets EO1|EO3

as a volume [9, 7℄ and assign eah of them a CCC, an example of whih is shown in Figure 3.

The CCC assoiated with the ontainer CO is shown in Figure 4, it instruts ahes that

they may keep only meta information about the CO. If servers did not use the ontainer to

manage RSt objets, they would instrut ahes not to ahe it.

HTTP/1.1 200 OK

Server: Apahe/1.3.12 (Unix)

ETag: 4321

CCC: MAY ahe until INV

Date: Sun, 04 Mar 2001 10:01:00 GMT

Figure 3: Server Response with CCC for

EO1|EO3

HTTP/1.1 200 OK

Server: Apahe/1.3.12 (Unix)

ETag: 1234

CCC: MAY ahe METAINFO

Date: Sun, 04 Mar 2001 10:00:00 GMT

Figure 4: Server Response with CCC for

ontainer CO

The server reply to a request for the ontainer CO looks slightly di�erent if the server

sends an invalidation. Suppose a lient requested and ahed the objets shown in Fig-

ure 1. Objet EO was later updated, and the same lient is requesting the ontainer CO

again, indiating to the server that it had previously seen version 1234 of the CO. The

server determines whih objets the ontainer CO embedded at the time of the �rst request

and invalidates those RSt objets that have been updated|EO2. For eÆieny, the server

piggybaks invalidation information onto its response to the lient [9℄:

HTTP/1.1 200 OK

Server: Apahe/1.3.12 (Unix)

ETag: 5678

CCC: MAY ahe METAINFO; INV main.js

Date: Mon, 05 Mar 2001 10:00:00 GMT

The lient invalidates objet EO2 in its ahe, retrieves a new opy of EO2, and reuses

ahed opies of those RSt objets that the server did not expliitly invalidate: EO1 and

EO3 . Sine RSt objets hange infrequently, we expet few invalidations. If the lient does

not indiate to the server that it had previously seen the CO objet, the server an either

provide no invalidation information at all, as is done urrently, or inform the lient about

the urrent versions of the RSt objets embedded in the CO.

Our approah to objet management allows us to deterministially manage all objets

in Figure 1, even the RSt ones. Exept for the ontainer that is hanging on every aess,

ahes store all objets and re-retrieve them only when they truly hange. In our exam-

ple, ahes generate no validation requests|a signi�ant improvement over urrent pratie.

4

Evaluation of our approah on proxy logs in our earlier work, where we had to make sim-

plifying assumptions regarding objet relationships, showed that 75-89% of all validation

requests ould be eliminated if servers sent invalidations for objets that have not hanged

while serving requests for related objets that have hanged [16℄.

5 Content Assembly

Page onstrution is a two-step proess. The �rst step is ontent generation. Designers often

use multiple heterogeneous data soures with di�erent hange harateristis to generate

timely and personalized ontent. Web site building tools, suh as PHP [13℄ and Mason [10℄,

assist designers in plaing ontent that hanges di�erently from the rest or ontent shared

between multiple pages into separate �les or omponents. These tools even provide server-

side ahing mehanisms that ahe the results of omponent exeution. The seond step is

assembly of the �nal page from a set of omponents. Currently origin servers perform both

steps before serving pages to lients. Clients reeive monolithi pages that inherit the most

dominant hange harateristi of all of their original onstituent parts. When one underlying

data soure hanges the entire page hanges and must be retrieved anew. Furthermore,

urrently only origin servers are equipped to perform both steps of page onstrution.

We propose to enable other entities, suh as L7 swithes, ahing and ontent distribution

servers, browsers, in addition to origin servers, to arry out page assembly, while keeping

ontent generation an origin server's prerogative. Most of the omponents an be ahed,

and page assembly an be done as lose to the end users as possible, with only frequently

hanging omponents obtained from the origin server as needed.

Content designers expose the struture of their pages to authorized lients by plaing

environment-spei� plaeholders within objets where omponents must be inserted. In

the ontext of HTML, a plaeholder ould be a new tag, suh as INSERT. We attempted to

utilize the existing HTML tags, ilayer and iframe, but disovered that they both treat

the inserted ontent as struturally separate from the ontainer. Currently browsers do not

understand the INSERT tag, and may not be allowed to reeive raw omponents in the future.

We envision that trusted intermediate devies, suh as ertain ahing proxy servers and CDN

servers, are ustomized to perform Content Assembly (CA) and deliver fully assembled pages

to browsers.

Content Assembly is the proess of parsing omponents and replaing all ourrenes

of INSERT tags with the ontents of the omponents that they inlude. CA also involves

ombining ahe ontrol information assoiated with eah omponent to produe ahe on-

trol information for the assembled objet. When serving requests from CA-unaware lients,

origin servers an also assemble pages from omponents or generate ontent using existing

mehanisms. In general, any CA-enabled server may forward unassembled omponents only

to lients that are known to have the CA apability and are authorized to reeive raw om-

ponents from a partiular ontent provider. While the issues of seurity and authorization

are important, we have not foused on them thus far.

Components an reursively embed other omponents via INSERT tags, and INSERT tags

an reursively embed other INSERT tags. In pratie there should be a limit to the number

of reursion levels. CA servers may hoose to perform either full or partial assembly. This

5

deision ould depend on a number of onditions. An overloaded ahing server ould skip

the assembly or assemble only those omponents that are present in the ahe and are fresh.

In a CA-enabled ahing hierarhy, only servers at the lient-side edge of the network may be

allowed to assemble ontent. A CA server may ahe the result of the assembly and reuse it

on the subsequent requests, thus amortizing the ost of the assembly over multiple requests.

6 Objet Management with Components

Let us modify the example in Figure 1 so that the ontainer is not a monolithi objet, but a

omposition of multiple omponents (objets). The modi�ed page is shown in Figure 5. We

plaed parts of the original BoA ontainer CO that hange frequently or on every aess in

separate omponents: CMP1 and CMP2 are BoA, and are the only objets in our modi�ed

page that must be retrieved from the server on every aess; CMP4 and CMP5 are RDyn,

they an be ahed, but must be validated on every aess. We reloated aheable and

deterministially manageable ontent|a daily opinion poll on a ontroversial question|

into Periodi omponent CMP6. We also moved RSt ontent that is shared between many

pages at the site into omponents CMP3 and CMP7. This ontent, as well as the new RSt

ontainer CO', an now be ahed.

EO1

EO2

EO3

EO4

EO5

CO’

CMP3

CMP4

CMP5

CMP1

CMP6

CMP2

CMP7

- CSS object

- JavaScript code

- site logo image

- top story photo

- ad banner image

- HTML page (container)

- personalized ad banner

- site navigation menu

- top story headline

- links to latest news articles

- personalized greeting

- opinion poll form

- site usage policy

ad.cmp

CMP5

CMP1

username.cmp

EO3

logo1.gif

CMP4 top_story.cmp

CMP6
vote.cmp

CMP2

policy.cmp

index.html’

CMP7

EO2

EO1 main.css

main.js

CO’

top.photo.jpgEO4

adbanner.gifEO5

navmenu.cmp

CMP3 top_articles.cmp

Figure 5: Objets and Components Composing Home Page of a Popular News Site

The transition of the ontainer objet from BoA to RSt fundamentally a�ets how we

manage our set of objets. Sine there is no need to retrieve CO' on every aess, ahes an

not expet the origin server to invalidate RSt objets ontained or embedded in the ontainer.

The server selets one of the two objets that are retrieved on every aess to assist ahes in

managing the ontainer CO' and other non-deterministially hanging objets ontained or

embedded in CO'. The server assoiates the following CCC with CO', instruting ahes that

they may ahe the ontainer but should always satisfy the provided preondition|retrieval

of CMP2 in this ase|before reusing the ahed opy of the ontainer:

6

HTTP/1.1 200 OK

Server: Apahe/1.3.12 (Unix)

ETag: 1234

CCC: MAY ahe, PRECOND=GET ad.mp

Date: Sun, 04 Mar 2001 10:00:00 GMT

The server also assoiates a CCC with the CMP2 omponent. Upon reeiving a request

for CMP2 , referred from the RSt ontainer CO', the server attempts to invalidate the on-

tainer and the RSt objets embedded in it. The server may also validate RDyn objets

embedded in the CO'. This last rule is useful beause RDyn objets are expeted to hange

frequently, but not neessarily on every aess, and validating the ones that have not hanged

avoids an unneessary freshness inquiry that the ahe must send to the server.

Extending our basi objet management approah, disussed in Setion 4, with the page

omposition tehnique not only preserves all the advantages of the basi approah over the

urrent pratie|deterministi management of objets omposing a page and elimination of

validations generated by ahes|but also allows more page ontent to be ahed. Evalua-

tion of our extended approah on home pages of popular Web sites showed that the page

omposition tehnique inreases the amount of ontent that an be ahed by 50% [16℄. Fur-

thermore, sine some of our RSt omponents, suh as the site navigation menu CMP3, are

likely to be used on many pages at the site, bene�ts are derived from retrieving and ahing

these omponents only one.

Additional bene�ts of the page omposition tehnique, however, ome at a ost. The

omponentized page in Figure 5 ontains two, not one, BoA objets, and also two RDyn ob-

jets that hange frequently and must be retrieved anew. How a site's ontent is deomposed

into omponents in pratie is up to the ontent designers. For example, CMP1 and CMP2

ould be merged into a single omponent. If BoA omponents are interspersed throughout

an RSt ontainer so that they an not be merged ontent designers ould advertize a single

aggregate BoA objet that is used to generate all the required BoA objets at one. One

a lient reeives suh an aggregate objet, or a bundle [17℄, it reovers all individual BoA

objets enapsulated in it. Also, in the next setion we show how to transform personalized

and ustomized ontent from BoA into a aheable ategory.

7 Assembling Customized Content

Personalized objets are urrently treated as BoA beause origin servers generate them based

on the information in the lient request, suh as a ookie identifying a partiular user,

parameters that follow a `?' in the requested URL, or an HTTP request header. Personalized

objets form the Input Dependent (InpDep) ategory of hange harateristis, whih is

separate from the BoA ategory. Objets in the InpDep ategory also belong to one of

the ategories depited in Figure 2. For example, an objet an be both RSt and InpDep.

That objet should be treated as an RSt objet as long as requests supply the same input

parameter. This property of InpDep objets allows us to remove the dependeny on input

parameters at the origin server, ahe the resulting non-InpDep objet, and later on have

the ahe reintrodue the dependeny on input during the ontent assembly proess. The

three examples that follow illustrate this approah.

7

7.1 Personalization

Consider the personalized greeting omponent CMP1 in Figure 5. Instead of having the

server generate this omponent on every request, ontent designers ould remove the depen-

deny on input and make the new CMP1' omponent of the ategory RSt and aheable by

hanging greeting.mp to:

Welome, <INSERT SRC=userprofile/<INSERT ISRC=userid DEFAULT=new-user-id>#Name>!

As a CA-enabled ahe assembles a page with the CMP1' omponent it replaes the inner

INSERT onstrut with the value of the userid objet that the urrent request supplies in

the ookie. For example, if a request ontains the \Cookie: userid=ID1" HTTP request

header, the assembler replaes the inner INSERT tag with ID1. Trusted ahes and origin

servers manage the resulting userprofile/ID1 as any other objet. If the lient request

ontains no userid objet then the origin server provides the ahe with an id for a new

user.

User pro�les may ontain a number of distint �elds, not all of whih may be required

for a partiular omponent. To aess only the required �eld we propose to use a mehanism

similar to that used by Web browsers to navigate to a spei� named part of a page. We

append `#' and the name of the required �eld to the name of the objet. After obtaining

userprofile/ID1 from the origin server, the assembler replaes the outer INSERT tag with

the ontent of the userprofile/ID1 that is loated between the Name and the next �eld,

�nishing the assembly. To prevent input parameters from masking those objets that should

be retrieved from the origin server we use the ISRC attribute of the INSERT tag, instead of

SRC, to expliitly inform assemblers that the inluded objet may be available in the request.

The real strength of treating an entire user pro�le as any other objet is that ahes an

avoid ontating the origin server when the same lient requests pages that depend on other

�elds in the pro�le, suh as address, e-mail or ompany name. Unless the pro�le hanges at

the origin server, ahes ontinue using it to personalize pages that depend on it.

7.2 URL Re-Writing

Many Web sites wish to identify unique visitors and trak paths that they follow through the

site. Cookies often an not be used beause many users turn ookies o� in their browsers,

and Web rawlers do not always support ookies. A more robust tehnique of di�erentiat-

ing between lients is URL re-writing, where for eah lient the server generates a unique

identi�er and dynamially appends it to eah traversal link on eah page that it serves to

that lient. Pages with re-written URLs are unaheable even though their ontent does not

hange on every request.

Cahes enhaned with our CA mehanism an re-write traversal links in ahed pages

by performing simple substitutions and an propagate unique IDs between ahed pages

without ontating the origin server. Content designers hange traversal links in their pages

from

to

<a href="link.html?sessionid=<INSERT ISRC=sessionid>"> ,

8

e�etively deoupling the InpDep part from the rest of the page. The modi�ed page now

belongs to one of the ategories in Figure 2, and an be ahed if the ategory is not

BoA. Upon reeiving a request for suh a page, a ahe replaes the entire INSERT tag

with the value of the sessionid found in the lient's request. For example, a request

for page.html?sessionid=ID1 results in the re-written page.html ontaining the link . If the lient follows re-written links within that page,

the ahe re-writes those pages as well, assuming it has them ahed, using the same

sessionid. If another lient requests the same pages, the ahe re-writes them with the

sessionid taken from that lient's request. If a request does not ontain a sessionid ob-

jet, the ahe obtains a new ID from the origin server. Cahe an also prefeth a blok of

new IDs from the origin server in advane.

The reason sites deploy URL-re-writing is to log all requests and di�erentiate between

unique visitors. CA-enabled ahes annul the usefulness of the URL-re-writing to servers

by shielding them from lient requests. We propose to deouple serving ahed ontent

from propagating requests to the origin servers. Servers inform ahes via a CCC ommand

whether they wants to see eah request for a given objet right away, at some later point

in time or never. If real-time feedbak is not required, ahes an aggregate requests for a

given objet and notify the server later, perhaps during o� peak hours.

7.3 Input-Based Objet Seletion

When a Web site is o�ering ontent in more than one language enoding, the server de-

ides on the orret enoding at the time of the aess by examining the Aept-Language

HTTP request header. The default installation of the Apahe Web server [1℄, for exam-

ple, omes with the default home page in a few languages index.html.de, index.html.en,

index.html.fr, et. Currently, suh language-spei� server responses an be ahed with

the addition of the Vary �eld that a subsequent lient request must satisfy to reeive the

ahed page.

Using our CA mehanism, ahes an ahe all objets that may result from a server

making a seletion from a �nite set of hoies, while the Vary �eld supports ahing of only

one objet. Content providers add another objet, index.html, that ontains a single line:

<INSERT SRC=index.html.<INSERT ISRC=Aept-Language DEFAULT=en>>

Upon reeiving a request for index.html, ahes either use the language preferene of the

browser or the default value of en and onstrut the name of the objet with the language-

spei� ontent.

8 Current Status

We are building a system based on the approah disussed in this paper. We have built a

prototype Web Objet Cahe Compiler (WOCC). For eah page at a Web site WOCC builds

a graph representing relationships between objets omposing a page. It then analyzes

eah graph and assigns appropriate CCCs to Stati and Periodi objets, if any. WOCC

also determines whih objet, the manager, should be used to manage non-deterministially

hanging objets on the page. Then it onsults the matrix of all possible ombinations of

9

objet hange harateristis for parent-hild relationship and extrats a template for the

orret CCC for the manager and for eah non-deterministially hanging objet on the

page. WOCC expands the templates and assigns the resulting CCCs to the objets. WOCC

generates CCCs for all objets as needed.

We have also implemented a prototype Content Assembler (CASM). CASM is a stand-

alone proxy server apable of serving lient requests by fething the top-level omponent

from the origin server, parsing it, and then reursively fething all the inluded omponents

and assembling the �nal page. CASM performs simple HTTP response header adjustment

so that Web browsers an handle the assembled pages as regular HTML pages. We have also

added basi in-memory ahing of omponents and embedded objets. CASM behaves as a

regular proxy server when a page requested by a lient does not require assembly: it fethes

the page and forwards it to the lient. Initial testing shows that CASM does not introdue

a notieable delay.

9 Related Work

Challenger et. al. [5, 6℄ in their work on the IBM 1998 Olympis Web site developed Data

Update Propagation mehanism to automatially update ahe ontents at the origin severs

when underlying data hanges. The same authors also proposed onstruting pages from

fragments that hange at di�erent rates and enapsulate semantially oherent ontent.

These ideas are similar to ours. However, while the authors postulated that their work an

be extended to proxy server environment, the main fous of their researh was on improving

Web server performane for serving frequently hanging ontent to a large number of users.

Our fous is on deterministi and eÆient management of objets lose to the users.

Authors of the Cahuma ahing system [18℄ advoate grouping dynami pages into

lasses based on URL patterns and exploiting oarse-grain dependenies between the re-

sulting groups and underlying data. Servers invalidate a group of dynami pages when

underlying data hanges. While Cahuma approah may require servers to maintain less

state than our �ner-grain approah, we believe invalidating entire pages when only a portion

of underlying data hanges is ineÆient. Our approah in suh situations invalidates only a

single hanging omponent, shared between all pages in a group.

Web site building tools, suh as PHP [13℄ and Mason [10℄, allow designers to plae

ontent shared between multiple pages or ontent that hanges di�erently from the rest

into separate �les or omponents. These tools also provide server-side ahing mehanisms

that ahe the results of omponent exeution. We are not aware of any work, however,

that expliitly explored ombining objet hange harateristis with objet relationships

for more deterministi objet management.

Two main works on ahing frequently hanging Web pages are HPP and Ative Cahe.

Douglis et. al. in their HPP work [8℄ proposed to treat rarely hanging part of a page as

a aheable template and separate frequently hanging portions of the page into a set of

bindings that must be retrieved on every aess and then expanded within the template by

a modi�ed browser of proxy. Our work suggests using a �ner granularity of objet hange

harateristis than just stati and dynami, giving ahes better ontrol over whih ontent

needs to be retrieved and whih an be taken from the ahe. Splitting eah page in two

10

parts does not allow the reuse of shared ontent between two pages. Also, if only one value

in a set of bindings hanges, the entire set must be retrieved. We propose to use a simple

substitution for ontent assembly, while HPP handles ustom maro language omplete with

onditional statements and loops.

Cao et. al. [3℄ in their Ative Cahe work and more reently Myers et.al in their Gemini

work [11℄ proposed a more general method of handling small hanges to ahed objets.

Content providers, in addition to ontent, provide speialized ode that intermediate ahing

servers exeute to produe a new version of the ahed objet. A possibility of maliious or

badly written ode supplied by origin servers raises seurity onerns. Java implementations

of both Ative Cahe and Gemini also inurred non-trivial omputational osts. Unlike

the idea of having ahes exeute ode provided by publishers, our CA mehanism requires

intermediate nodes to perform only a single pre-de�ned task of tag substitution and avoids

seurity and performane issues introdued by external ode.

10 Summary and Future Work

In this paper we have presented the tehniques that onstitute our approah to Web ob-

jet management and illustrate the improvements over urrent pratie that eah tehnique

brings. First, we disuss the mehanis of how servers ombine the relationships between

objets omposing Web pages with objet hange harateristis to produe objet-spei�

CCCs. We show how the use of appropriate CCCs leads to more deterministi management

of objets and eliminates unneessary validation requests that are urrently due to ineÆ-

ient ahe onsisteny mehanisms and have to be handled by servers. These are signi�ant

improvements over urrent pratie.

Seond, our powerful Content Assembly tehnique enables ahes to onstrut pages

from individual omponents. Eah omponent enapsulates homogeneously hanging and

semantially oherent ontent, and only those omponents that hange on every aess must

always be retrieved from the server. Servers and ahes treat omponents just like objets

and deterministially manage them via CCCs. Reloation of page assembly away from the

servers and loser to the users allows more ontent to be ahed.

Third, we demonstrated how CA-enabled ahes an ahe omponents that are urrently

unaheable due to being personalized or ustomized based on the input parameters. CA-

enabled ahes perform the required ustomization upon a lient request. This apability

further inreases the amount of urrently unaheble ontent that an now be ahed.

Our Content Assembly tehnique is not only powerful, but also simple. Our ontent as-

semblers perform only a single pre-de�ned task of tag substitution thus avoiding the seurity

and performane issues raised by alternative proposals advoating more omplex methods

of page onstrution by ahes.

Current and future work on the prototype implementation inludes extending CASM to

support CCCs, integrating CASM with an existing Web proxy server, suh as Squid [14℄, and

integrating WOCC with an existing Web server, suh as Apahe [1℄. We will also ontinue

to evaluate performane of our system.

11

Referenes

[1℄ The Apahe Server Projet. http://www.apahe.org.

[2℄ Martin Arlitt and Tai Jin. A Workload Charaterization Study of the 1998 World Cup

Web Site. IEEE Network, May/June 2000.

[3℄ Pei Cao, Jin Zhang, and Kevin Beah. Ative Cahe: Cahing dynami ontents (ob-

jets) on the Web. In Proeedings of the IFIP International Conferene on Distributed

Systems Platforms and Open Distributed Proessing (Middleware '98), The Lake Dis-

trit, England, September 1998.

[4℄ Vinent Cate. Alex - a Global Filesystem. In Proeedings of the USENIX File Systems

Workshop, pages 1{12, May 1992.

[5℄ Jim Challenger, Arun Iyengar, and Paul Dantzig. A salable system for onsistently

ahing dynami web data. In Proeedings of the IEEE Infoom '99 Conferene, New

York, NY, Marh 1999. IEEE.

[6℄ Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed. A

publishing system for eÆiently reating dynami web ontent. In Proeedings of the

IEEE Infoom 2000 Conferene, Tel Aviv, Israel, Marh 2000. IEEE.

[7℄ Edith Cohen, Balahander Krishnamurthy, and Jennifer Rexford. Improving end-to-end

performane of the Web using server volumes and proxy �lters. In ACM SIGCOMM'98

Conferene, September 1998.

[8℄ Fred Douglis, Antonio Haro, and Mihael Rabinovih. HPP: HTML maro-pre-

proessing to support dynami doument ahing. In USENIX Symposium on Internet

Tehnologies and Systems, Monterey, California, USA, Deember 1997.

[9℄ Balahander Krishnamurthy and Craig E. Wills. Piggybak server invalidation for proxy

ahe ohereny. In Seventh International World Wide Web Conferene, pages 185{193,

Brisbane, Australia, April 1998.

[10℄ Mason. http://www.masonhq.om.

[11℄ Andy Myers, John Chuang, Urs Hengartner, Yinglian Xie, Weiqiang Zhuang, and Hui

Zhang. A Seure and Publisher-Centri Web Cahing Infrastruture. In Proeedings of

the IEEE Infoom 2001 Conferene, Anhorage, Alaska USA, April 2001.

[12℄ Erih M. Nahum. WWW Workload haraterization work at IBM Researh. In Web

Charaterization Workshop, Cambridge, MA, November 1998. World Wide Web Con-

sortium. http://www.w3.org/1998/11/05/WC-workshop/Papers/nahum.html.

[13℄ PHP Hypertext Preproessor. http://www.php.net.

[14℄ Duane Wessels. Squid Internet Objet Cahe. http://squid.nlanr.net/Squid/.

12

[15℄ Craig E. Wills and Mikhail Mikhailov. Towards a better understanding of Web resoures

and server responses for improved ahing. In Eighth International World Wide Web

Conferene, Toronto, Canada, May 1999.

[16℄ Craig E. Wills and Mikhail Mikhailov. Studying the Impat of More Complete Server

Information on Web Cahing. In Proeedings of the 5th International Web Cahing and

Content Delivery Workshop, Lisbon, Portugal, May 2000.

[17℄ Craig E. Wills, Mikhail Mikhailov, and Hao Shang. N for the Prie of 1: Bundling Web

Objets for More EÆient Content Delivery. In Tenth International World Wide Web

Conferene, Hong Kong, May 2001.

[18℄ Huian Zhu and Tao Yang. Class-Based Cahe Management for Dynami Web Content.

In Proeedings of the IEEE Infoom 2001 Conferene, Anhorage, Alaska USA, April

2001.

13

