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Abstrat

The integration of data, espeially from heterogeneous data soures (ISs), is a hard and widely studied

problem. One partiularly hallenging issue is the integration of soures that are semantially equivalent

(i.e., whose states an be mapped onto eah other by an isomorphism) but shematially heterogeneous.

While two suh data soures may represent the same information, one may store the information inside

tuples (data) while the other may store it in attribute or relation names (shema). The ShemaSQL

query language is a reent solution to this problem powerful enough to restruture suh soures into

eah other without the loss of information. However, the issue of maintenane of ShemaSQL views,

one materialized over semantially heterogeneous soures, has not yet been addressed. In this paper,

we propose an inremental view maintenane strategy for suh shema-restruturing views. Our strategy

based on an algebrai representation of the view query orretly transforms a data update or a shema

hange to a soure into data updates, shema hanges, and even mixed sequenes of shema and data

update requests to be applied to the view. We give a proof of the orretness of the strategy. We have

also developed a prototype implementation of both a ShemaSQL query proessor and a ShemaSQL

View Maintainer, and then used it to ompare the performane of inremental view maintenane versus

omplete view reomputation for this new lass of shema-restruturing views. We desribe both the

implementation and the experiments in the paper and onlude that in many ases inremental view

maintenane in ShemaSQL is signi�antly faster than reomputation.

Keywords: Heterogeneous Databases, Materialized Views, ShemaSQL, Inremental View Maintenane,

Shema Restruturing.



1 Introdution

Information soures, espeially on the Web, are inreasingly independent from eah other, being designed,

administered and maintained by a multitude of autonomous data providers. Issues in data integration inlude

the heterogeneity of data and query models aross di�erent soures, alled model heterogeneity [FRV95,

GRVB98, HGMI

+

95℄ and inompatibilities in shemati representations of di�erent soures even when using

the same data model, alled shema heterogeneity [MIR93, LSS96℄. Overoming these problems is ritial in

ahieving integration of a wide variety of information soures. Muh work on these problems has dealt with

the integration of shematially di�erent soures under the assumption that all \data" is stored in tuples

and all \shema" is stored in attributes. We will fous on another aspet of this issue in our paper, namely

on the integration of heterogeneous soures under the assumption that shema elements may express data

and vie versa.

One reent promising approah at overoming suh shemati heterogeneity is the language ShemaSQL,

an SQL-extension devised by Lakshmanan et al. [LSS96, LSS99℄. ShemaSQL allows to soften the distintion

between shema and data in the relational data model by allowing to query shema (suh as lists of attribute

or relation names) in SQL-queries and also to use sets of values obtained from data tuples as shema in

the output relation. This onept leads to a versatile query language whih among other features allows to

transform semantially equivalent but syntatially di�erent shemas [LSS96, Mil98℄ into eah other. Similar

to SQL-views, ShemaSQL-views an be used to transform relational databases into whatever format is

required by a (relational) data integration system. Therefore, ShemaSQL makes it possible to inlude a

larger lass of information soures into an information system.

However, the issue of view maintenane in suh a system is still open. View maintenane in a ShemaSQL

view is non-trivial, espeially sine suh views an transform data into shema and vie versa as illustrated

below. In this paper, we present the �rst inremental maintenane strategy for ShemaSQL. The strategy

works orretly not only under data updates, but also under shema hanges.

1.1 Motivating Example

Fig. 1 gives an example of a ShemaSQL query to demonstrate the apabilities of this language. Note that

the two relational shemas in Fig. 1 are able to hold the same information and an be mapped into eah

other using ShemaSQL queries. The view query restrutures the input relations on the left side representing

BA

Destination Business Eonomy

Paris 1200 600

London 1100 475

LH

Destination Business Eonomy

Paris 1220 700

London 1180 500

)

reate view CITY(Type, AIRLINE) AS

selet PRICETYPE, FLIGHT.PRICETYPE

from

-> AIRLINE,

AIRLINE FLIGHT,

AIRLINE-> PRICETYPE,

FLIGHT.Destination CITY

where PRICETYPE <> 'Destination'

and FLIGHT.PRICETYPE <= 1100;

)

LONDON

Type BA LH

Business 1100 null

Eonomy 475 500

PARIS

Type BA LH

Eonomy 600 700

Figure 1: A ShemaSQL Query and its E�ets.

airlines into attributes of the output relations on the right side representing destinations. The arrow -operator

(->) attahed to an element in the FROM-lause of a ShemaSQL-query allows to query shema elements,

giving ShemaSQL its meta-data restruturing power. Standing by itself, it refers to \all relation names in

that database", attahed to a relation name it means \all attribute names in that relation".
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ShemaSQL is also able to transform data into shema. For example, data from the attribute Destination

in the input shema is transformed into relation names in the output shema, and vie versa attribute names

in the input (Business and Eonomy) are restrutured into data.

Now onsider an update to one of the base relations in our example. Let a tuple t(Destination )

Berlin;Business ) 1400;Eonomy ) 610) be added to the base table LH (a data update). The hange to

the output would be the addition of a new relation Berlin (a shema hange) with the same shema as the

other two relations. This new relation would ontain one tuple t(Type ) Eonomy;BA ) null; LH ) 610).

In this example, a data update is transformed into a shema hange, but all other ombinations are also

possible. The e�et of the propagation of an update in suh a query depends on numerous fators, suh as

the input shema, the view de�nition, the set of unique values in the attribute Destination aross all input

relations (ity names), and the set of input relations (airline odes). For example, if a value Berlin already

existed in one of the input tables, the propagation would also depend on whether other airlines o�er a ight

to Berlin in the Eonomy-lass.

In summary, a shema-restruturing view must be able to propagate arbitrary data updates and shema

hanges that our in its input. In the proess of propagation, any suh type of hange ould be transformed

into any other in the view. This situation is signi�antly more ompliated than update propagation in the

ommon SQL views [BLT86, QW91, GMS93, GL95, MKK97, et al.℄ whih deals only with propagation of

data updates that are never transformed into shema hanges. This problem, to our knowledge, has not

been studied before.

1.2 Contributions

In the ontext of shema-restruturing views, there are several new issues that we must address. First,

it is not suÆient to onsider data updates (DUs) for ShemaSQL, but also shema hanges (SCs). Also,

ShemaSQL views an transform shema into data and vie-versa, thus requiring a framework that an

propagate fDU jSCg

�

! fDU jSCg

�

. As shown in this paper, using the standard approah of generating

query expressions that ompute some kind of \delta" relation � between the old and the new view after an

update is not possible for ShemaSQL, sine the shema of � would not be de�ned.

The ontributions of this paper are as follows: (1) we give an algebra-based solution to the problem

of inremental view maintenane of shema-restruturing views de�ned in ShemaSQL, (2) we prove this

approah orret by a method similar to the equational reasoning given in [GL95℄, (3) we present a prototype

implementation of a query proessor for a subset of ShemaSQL and an inremental view maintenane

system in Java over JDBC-apable databases, and (4) we desribe experiments we have onduted on our

implementation to gain insights into the performane of our algorithm.

1.3 Outline of Paper

Setion 2 reviews some bakground on ShemaSQL, in partiular the additional algebra operators used in

ShemaSQL evaluation, Setion 3 explains our view maintenane strategy and Setion 4 proves orretness

of our approah. Setion 5 gives a brief overview over our implementation. Setion 6 shows the results of

our performane experiments. Finally, Setions 7 and 8 give related work and onlusions, respetively.
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2 Bakground

2.1 Notation

A value is an element of data that is stored in a relation. Examples inlude strings, numbers, and dates. A

domain D is a set of values.

1

D

N

is the speial domain of \attribute- and relation names". We impliitly

assume that there is a bijetive mapping from some domains to D

N

. This means that the values of some,

but not neessarily all, domains an be onverted to names and vie versa.

A relation is a 3-tuple R = (n; S;E) with n 2 D

N

(the relation name), S = (a

1

; a

2

; : : : ; a

n

) 2 (D

N

)

n

(the shema|a tuple of n attribute names) and E � fD

1

�D

2

� : : :�D

n

g (the relation extent, whih is a

subset of the ross-produt of the domains D

1

�D

2

� : : :�D

n

). Note that this de�nition assoiates exatly

one value in S with eah domain from whih E is onstruted (the name of an \attribute").

A relational tuple t 2 E is an n-tuple and is an element of a relation's extent. An operator t[a

l

1

; a

l

2

; : : : ; a

l

k

℄

returns the projetion of t on the attributes named a

l

1

; a

l

2

; : : : ; a

l

k

. We also de�ne t[�nfa

1

; : : : ; a

n

g℄ to be

the projetion of t onto all its attributes exept the ones named a

1

; : : : ; a

n

.

An attribute A

i

� D

i

is a multiset that is onstruted as follows: A

i

= ft[a

i

℄ j t 2 Eg, or short A

i

= E[a

i

℄.

Then attribute A

i

has attribute name a

i

. Note that we denote attributes by apital letters (as they are sets)

and attribute names by small letters. We extend this notation for E[a

1

; : : : ; a

k

℄ to mean the projetion of

extent E on the attributes A

1

; : : : ; A

k

. For readability, if we refer to attribute A of R = (n; S;E), we atually

mean the pair A = (a;E[a℄), with a 2 S. The term prime attribute refers to an attribute that is a member

of any key of R and the term non-prime attribute refers to an attribute that is not a member of any key of

R (f. [Ull89℄). The distint-operator ha

i

i on an attribute A

i

in extent E returns the set of distint values

in A

i

by removing all dupliates from the multiset E[a

i

℄.

Funtional dependenies in R are de�ned as usual (f. [Ull89, Chapter 7℄), with X ! A de�ning the

attribute A to be funtionally dependent on the set of attributes X (i.e., for any t 2 E, the value of t[a℄

depends only on t[x

1

; : : : ; x

k

℄) . Likewise, we assume the usual de�nitions of natural join ./ and ross produt

�.

2.2 ShemaSQL

In relational databases it is possible to store equivalent data in di�erent shemas, as Miller et al. [MIR93℄ have

shown. It is also possible under ertain onditions to transform data in suh shemas into eah other without

the loss of information [Mil98℄. ShemaSQL is an SQL derivative designed by Lakshmanan et al. [LSS96℄

whih an be used to ahieve suh shema transformations.

In [LSS99℄, Lakshmanan et al. desribe an extended algebra and algebra exeution strategies to implement

a ShemaSQL query evaluation system. It extends the standard SQL algebra whih uses operators suh

as �(R), �(R), and R ./ S by adding four operators named Unite, Fold, Unfold, and Split originally

introdued by Gyssens et al. [GLS96℄. Lakshmanan et al. show that any ShemaSQL query an be translated

into this extended algebra.

We now de�ne the four operators used in ShemaSQL in a onise manner. Examples for the four

operators de�ned in this setion an be found in Fig. 2. We will refer to the input relation of eah operator

as R and to the output relation as Q.

1

Throughout this paper, we will use apital letters R to denote (multi)sets and small letters a to denote elements of sets.
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BA

Destination Business Eonomy

Paris 1200 600

London 1100 475

LH

Destination Business Eonomy

Paris 1220 700

London 1180 500

LONDON

Type BA LH

Business 1100 null

Eonomy 475 500

PARIS

Type BA LH

Eonomy 600 700

+ Unite

Airline

* Split

Destination

TMP REL 0001

Airline Destination Business Eonomy

BA Paris 1200 600

BA London 1100 475

LH Paris 1220 700

LH London 1180 500

TMP REL 0004

Type Destination BA LH

Business London 1100 null

Eonomy Paris 600 700

Eonomy London 475 500

+ Fold

Type, Prie,fBusiness,Eonomyg

* Unfold

Airline, Prie

TMP REL 0002

Airline Type Destination Prie

BA Business Paris 1200

BA Business London 1100

BA Eonomy Paris 600

BA Eonomy London 475

LH Business Paris 1220

� � � � � � � � � � � �

=)

Standard-SQL

selet *

from tmp rel 0002

where prie <=

1100;

TMP REL 0003

Airline Type Destination Prie

BA Business London 1100

BA Eonomy Paris 600

BA Eonomy London 475

� � � � � � � � � � � �

Figure 2: The Four ShemaSQL Operators Unite, Fold, Unfold, Split.

2.2.1 Unite

This operator is de�ned on a set of k relations R

�

= fR

1

; : : : ; R

k

g with a

p

as an argument. We de�ne a

set N

�

= fn

R

1

; : : : ; n

R

k

g, whih is the set of all relation names in R

�

, in the new domain D

p

. We further

denote by N

k

the relation R(n;E; S) with N = n

k

. Then, for eah R

i

, we assume S

R

i

= (a

1

; : : : ; a

n

) and

E

R

i

� fD

1

� : : :�D

n

g. Note that this implies that all R

i

have the same shema. The output of the Unite

operator is then one relation Q = Unite

a

p

(R

�

) with:

E

Q

� fD

1

� : : : � D

n

� D

p

g and S

Q

= (a

1

; : : : ; a

n

; a

p

) with E

Q

=

S

n

k

2N

�

(N

k

� fn

k

g). Note that N

k

appears both as a relation (N

k

) and a relation name (n

k

). In words, a new relation is onstruted by taking

the union of all input relations and adding a new attribute A

p

whose values are the relation names of the

input relations.

In Fig. 2, the Unite-operator is de�ned over the set of relations BA, LH and has the attribute name

Airline as its argument.

2.2.2 Fold

The Fold-operator works on a relation R = (n

R

; E

R

; S

R

) with

E

R

� fD

1

� : : :�D

n

�D

d

� : : :�D

d

| {z }

k times

g

and S

R

= (a

1

; : : : ; a

n

; a

n+1

; : : : a

n+k

) and takes as arguments the names of the pivot and data attributes a

p

and a

d

in its output relation. Note that this de�nition requires that k attributes of R have to be of the same

domain. With R having n+ k attributes, we then de�ne:

Q = Fold

a

p

;a

d

(R) = (n

Q

; E

Q

; S

Q

) with n

Q

= n

R

, E

Q

� fD

1

� : : : � D

n

� D

d

� D

p

g and S

Q

=
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(a

1

; : : : ; a

n

; a

d

; a

p

). We de�ne A

�

= fa

n+1

; : : : a

n+k

g as a set of values in a new domain D

p

where the

values are obtained by the above-mentioned onversion of attribute names into data values. Finally, E =

S

a

k

2A

�

(R[a

1

; : : : ; a

n

; a

k

℄� fa

k

g). In words, the operator takes all data values from the set of related at-

tributes, and sorts them into one new attribute a

d

, introduing another new attribute a

p

that holds the

former attribute names. Note that, sine a

p

beomes part of a key for a

d

, it has to be inluded in the set X

for any funtional dependeny X ! A

d

.

In Fig. 2, the Fold-operator is de�ned on relation TMP REL 0001 and has the arguments a

p

= Type; a

d

=

Prie; A

�

= fBusiness,Eonomyg.

2.2.3 Unfold

The Unfold-operator is the inverse of Fold.

The Unfold-operator on a relation R = (n

R

; E

R

; S

R

) with E

R

� fD

1

� : : : � D

n

� D

p

� D

d

g and

S

R

= (a

1

; : : : ; a

n

; a

p

; a

d

) takes two arguments a

p

; a

d

whih are attribute names from S

R

. To simplify the

notation and without loss of generality, we reorder the attributes in R (by exhanging the indies on both

S

R

and E

R

aordingly), suh that A

p

and A

d

beome the last two attributes in R. We all A

p

the pivot

attribute and A

d

the data attribute. Let R have n+ 2 attributes. Let us further impose two onditions on

funtional dependenies in R: (X ! Y ) ) A

d

62 X and 9(X ! A

d

) with A

p

2 X . That is, A

d

must be

non-prime, A

p

must be prime and A

d

must depend on A

p

. We also set A

�

= RhA

p

i (the set of distint

values in A

p

), k = jA

�

j and impose a total order on A

�

to assign an index 1 � i � k to eah of its elements

(A

�

= fa

�

1

; : : : ; a

�

k

g).

Then, Q = Unfold

a

p

;a

d

(R) = (n

Q

; S

Q

; E

Q

) with N

Q

= n

R

,

E

Q

� fD

1

� : : :�D

n

�D

d

� : : :�D

d

| {z }

k times

g

and S

Q

= (a

1

; : : : ; a

n

; a

�

1

; : : : ; a

�

k

). The extent is onstruted by E

Q

= E

R

[a

1

; : : : ; a

n

℄ ./ E

1

./ : : : ./ E

k

with

E

i

= ft[a

1

; : : : ; a

n

; a

d

℄ j t 2 E

R

^ t[a

p

℄ = a

�

i

g.

In words, the shema of Q onsists of all attributes in R exept the data and pivot attribute, plus one

attribute for eah distint data value in the pivot attribute. Then, eah tuple t

0

in Q is onstruted by taking

a tuple t in R and �lling eah new attribute A

i

with the value from attribute A

d

in a tuple from R that has

the name a

i

as value in A

p

(assuming an impliit onversion between names and values as required above).

The new attributes all have the domain D

d

of the old attribute A

d

. Note that the requirement for a

p

to be

prime is not expliit in Lakshmanan's original operator. This is a design deision that helps to larify the

semantis of the Unfold/Fold-operator pair, ensuring the output relation for Unfold to be in 1NF.

In Fig. 2, the Unfold-operator is de�ned over relation TMP REL 0003 and takes as its arguments

a

p

= Airline and a

d

= Prie. The operator then produes output by taking tuples from TMP REL 0003,

and �lling the attributes representing airlines with values from the data attribute Prie in TMP REL 0003,

mathing attribute names in the output relation with the values of the pivot attribute Airline in the input

relation.

2.2.4 Split

The Split-operator is the inverse of the Unite-operator. It transforms a single relation R = (n

R

; E

R

; S

R

)

with E

R

� fD

1

� : : :�D

n

�D

p

g and S

R

= (a

1

; : : : ; a

n

; a

p

) into a set of k relations with the same shema.

6



It takes as argument the name of the pivot attribute a

p

whih we assume to be the last in R. We require

that A

p

does not have NULL-values, i.e., 8x 2 A

p

: x 6= ?. The output of Split is a set of relations

Q

�

= Split

a

p

(R) = fQ

1

; : : : ; Q

k

g with A

�

= RhA

p

i and k = jA

�

j. We will refer to the ordered elements of

A

�

as in the Unfold-ase, i.e., A

�

= fa

�

1

; : : : ; a

�

k

g. For eah output relation Q

i

, we have:

n

Q

i

= a

�

i

, E

Q

i

� fD

1

� : : : �D

n

g, S

Q

i

= (a

1

; : : : ; a

n

), and E

Q

i

= ft[a

1

; : : : ; a

n

℄ j t 2 R ^ t[a

p

℄ = a

�

i

g.

In words, we break down R into k relations of the same shema, with the new relation names the k distint

values from R's attribute A

p

.

In Fig. 2, the Split-operator is de�ned over relation TMP REL 0004, takes as its only argument a

p

=

Destination, and produes 2 tables names LONDON and PARIS.

2.2.5 Flat Shemas

As suggested by the example in Fig. 1, existing relational shemas are often built with data-arrying attribute-

and relation-labels, whih is an important reason for shemati heterogeneity [LSS96℄. In the relational

model, relation and attribute labels are assumed to not ontribute to the semanti ontent of the relation|a

priniple that is often misunderstood in database design. Lakshmanan et al. show that, while there are

many representations of a real-world onept in the relational model, only some suh shemas will not arry

semanti information in their attribute and relation names. They give a de�nition for the notion of suh at

shemas whih we will only use in an informal way in this paper.

De�nition 1 (Flat Shema) Assume in�nite pairwise disjoint sets of names N and values V. Let dom :

N ! 2

V

be a partial funtion suh that for eah n 2 N , whenever dom(n) is de�ned, it assoiates name

n with a non-empty set of values dom(n) � V. Then, a relation shema R(A

1

; : : : ; A

n

) is said to be at

i� all the entries R;A

1

; : : : ; A

n

are names. A database shema is at if all relation shemas in it have this

property.

With the notion of shema equivalene presented in [MIR93℄, \attening" a relation refers to the proess

of transforming a relation into its at shema-equivalent relation, preserving the information apaity of the

relation.

1. If the input shema onsists of n > 1 tables of the same shema, apply a Unite-operator with the

name of the \pivot"-attribute as a parameter to obtain relation R

0

(i.e., S

Unite

�! R

0

).

2. If R or R

0

ontains a set of attributes fu

1

; : : : ; u

n

g whose labels are not from N , apply a fold operator

on fu

1

; : : : ; u

n

g, with the names of the two resulting attributes B;C as parameters (i.e., R

0

Fold

�! R

00

).

2.2.6 ShemaSQL Query Evaluation

Similar to traditional SQL evaluation, [LSS99℄ proposes a strategy for ShemaSQL query evaluation that �rst

onstruts and then proesses an algebra query tree. In that way, ShemaSQL an be eÆiently implemented

over an SQL database system, whih Lakshmanan et al. have shown in [LSS99℄.

For simpliity of notation, we will treat a database onsisting of n relations R

1

; : : : ; R

n

of the same

shema as a relation and denote it by R.

In order to evaluate a ShemaSQL query, an algebra expression using standard relational algebra plus

the four operators introdued above is onstruted. This expression is of the following form [LSS99℄:
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V = Split

a

(Unfold

b;

(�

�

d

(�

ond

(Fold

e

1

;f

1

; �g

1

(Unite

h

(R

1

))� : : :� Fold

e

m

;f

m

; �g

m

(Unite

h

(R

m

)))))) (1)

with attribute names a; b; ; e

i

; f

i

; h

i

, the sets of attribute names

�

d and �g

i

, and seletion prediates ond

determined by the query. Any of the four ShemaSQL operators may be missing from the expression (i.e.,

may not be needed for a partiular query). R

1

: : : R

m

are base relations, or, in the ase that the expression

ontains a Unite-operator, sets of relations with equal shema.

The algebrai expression for our running example (Fig. 1) is:

V = Split

Destination

(Unfold

Airline,Prie

(�

Prie<1100

( (2)

Fold

Type, Prie, fBusiness,Eonomyg

(Unite

Airline

(BA,LH)))))

This algebrai expression is then used to onstrut an algebra tree (Fig. 3) whose nodes are any of the four

ShemaSQL operators or a \Standard-SQL"-operator (inluding the �, �, and �-operators of the algebra

expression) with standard relations \traveling" along its edges. The query is then evaluated by traversing

the algebra tree and exeuting a query proessing strategy for eah operator, analogous to traditional SQL

query evaluation.

Note that the query tree ould inlude �-operators (whih do not exist in our example), but that the

order of Unite, Fold, Unfold, Split (if they exist) is �xed by the template in Equation 1. The Unite

operator takes a number of relations of the same shema as an input, while the Split-operator produes as

output a set of relations of the same shema. Note that the algebra tree in Fig. 3 is very simple, in more

omplex queries, the tree ould \fork" at the Standard-SQL-node, and several smaller \attening" trees using

Unite- and Fold-operators ould our. In that ase, and also in the ase of standard relational joins, the

Standard-SQL-node would itself ontain a more omplex algebra tree ontaining simple SQL algebra nodes.

Standard-SQL

Relation LH

Relation BA
PSfrag replaements

SplitUnfoldFoldUnite

Figure 3: The Algebra Tree for the Example in Fig.1

3 The ShemaSQL Update Propagation Strategy

3.1 Classes of Updates and Transformations

The updates that an be propagated through ShemaSQL views an be grouped into two ategories: Shema

Changes (SC) and Data Updates (DU). Shema hanges that we onsider are: add-relation(n; S), delete-

relation(n), rename-relation(n; n

0

) with relation names n; n

0

and shema S as introdued in Setion 2.1 and

add-attribute(r; a), delete-attribute(r; a), rename-attribute(r; a; a

0

) with r the name of the relation R that the

8



attribute named a belongs to, a

0

the new attribute name in the rename-ase, and the notation otherwise

as above. Data updates are any hanges a�eting a tuple (and not the shema of the relation), i.e., add-

tuple(r,t), delete-tuple(r,t), update-tuple(r,t,t

0

)), with t and t

0

tuples in relation R with name r. Note that

we onsider update-tuple as a basi update type, instead of breaking it down into a delete-tuple and an add-

tuple. An update-tuple update onsists of two tuples, one representing an existing tuple in R and the other

representing the values of that tuple after the update. This allows to keep relational integrity onstraints

valid that would otherwise be violated temporarily.

3.2 ShemaSQL Update Propagation vs. Relational View Maintenane

Update propagation in ShemaSQL-views, as in any other view environment, onsists in reording updates

that our in the input data and translating them into updates to the view extent. In inremental view

maintenane of SQL views [QW91, GL95, MKK97℄, many update propagation mehanisms have been pro-

posed. Their ommon feature is that the new view extent is obtained by �rst omputing extent di�erenes

between the old view V and the new view V

0

and then adding them to or subtrating them from the view,

i.e., V

0

= (V nrV )[�V , with rV denoting some set of tuples omputed from the base relations that needs

to be deleted from the view and �V some set that needs to be added to the view [QW91℄.

In ShemaSQL, this mehanism leads to diÆulties. If ShemaSQL views must propagate both shema

and data updates, the shema of �V or rV does not neessarily agree with the shema of the output

relation V . But even when onsidering only data updates to the base relations, the new view V

0

may have

a di�erent shema than V . That means the onept of set di�erene between the tuples of V

0

and V is not

even meaningful. Thus, we must �nd a way to inorporate the onept of shema hanges. For this purpose,

we now introdue a data struture � whih represents a sequene of n data updates DU and shema hanges

SC.

De�nition 2 (de�ned update) Assume two sets DU and SC whih represent all possible data updates

and shema hanges, respetively. A hange  2 DU [ SC is de�ned on a given relation R if one of the

following onditions holds:

� if  2 DU , the shema of the tuple added or deleted must be equal to the shema of R.

� if  2 SC, the objet  is applied to (an attribute or relation) must exist (for delete- and update-hanges)

or must not exist (for add-hanges) in R.

De�nition 3 (valid update sequene) A sequene of updates (

1

; : : : ; 

n

) with 

i

2 DU [ SC, denoted

by �R, is alled valid for R if for all i (1 < i � n), 

i

is de�ned on the relation R

(i�1)

that was obtained

by applying 

1

; : : : ; 

i�1

to R.

For simpliity, we will also use the notation �! to refer to a valid update sequene to the output table of

an algebra operator !. Note that these de�nitions naturally extend to views, sine views an also be seen as

relational shemas. For an example, onsider propagation of the update add-tuple('Berlin',1400,610)

to LH in Fig. 10 (p. 15). Having the value Berlin in the update tuple will lead to the addition of a new

relation BERLIN in the output shema of the view|forming a sequene �V whih ontains both a shema

hange and a data update:

�V = (add-relation(BERLIN; (Type,Destination,BA,LH)); add-tuple(BERLIN; ('Eonomy',null,610)))
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The add-relation-update is valid sine the relation BERLIN did not exist in the output shema before, and

the add-tuple-update is valid sine its shema agrees with the shema of relation BERLIN de�ned by the

previous update.

3.3 Overall Propagation Strategy

Given an update sequene implemented by a List data struture, our update propagation strategy works

aording to the algorithm in Fig. 4. Eah node in the algebra tree has knowledge about the operator it

represents. This operator is able to aept one input update and generate a sequene of updates as output.

Eah (leaf node) operator an also reognize whether it is a�eted by an update (by omparing the relation(s)

on whih the update is de�ned with its own input relation(s)). If it is not a�eted, it simply returns an

empty update sequene.

After all the updates for the hildren of a node n are omputed and olleted in a list (variable s in

the algorithm in Fig. 4), they are propagated one-by-one through n. Eah output update generated by the

operator of n when proessing an input update will be plaed into one update sequene, all of whih are

onatenated into the �nal return sequene r (see Fig. 4,  is the assignment operator).

funtion propagateUpdate(Node n;Update u)

List r ;; s ;

if (n is leaf)

if (n.operator is a�eted by u)

r:append(n:operator:operatorPropagate(u))

else

for(all hildren 

i

of n)

/* s will hange exatly one, see text */

s:append(propagateUpdate(

i

; u))

for(all updates u

i

in s)

r:append(n.operator.operatorPropagate(u

i

))

return r

Figure 4: The ShemaSQL View Maintenane Algorithm

The algorithm performs a postorder traversal of the algebra tree. This ensures that eah operator

proesses input updates after all its hildren have already omputed their output

2

. At eah node n, an

inoming update is translated into an output sequene �n of length greater than or equal to 0 whih is then

propagated to n's parent node. Sine the algebra tree is onneted and yle-free (not onsidering joins of

relations with themselves) all nodes will be visited exatly one. Also note that sine updates our only

in one leaf at a time, only exatly one hild of any node will have a non-empty update sequene to be

propagated. That is, the �rst for-loop will �nd a non-empty addition to s only one per funtion all. After

all nodes have been visited, the output of the algorithm will be an update sequene �V to the view V that

we will prove to have an e�et on V equivalent to reomputation.

3.4 Propagation of Updates through Individual ShemaSQL Operators

Sine update propagation in our algorithm ours at eah operator in the algebra tree, we have to design a

propagation strategy for eah type of operator.

2

We are not onsidering onurrent updates in this paper.
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3.4.1 Propagation of Shema Changes through SQL Algebra Operators

The propagation of updates through standard SQL algebra nodes is simple. Deriving the update propagation

for data updates is disussed in the literature on view maintenane [QW91, GL95℄. It remains to de�ne

update propagation for seletion, projetion, and ross-produt operators under shema hanges

3

. In short,

delete-relation-updates will make the output invalid, while other relation-updates do not a�et the output.

Attribute-updates are propagated by appropriate hanges of update parameters or ignored if they do not

a�et the output. For example, a hange delete-attribute(r; a) would not be propagated through a projetion

operator �

�

A

if a 62

�

A, and would be propagated as delete-attribute(q; a) otherwise, with q the name of the

output relation of �

�

A

. We refer to our tehnial report [KR01℄ for further details, as they are not important

for the omprehension of this paper.

3.4.2 ShemaSQL Operators

In Figs. 5{8, we give the update propagation tables for the four ShemaSQL operators. For the notation and

meaning of variables and onstants, please refer to Setion 2.1. In order to avoid repetitions in the notation,

the ases for eah update type are to be read in an \if-else"-manner, i.e., the �rst ase that mathes a given

update will be used for the update generation (and no other). Also, NULL-values are like other data values,

exept where stated otherwise.

Input Change Conditions Propagation

add-tuple (r; t) t[a

1

; : : : ; a

n

; a

p

℄ 2 R invalid view (key violation)

t[a

p

℄ 2 A

�

t[a

1

; : : : ; a

n

℄ 2 R

update Q set [t[a

p

℄℄ = t[a

d

℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

t[a

p

℄ 2 A

�

t[a

1

; : : : ; a

n

℄ 62 R

insert into Q (a

1

; : : : ; a

n

; a

p

)

values (a

1

; : : : ; a

n

; a

d

)

t[a

p

℄ 62 A

�

t[a

1

; : : : ; a

n

℄ 2 R

add-attribute(q,t[a

p

℄),

update Q set [t[a

p

℄℄ = t[a

d

℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

t[a

p

℄ 62 A

�

t[a

1

; : : : ; a

n

℄ 62 R

add-attribute(q,t[a

p

℄),

insert into Q (a

1

; : : : ; a

n

; a

p

)

values (a

1

; : : : ; a

n

; a

d

)

delete-tuple (r; t) t[a

p

℄ exists in R[a

p

℄ exatly one
delete-attribute(q,t[a

p

℄)

t[a

p

℄ exists in R[a

p

℄ more than one

update Q set [t[a

p

℄℄ = NULL

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

4

update-tuple (r; t; t

0

) t[a

1

; : : : ; a

n

; a

p

℄ = t

0

[a

1

; : : : ; a

n

; a

p

℄

update Q set [t[a

p

℄℄ = t[a

d

℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

t[a

1

; : : : ; a

n

; a

p

℄ 6= t

0

[a

1

; : : : ; a

n

; a

p

℄ break down into (delete-tuple, add-tuple)

add-attribute(r; a) add-attribute(q; a)

delete-attribute(r; a) a 2 fA

d

; A

p

g invalid view

a 62 fA

d

; A

p

g delete-attribute(q; a)

rename-attribute(r; a; a

0

) a = A

d

Unfold

a

p

;a

=) Unfold

a

p

;a

0

a = A

p

Unfold

a;a

d

(R) =) Unfold

a

0

;a

d

(R)

a 62 fA

d

; A

p

g rename-attribute(q; a; a

0

)

delete-relation(r) delete-relation(q)

rename-relation(n; n

0

) Unfold

a

p

;a

d

(N) =) Unfold

a

p

;a

d

(N

0

)

(renaming the input relation)

4

if this update leads to a tuple with all NULL-values, the tuple must be deleted.

Figure 5: Propagation Rules for Q=Unfold

a

p

;a

d

(R)

3

these are the only operators neessary for the types of queries disussed in this paper
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Input Change Conditions and Variable Binding Propagation

add-tuple (r; t) (A

�

= fa

�

1

; : : : ; a

�

k

g,k jA

�

j)

for i := 1..k

insert into Q

values (a

1

; : : : ; a

n

,a

�

i

,t[a

�

i

℄)

delete-tuple (r; t)

delete from Q

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

update-tuple (r; t; t

0

) A 2 A

�

; set t[a℄ to a value 

update Q set a

d

= 

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄ and

a

p

= a

A 62 A

�

; set t[a℄ from a value b to a

value 

update Q set a =  where a = b

add-attribute(r; a) A 2 A

�5

foreah tuple u 2 R

insert into Q (a

1

; : : : ; a

n

; a

p

; a

d

)

values (u[a

1

; : : : ; a

n

℄; a,NULL)

A 62 A

�

add-attribute(q; a)

delete-attribute(r; a) A 2 A

�

delete from Q where a

p

= a

A 62 A

�

delete-attribute(q; a)

rename-attribute(r; a; a

0

) A 2 A

�

update Q set a

p

= a

0

where a

p

= a

A 62 A

�

rename-attribute(q; a; a

0

)

delete-relation(r) delete-relation(q)

rename-relation(n; n

0

) Fold

a

p

;a

d

(N) =) Fold

a

p

;a

d

(N

0

)

5

Note that the deision whether a new attribute should be a member of a

1

; : : : ; a

n

an only be made by evaluating the

view query.

Figure 6: Propagation Rules for Q=Fold

a

p

;a

d

;A

�

(R)

Input Change Conditions Propagation

add-tuple (r; t) t[a

p

℄ 62 A

�

add-relation [t[a

p

℄℄

with shema (S

R

nR:A

p

);

insert into [t[a

p

℄℄

values (t[a

1

; : : : ; a

n

℄)

t[a

p

℄ 2 A

�

insert into [t[a

p

℄℄

values (t[a

1

; : : : ; a

n

℄)

delete-tuple (r; t) t[a

p

℄ exists in R[a

p

℄ exatly one
delete-relation [t[a

p

℄℄

t[a

p

℄ exists in R[a

p

℄ more than one

delete from [t[a

p

℄℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

update-tuple (r; t; t

0

) t[a

1

; : : : ; a

n

; a

p

℄ = t

0

[a

1

; : : : ; a

n

; a

p

℄

update [t[a

p

℄℄ set [a

d

℄ = t[a

d

℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

t[a

1

; : : : ; a

n

; a

p

℄ 6= t

0

[a

1

; : : : ; a

n

; a

p

℄ break down into (delete-tuple,add-tuple)

add-attribute(r; a) 8q 2 fq

1

: : : q

n

g : add-attribute(q; a)

delete-attribute(r; a) a = A

p

invalid view

a 6= A

p

8q 2 fq

1

: : : q

n

g : delete-attribute(q; a)

6

rename-attribute(r; a; a

0

) a = A

p

Split

a

(R) =) Split

a

0(R)

a 6= A

p

8q 2 fq

1

: : : q

n

g : rename-attribute(q; a; a

0

)

delete-relation(r) 8q 2 fq

1

: : : q

n

g : delete-relation(q)

rename-relation(n; n

0

) Split

a

p

(N) =) Split

a

p

(N

0

)

6

If this update leads to a tuple with all NULL-values in an output relation, the tuple must be deleted.

Figure 7: Propagation Rules for Q=Split

a

p

(R)
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Input Change Conditions and Variable Bindings Propagation

add-tuple (r

x

; t)

insert into Q (a

1

; : : : ; a

n

; a

p

)

values (t[a

1

; : : : ; a

n

℄; r

x

)

delete-tuple (r

x

; t)

delete from Q

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄ and

a

p

= r

x

update-tuple (r

x

; t; t

0

) A = A

d

; set t[a℄ to a value 

update Q set a = 

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄ and

a

p

= r

x

A 6= A

d

; set t[a℄ from a value b to a

value 

update Q set a = 

where a = b and a

p

= r

x

add-attribute(r; a) add simultaneously to all R

i

add-attribute(q; a)

otherwise invalid view

delete-attribute(r; a) delete simultaneously from all R

i

delete-attribute(q; a)

otherwise invalid view

rename-attribute(r; a; a

0

) rename simultaneously in all R

i

rename-attribute(q; a; a

0

)

otherwise invalid view

add-relation(r

x

; S) no hange (until �rst add-tuple to R

x

)

delete-relation(r

x

)

delete from Q where a

p

= r

x

rename-relation(n; n

0

) Unite

a

p

(fR

1

; : : : ; N; : : : ; R

n

g) =)

Unite

a

p

(fR

1

; : : : ; N

0

; : : : ; R

n

g)

Figure 8: Propagation Rules for Q=Unite

a

p

(R

1

; R

2

; : : : ; R

n

)

7

7

Note that r

x

is the name of Relation R

x

, whih is one of the n relations of equal shema that are united by the Unite-

operator.

Inspetion of the update propagation tables shows several properties of our algorithm. For example, the

view beomes invalid under some shema hanges or data updates, mainly if an attribute or relation that

was neessary to determine the output shema of the operator is deleted (e.g., when deleting the pivot or

data attribute in Unfold). In the ase of rename-shema hanges (e.g., under rename-relation in Fold),

some operators hange their parameters. Those are simple renames that do not a�et operators otherwise.

In those ases we denote renaming by ). The operator will produe a zero-element output sequene.

3.4.3 Formalization of the Propagation of Updates

A formalization of the propagation of updates is extensive and laks the oniseness of the propagation tables

given in this setion. Therefore, we will only give an example of how suh a de�nition ould be aomplished.

We will onsider the propagation of add-tuple through Unfold (Fig. 9):

Using the notation from Setion 2.2.3, assume a relation R = (N

R

; S

R

; E

R

) with n attributes that is the

input for an operator Q = Unfold

a

p

;a

d

(R) produing an output relation Q = (N

Q

; S

Q

; E

Q

) with n� 2 + k

attributes and an update to R, denoted by �

R

= t[a

1

; : : : ; a

n

; a

p

; a

d

℄ = (x

1

; : : : x

n

; x

p

; x

d

). Let A

�

be a set

of the k distint values in A

p

(the pivot attribute, see the de�nition of Unfold in Se. 2.2).

The propagation of this update is shown in Fig. 9.

The struture (E

Q

n T

1

)

�

in the �gure

8

is onstruted by adding an attribute to E

Q

n T

1

, i.e., (E

Q

n T

1

�

D

1

� : : :�D

n+k

)) ((E

Q

n T

1

)

�

� D

1

� : : :�D

n+k

�D

d

) with all data values in this new attribute set to

NULL (?). Note that the output relation beomes invalid i� an update is inserted into the input relation

that agrees in a

1

; : : : ; a

n

; a

p

with an existing tuple (similar to a key violation).

8

We use the symbol n to denote set-di�erene.
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E

0

R

 E

R

[�

R

a tuple-add

+

�  �

R

[a

p

℄ the pivot-value of the new tuple

T

0

 ft 2 E

R

j t[a

1

; : : : ; a

n

; a

p

℄ = �

R

[a

1

; : : : ; a

n

; a

p

℄g �nd out if added tuple exists in E

R

S

0

Q

 

8
<

:

; if T

0

6= ; key violation

S

Q

if � 2 A

�

note that k = jA

�

j

(a

1

; : : : ; a

n

; a

�
1

; : : : ; a

�
k

; a

p

) otherwise shema hange if neessary

T

1

 ft 2 E

Q

j t[a

1

; : : : ; a

n

℄ = �

R

[a

1

; : : : ; a

n

℄g the mathing tuples in the output relation

T

2

 ft 2 T

1

j t[�℄ �

R

[a

d

℄g set pivot attribute to value in data attribute

T

3

 

8
>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
:

ft[a

1

; : : : ; a

n

; a

�
1

; : : : ; a

�
k

; a

p

℄ j t[a

1

; : : : ; a

n

; a

p

℄ �

R

[a

1

; : : : ; a

n

; a

d

℄; t[a

�
i

℄ ?g

if T

1

= ;

if new row in output table, onstrut new tuple, �ll unused attributes with NULL

ft[a

1

; : : : ; a

n

; a

�
1

; : : : ; a

�
k

; a

p

℄ j t[a

1

; : : : ; a

n

; a

�
1

; : : : ; a

�
k

℄ 2 T

1

; t[a

p

℄ �

R

[a

d

℄g

otherwise

just set appropriate value

E

0

Q

 

8
<

:

; if T

0

6= ;

(E

Q

n T

1

) [ T

2

if � 2 A

�

no shema hange

(E

Q

n T

1

)

�

[ T

3

otherwise an output shema hange

Figure 9: Propagation of add-tuple(�

R

) through an Unfold-Operator
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3.5 Update Propagation Example

Fig. 10 gives an example for an update that is propagated through the ShemaSQL-algebra-tree in Fig. 2

(see also Fig. 15). All updates are omputed by means of the propagation tables in the previous setion.

The operators appear in boxes with their output attahed below eah box (SQL-statements aording

�R: add-tuple to LH (input hange)

Destination Business Eonomy

Berlin 1400 610

�V : add-relation BERLIN, then

add-tuple to BERLIN

(output hange)

Type BA LH

Eonomy null 610

+

!

1

: Unite

Airline

insert into TMP REL 0001

values ('LH','Berlin',1400,610);

#

Legend

* updates

" SQL-statements

applied to

output relation

Unite operators

"

!

5

: Split

Destination

reate table BERLIN; (like LONDON)

insert into Berlin

values ('Eonomy',null,610);

*

�!

1

: add-tuple to TMP REL 0001

Airline Destination Business Eonomy

LH Berlin 1400 610

insert... queries

generated

by operator

tables data updates

generated

�!

4

: add-tuple to TMP REL 0004

Type Destination BA LH

Eonomy Berlin null 610

+

!

2

: Fold

Type, Prie,fBusiness,Eonomyg

insert into TMP REL 0002

values ('LH','Eonomy','Berlin',610);

insert into TMP REL 0002

values ('LH',Business','Berlin',1400);

#

"

!

4

: Unfold

Airline, Prie

insert into TMP REL 0004

values ('Eonomy','Berlin',null,610);

*

�!

2

: 2 add-tuple to TMP REL 0002

Airline Type Destination Prie

LH Eonomy Berlin 610

LH Business Berlin 1400

!

3

:

)

Standard-SQL

selet * from

tmp rel 0002

where prie

<= 1100;

!

�!

3

: add-tuple to TMP REL 0003

Airline Type Destination Prie

LH Eonomy Berlin 610

Figure 10: Update Propagation in the View from Figure 2. See Setion 3.5 for explanation.

to our update tables in [KR01℄). The atual tuples added by these SQL-statements are shown in tabular

form. The sending of updates to another operator is denoted by double arrows (*), while single arrows (")

symbolize the transformation of SQL-statements into updates. We are propagating an add-tuple-update to

base relation LH. Algorithm propagateUpdate will perform a postorder tree traversal, i.e., proess the deepest

node (Unite) �rst, and the root node (Split) last. The operators are denoted by !

1

through !

5

, in order of

their proessing. First, the Unite operator propagates the inoming update into a one-element sequene �!

1

of updates whih is then used as input to the Fold-operator. The Fold-operator propagates its input into

a two-element sequene �!

2

, sent to the StandardSQL-operator. This operator then propagates eah of the

two updates separately, reating two sequenes �!

3

1

and �!

3

2

, with 1 and 0 elements, respetively. Reall

from Setion 3.3 that in the ase of more than one update sequene being reated by an operator, those

sequenes an simply be onatenated before the next operator's propagation is exeuted, yielding �!

3

. Sine

one update is not propagated due to the WHERE-ondition in the StandardSQL-node, we have �!

3

= �!

3

1

.

Unfold now transforms its inoming one-element update sequene �!

3

into another one-element sequene

�!

4

whih beomes the input for the Split-operator. This operator �nally reates a two-element sequene,

onsisting of an add-relation shema hange followed by an add-tuple data update. This sequene is the �nal

update sequene �V whih is applied to view V , leading to the new view V

0

equivalent to the view obtained

by reomputation.
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3.6 Grouping Similar ShemaSQL Updates in Bathes

Certain updates in our strategy are transformed by some operators into update sequenes � in whih all the

updates are similar. This gives an opportunity for optimization on our update propagation strategy.

For example, a Fold-node an transform a single shema hange (suh as a attribute-delete) into a

sequene of data updates (suh as a sequene of tuple-deletes). An inspetion of the update propagation

tables in this setion shows that, typially, suh a sequene onsists of similar updates. Consider the example

in Fig. 10, where a deletion of attribute Business in relation TMP REL 0001would lead to a sequene of delete-

tuple updates of all tuples in TMP REL 0002 that have the value Business in the attribute Type. A simple

way of exeuting all those updates eÆiently using SQL would be to issue a query suh as delete from

TMP REL 0002 where type='Business'. Thus, instead of propagating all individual tuple updates using

some delta relation, as done in traditional view maintenane, we instead propose to abstrat this sequene

of updates into an SQL update statement and push the omplete statement through the algebra tree.

We have identi�ed two lasses of suh bathed updates that our frequently as outputs of our propagation

strategy, as desribed below.

De�nition 4 (Bathed Update) A bathed update is a sequene of ShemaSQL updates, denoted by �,

whih adheres to one of the following strutures:

� � onsists entirely of delete-tuple-updates to the same relation R, with equal shema and a set of

attributes a

1

: : : a

k

whose values are a unique identi�er for eah tuple in � (i.e., form a key). We

denote suh a sequene by

delete-tuple-bath(r; ond(a

1

; 

1

); : : : ; ond(a

k

; 

k

))

with ond(a

i

; 

i

) a ondition seleting tuples t 2 R that have value 

i

in attribute a

i

(t[a

i

℄ = 

i

).

This represents a set of delete-tuple statements on the output relation R that ould be generated by an

SQL-delete statement with the WHERE-onditions a

1

= 

1

; : : : ; a

k

= 

k

.

� � onsists entirely of update-tuple-updates to relation R. All update-tuples have equal shema. Pa-

rameters are a single attribute b with (unique or dupliate) values, and a funtion f between the old

and new values of another attribute a in eah tuple. We denote suh a sequene by

update-tuple-bath(r; a; f; b; )

with a; b denoting attribute names, f denoting a funtion over the domain of the attribute with name

a (that is, f : D

a

! D

a

), and  denoting a onstant. This represents a set of update-tuple updates

a�eting every tuple t for whih the value of attribute b is , by hanging the value t[a℄ to f(t[a℄), i.e.,

8t 2 R s.t. t[b℄ =  : t[a℄  f(t[a℄). In words, the update update-tuple-bath(r; a; f; b; ) means \in

relation r, set a = f(a) where b = ". Note that for simpliity, we are restriting bathed updates to a

single WHERE-ondition.

With this de�nition of bathed update, the above example an now be represented as delete-tuple-bath

(TMP REL 0002, ond(type, 'Business')).

We do not de�ne insert-tuple bathes sine we onsider only single data updates or shema hanges

entering our algebra tree, and suh updates will never be transformed into larger \bathes". In partiular,
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adding an attribute or a relation in a base table means adding an empty struture ontaining no data. As

only strutures with mathing shemas (i.e., attribute of a mathing data type or relations with a mathing

set of attributes) an be added to the information spae, the only new information to the system is the name

of the new attribute or relation, respetively. Thus, suh updates do not lead to bathes of updates, and in

fat often do not lead to any updates on the view extent at all.

Bathes of shema-hanges are also not useful beause meaningful shema-hange bathes do not our in

our ontext. Inspetion of the update tables in this setion shows that, with the exeption of the Split node,

propagation of shema hanges always leads to a single shema hange, not sequenes of related hanges.

In the ase of the Split-node, any resulting \bath" of shema hanges will lead to hanges aross several

relations, an operation that annot be optimized using our bathed-approah and SQL-statements.

As mentioned above, the main bene�t of bathed updates lies in a possible optimization of the imple-

mentation of our update propagation strategy. Sine some operators generate bathes of related updates,

onsidering bathes as types of updates and propagating those through the algebra tree just like single updates

ould lead to performane improvements of the system. For an example, onsider again Fig. 10 and an up-

date delete-attribute(TMP REL 0001;Business) as input to the Fold-operator. Setting n = jTMP REL 0001j,

this update in the urrent strategy would lead to a propagation of n single delete-tuple updates, whereas a

treatment of all those updates as a bath would require the propagation of only one update, namely delete-

tuple-bath(TMP REL 0002,ond(type,'Business')). Figures 11{14 show the propagation tables. As before,

the input table is denoted by R (with name r) and the output table by Q (with name q). The remaining

syntax follows Def. 4.

Input

Change

Parameters Conditions Propagation

delete-

tuple-bath

(r; ond(a; )) a = a

p

delete-attribute(q,)

a = a

d

,

A

�

unhanged

foreah a 2 A

�

update Q

set a = NULL

where a = 

other delete-tuple-bath

(q; ond(a; ))

(r; ond(a

1

; 

1

); : : : ;

ond(a

n

; 

n

))

delete-tuple-bath

(q; ond(a

1

; 

1

); : : : ; ond(a

n

; 

n

))

update-

tuple-bath

(r; a; f; b; ) f(v) = 

new

(a onstant

funtion),

a = b = a

p

rename-attribute(q,,

new

)

a = a

d

; b = a

p

update Q set [℄ = f([℄)

or

update-tuple-bath

(q; ; f; null; null)

a = a

d

; b 6= a

p

foreah � 2 A

�

update-tuple-bath(q; �; f; b; )

Figure 11: Bathed Update Propagation Rules for Q=Unfold

a

p

;a

d

(R)

4 Corretness

Our update propagation strategy is equivalent to a stepwise evaluation of the algebrai expression onstruted

for a query. Eah operator transforms its input hanges into a set of semantially equivalent output hanges,

eventually leading to a set of hanges that must be applied to the view to synhronize it with the base
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Input

Change

Parameters Conditions Propagation

delete-

tuple-bath

(r; ond(a; )) a 2 A

�

delete from Q

where a

p

= a and a

d

= 

other delete-tuple-bath

(q; ond(a; ))

(r; ond(a

1

; 

1

); : : : ;

ond(a

n

; 

n

))

delete-tuple-bath

(q; ond(a

1

; 

1

); : : : ; ond(a

n

; 

n

))

update-

tuple-bath

(r; a; f; b; ) a 2 A

�

; b 2 A

�

update Q

set a

d

= f(a

d

)

where a

p

= a and b = 

other update-tuple-bath(q; a; f; b; )

Figure 12: Bathed Update Propagation Rules for Q=Fold

a

p

;a

d

;A

�

(R)

Input

Change

Parameters Addtl. Condi-

tions

Propagation

delete-

tuple-bath

(r; ond(a; )) a = a

p

del-relation(q,)

a = a

d

,

A

�

unhanged

foreah q 2 A

�

update q

set q:a

d

= NULL

where q:a

d

= 

other foreah q 2 A

�

delete-tuple-

bath(q; ond(a; ))

(r; ond(a

1

; 

1

); : : : ;

ond(a

n

; 

n

))

foreah q 2 A

�

delete-tuple-bath

(q; ond(a

1

; 

1

); : : : ; ond(a

n

; 

n

))

update-

tuple-bath

(r; a

p

; f; b; 

old

) with

f(v) = 

new

(a on-

stant funtion)

b = a

p

rename-relation(

old

,

new

)

b 6= a

p

; a 2 A

�

foreah q 2 A

�

update-tuple-bath(q; a; f; b; )

Figure 13: Bathed Update Propagation Rules for Q=Split

a

p

(R). Note that A

�

= fq

1

; q

2

; : : : ; q

k

g is the

set of output relation names.

Input

Change

Parameters Addtl. Condi-

tions

Propagation

delete-

tuple-bath

(r

x

; ond(a; ))

delete from Q

where a

p

= r

x

and a = 

update-

tuple-bath

(r

x

; a; f; b; ) a 2 A

�

update Q

set a = f(a)

where a

p

= r

x

and b = 

Figure 14: Bathed Update Propagation Rules forQ=Unite

a

p

(R

1

; R

2

; : : : ; R

n

)
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Standard-SQL

PSfrag replaements

Unite Fold Unfold Split

V

R

2

X

1

X

3

X

4

X

2

R

1

Figure 15: A ShemaSQL Algebra Tree.

relation hange. In this setion, we will show that this strategy leads to orret update propagation. Reall

that we denote an update sequene applied to relation R by �R. We will use the notation R for the input

relation and Q for the output relation throughout this setion.

Before we prove the orretness of the algorithm, we state some observations: The struture of the algebra

tree for a view depends only on the query, not on the base data [LSS99℄. The only hanges to operators

under base relation updates are possible hanges of parameters (shema element names) inside the operators;

an algebra operator an not disappear or appear as the result of a base update. However, the entire view

query may be rendered invalid, for example under some delete-relation-updates.

Furthermore, an inspetion of the update propagation algorithm (Fig. 4) shows that the propagation

of any single base relation update ours stritly along a path in the algebra tree, stritly from a leaf to

the root. That is, only ShemaSQL algebra operators along the single path from the updated base relation

to the root are a�eted by an update. This is in ontrast to SQL view maintenane, where maintenane

queries to related soures are neessary for some operators. The four ShemaSQL operators do not ombine

input relations in a way similar to an SQL-join, so that maintenane queries to other branhes of the algebra

tree are not generated by the ShemaSQL operators. For orretness of standard SQL maintenane queries

(whih only our for some operators suh as join), we rely on well-known related work.

Let us label the output relations of eah operator along the path of update propagation with X

1

; : : : ; X

n

,

in asending order from the operator losest to the leaf to the operator losest to the root of the algebra tree.

In Fig. 15, we have labeled the output relations of eah operator (X

1

; : : : ; X

4

), as well as the base relations

(R

1

; R

2

) and the view (V ).

We �rst prove orretness of operators and then show the overall propagation sheme to be orret.

Theorem 1 (Corretness of Inremental Propagation for Individual Operators) Let

! 2 fUnite;Split;Unfold;Fold; �; �;�g be a node in a ShemaSQL algebra tree. Let R be the input

relation(s) for ! and Q = !(R) be its output relation(s). Furthermore, let �R be a data update or shema

hange to R, transforming R ! R

0

and Q

REC

the output relation of ! after reomputation. Applying the

rules from the update propagation tables Figs. 5{8 and Setion 3.4.1 for ! and �R will generate a sequene

of updates de�ned on the node's output relation (denoted by �Q, see Def. 2) that transforms Q! Q

INC

, with

Q

INC

= Q

REC

.

Proof: The proof is given by inspeting the update propagation tables, Figs. 5{8, and omparing their

output with the expeted output after reomputation for eah ase. Due to spae onstraints, we an only

give two examples for suh omparisons as a proof idea. Consider the propagation of a delete-tuple data

update in the Fold-operator (Fig. 6). Let a relation R be folded by Q = Fold

a

p

;a

d

;A

�

(R). Now onsider the

relation R

0

= Rnftg, with tuple t deleted. Note that t has up to jA

�

j non-null values in its data attributes
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(i.e., in attributes whose names are in A

�

). For eah of those non-null values, the pre-update output relation

Q ontained a separate tuple whih now has to be deleted. Therefore, after reomputation, the Fold-

operator produes an output relation Q

0

that di�ers from Q in that it has up to jA

�

j tuples less. All those

missing tuples have as a ommon feature that they agree in the values of their attributes a

1

; : : : ; a

n

(i.e., all

attributes exept the ones in A

�

) with the deleted tuple. This is preisely what the update propagation rule

(line 2 of Fig. 6) aomplishes by deleting all tuples with that ondition.

Let us also onsider the propagation of the delete-attribute shema hange in Fold (line 5 of Fig. 6).

Reomputation of the operator yields a Q

0

that di�ers from Q in one of two ways: if a data attribute A

(a 2 A

�

) in R is deleted, all tuples whose values in A

p

orrespond to the name of A are missing from Q

0

. If

a non-data attribute is deleted from R, the attribute in Q

0

that has the same name as the deleted attribute

in R is deleted. In both ases, the update propagation rules hange Q in exatly that way.

The remaining operators and ases an be veri�ed in a similar fashion. �

The following orollary is immediate sine if an update sequene orretly transforms a relation, it must also

be valid (Def. 3) on that relation.

Corollary 1 The propagation of any update de�ned on input relation R through an operator ! will produe

a valid update sequene for output relation Q.

Theorem 2 (Corretness of ShemaSQL View Maintenane) Let V be a view de�ned over the set of

base relations R

1

; : : : ; R

p

, and �R

u

2 fDU;SCg an update applied to one relation R

u

(1 � u � p). Let R

0

u

be the relation R

u

after the appliation of �R

u

and V

0

REC

be the view after reomputation. Furthermore, let

the ShemaSQL View Maintenane Algorithm as de�ned in Setion 3.3 produe a hange sequene �V that

transforms view V into view V

0

INC

. Then, V

0

REC

= V

0

INC

.

Proof: Let n be the number of intermediate relations X

i

a�eted by an update (along the path from R

u

to V ). We want to prove that reomputation generates the same intermediate relations (and therefore the

same view relation) as inremental updating, i.e, 8i (1 � i � n) : (X

0

i

)

REC

= (X

0

i

)

INC

and thus V

0

REC

= V

0

INC

.

The proof is by indution over X

i

for i = 0 : : : n+ 1. Set X

0

= R

u

, (X

0

n+1

)

REC

= V

0

REC

, (X

0

n+1

)

INC

= V

0

INC

.

Base Case: The base ase for i = 0 is trivial. R

0

u

is the same relation, whether the algebra tree is

reomputed or inrementally updated, i.e., (X

0

0

)

REC

= (X

0

0

)

INC

= R

0

u

.

Indution Hypothesis: (X

0

k

)

REC

= (X

0

k

)

INC

(k � 0).

Indution Step: It is to show that (X

0

k+1

)

REC

= (X

0

k+1

)

INC

.

Sine by hypothesis, (X

0

k

)

REC

= (X

0

k

)

INC

, there must exist an update sequene �X

k

that orretly trans-

forms X

k

to X

0

k

(and must therefore be valid on X

k

). Let us denote the operator whose input table is

X

k

by !

k

and let m = j�X

k

j. By Thm. 1, any single valid update to any relation is orretly propagated

through any one operator, in the sense that reomputation of the operator will yield the same result as

inremental propagation. If m = 1, the indution step is thus proven. For m > 1, a valid sequene of

m updates on X

k

will trigger a sequene of inremental propagation steps in !

k

. This will ause !

k

to

transform X

k+1

into a sequene of m intermediate (temporary) relations (X

(1)

k+1

)

INC

: : : (X

(m)

k+1

)

INC

, eah of

whih is equivalent to the orresponding state (X

(1)

k+1

)

REC

; : : : ; (X

(m)

k+1

)

REC

that ould be reahed by reom-

puting !

k

after eah update. Note that X

(m)

k+1

� X

0

k+1

. After appliation of all m updates to X

k+1

we have

X

0

k+1

= (X

(m)

k+1

)

INC

= (X

(m)

k+1

)

REC

, or (X

0

k+1

)

INC

= (X

0

k+1

)

REC

. If any valid sequene of updates gets propa-

gated orretly, the sequene �X

k

(valid by Corollary 1) in partiular must also be orretly propagated, i.e,

produe a relation (X

0

k+1

)

INC

with (X

0

k+1

)

INC

= (X

0

k+1

)

REC

. q.e.d. �
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5 Implementation

5.1 ShemaSQL Query Engine

The update propagation strategy desribed in this paper has been implemented in Java on top of a Shema-

SQL query evaluation module also written by us. This query engine was built along the lines of [LSS99℄. Our

ode �rst parses ShemaSQL queries (using JavaCC), then builds an algebra tree out of the parsed query,

and �nally evaluates the query result through a postorder traversal of that tree, omputing the output of

eah algebra node as it is visited (f. Fig. 16). The next node then reads its hild node's temporary relation

to ompute its output. For this prototype implementation, eah node temporarily stores its output through

JDBC in the query engine's \loal" relational database (Orale 8) as keeping relations in memory only inurs

limitations on the size of input relations and also would have required us to reimplement signi�ant parts of

relational query tehnology. For performane reasons, all intermediate nodes in the algebra tree share one

JDBC-onnetion to the loal database.

The implementation of the query engine uses pure Java and JDBC-onnetions to several instanes

of Orale 8. We use standard SQL DDL and DML statements (selet, insert, delete, update and

statements for shema hange operations like alter table) for all queries|thus making full use of the

soure database's SQL query evaluation apabilities. We do not use any system spei� funtions other than

simple shema hanges. A wrapper lass (whih we have also suessfully implemented for Mirosoft's Aess)

makes di�erenes in the syntax of shema hange operations transparent. Therefore, the implementation is

independent of the database used.

To improve performane and simplify our ode, our implementation attempts to use as muh of the

SQL query apability as possible, in partiular by extrating standard SQL out of the ShemaSQL query

and evaluating it in a single StandardSQL-node, whih simply exeutes its stored SQL-statement against

the loal SQL-database. The ShemaSQL query engine urrently does not perform or utilize any query

optimization strategies other than those provided by the underlying SQL query engine when exeuting

queries against the loal database.

5.2 Inremental Update Propagation

To perform update propagation in the manner desribed in this paper, we added update propagation

apabilities to eah algebra operator lass (Unite, Fold, Unfold, Split, StandardSQL). A method

propagateUpdate() in eah node aepts one update and returns a list of (data and/or shema) updates

whih represent the result of the update propagation. Then, we added ode for the propagation of the

output updates of eah operator to its parent. Thus, the same ode that performs the postorder traversal

of the operator tree for the initial materialization of the view an now also perform the inremental update

propagation, by simply alling the update propagation method instead of the materialization method on

eah node and reursively using eah operator's output as the input for the parent operator.

Updates were modeled into a small lass hierarhy onsisting mainly of the lasses ShemaUpdate and

DataUpdate. Eah node in the algebra tree is now extended by the ability to propagate all suh updates.

The urrent ode does not support bathed updates.

Fig. 16 shows the arhiteture of our system.
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create view AIRLINE(DEST, X)

as select (DEST, Y.PRICETYPE)

from AIRLINES Y

........

RDBMSRDBMSRDBMS

SchemaSQL-
Query Processor
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Builder

SchemaSQL-

Parser

SchemaSQL View Definition

View Extent

Local

RDBMS

Incremental Update

Propagation*

User Application

Middleware

Extent Computation*

QueriesQuery Results

Updates

* One instance of this module for each node in algebra tree

Figure 16: The Arhiteture of the ShemaSQL View Maintenane System

6 Performane Evaluation

6.1 Experimental Setup

6.1.1 Performane-Relevant Fators

As explained in this paper, ShemaSQL update propagation is signi�antly di�erent from traditional inre-

mental view maintenane. Major di�erenes are the transformation of data updates into shema hanges

and vie-versa, the need for the propagation of base shema hanges, and the propagation strategy based

on propagating an update through an algebra tree rather than omputing delta-queries against the base

relations.

To assess the inuene of those issues on performane, we exeuted a number of experiments on our

prototype. We are reporting some of the results in this setion. For the experiments desribed here, we

foused on the following fators ontributing to ShemaSQL update propagation performane:

� the type of update (data update or shema hange) at the base relations;

� the transformation type of the update (i.e., the type, data update or shema hange, into whih a base

update is propagated);

� the seletivity of onditions in the view query that determines the size of the view relative to the sizes

of the base relations;

� the size of base relations.

6.1.2 Shema and View Queries

If not stated otherwise, all our experiments use the following view query, over the same base shema as in

our running example (Fig. 1):
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reate view CITY(Type, AIRLINE) AS

selet PRICETYPE, FLIGHT.PRICETYPE

from -> AIRLINE,

AIRLINE FLIGHT,

AIRLINE-> PRICETYPE,

FLIGHT.Destination CITY

where PRICETYPE <> 'Destination'

and AIRLINE like 'AIRLINE%'

and FLIGHT.PRICETYPE <= '1101';

The output shema of this query, onsidering the input shemas from Fig. 1, onsists of two relations

Business and Eonomy whih both have the shema (Destination,AIRLINE 1,...,AIRLINE K), with one attribute

named AIRLINE X for eah relation named AIRLINE X in the input shema. The output shema may hange

during an experiment.

The base data was generated from a list of strings (representing ity names), augmented by random

numbers representing \ight pries". Those numbers were generated using uniformly distributed random

numbers in a ertain range. The base relation sizes and distribution of updates are desribed with eah

experiment.

Sine we have multiple output relations, we need to extend the onept of view size to multiple relations.

We thus de�ne the view size to be the sum of the sizes of all output relations.

6.1.3 Measurements and System Parameters

The test system was a Pentium II/400 running Linux and Java 1.2.2. Database onnetivity was ahieved

through JDBC. The databases used for our tests (loal database and information soure) were two instal-

lations of Orale 8i, running on a Pentium 233 under Windows NT and a 4-proessor 300MHz DEC Alpha

under DEC OSF1, respetively.

For our experiments, we measured the total exeution time of the initial materialization of the view

(for ontrol purposes, not shown in the hart), then the time for a number of updates, depending on the

experiment, and �nally the time for a reomputation of the view extent. The times were measured by

omparing the system time before and after exeuting update propagation or reomputation, i.e., they

inlude system, user, and I/O time.

6.2 Deleting Base Relations of Di�erent Sizes

In our lassi�ation of updates (Setion 3), inserting a table implies inserting an empty table. The data would

have to be added in subsequent data updates. Therefore, inserting (and also renaming) shema elements

leads to relatively simple propagation results, as the information ontent of the database does not hange

muh under suh updates. Therefore the experiments reported here onentrate mainly on the deletion of

shema elements (attributes, relations), as well as on the insertion and deletion of data. We will report on

view maintenane time both with and without the optimization of bathed updates (Se. 3.6).

We ran the above query over a shema ontaining four base relations (representing four di�erent airlines)

with approximately 100, 200, 300, and 400 tuples, respetively. We then deleted eah of those base relations

and ompared the time for inremental update propagation with the time for reomputation after a base

relation was deleted. After eah deletion and measurement, the original information spae was restored.

With the above query, the original view extent had two relations Business and Eonomy with 378 and 444
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tuples, respetively and dereased roughly proportionally after deletions of base relations. Fig. 17 shows the

times measured.

Without the bathed-update optimization, deleting a base relation R in a query like above will result

in the reation of approximately jRj updates inside the operator tree. Therefore, deleting larger relations

takes longer than deleting smaller relations. On the other hand, reomputation time will derease with

larger sizes of the deleted relation, as the resulting view extent has less tuples. The rossover point between

view maintenane and reomputation is at about a base size of 225, i.e., deleting a relation of more than

225 tuples (about 25% of the view size) will take longer than reomputing the view. This means that our

update propagation strategy will perform better than reomputation for tuple-wise deletions of up to 25%

of the entire information spae. Propagating 225 delete-tuple updates will have a smaller total exeution

time than a single reomputation of the view. On the other hand, this experiment shows that a single input

update (in this ase a delete-relation update) an be very expensive as it may lead to many updates in the

view extent. On the other hand, when using bathed updates, the deletion of a base relation translates into a

bathed update, whih is then propagated as far as possible as a bathed update as well. In the ase of this

partiular query, the deletion of a relation an be propagated through the Unite, Fold, and StandardSQL

nodes as a delete-tuple-bath, and is then turned into a delete-attribute update in the Unfold-node (f. the

propagation table in Se. 3.6). This explains the very low update propagation time for the delete-relation

shema hange in this ase.
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Figure 17: View Maintenane and Reomputation Times vs. Size of Deleted Base Relations

We also ran the same set of updates under the view query from our running example (Fig. 1), whih

reates one output relation for eah unique destination in any of the input relations. Given that the input

tables ontain a large number of unique destinations (ities), many output tables are generated, at worst

one output table per tuple in eah base relation.

Note that in this ase, the deletion of a base relation eventually leads to one delete-attribute shema

hange per output relation, so deleting a base relation with 200 tuples will �rst lead to the propagation of

200 delete-tuple updates, propagated to one output relation eah, and then to many delete-attribute shema

hanges|exatly one for eah output relation. The experiment shows that in this ase, whih inurs many
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shema hanges in the output relations, a reomputation has a performane advantage over the unoptimized

inremental update propagation. However, with bathed updates, signi�ant performane bene�ts an be

realized that make inremental view maintenane almost as fast as reomputation. Figure 18 shows the

results of this experiment. The inremental view maintenane still takes signi�ant time sine many shema

hanges still have to be exeuted on the output relations of the view.
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Figure 18: View Maintenane and Reomputation Times for a View with Many Relations

6.3 Deleting Tuples from Base Relations

In this experiment (Fig. 19), we delete a sequene of random tuples from the base shema and measured

the umulative propagation time. For our hart, we numbered the updates by onseutive numbers i. The

umulative propagation time for update i is the sum of the propagation times for all updates numbered

0 : : : i. We also measured the time to reompute the view after the entire update sequene was exeuted.

This experiment shows again that in our shema, the rossover point between inremental maintenane and

reomputation is at roughly 200 tuples, i.e., after 200 updates, reomputation of our view (with view size

888) would beome more eÆient. The view size is the major fator determining the reomputation time for

a view, whereas the time for inremental propagation of a single data-update mainly depends on the system

implementation, i.e., is roughly onstant for our implementation and test environment. The average time to

propagate a single update an be estimated from the slope of the urve in Fig. 19 to be about 285ms, whih

is a value depending mainly on the size of the tuples propagated.

From those fats, it an be onluded that the ratio between the number of propagated updates at the

rossover point and the view size is a system onstant depending only on the implementation, i.e., we expet

that reomputation of a view will take roughly the same time as the inremental propagation of the deletion

of a ertain perentage of the view's tuples. In our experiment, this ratio was about 1/4 (a rossover point

of 200 for a view with roughly 800 tuples).

Note the jump in the inremental maintenane time at the end of the urve. This time represents a data

update that led to a shema hange in the output relation. The reason is that the last tuple from a base

relation was deleted whih led to a delete-attribute hange in an output relation.
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Figure 19: Deleting Tuples from the Input Shema

6.4 Deleting Tuples Leading to Shema Changes

In this experiment, we wanted to assess the di�erene in propagation time of the same updates, depending

on whether these updates lead to data updates or shema hanges in the view. Shema hanges atually

exeuted on a relation database are slow operations. Therefore, the expetation is that an update propagation

(inluding the appliation of those updates against a database) that leads to a shema hange will be slower

than an update propagation leading to only a data update in the view.

Thus, in this experiment we are deleting tuples from the base shema. This time we have four base

relations R

1

; R

2

; R

3

; R

4

of sizes 1, 10, 100, and 1000, respetively, but make sure that some of the updates

inur shema hanges in the output shema. First, we inserted 10 tuples into relation R

1

, then removed

tuples from relation R

2

one-by-one, until R

2

was empty. This leads to a shema hange in the output shema

sine the orresponding attribute is removed from eah output relation. Then, we removed all 11 tuples from

relation R

1

(inurring another shema hange), followed by a removal of 10 random tuples from relation R

3

.

Note that in this sequene, updates #19 and #30 lead to shema hanges in the output.

We then plotted the time eah update took to propagate. Note the relatively even distribution of update

propagation times around 250 ms in Fig. 20, exept for two updates, whih take over 2 seonds to propagate.

Those are learly those updates that led to shema hanges in the output relations. The measured update

time (if no shema hange is inurred) is similar to the average time measured in Fig. 19. Again, the

propagation time for the data updates depends mainly on the tuple size, and the underlying database,

whereas the time for shema hanges depends on the underlying database only (as pratially no data has

to be transported).

6.5 View Seletivity

In this experiment, we measure how the performane advantage of inremental view maintenane over

reomputation is a�eted by the view seletivity, i.e., by the probability that a base tuple's data will atually

be reeted in a view.

To assess the e�et of di�erent view seletivities on view maintenane times, we ran an experiment

26



0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Ti
m

e 
(m

s)

Update Sequence Number

Figure 20: Base Updates lead to Data Updates or Shema Changes

over di�erent seletivities in the view query. We adjusted seletivity in the range [0:02 : : :1℄ by using dif-

ferent onstant values for loal onditions in the WHERE-lause of our query (i.e., onditions of the type

FLIGHT.PRICETYPE<=1100). We de�ne view seletivity over our multiple-relation output shema in analogy

to view size as the ratio of the view size of the urrent query and the view size of a query without WHERE-

lause. For eah seletivity setting, we deleted a relation with 100 tuples (10% of the input tuples) from the

base shema and measured inremental view maintenane time and view reomputation time. Fig. 21 shows

the result of the experiment. The graph shows that both inremental view maintenane time and reompu-

tation time inrease with the view seletivity, whih is not surprising, sine in both ases more tuples have to

be proessed when the view seletivity (and thus the view) beomes larger. However, the relative inrease in

the inremental update propagation time is similar to the relative inrease in reomputation time, meaning

that our propagation strategy will keep its performane bene�ts under hanges of the view's seletivity.
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Figure 21: Update Propagation under Views of Di�erent Seletivities

27



7 Related Work

The integration of data stored in heterogeneous shemas has long been an objet of intensive studies. The

problem of shemati heterogeneity or di�erent soure apabilities is repeatedly enountered when attempt-

ing to integrate data. Some examples are Garli [TAH

+

96℄, TSIMMIS [HGMI

+

95℄, and DISCO [TRV95℄.

Several logi-based languages have been developed to integrate heterogeneous data soures (e.g., work by

Krishnamurthy et al. [KLK91℄, HiLog [CKW89℄ or ShemaLog [GLS

+

97℄). Some SQL-extensions have also

been proposed, suh as MSQL [LAZ

+

89℄ whih has apabilities for basi querying of shema elements, and,

in partiular, ShemaSQL ([LSS96, LSS01℄, see below).

Those approahes are able to overome di�erent lasses of shemati heterogeneities. However, the

important lass of shemati heterogeneities in semantially equivalent relational databases is often exluded

from integration language proposals. Miller et al. [MIR93, Mil98℄ show that relational databases may ontain

equivalent information in di�erent shemas and give a formal model (Shema Intension Graphs) to determine

suh \semanti equivalene" of heterogeneous shemas.

The predominant approah at integrating suh semantially equivalent shemas has been done by Gyssens

et al. [GLS96℄ and later by Lakshmanan, Sadri, and Subramanian [LSS96, LSS99℄. In [LSS96℄, the authors

present ShemaSQL, whih is used as the basis for our work. A more thorough treatment of the language and,

in partiular, its use for aggregation, is given in [LSS01℄. ShemaSQL builds upon earlier work in Shema-

Log [GLS

+

97℄. It is a diret extension of SQL, with the added apability of querying and restruturing not

only data, but also shema in relational databases, and transforming data into shema and vie-versa. Thus,

using ShemaSQL as a query language makes it possible to overome syntati (shemati) heterogeneities

between relational data soures.

A seond foundation of our work is the large body of work on inremental view maintenane. After early

models for view maintenane [BLT86℄, many algorithms for eÆient and orret view maintenane under

a variety of assumptions have been proposed. Prominent results, often taking onurreny into aount,

inlude ECA [ZGMHW95℄, SWEEP [AESY97℄, Mohania et al. [MKK97℄ and the approah by Gupta et

al. [GMS93℄. Those approahes follow an algorithmi approah in that they propose algorithms to ompute

hanges to a view.

GriÆn and Libkin [GL95℄ onsider views with dupliates, and, more importantly, follow an algebrai

approah whih de�nes a omplete and minimal set of relational algebra operators. They ahieve a rigorous

proof of the orretness of view maintenane by proving the orretness of those operators and their nesting.

This is an idea that we have adopted for our work. GriÆn and Libkin's work is partly based on the algebrai

approah by Qian and Wiederhold [QW91℄. Colby et al. [CGL

+

96℄ orret the state bug that oured in

earlier work by GriÆn and Libkin as well as in other authors' proposals. Our work builds on existing

inremental view maintenane literature but handles shema hanges in addition to data updates. Sine

ShemaSQL is able to transform data updates into shema updates and vie-versa, any operator in the

ShemaSQL algebra tree must be able to propagate both lasses of updates. To our knowledge, our view

maintenane strategy is the �rst that ahieves inremental update propagation in suh shema-restruturing

views.

Another body of literature that is related to our work are performane studies on inremental view

maintenane algorithms. The work in this �eld is not as extensive as on view maintenane itself, but a

number of studies exist. An early paper on measuring the performane of inremental view maintenane

strategies is Hanson [Han87℄. The ECA paper [ZGMHW95℄ ontains a study on the performane of its

algorithm, but only in an analytial manner rather than atual performane studies. [MKK97℄ also ontains
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a very simple analysis of their algorithm's eÆieny and GriÆn and Libkin [GL95℄ give a analytial omplexity

study of their algorithm but neither paper evaluates system performane.

8 Conlusions

In this paper, we have proposed the �rst inremental view maintenane algorithm for shema-restruturing

views in ShemaSQL. We have shown that the traditional approah at inremental view maintenane|

rewriting view queries and exeuting them against the soure data|is not feasible for suh views. We have

de�ned an update propagation sheme in whih updates are propagated from the leaves to the root in the

algebra tree orresponding to the query and proved its orretness. Performane experiments on a prototype

of a view-maintenane-apable query engine have shown that update propagation has the expeted large

bene�ts over reomputation of views. Lastly, we have also proposed a possible performane improvement by

the introdution of bathed-update primitives. In summary, our work reports a signi�ant step towards sup-

porting the integration of large yet shematially heterogeneous data soures into in integrated environment

suh as a data warehouse, while allowing for inremental propagation of updates.

Future work inludes an extension of our implementation towards suh bathed updates, a review of the

implementation in general with the goal of removing some of the performane obstales (suh as the use of

loal relations to store intermediate data) and an extension of the implementation towards multi-databases.

Another diretion of researh ould be the analysis of the onept presented in this paper with regard to its

usability for other data integration languages, suh as XML query languages or objet-relational languages.
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