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Abstract

The integration of data, especially from heterogeneous data sources (ISs), is a hard and widely studied
problem. One particularly challenging issue is the integration of sources that are semantically equivalent
(i-e., whose states can be mapped onto each other by an isomorphism) but schematically heterogeneous.
While two such data sources may represent the same information, one may store the information inside
tuples (data) while the other may store it in attribute or relation names (schema). The SchemaSQL
query language is a recent solution to this problem powerful enough to restructure such sources into
each other without the loss of information. However, the issue of maintenance of SchemaSQL views,
once materialized over semantically heterogeneous sources, has not yet been addressed. In this paper,
we propose an incremental view maintenance strategy for such schema-restructuring views. Our strategy
based on an algebraic representation of the view query correctly transforms a data update or a schema
change to a source into data updates, schema changes, and even mixed sequences of schema and data
update requests to be applied to the view. We give a proof of the correctness of the strategy. We have
also developed a prototype implementation of both a SchemaSQL query processor and a SchemaSQL
View Maintainer, and then used it to compare the performance of incremental view maintenance versus
complete view recomputation for this new class of schema-restructuring views. We describe both the
implementation and the experiments in the paper and conclude that in many cases incremental view

maintenance in SchemaSQL is significantly faster than recomputation.

Keywords: Heterogeneous Databases, Materialized Views, SchemaSQL, Incremental View Maintenance,

Schema Restructuring.



1 Introduction

Information sources, especially on the Web, are increasingly independent from each other, being designed,
administered and maintained by a multitude of autonomous data providers. Issues in data integration include
the heterogeneity of data and query models across different sources, called model heterogeneity [FRV95,
GRVB98, HGMI*95] and incompatibilities in schematic representations of different sources even when using
the same data model, called schema heterogeneity [MIR93, LSS96]. Overcoming these problems is critical in
achieving integration of a wide variety of information sources. Much work on these problems has dealt with
the integration of schematically different sources under the assumption that all “data” is stored in tuples
and all “schema” is stored in attributes. We will focus on another aspect of this issue in our paper, namely
on the integration of heterogeneous sources under the assumption that schema elements may express data
and vice versa.

One recent promising approach at overcoming such schematic heterogeneity is the language SchemaSQL,
an SQL-extension devised by Lakshmanan et al. [LSS96, LSS99]. SchemaSQL allows to soften the distinction
between schema and data in the relational data model by allowing to query schema (such as lists of attribute
or relation names) in SQL-queries and also to use sets of values obtained from data tuples as schema in
the output relation. This concept leads to a versatile query language which among other features allows to
transform semantically equivalent but syntactically different schemas [LSS96, Mil98] into each other. Similar
to SQL-views, SchemaSQL-views can be used to transform relational databases into whatever format is
required by a (relational) data integration system. Therefore, SchemaSQL makes it possible to include a
larger class of information sources into an information system.

However, the issue of view maintenance in such a system is still open. View maintenance in a SchemaSQL
view is non-trivial, especially since such views can transform data into schema and vice versa as illustrated
below. In this paper, we present the first incremental maintenance strategy for SchemaSQL. The strategy

works correctly not only under data updates, but also under schema changes.

1.1 Motivating Example

Fig. 1 gives an example of a SchemaSQL query to demonstrate the capabilities of this language. Note that
the two relational schemas in Fig. 1 are able to hold the same information and can be mapped into each

other using SchemaSQL queries. The view query restructures the input relations on the left side representing

BA

[ Destination [ Business | Economy | create view CITY(Type, AIRLINE) AS [T LO|NDOBQ )

[Paris [ 1200 | 500 | select PRICETYPE, FLIGHT.PRICETYPE ybe

["Condon | 1100 | 775 ] from [ Business [ 1100 [ null ]
-> AIRLINE, | Economy | 475 | 500 |

LH = AIRLINE FLIGHT, =
[ Destination [ Business | Economy | AIRLINE-> PI?ICETYPE’ PARIS
[Pos [ 10 700 nore PRLCETIPE & "Destination’ [Dpe [ BALLH
where estlination
[ London | 1180 | 500 | and FLIGHT.PRICETYPE <= 1100; [ Economy [ 600 [ 700 ]

Figure 1: A SchemaSQL Query and its Effects.

airlines into attributes of the output relations on the right side representing destinations. The arrow-operator
(->) attached to an element in the FROM-clause of a SchemaSQL-query allows to query schema elements,
giving SchemaSQL its meta-data restructuring power. Standing by itself, it refers to “all relation names in

that database”, attached to a relation name it means “all attribute names in that relation”.



SchemaSQL is also able to transform data into schema. For example, data from the attribute Destination
in the input schema is transformed into relation names in the output schema, and vice versa attribute names
in the input (Business and Economy) are restructured into data.

Now consider an update to one of the base relations in our example. Let a tuple #(Destination =
Berlin, Business = 1400, Economy = 610) be added to the base table LH (a data update). The change to
the output would be the addition of a new relation Berlin (a schema change) with the same schema as the
other two relations. This new relation would contain one tuple ¢(Type = Economy, BA = null,LH = 610).
In this example, a data update is transformed into a schema change, but all other combinations are also
possible. The effect of the propagation of an update in such a query depends on numerous factors, such as
the input schema, the view definition, the set of unique values in the attribute Destination across all input
relations (city names), and the set of input relations (airline codes). For example, if a value Berlin already
existed in one of the input tables, the propagation would also depend on whether other airlines offer a flight
to Berlin in the Economy-class.

In summary, a schema-restructuring view must be able to propagate arbitrary data updates and schema
changes that occur in its input. In the process of propagation, any such type of change could be transformed
into any other in the view. This situation is significantly more complicated than update propagation in the
common SQL views [BLT86, QW91, GMS93, GL95, MKK97, et al.] which deals only with propagation of
data updates that are never transformed into schema changes. This problem, to our knowledge, has not
been studied before.

1.2 Contributions

In the context of schema-restructuring views, there are several new issues that we must address. First,
it is not sufficient to consider data updates (DUs) for SchemaSQL, but also schema changes (SCs). Also,
SchemaSQL views can transform schema into data and vice-versa, thus requiring a framework that can
propagate {DU|SC}* — {DU|SC}*. As shown in this paper, using the standard approach of generating
query expressions that compute some kind of “delta” relation A between the old and the new view after an
update is not possible for SchemaSQ@QL, since the schema of A would not be defined.

The contributions of this paper are as follows: (1) we give an algebra-based solution to the problem
of incremental view maintenance of schema-restructuring views defined in SchemaSQL, (2) we prove this
approach correct by a method similar to the equational reasoning given in [GL95], (3) we present a prototype
implementation of a query processor for a subset of SchemaSQL and an incremental view maintenance
system in Java over JDBC-capable databases, and (4) we describe experiments we have conducted on our

implementation to gain insights into the performance of our algorithm.

1.3 Outline of Paper

Section 2 reviews some background on SchemaSQL, in particular the additional algebra operators used in
SchemaSQL evaluation, Section 3 explains our view maintenance strategy and Section 4 proves correctness
of our approach. Section 5 gives a brief overview over our implementation. Section 6 shows the results of

our performance experiments. Finally, Sections 7 and 8 give related work and conclusions, respectively.



2 Background

2.1 Notation

A walue is an element of data that is stored in a relation. Examples include strings, numbers, and dates. A
domain D is a set of values.! Dy is the special domain of “attribute- and relation names”. We implicitly
assume that there is a bijective mapping from some domains to Dy. This means that the values of some,
but not necessarily all, domains can be converted to names and vice versa.

A relation is a 3-tuple R = (n, S, E) with n € Dy (the relation name), S = (a1, as,...,a,) € (DnN)"
(the schema—a tuple of n attribute names) and E C {D; x Dy X ... x D,} (the relation extent, which is a
subset of the cross-product of the domains Dy x Dy X ... x D,,). Note that this definition associates exactly
one value in S with each domain from which E is constructed (the name of an “attribute”).

A relational tuple t € E is an n-tuple and is an element of a relation’s extent. An operator t[a;, ,ai,, - .. ,a,]
returns the projection of ¢ on the attributes named ay,,a,,...,a;,,. We also define ¢[*\{a1,...,a,}] to be
the projection of ¢ onto all its attributes except the ones named a1, ..., a,.

An attribute A; C D; is a multiset that is constructed as follows: A; = {t[a;] |t € E}, or short A; = Ela;].
Then attribute A; has atéribute name a;. Note that we denote attributes by capital letters (as they are sets)
and attribute names by small letters. We extend this notation for Elai,...,ax] to mean the projection of
extent F on the attributes Ay, ..., A. For readability, if we refer to attribute A of R = (n, S, E), we actually
mean the pair A = (a, E[a]), with a € S. The term prime attribute refers to an attribute that is a member
of any key of R and the term non-prime attribute refers to an attribute that is not a member of any key of
R (cf. [UlI89]). The distinct-operator (a;) on an attribute A; in extent E returns the set of distinct values
in A; by removing all duplicates from the multiset E[a;].

Functional dependencies in R are defined as usual (cf. [Ull89, Chapter 7]), with X — A defining the
attribute A to be functionally dependent on the set of attributes X (i.e., for any ¢ € E, the value of ¢[a]
depends only on ¢[z1,...,zg]) . Likewise, we assume the usual definitions of natural join >t and cross product

X.

2.2 SchemaSQL

In relational databases it is possible to store equivalent data in different schemas, as Miller et al. [MIR93] have
shown. It is also possible under certain conditions to transform data in such schemas into each other without
the loss of information [Mil98]. SchemaSQL is an SQL derivative designed by Lakshmanan et al. [LSS96]
which can be used to achieve such schema transformations.

In [LSS99], Lakshmanan et al. describe an extended algebra and algebra execution strategies to implement
a SchemaSQL query evaluation system. It extends the standard SQL algebra which uses operators such
as o(R), m(R), and R > S by adding four operators named UNITE, FoLD, UNFOLD, and SPLIT originally
introduced by Gyssens et al. [GLS96]. Lakshmanan et al. show that any SchemaSQL query can be translated
into this extended algebra.

We now define the four operators used in SchemaSQL in a concise manner. Examples for the four
operators defined in this section can be found in Fig. 2. We will refer to the input relation of each operator

as R and to the output relation as Q.

! Throughout this paper, we will use capital letters R to denote (multi)sets and small letters a to denote elements of sets.



BA

[ Destination [ Business [ Economy | e LO|NDOB§ ]
[ Paris [ 1200 | 600 | (Bus
Business [ 1100 [ null ]
[ London | LlleO | 475 | [ Economy [ 475 | 500 |
[ Destination [ Business [ Economy | e P|ARI;A |
Paris 1220 700
I Condon I 1180 I 500 I [[Economy | 600 [ 700 ]

U | UNITE Airline 1 | SPLIT pestination

TMP_REL_0001
[ Airline | Destination | Business | Economy

TMP_REL_0004

- Type [ Destination [ BA [ LH ]
BA Paris 1200 600 Business London 1100 | null
BA London 1100 475 °

o Economy Paris 600 700
LH Paris 1220 700 Econom London 475 500
(3] Condon 1180 500 y

U | FOLD Type, Price, { Business Economy} | | UNFOLD Airline, Price

TMP_REL-0002
Airline | Type [ Destination [ Price

TMP_REL_0003

=
BA Business Paris | 1200 STANDARD-SQL [ Airline T Type [ Destination [ Price |
BA Business London | 1100 select * BA Business London | 1100
BA Economy Paris 600 from tmp_rel 0002 BA Economy Paris 600
BA Economy London 475 wher? price <= BA Economy London 475
LH Business Paris 1220 1100; S S S S
Figure 2: The Four SchemaSQL Operators UNITE, FOLD, UNFOLD, SPLIT.
2.2.1 UNITE
This operator is defined on a set of k relations R* = {Rs,..., Ry} with a, as an argument. We define a
set N* = {ng,,...,ng,}, which is the set of all relation names in R*, in the new domain D,. We further

denote by N the relation R(n, E,S) with N = ng. Then, for each R;, we assume Sg, = (ai,...,a,) and
Egr, C{Dy x...x D,}. Note that this implies that all R; have the same schema. The output of the UNITE
operator is then one relation @ = UNITE,,(R*) with:

Eqg C{D; x...x Dy x Dy} and Sg = (a1,...,an,ap) with Eg = |J (Nk x {nt}). Note that N
ngEN*
appears both as a relation (Ny) and a relation name (ny). In words, a new relation is constructed by taking

the union of all input relations and adding a new attribute A, whose values are the relation names of the
input relations.
In Fig. 2, the UNITE-operator is defined over the set of relations BA, LH and has the attribute name

Airline as its argument.
2.2.2 FoLp
The FoLDp-operator works on a relation R = (ng, Er,Sg) with
Er C{D1 x...xDpxDgx...x Dy}
—_———
k times

and Sg = (a1,...,ap,Gnt1,- - -Antr) and takes as arguments the names of the pivot and data attributes a,
and aq in its output relation. Note that this definition requires that & attributes of R have to be of the same
domain. With R having n + k attributes, we then define:

Q = FoLDg, .,(R) = (nq,Eq,Sq) with ng = ngr, Eg C {D1 X ... x D, x Dg x Dy} and Sg =



(a1,...,0n,aq4,ap). We define A* = {any1,...an4+k} as a set of values in a new domain D, where the
values are obtained by the above-mentioned conversion of attribute names into data values. Finally, £ =

U (Rla1,...,an,ax] x {ax}). In words, the operator takes all data values from the set of related at-
arEA*
tributes, and sorts them into one new attribute a4, introducing another new attribute a, that holds the

former attribute names. Note that, since a, becomes part of a key for aq, it has to be included in the set X
for any functional dependency X — Ay.
In Fig. 2, the FoLD-operator is defined on relation TMP_REL_0001 and has the arguments a,, = Type,aq =

Price, A* = {Business,Economy}.

2.2.3 UNFOLD

The UNFOLD-operator is the inverse of FOLD.

The UNFOLD-operator on a relation R = (ng, Er,Sg) with Er C {D; x ... x D, x D, x D4} and
Sr = (a1,...,an,ap,aq) takes two arguments a,,aq which are attribute names from Sg. To simplify the
notation and without loss of generality, we reorder the attributes in R (by exchanging the indices on both
Sk and Eg accordingly), such that A, and Ay become the last two attributes in R. We call A, the pivot
attribute and Ay the data attribute. Let R have n + 2 attributes. Let us further impose two conditions on
functional dependencies in R: (X = Y) = Ay ¢ X and 3(X — Ay) with A, € X. That is, Aq must be
non-prime, A, must be prime and Ay must depend on A4,. We also set A* = R(A4,) (the set of distinct
values in A4,), k = |A*| and impose a total order on A* to assign an index 1 < ¢ < k to each of its elements
(A* ={a],...,a;}).

Then, Q) = UNFOLD,, q,(R) = (ng,Sq, Eq) with Ng = ng,

EqQC{Di x...XxDpxDgx...xDg}
—_—————

k times

and Sg = (a1,-..,an,af,...,ay). The extent is constructed by Eqg = Eg[ai,...,a,] > E; ... > Ep, with
E; ={tla,...,an,aq] | t € Er A tlap] =a}.

In words, the schema of @) consists of all attributes in R except the data and pivot attribute, plus one
attribute for each distinct data value in the pivot attribute. Then, each tuple ¢’ in @ is constructed by taking
a tuple t in R and filling each new attribute A; with the value from attribute A4 in a tuple from R that has
the name a; as value in A, (assuming an implicit conversion between names and values as required above).
The new attributes all have the domain Dy of the old attribute A4. Note that the requirement for a, to be
prime is not explicit in Lakshmanan’s original operator. This is a design decision that helps to clarify the
semantics of the UNFOLD/FoOLD-operator pair, ensuring the output relation for UNFOLD to be in 1NF.

In Fig. 2, the UNFOLD-operator is defined over relation TMP_REL_0003 and takes as its arguments
ap, = Airline and a; = Price. The operator then produces output by taking tuples from TMP_REL_0003,
and filling the attributes representing airlines with values from the data attribute Price in TMP_REL_0003,
matching attribute names in the output relation with the values of the pivot attribute Airline in the input

relation.

2.2.4 SPLIT

The SpLiT-operator is the inverse of the UNITE-operator. It transforms a single relation R = (ng, Er, Sg)
with Egr C {Dy x ... x Dy, x D} and Sg = (a1, ..., an,ap) into a set of k relations with the same schema.



It takes as argument the name of the pivot attribute a, which we assume to be the last in R. We require
that A, does not have NULL-values, i.e., Vo € A, : z # L. The output of SPLIT is a set of relations
Q* = SpLIT,, (R) = {Q1,...,Qr} with A* = R(A,) and k = |A*|. We will refer to the ordered elements of
A* as in the UNFOLD-case, i.e., A* = {a],...,a}}. For each output relation @;, we have:

ng, = ar, Eg, C{D1 x...xD,}, Sg, = (a1,...,a,), and Eg, = {tla1,...,a,] | t € R Atlay] = a}}.
In words, we break down R into k relations of the same schema, with the new relation names the k distinct
values from R’s attribute A,.

In Fig. 2, the SpLIT-operator is defined over relation TMP_REL_0004, takes as its only argument a, =
Destination, and produces 2 tables names LONDON and PARIS.

2.2.5 Flat Schemas

As suggested by the example in Fig. 1, existing relational schemas are often built with data-carrying attribute-
and relation-labels, which is an important reason for schematic heterogeneity [LSS96]. In the relational
model, relation and attribute labels are assumed to not contribute to the semantic content of the relation—a
principle that is often misunderstood in database design. Lakshmanan et al. show that, while there are
many representations of a real-world concept in the relational model, only some such schemas will not carry
semantic information in their attribute and relation names. They give a definition for the notion of such flat

schemas which we will only use in an informal way in this paper.

Definition 1 (Flat Schema) Assume infinite pairwise disjoint sets of names N and values V. Let dom :
N — 2Y be a partial function such that for each n € N, whenever dom(n) is defined, it associates name
n with a non-empty set of values dom(n) C V. Then, a relation schema R(Ay,..., Ay) is said to be flat

iff all the entries R, Ay, ..., A, are names. A database schema is flat if all relation schemas in it have this

property.

With the notion of schema equivalence presented in [MIR93], “flattening” a relation refers to the process
of transforming a relation into its flat schema-equivalent relation, preserving the information capacity of the

relation.

1. If the input schema consists of n > 1 tables of the same schema, apply a UNITE-operator with the

name of the “pivot”-attribute as a parameter to obtain relation R’ (i.e., S e R').

2. If R or R’ contains a set of attributes {u1, ..., u,} whose labels are not from N, apply a fold operator
on {us,...,u,}, with the names of the two resulting attributes B, C as parameters (i.e., R’ forp R").

2.2.6 SchemaSQL Query Evaluation

Similar to traditional SQL evaluation, [LSS99] proposes a strategy for SchemaSQL query evaluation that first
constructs and then processes an algebra query tree. In that way, SchemaSQL can be efficiently implemented
over an SQL database system, which Lakshmanan et al. have shown in [LSS99].

For simplicity of notation, we will treat a database consisting of n relations Ry,..., R, of the same
schema as a relation and denote it by R.

In order to evaluate a SchemaSQL query, an algebra expression using standard relational algebra plus

the four operators introduced above is constructed. This expression is of the following form [LSS99]:



V' = SPLIT,(UNFOLD} (7 7(0 cond (FOLDe, £, ,5; (UNITEL(R1)) X ... x FOLD.,, #,.,¢7. (UNITEL(R1,)))))) (1)

with attribute names a,b, c,e;, fi, hi, the sets of attribute names d and §;, and selection predicates cond
determined by the query. Any of the four SchemaSQL operators may be missing from the expression (i.e.,
may not be needed for a particular query). Rj ... R;, are base relations, or, in the case that the expression
contains a UNITE-operator, sets of relations with equal schema.

The algebraic expression for our running example (Fig. 1) is:

V' = SPLITDestination (UNFOLDAjrline, Price (TPrice <1100 ( (2)

FOLDType, Price, {Business,Economy} (UNITEAirIine (BA.LH)))))

This algebraic expression is then used to construct an algebra tree (Fig. 3) whose nodes are any of the four
SchemaSQL operators or a “Standard-SQL”-operator (including the 7, o, and x-operators of the algebra
expression) with standard relations “traveling” along its edges. The query is then evaluated by traversing
the algebra tree and executing a query processing strategy for each operator, analogous to traditional SQL
query evaluation.

Note that the query tree could include x-operators (which do not exist in our example), but that the
order of UNITE, FoLD, UNFOLD, SPLIT (if they exist) is fixed by the template in Equation 1. The UNITE
operator takes a number of relations of the same schema as an input, while the SPLIT-operator produces as
output a set of relations of the same schema. Note that the algebra tree in Fig. 3 is very simple, in more
complex queries, the tree could “fork” at the Standard-SQL-node, and several smaller “flattening” trees using
UNITE- and FoLD-operators could occur. In that case, and also in the case of standard relational joins, the

Standard-SQL-node would itself contain a more complex algebra tree containing simple SQL algebra nodes.

Relation LH

Figure 3: The Algebra Tree for the Example in Fig.1

3 The SchemaSQL Update Propagation Strategy

3.1 Classes of Updates and Transformations

The updates that can be propagated through SchemaSQL views can be grouped into two categories: Schema
Changes (SC) and Data Updates (DU). Schema changes that we consider are: add-relation(n,S), delete-
relation(n), rename-relation(n,n') with relation names n,n’ and schema S as introduced in Section 2.1 and

add-attribute(r, a), delete-attribute(r, a), rename-attribute(r, a,a’) with r the name of the relation R that the



attribute named a belongs to, a’ the new attribute name in the rename-case, and the notation otherwise
as above. Data updates are any changes affecting a tuple (and not the schema of the relation), i.e., add-
tuple(r,t), delete-tuple(r,t), update-tuple(r,t,t')), with ¢ and ¢' tuples in relation R with name r. Note that
we consider update-tuple as a basic update type, instead of breaking it down into a delete-tuple and an add-
tuple. An update-tuple update consists of two tuples, one representing an existing tuple in R and the other
representing the values of that tuple after the update. This allows to keep relational integrity constraints

valid that would otherwise be violated temporarily.

3.2 SchemaSQL Update Propagation vs. Relational View Maintenance

Update propagation in SchemaS@QL-views, as in any other view environment, consists in recording updates
that occur in the input data and translating them into updates to the view extent. In incremental view
maintenance of SQL views [QW91, GL95, MKK97], many update propagation mechanisms have been pro-
posed. Their common feature is that the new view extent is obtained by first computing extent differences
between the old view V and the new view V' and then adding them to or subtracting them from the view,
ie, V'=(V\VV)UAV, with VV denoting some set of tuples computed from the base relations that needs
to be deleted from the view and AV some set that needs to be added to the view [QW91].

In SchemaSQL, this mechanism leads to difficulties. If SchemaSQL views must propagate both schema
and data updates, the schema of AV or VV does not necessarily agree with the schema of the output
relation V. But even when considering only data updates to the base relations, the new view V' may have
a different schema than V. That means the concept of set difference between the tuples of V' and V' is not
even meaningful. Thus, we must find a way to incorporate the concept of schema changes. For this purpose,

we now introduce a data structure 0 which represents a sequence of n data updates DU and schema changes
SC.

Definition 2 (defined update) Assume two sets DU and SC which represent all possible data updates
and schema changes, respectively. A change ¢ € DU U SC is defined on a given relation R if one of the

following conditions holds:
e if c € DU, the schema of the tuple added or deleted must be equal to the schema of R.

e ifc € SC, the object c is applied to (an attribute or relation) must exist (for delete- and update-changes)

or must not exist (for add-changes) in R.

Definition 3 (valid update sequence) A sequence of updates (cy,...,c,) with ¢; € DU U SC, denoted
by OR, is called valid for R if for all i (1 <i < n), ¢; is defined on the relation R~ that was obtained
by applying c1,...,ci—1 to R.

For simplicity, we will also use the notation Ow to refer to a valid update sequence to the output table of
an algebra operator w. Note that these definitions naturally extend to views, since views can also be seen as
relational schemas. For an example, consider propagation of the update add-tuple(’Berlin’,1400,610)
to LH in Fig. 10 (p. 15). Having the value Berlin in the update tuple will lead to the addition of a new
relation BERLIN in the output schema of the view—forming a sequence OV which contains both a schema

change and a data update:

0V = (add-relation(BERLIN, (Type,Destination,BA,LH)), add-tuple(BERLIN, ('"Economy’,null,610)))



The add-relation-update is valid since the relation BERLIN did not exist in the output schema before, and
the add-tuple-update is valid since its schema agrees with the schema of relation BERLIN defined by the

previous update.

3.3 Overall Propagation Strategy

Given an update sequence implemented by a List data structure, our update propagation strategy works
according to the algorithm in Fig. 4. Each node in the algebra tree has knowledge about the operator it
represents. This operator is able to accept one input update and generate a sequence of updates as output.
Each (leaf node) operator can also recognize whether it is affected by an update (by comparing the relation(s)
on which the update is defined with its own input relation(s)). If it is not affected, it simply returns an
empty update sequence.

After all the updates for the children of a node n are computed and collected in a list (variable s in
the algorithm in Fig. 4), they are propagated one-by-one through n. Each output update generated by the
operator of n when processing an input update will be placed into one update sequence, all of which are
concatenated into the final return sequence r (see Fig. 4, < is the assignment operator).

function propagateUpdate(Node n, Update u)
List 7 — 0, s 0
if (n is leaf)
if (n.operator is affected by w)
r.append(n.operator.operator Propagate(u))
else
for(all children c; of n)
/* s will change exactly once, see text */
s.append(propagate Update(c;, u))
for(all updates u; in s)
r.append(n.operator. operator Propagate(u;))
return r

Figure 4: The SchemaSQL View Maintenance Algorithm

The algorithm performs a postorder traversal of the algebra tree. This ensures that each operator
processes input updates after all its children have already computed their output?. At each node n, an
incoming update is translated into an output sequence dn of length greater than or equal to 0 which is then
propagated to n’s parent node. Since the algebra tree is connected and cycle-free (not considering joins of
relations with themselves) all nodes will be visited exactly once. Also note that since updates occur only
in one leaf at a time, only exactly one child of any node will have a non-empty update sequence to be
propagated. That is, the first for-loop will find a non-empty addition to s only once per function call. After
all nodes have been visited, the output of the algorithm will be an update sequence 0V to the view V that

we will prove to have an effect on V' equivalent to recomputation.

3.4 Propagation of Updates through Individual SchemaS@QL Operators

Since update propagation in our algorithm occurs at each operator in the algebra tree, we have to design a

propagation strategy for each type of operator.

2We are not considering concurrent updates in this paper.
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3.4.1 Propagation of Schema Changes through SQL Algebra Operators

The propagation of updates through standard SQL algebra nodes is simple. Deriving the update propagation
for data updates is discussed in the literature on view maintenance [QW91, GL95]. It remains to define
update propagation for selection, projection, and cross-product operators under schema changes 3. In short,
delete-relation-updates will make the output invalid, while other relation-updates do not affect the output.
Attribute-updates are propagated by appropriate changes of update parameters or ignored if they do not
affect the output. For example, a change delete-attribute(r, a) would not be propagated through a projection
operator 77 if a € A, and would be propagated as delete-attribute(q, a) otherwise, with ¢ the name of the
output relation of 7 5. We refer to our technical report [KR01] for further details, as they are not important

for the comprehension of this paper.

3.4.2 SchemaSQL Operators

In Figs. 5-8, we give the update propagation tables for the four SchemaSQL operators. For the notation and
meaning of variables and constants, please refer to Section 2.1. In order to avoid repetitions in the notation,
the cases for each update type are to be read in an “if-else”’-manner, i.e., the first case that matches a given
update will be used for the update generation (and no other). Also, NULL-values are like other data values,
except where stated otherwise.

[ Input Change | Conditions | Propagation
add-tuple (r,t) tlai,...,an,ap] €E R invalid view (key violation)
tlay] € A* update Q set [t[ap]] = t[aq]
taf an] € R where ai,...,an = t[ai,...,an]
)t ) n
N insert into Q (ai,...,an,ap)
tlap] € A values (ai,...,an,aq)

add-attribute(q,tlap]),
tlap] € A* update Q set [t[ap]] = t[aq]
tlar,...,an] € R where ai,...,an = t[ai,...,an]

add-attribute(q,tlap]),

tlap] € A* insert into Q (ai,-..,Gn,ap)
tlar,...,an] € R values (ai,...,an,aq)
delete-tuple (r,t) tlap] exists in R[ap] exactly once delete-attribute(q,t[ap])

update Q set [t[ap|] = NULL

tlap] exists in R[ap] more than once where a1,...,an = tar, ..., an]

4

update Q set [t[ap]] = tlaq]

update-tuple (r,t,t") tlai,...,an,ap] =t'ai,...,an,ap) where ai,...,an = tai, ... an]
tlai,...,an,ap] Zt[a1,...,an,ap] break down into (delete-tuple, add-tuple)
add-attribute(r, a) add-attribute(q, a)
delete-attribute(r, a) a € {Aq, Ap invalid view
a & {A4, Ap delete-attribute(q, a)
rename-attribute(r,a,a’) | a = Ay UNFOLDq,,, = UNFOLD, 4
a=A, UNFOLDg, a4 (R) = UNFOLDy/ 4, (R)
a & {Aq4, Ap} rename-attribute(q, a,a’)
delete-relation(r) delete-relation(q)
rename-relation(n, n') UNFOLDg,,,a4(N) = UNFOLDq,,,a,(N")

(renaming the input relation)

4if this update leads to a tuple with all NULL-values, the tuple must be deleted.

Figure 5: Propagation Rules for Q=UNFOLD,, 4, (R)

3these are the only operators necessary for the types of queries discussed in this paper
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Input Change

Conditions and Variable Binding

Propagation

add-tuple (r,t)

(A" ={af, ..., a.},k « |A%])

for ¢ := 1..k
insert into Q

* *
values (a1,...,an,a;,tla;])

delete-tuple (r,t)

delete from Q

where ai,...,an = tlai,...,an]
update Q set ag =c

update-tuple (r,t,t") A € A*; set ta] to a value ¢ where ai,...,an =t[ai,...,an] and
ap =a

A ¢ A*; set t[a] from a value b to a
value ¢

update Q set a = ¢ where a =0

foreach tuple u € R

add-attribute(r, a) A€ A*S insert into Q (ai,...,Gn,ap,aq)
values (ulai,...,an],a,NULL)
A g A* add-attribute(q, a)
delete-attribute(r, a) A€ Ax delete from Q where ap =a
A A* delete-attribute(q, a)
rename-attribute(r,a,a’) | A € A* update Q set ap =a’ where ap =a
A A* rename-attribute(q, a, a’)

delete-relation(r)

delete-relation(q)

rename-relation(n, n')

FOLDg,, a4 (N) = FOLDg,, 0, (N')

5Note that the decision whether a new attribute should be a member of ai,..

view query.

Figure 6: Propagation Rules for Q=FOLD,,, 4, 4~ (R)

Input Change | Conditions Propagation
add-relation [t[ap]]
. with schema (Sp\R.Ap);
add-tuple (r,t) tlap) ¢ A insert into [t[ap]]
values (t[ai,...,an])
. insert into [t[ap]]
tlap] € A values (t[ai,...,an])

delete-tuple (r,t)

tlap] exists in R[ap] exactly once

delete-relation [t[ap]]

tlap] exists in R[ap,] more than once

delete from [t[ap]]

where ai,...,an =tlai,...,an]

update [t[ap]] set [aq] = t[aq]

_ ’ gt

update-tuple (r,t,t") tlai,...,an,ap] =t'ai,...,an,ap) where 1, .., an = t{a1, ..., an]

tlai,...,an,ap] Z a1, ..., an, ap] break down into (delete-tuple,add-tuple)
add-attribute(r, a) Vg € {q1...qn} : add-attribute(q, a)
delete-attribute(r, a) a=Ap invalid view

a# Ap Vq € {q1...qn} : delete-atiribute(q, a)®
rename-attribute(r,a,a’) | a = Ap SPLIT,(R) = SPLIT,/(R)

a# Ay Vq € {q1...qn} : rename-atiribute(q, a,a’)
delete-relation(r) Vq € {q1...qn} : delete-relation(q)

rename-relation(n, n')

SPLITg, (N) = SPLITq, (N')

SIf this update leads to a tuple with all NULL-values in an output relation, the tuple must be deleted.

Figure 7: Propagation Rules for Q=SpLiT,,(R)
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[ Input Change | Conditions and Variable Bindings | Propagation
insert into Q (ai,...,an,ap)
add-tuple (rz,1) values (t[ai,...,an],"z)

delete from Q

delete-tuple (rz,t) where ai,...,an = tlai,...,an] and
ap =g
update Q set a=c¢

update-tuple (rz,t,t') A = Ag; set t[a] to a value ¢ where ay,...,an =tla1,...,a,] and
ap =rg

A £ Ag; set t[a] from a value b to a | update Q set a=c¢

value ¢ where a =0 and ap =7
add-attribute(r, a) add simultaneously to all R; add-attribute(q, a)

otherwise invalid view
delete-attribute(r, a) delete simultaneously from all R; delete-attribute(q, a)

otherwise invalid view
rename-attribute(r, a,a’) rename simultaneously in all R; rename-attribute(q, a,a’)

otherwise invalid view
add-relation(rg, S) no change (until first add-tuple to Ry)
delete-relation(rg) delete from Q where ap = rg
rename-relation(n, n') UNITEq, ({R1,--.,N,..., Rn}) =

UNITEq, ({R1,...,N',..., Rn})

Figure 8: Propagation Rules for Q=UNITE,, (Ry, Rz, ..., Ry)"

"Note that rz is the name of Relation Ry, which is one of the n relations of equal schema that are united by the UNITE-
operator.

Inspection of the update propagation tables shows several properties of our algorithm. For example, the
view becomes invalid under some schema changes or data updates, mainly if an attribute or relation that
was necessary to determine the output schema of the operator is deleted (e.g., when deleting the pivot or
data attribute in UNFOLD). In the case of rename-schema changes (e.g., under rename-relation in FOLD),
some operators change their parameters. Those are simple renames that do not affect operators otherwise.

In those cases we denote renaming by =-. The operator will produce a zero-element output sequence.

3.4.3 Formalization of the Propagation of Updates

A formalization of the propagation of updates is extensive and lacks the conciseness of the propagation tables
given in this section. Therefore, we will only give an example of how such a definition could be accomplished.
We will consider the propagation of add-tuple through UnroLD (Fig. 9):

Using the notation from Section 2.2.3, assume a relation R = (Ng, Sk, Er) with n attributes that is the
input for an operator () = UNFOLD,, q,(R) producing an output relation @ = (Ng, Sq, Eq) with n —2 +k
attributes and an update to R, denoted by Agr = t[ai,...,an,ap, aq] = (T1,-..Tn, Tp,q). Let A* be a set
of the k distinct values in A, (the pivot attribute, see the definition of UNFOLD in Sec. 2.2).

The propagation of this update is shown in Fig. 9.

The structure (Eg \ 71)® in the figure® is constructed by adding an attribute to Eg \ Th, i.e., (Eg \ T1 C
Dy X ... x Dpyg) = ((Eg\ T1)® C Dy x ... X Dyyy, x Dg) with all data values in this new attribute set to
NULL (L). Note that the output relation becomes invalid iff an update is inserted into the input relation

that agrees in ay, ..., ap, ap with an existing tuple (similar to a key violation).

8We use the symbol \ to denote set-difference.
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T et

T

T

ErUAR a tuple-add

ARrlap) the pivot-value of the new tuple

{t € Eg | tla1,...,an,ap] = Aglai,...,an,ap]} find out if added tuple exists in Eg
0 if To £ 0 key violation
So if v e A* note that k = |A*|
(@1,...,an,07,...,a5,ap) otherwise schema change if necessary

{t € Eg | tla1,...,an) = Arlai,...,as]} the matching tuples in the output relation
{t € Ty | t[v] < Arlad]} set pivot attribute to value in data attribute

{tlai,...,an,af,...,a},ap] | tlar,...,an,ap] < Agla1,...,an,,aq); tla}] «+ L}
ifTy =10
if new row in output table, construct new tuple, fill unused attributes with NULL
{tlai,...,an,af, ..., a5, ap] | tlar,-..,an,af,...,a;] € T1; tlap] < Agrlaq]}
otherwise
L just set appropriate value
0 if T # 0
(B \T1)UT, ifveA” no schema change
(Eg \ Th)® UTs; otherwise an output schema change

Figure 9: Propagation of add-tuple(Ag) through an UNFOLD-Operator



3.5 Update Propagation Example

Fig. 10 gives an example for an update that is propagated through the SchemaS(@L-algebra-tree in Fig. 2
(see also Fig. 15). All updates are computed by means of the propagation tables in the previous section.

The operators appear in boxes with their output attached below each box (SQL-statements according

OR: add-tuple to LH (input change)
[ Destination [ Business | Economy |

[Berlin [ 1400] 610 |

U
insert into TMP_REL_0001
values (’LH’,’Berlin’,1400,610);

fr
+

Legend
updates
SQL-statements
applied to
output relation

OV : add-relation BERLIN, then
add-tuple to BERLIN
(output change)

[Type [ BA] LH]
[ Economy [ null | 610 |

T
create table BERLIN; (like LONDON)
insert into Berlin

values (’Economy’,null,610);

J( operators

Ow1: add-tuple to TMP_REL_0001 insert... queries Owa: add-tuple to TMP_REL_0004
[Airline [ Destination | Business | Economy | Ee"e'atect' [Type  [Destination]| BA] LH|
= y operator =
[CH [ Berlin [ 1400 | 610 | tables data updates [ Economy [ Berlin [null T 610]
generated
wa: | FOLD 1ype, Price, { Business,Economy} |
insert into TMP_REL_0002 wa:
values (’LH’,’Economy’,’Berlin’,610); insert into TMP_REL_0004
insert into TMP_REL_0002 values (’Economy’ ,’Berlin’,null,610);
values (’LH’,Business’,’Berlin’,1400);
1
w3

Owyz: 2 add-tuple to TMP_REL_0002 STANDARD-SQL

Ows: add-tuple to TMP_REL_0003

[Airline | Type [ Destination [ Price | select * from w3 PRI :
[CH [ Economy | Berlin | 610 ] =| tmp_rel.0002 |- [Airline [ Type | Destlnatlc?n [ Price |
[CH | Business | Berlin | 1400 | where price [CH [ Economy | Berlin [ 610 ]

<= 1100;

Figure 10: Update Propagation in the View from Figure 2. See Section 3.5 for explanation.

to our update tables in [KRO1]). The actual tuples added by these SQL-statements are shown in tabular
form. The sending of updates to another operator is denoted by double arrows (1), while single arrows (1)
symbolize the transformation of SQL-statements into updates. We are propagating an add-tuple-update to
base relation LH. Algorithm propagate Update will perform a postorder tree traversal, i.e., process the deepest
node (UNITE) first, and the root node (SpLIT) last. The operators are denoted by w; through ws, in order of
their processing. First, the UNITE operator propagates the incoming update into a one-element sequence dw,
of updates which is then used as input to the FoLD-operator. The FOLD-operator propagates its input into
a two-element sequence Qws, sent to the StandardSQL-operator. This operator then propagates each of the
two updates separately, creating two sequences Ows, and Ows,, with 1 and O elements, respectively. Recall
from Section 3.3 that in the case of more than one update sequence being created by an operator, those
sequences can simply be concatenated before the next operator’s propagation is executed, yielding dws. Since
one update is not propagated due to the WHERE-condition in the StandardSQL-node, we have ws = Jws, .
UNFOLD now transforms its incoming one-element update sequence dws into another one-element sequence
Owy4 which becomes the input for the SPLIT-operator. This operator finally creates a two-element sequence,
consisting of an add-relation schema change followed by an add-tuple data update. This sequence is the final
update sequence OV which is applied to view V, leading to the new view V' equivalent to the view obtained
by recomputation.
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3.6 Grouping Similar SchemaSQ@QL Updates in Batches

Certain updates in our strategy are transformed by some operators into update sequences 0 in which all the
updates are similar. This gives an opportunity for optimization on our update propagation strategy.

For example, a FoLD-node can transform a single schema change (such as a attribute-delete) into a
sequence of data updates (such as a sequence of tuple-deletes). An inspection of the update propagation
tables in this section shows that, typically, such a sequence consists of similar updates. Consider the example
in Fig. 10, where a deletion of attribute Business in relation TMP_REL_0001 would lead to a sequence of delete-
tuple updates of all tuples in TMP_REL_0002 that have the value Business in the attribute Type. A simple
way of executing all those updates efficiently using SQL would be to issue a query such as delete from
TMP_REL_0002 where type=’Business’. Thus, instead of propagating all individual tuple updates using
some delta relation, as done in traditional view maintenance, we instead propose to abstract this sequence
of updates into an SQL update statement and push the complete statement through the algebra tree.

We have identified two classes of such batched updates that occur frequently as outputs of our propagation

strategy, as described below.

Definition 4 (Batched Update) A batched update is a sequence of SchemaSQL updates, denoted by 0,

which adheres to one of the following structures:

e 0 consists entirely of delete-tuple-updates to the same relation R, with equal schema and a set of
attributes ay ...a, whose values are a unique identifier for each tuple in O (i.e., form a key). We

denote such a sequence by
delete-tuple-batch(r, cond(ay,c1), . .., cond(ag, ci))

with cond(a;,c;) o condition selecting tuples t € R that have value ¢; in attribute a; (t[a;] = ¢;).
This represents a set of delete-tuple statements on the output relation R that could be generated by an
SQL-delete statement with the WHERE-conditions a; = cq,...,a = Cx.

e 0 consists entirely of update-tuple-updates to relation R. All update-tuples have equal schema. Pa-
rameters are a single attribute b with (unique or duplicate) values, and a function f between the old

and new values of another attribute a in each tuple. We denote such a sequence by
update-tuple-batch(r, a, f, b, c)

with a,b denoting attribute names, f denoting a function over the domain of the attribute with name
a (that is, f : Dy — D,), and ¢ denoting a constant. This represents a set of update-tuple updates
affecting every tuple t for which the value of attribute b is ¢, by changing the value t[a] to f(t[a]), i.e.,
Vit € R s.t. t[b] = ¢ : tla] < f(t[a]). In words, the update update-tuple-batch(r,a, f,b,c) means “in
relation r, set a = f(a) where b = ¢”. Note that for simplicity, we are restricting batched updates to a
single WHERE-condition.

With this definition of batched update, the above example can now be represented as delete-tuple-batch
(TMP_REL_0002, cond(type, 'Business’)).
We do not define insert-tuple batches since we consider only single data updates or schema changes

entering our algebra tree, and such updates will never be transformed into larger “batches”. In particular,
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adding an attribute or a relation in a base table means adding an empty structure containing no data. As
only structures with matching schemas (i.e., attribute of a matching data type or relations with a matching
set of attributes) can be added to the information space, the only new information to the system is the name
of the new attribute or relation, respectively. Thus, such updates do not lead to batches of updates, and in
fact often do not lead to any updates on the view extent at all.

Batches of schema-changes are also not useful because meaningful schema-change batches do not occur in
our context. Inspection of the update tables in this section shows that, with the exception of the SPLIT node,
propagation of schema changes always leads to a single schema change, not sequences of related changes.
In the case of the SPLIT-node, any resulting “batch” of schema changes will lead to changes across several
relations, an operation that cannot be optimized using our batched-approach and SQL-statements.

As mentioned above, the main benefit of batched updates lies in a possible optimization of the imple-
mentation of our update propagation strategy. Since some operators generate batches of related updates,
considering batches as types of updates and propagating those through the algebra tree just like single updates
could lead to performance improvements of the system. For an example, consider again Fig. 10 and an up-
date delete-attribute(TMP_REL_0001, Business) as input to the FOLD-operator. Setting n = |TMP_REL_0001],
this update in the current strategy would lead to a propagation of n single delete-tuple updates, whereas a
treatment of all those updates as a batch would require the propagation of only one update, namely delete-
tuple-batch(TMP_REL_0002,cond(type, Business')). Figures 11-14 show the propagation tables. As before,
the input table is denoted by R (with name ) and the output table by ¢ (with name ¢). The remaining
syntax follows Def. 4.

Input Parameters Conditions Propagation
Change
delete- (r, cond(a, c)) a=ap delete-attribute(q,c)

tuple-batch

foreach a € A*
update Q

set a = NULL
where a =c¢

a = Qaq,
A* unchanged

other delete-tuple-batch
(g, cond(a, c))
(r, cond(a1,c1),..., delete-tuple-batch
cond(an, cn)) (g, cond(a1,c1), ..., cond(an,cn)
update- (r,a, f,b,¢) f(v) = cnew | rename-attribute(q,c,Cnew)
tuple-batch (a constant
function),

a=b=ap

a=aq,b=ap update Q set [c¢] = f([c])

or

update-tuple-batch

(g, ¢, f, null, null)

foreach v € A*
update-tuple-batch(q, v, f,b, c)

a:ad,b7£ap

Figure 11: Batched Update Propagation Rules for Q=UNFOLD g, 4, (R)

4 Correctness

Our update propagation strategy is equivalent to a stepwise evaluation of the algebraic expression constructed
for a query. Each operator transforms its input changes into a set of semantically equivalent output changes,

eventually leading to a set of changes that must be applied to the view to synchronize it with the base
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Input Parameters Conditions Propagation
Change
delete- (r, cond(a, c)) a € A* delete frim Q _
where ap = a and aqg =c¢
tuple-batch
other delete-tuple-batch
(g, cond(a, c))
(r, cond(ai,c1),- .-, delete-tuple-batch
cond(an, cn)) (g, cond(ai,c1), ..., cond(an,cn)
update Q
update- (r,a, f,b,¢) a€ A* be A* set aq = f(aq)
tuple-batch where ap =a and b=c
other update-tuple-batch(q, a, f,b, c)

Figure 12: Batched Update Propagation Rules for Q=FOLD 4, 4,4~ (R)

Input Parameters Addtl. Condi- | Propagation
Change tions
delete- (r, cond(a, c)) a=ap del-relation(q,c)

tuple-batch

foreach g € A*
update ¢

set g.ag = NULL
where q.aq =c

a = agq,
A* unchanged

other foreach g € A*

delete-tuple-
batch(q, cond(a, c))

(r, cond(a1,c1),. .., foreach g € A*
cond(an, cn)) delete-tuple-batch
(g, cond(a1,c1), - .., cond(an,cn)
update- (r,ap, f,b,co1q) With | b=ap rename-relation(co1q ,Cnew)

tuple-batch | f(v) = cnew (a con-
stant function)

b# ap, a € A* foreach g € A*
update-tuple-batch(q, a, f,b, c)

Figure 13: Batched Update Propagation Rules for Q=SpLIT ,,(R). Note that A* = {q1,q2,...,qr} is the
set of output relation names.

Input Parameters Addtl. Condi- | Propagation
Change tions
delete- (re, cond(a, c)) 3ziizeafrimra and a4 = ¢
tuple-batch P ®
update Q
update- (re,a, f,b,c) a € A* set a = f(a)
tuple-batch where ap =7, and b=c

Figure 14: Batched Update Propagation Rules forQ=UNITE , (R, R, ..., R,)
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Ry >UNITE %{FOLD %{smdard-sm %UNFOLD% SPLIT
v
X1 Xo X3 X4

Figure 15: A SchemaSQL Algebra Tree.

relation change. In this section, we will show that this strategy leads to correct update propagation. Recall
that we denote an update sequence applied to relation R by 0R. We will use the notation R for the input
relation and @) for the output relation throughout this section.

Before we prove the correctness of the algorithm, we state some observations: The structure of the algebra
tree for a view depends only on the query, not on the base data [LSS99]. The only changes to operators
under base relation updates are possible changes of parameters (schema element names) inside the operators;
an algebra operator can not disappear or appear as the result of a base update. However, the entire view
query may be rendered invalid, for example under some delete-relation-updates.

Furthermore, an inspection of the update propagation algorithm (Fig. 4) shows that the propagation
of any single base relation update occurs strictly along a path in the algebra tree, strictly from a leaf to
the root. That is, only SchemaSQL algebra operators along the single path from the updated base relation
to the root are affected by an update. This is in contrast to SQL view maintenance, where maintenance
queries to related sources are necessary for some operators. The four SchemaSQL operators do not combine
input relations in a way similar to an SQL-join, so that maintenance queries to other branches of the algebra
tree are not generated by the SchemaSQL operators. For correctness of standard SQL maintenance queries
(which only occur for some operators such as join), we rely on well-known related work.

Let us label the output relations of each operator along the path of update propagation with X,..., X,
in ascending order from the operator closest to the leaf to the operator closest to the root of the algebra tree.
In Fig. 15, we have labeled the output relations of each operator (Xi,...,X4), as well as the base relations
(R1, Rz) and the view (V).

We first prove correctness of operators and then show the overall propagation scheme to be correct.

Theorem 1 (Correctness of Incremental Propagation for Individual Operators) Let

w € {UNITE, SPLIT, UNFOLD, FOLD, 7,0, X} be a node in a SchemaSQL algebra tree. Let R be the input
relation(s) for w and Q = w(R) be its output relation(s). Furthermore, let AR be a data update or schema
change to R, transforming R — R' and Qgrec the output relation of w after recomputation. Applying the
rules from the update propagation tables Figs. 5-8 and Section 3.4.1 for w and AR will generate a sequence
of updates defined on the node’s output relation (denoted by 0Q), see Def. 2) that transforms Q — Qc, with

Qine = Qrec.

Proof: The proof is given by inspecting the update propagation tables, Figs. 5-8, and comparing their
output with the expected output after recomputation for each case. Due to space constraints, we can only
give two examples for such comparisons as a proof idea. Consider the propagation of a delete-tuple data
update in the FoLD-operator (Fig. 6). Let a relation R be folded by @) = FOLDg, 4, 4+ (R). Now consider the
relation R’ = R\{t}, with tuple ¢ deleted. Note that ¢ has up to |A*| non-null values in its data attributes
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(i.e., in attributes whose names are in A*). For each of those non-null values, the pre-update output relation
) contained a separate tuple which now has to be deleted. Therefore, after recomputation, the FOLD-
operator produces an output relation @’ that differs from @) in that it has up to |A*| tuples less. All those
missing tuples have as a common feature that they agree in the values of their attributes ay,...,a, (i-e., all
attributes except the ones in A*) with the deleted tuple. This is precisely what the update propagation rule
(line 2 of Fig. 6) accomplishes by deleting all tuples with that condition.

Let us also consider the propagation of the delete-attribute schema change in FOLD (line 5 of Fig. 6).
Recomputation of the operator yields a Q' that differs from ) in one of two ways: if a data attribute A
(a € A*) in R is deleted, all tuples whose values in A, correspond to the name of A are missing from @Q'. If
a non-data attribute is deleted from R, the attribute in @’ that has the same name as the deleted attribute
in R is deleted. In both cases, the update propagation rules change @) in exactly that way.

The remaining operators and cases can be verified in a similar fashion. |
The following corollary is immediate since if an update sequence correctly transforms a relation, it must also
be valid (Def. 3) on that relation.

Corollary 1 The propagation of any update defined on input relation R through an operator w will produce

a valid update sequence for output relation Q.

Theorem 2 (Correctness of SchemaSQL View Maintenance) Let V be a view defined over the set of
base relations Ry, ..., Ry, and AR, € {DU,SC} an update applied to one relation R,, (1 <u <p). Let R;,
be the relation R, after the application of AR, and Vggc be the view after recomputation. Furthermore, let
the SchemaSQL View Maintenance Algorithm as defined in Section 3.3 produce a change sequence OV that

. ) ) . PR
transforms view V into view Vi\c. Then, Ve = Vine-

Proof: Let n be the number of intermediate relations X; affected by an update (along the path from R,
to V). We want to prove that recomputation generates the same intermediate relations (and therefore the
same view relation) as incremental updating, i.e, Vi (1 <@ < n): (X])rec = (X})inc and thus Vige = Vine-
The proof is by induction over X; for i =0...n + 1. Set Xg = Ry, (X, 1)rec = Viee, (X 41)ine = Vine-

Base Case: The base case for i = 0 is trivial. R] is the same relation, whether the algebra tree is
recomputed or incrementally updated, i.e., (X{)rec = (X{)inc = R,.

Induction Hypothesis: (X} )rec = (X},)inc (B > 0).

Induction Step: It is to show that (X} ,)rec = (X} )inc.

Since by hypothesis, (X}, )rec = (X},)inc, there must exist an update sequence 90X}, that correctly trans-
forms X}, to X, (and must therefore be valid on X}). Let us denote the operator whose input table is
X, by wy and let m = |0X|. By Thm. 1, any single valid update to any relation is correctly propagated
through any one operator, in the sense that recomputation of the operator will yield the same result as
incremental propagation. If m = 1, the induction step is thus proven. For m > 1, a valid sequence of
m updates on X will trigger a sequence of incremental propagation steps in wy. This will cause wy to

transform Xy into a sequence of m intermediate (temporary) relations (X (1) ne - -+ (X é’ﬂ{).Nc, each of

k+1
which is equivalent to the corresponding state (Xlgi-)l)REC’ e, (XIETDREC that could be reached by recom-
puting wy, after each update. Note that X,E:'_q = X}, After application of all m updates to Xj1 we have
X = (XIETDINC = (X,gTI)REc, or (X;,1)ine = (X yq)rec. If any valid sequence of updates gets propa-
gated correctly, the sequence 90X}, (valid by Corollary 1) in particular must also be correctly propagated, i.e,

produce a relation (X; ,,)inc with (X;_,)inc = (X} )rec. q.e.d. a
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5 Implementation

5.1 SchemaSQL Query Engine

The update propagation strategy described in this paper has been implemented in Java on top of a Schema-
SQL query evaluation module also written by us. This query engine was built along the lines of [LSS99]. Our
code first parses SchemaSQL queries (using JavaCC), then builds an algebra tree out of the parsed query,
and finally evaluates the query result through a postorder traversal of that tree, computing the output of
each algebra node as it is visited (cf. Fig. 16). The next node then reads its child node’s temporary relation
to compute its output. For this prototype implementation, each node temporarily stores its output through
JDBC in the query engine’s “local” relational database (Oracle 8) as keeping relations in memory only incurs
limitations on the size of input relations and also would have required us to reimplement significant parts of
relational query technology. For performance reasons, all intermediate nodes in the algebra tree share one
JDBC-connection to the local database.

The implementation of the query engine uses pure Java and JDBC-connections to several instances
of Oracle 8. We use standard SQL DDL and DML statements (select, insert, delete, update and
statements for schema change operations like alter table) for all queries—thus making full use of the
source database’s SQL query evaluation capabilities. We do not use any system specific functions other than
simple schema changes. A wrapper class (which we have also successfully implemented for Microsoft’s Access)
makes differences in the syntax of schema change operations transparent. Therefore, the implementation is
independent of the database used.

To improve performance and simplify our code, our implementation attempts to use as much of the
SQL query capability as possible, in particular by extracting standard SQL out of the SchemaSQL query
and evaluating it in a single StandardSQL-node, which simply executes its stored SQL-statement against
the local SQL-database. The SchemaSQL query engine currently does not perform or utilize any query
optimization strategies other than those provided by the underlying SQL query engine when executing

queries against the local database.

5.2 Incremental Update Propagation

To perform update propagation in the manner described in this paper, we added update propagation
capabilities to each algebra operator class (UNITE, FoLD, UNFOLD, SpLIT, StandardSQL). A method
propagateUpdate () in each node accepts one update and returns a list of (data and/or schema) updates
which represent the result of the update propagation. Then, we added code for the propagation of the
output updates of each operator to its parent. Thus, the same code that performs the postorder traversal
of the operator tree for the initial materialization of the view can now also perform the incremental update
propagation, by simply calling the update propagation method instead of the materialization method on
each node and recursively using each operator’s output as the input for the parent operator.

Updates were modeled into a small class hierarchy consisting mainly of the classes SchemaUpdate and
DataUpdate. Each node in the algebra tree is now extended by the ability to propagate all such updates.
The current code does not support batched updates.

Fig. 16 shows the architecture of our system.
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SchemaSQl View Definition

create view AIRLINE (DEST, X)
as select (DEST, Y.PRICETYPE)
from AIRLINES Y

User Application

>
Local
RDBMS

Middleware

Query Resul: Queries

Updates
_RDBVS | | RDBMVS | | RDBMS |

* One instance of this module for each node in algebra tree

Figure 16: The Architecture of the SchemaSQL View Maintenance System

6 Performance Evaluation

6.1 Experimental Setup
6.1.1 Performance-Relevant Factors

As explained in this paper, SchemaSQL update propagation is significantly different from traditional incre-
mental view maintenance. Major differences are the transformation of data updates into schema changes
and vice-versa, the need for the propagation of base schema changes, and the propagation strategy based
on propagating an update through an algebra tree rather than computing delta-queries against the base
relations.

To assess the influence of those issues on performance, we executed a number of experiments on our
prototype. We are reporting some of the results in this section. For the experiments described here, we

focused on the following factors contributing to SchemaSQL update propagation performance:
e the type of update (data update or schema change) at the base relations;

e the transformation type of the update (i.e., the type, data update or schema change, into which a base

update is propagated);

e the selectivity of conditions in the view query that determines the size of the view relative to the sizes

of the base relations;

e the size of base relations.

6.1.2 Schema and View Queries

If not stated otherwise, all our experiments use the following view query, over the same base schema as in

our running example (Fig. 1):
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create view CITY(Type, AIRLINE) AS
select PRICETYPE, FLIGHT.PRICETYPE
from -> AIRLINE,
ATRLINE FLIGHT,
AIRLINE-> PRICETYPE,
FLIGHT.Destination CITY
where PRICETYPE <> ’Destination’
and AIRLINE like ’AIRLINE}’
and FLIGHT.PRICETYPE <= ’1101’;

The output schema of this query, considering the input schemas from Fig. 1, consists of two relations
Business and Economy which both have the schema (Destination,AIRLINE_1,..., AIRLINE_K), with one attribute
named AIRLINE_X for each relation named AIRLINE_X in the input schema. The output schema may change
during an experiment.

The base data was generated from a list of strings (representing city names), augmented by random
numbers representing “flight prices”. Those numbers were generated using uniformly distributed random
numbers in a certain range. The base relation sizes and distribution of updates are described with each
experiment.

Since we have multiple output relations, we need to extend the concept of view size to multiple relations.

We thus define the view size to be the sum of the sizes of all output relations.

6.1.3 Measurements and System Parameters

The test system was a Pentium II/400 running Linux and Java 1.2.2. Database connectivity was achieved
through JDBC. The databases used for our tests (local database and information source) were two instal-
lations of Oracle 8i, running on a Pentium 233 under Windows NT and a 4-processor 300MHz DEC Alpha
under DEC OSF1, respectively.

For our experiments, we measured the total execution time of the initial materialization of the view
(for control purposes, not shown in the chart), then the time for a number of updates, depending on the
experiment, and finally the time for a recomputation of the view extent. The times were measured by
comparing the system time before and after executing update propagation or recomputation, i.e., they
include system, user, and I/O time.

6.2 Deleting Base Relations of Different Sizes

In our classification of updates (Section 3), inserting a table implies inserting an empty table. The data would
have to be added in subsequent data updates. Therefore, inserting (and also renaming) schema elements
leads to relatively simple propagation results, as the information content of the database does not change
much under such updates. Therefore the experiments reported here concentrate mainly on the deletion of
schema elements (attributes, relations), as well as on the insertion and deletion of data. We will report on
view maintenance time both with and without the optimization of batched updates (Sec. 3.6).

We ran the above query over a schema containing four base relations (representing four different airlines)
with approximately 100, 200, 300, and 400 tuples, respectively. We then deleted each of those base relations
and compared the time for incremental update propagation with the time for recomputation after a base
relation was deleted. After each deletion and measurement, the original information space was restored.

With the above query, the original view extent had two relations Business and Economy with 378 and 444
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tuples, respectively and decreased roughly proportionally after deletions of base relations. Fig. 17 shows the
times measured.

Without the batched-update optimization, deleting a base relation R in a query like above will result
in the creation of approximately |R| updates inside the operator tree. Therefore, deleting larger relations
takes longer than deleting smaller relations. On the other hand, recomputation time will decrease with
larger sizes of the deleted relation, as the resulting view extent has less tuples. The crossover point between
view maintenance and recomputation is at about a base size of 225, i.e., deleting a relation of more than
225 tuples (about 25% of the view size) will take longer than recomputing the view. This means that our
update propagation strategy will perform better than recomputation for tuple-wise deletions of up to 25%
of the entire information space. Propagating 225 delete-tuple updates will have a smaller total execution
time than a single recomputation of the view. On the other hand, this experiment shows that a single input
update (in this case a delete-relation update) can be very expensive as it may lead to many updates in the
view extent. On the other hand, when using batched updates, the deletion of a base relation translates into a
batched update, which is then propagated as far as possible as a batched update as well. In the case of this
particular query, the deletion of a relation can be propagated through the UNITE, FOLD, and StandardSQL
nodes as a delete-tuple-batch, and is then turned into a delete-attribute update in the UNFOLD-node (cf. the
propagation table in Sec. 3.6). This explains the very low update propagation time for the delete-relation

schema change in this case.
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Figure 17: View Maintenance and Recomputation Times vs. Size of Deleted Base Relations

We also ran the same set of updates under the view query from our running example (Fig. 1), which
creates one output relation for each unique destination in any of the input relations. Given that the input
tables contain a large number of unique destinations (cities), many output tables are generated, at worst
one output table per tuple in each base relation.

Note that in this case, the deletion of a base relation eventually leads to one delete-attribute schema
change per output relation, so deleting a base relation with 200 tuples will first lead to the propagation of
200 delete-tuple updates, propagated to one output relation each, and then to many delete-attribute schema

changes—exactly one for each output relation. The experiment shows that in this case, which incurs many
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schema changes in the output relations, a recomputation has a performance advantage over the unoptimized
incremental update propagation. However, with batched updates, significant performance benefits can be
realized that make incremental view maintenance almost as fast as recomputation. Figure 18 shows the
results of this experiment. The incremental view maintenance still takes significant time since many schema

changes still have to be executed on the output relations of the view.
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Figure 18: View Maintenance and Recomputation Times for a View with Many Relations

6.3 Deleting Tuples from Base Relations

In this experiment (Fig. 19), we delete a sequence of random tuples from the base schema and measured
the cumulative propagation time. For our chart, we numbered the updates by consecutive numbers i. The
cumulative propagation time for update i is the sum of the propagation times for all updates numbered
0...i. We also measured the time to recompute the view after the entire update sequence was executed.
This experiment shows again that in our schema, the crossover point between incremental maintenance and
recomputation is at roughly 200 tuples, i.e., after 200 updates, recomputation of our view (with view size
888) would become more efficient. The view size is the major factor determining the recomputation time for
a view, whereas the time for incremental propagation of a single data-update mainly depends on the system
implementation, i.e., is roughly constant for our implementation and test environment. The average time to
propagate a single update can be estimated from the slope of the curve in Fig. 19 to be about 285ms, which
is a value depending mainly on the size of the tuples propagated.

From those facts, it can be concluded that the ratio between the number of propagated updates at the
crossover point and the view size is a system constant depending only on the implementation, i.e., we expect
that recomputation of a view will take roughly the same time as the incremental propagation of the deletion
of a certain percentage of the view’s tuples. In our experiment, this ratio was about 1/4 (a crossover point
of 200 for a view with roughly 800 tuples).

Note the jump in the incremental maintenance time at the end of the curve. This time represents a data
update that led to a schema change in the output relation. The reason is that the last tuple from a base

relation was deleted which led to a delete-attribute change in an output relation.
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Figure 19: Deleting Tuples from the Input Schema

6.4 Deleting Tuples Leading to Schema Changes

In this experiment, we wanted to assess the difference in propagation time of the same updates, depending
on whether these updates lead to data updates or schema changes in the view. Schema changes actually
executed on a relation database are slow operations. Therefore, the expectation is that an update propagation
(including the application of those updates against a database) that leads to a schema change will be slower
than an update propagation leading to only a data update in the view.

Thus, in this experiment we are deleting tuples from the base schema. This time we have four base
relations R;, Rs, Rz, Ry of sizes 1, 10, 100, and 1000, respectively, but make sure that some of the updates
incur schema changes in the output schema. First, we inserted 10 tuples into relation R;, then removed
tuples from relation Ry one-by-one, until Rs was empty. This leads to a schema change in the output schema
since the corresponding attribute is removed from each output relation. Then, we removed all 11 tuples from
relation R; (incurring another schema change), followed by a removal of 10 random tuples from relation Rj.
Note that in this sequence, updates #19 and #30 lead to schema changes in the output.

We then plotted the time each update took to propagate. Note the relatively even distribution of update
propagation times around 250 ms in Fig. 20, except for two updates, which take over 2 seconds to propagate.
Those are clearly those updates that led to schema changes in the output relations. The measured update
time (if no schema change is incurred) is similar to the average time measured in Fig. 19. Again, the
propagation time for the data updates depends mainly on the tuple size, and the underlying database,
whereas the time for schema changes depends on the underlying database only (as practically no data has
to be transported).

6.5 View Selectivity

In this experiment, we measure how the performance advantage of incremental view maintenance over
recomputation is affected by the view selectivity, i.e., by the probability that a base tuple’s data will actually
be reflected in a view.

To assess the effect of different view selectivities on view maintenance times, we ran an experiment
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Figure 20: Base Updates lead to Data Updates or Schema Changes

over different selectivities in the view query. We adjusted selectivity in the range [0.02...1] by using dif-
ferent constant values for local conditions in the WHERE-clause of our query (i.e., conditions of the type
FLIGHT.PRICETYPE<=1100). We define view selectivity over our multiple-relation output schema in analogy
to view size as the ratio of the view size of the current query and the view size of a query without WHERE-
clause. For each selectivity setting, we deleted a relation with 100 tuples (10% of the input tuples) from the
base schema and measured incremental view maintenance time and view recomputation time. Fig. 21 shows
the result of the experiment. The graph shows that both incremental view maintenance time and recompu-
tation time increase with the view selectivity, which is not surprising, since in both cases more tuples have to
be processed when the view selectivity (and thus the view) becomes larger. However, the relative increase in
the incremental update propagation time is similar to the relative increase in recomputation time, meaning

that our propagation strategy will keep its performance benefits under changes of the view’s selectivity.
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Figure 21: Update Propagation under Views of Different Selectivities
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7 Related Work

The integration of data stored in heterogeneous schemas has long been an object of intensive studies. The
problem of schematic heterogeneity or different source capabilities is repeatedly encountered when attempt-
ing to integrate data. Some examples are Garlic [TAH'96], TSIMMIS [HGMI*95], and DISCO [TRV95].
Several logic-based languages have been developed to integrate heterogeneous data sources (e.g., work by
Krishnamurthy et al. [KLK91], HiLog [CKW89] or SchemaLog [GLS*97]). Some SQL-extensions have also
been proposed, such as MSQL [LAZ189] which has capabilities for basic querying of schema elements, and,
in particular, SchemaSQL ([LSS96, LSS01], see below).

Those approaches are able to overcome different classes of schematic heterogeneities. However, the
important class of schematic heterogeneities in semantically equivalent relational databases is often excluded
from integration language proposals. Miller et al. [MIR93, Mil98] show that relational databases may contain
equivalent information in different schemas and give a formal model (Schema Intension Graphs) to determine
such “semantic equivalence” of heterogeneous schemas.

The predominant approach at integrating such semantically equivalent schemas has been done by Gyssens
et al. [GLS96] and later by Lakshmanan, Sadri, and Subramanian [LSS96, LSS99]. In [LSS96], the authors
present SchemaSQ@L, which is used as the basis for our work. A more thorough treatment of the language and,
in particular, its use for aggregation, is given in [LSSO01]. SchemaSQL builds upon earlier work in Schema-
Log [GLS™97]. It is a direct extension of SQL, with the added capability of querying and restructuring not
only data, but also schema in relational databases, and transforming data into schema and vice-versa. Thus,
using SchemaSQL as a query language makes it possible to overcome syntactic (schematic) heterogeneities
between relational data sources.

A second foundation of our work is the large body of work on incremental view maintenance. After early
models for view maintenance [BLT86], many algorithms for efficient and correct view maintenance under
a variety of assumptions have been proposed. Prominent results, often taking concurrency into account,
include ECA [ZGMHW95], SWEEP [AESY97], Mohania et al. [MKK97] and the approach by Gupta et
al. [GMS93]. Those approaches follow an algorithmic approach in that they propose algorithms to compute
changes to a view.

Griffin and Libkin [GL95] consider views with duplicates, and, more importantly, follow an algebraic
approach which defines a complete and minimal set of relational algebra operators. They achieve a rigorous
proof of the correctness of view maintenance by proving the correctness of those operators and their nesting.
This is an idea that we have adopted for our work. Griffin and Libkin’s work is partly based on the algebraic
approach by Qian and Wiederhold [QW91]. Colby et al. [CGLT96] correct the state bug that occured in
earlier work by Griffin and Libkin as well as in other authors’ proposals. Our work builds on existing
incremental view maintenance literature but handles schema changes in addition to data updates. Since
SchemaSQL is able to transform data updates into schema updates and vice-versa, any operator in the
SchemaSQL algebra tree must be able to propagate both classes of updates. To our knowledge, our view
maintenance strategy is the first that achieves incremental update propagation in such schema-restructuring
views.

Another body of literature that is related to our work are performance studies on incremental view
maintenance algorithms. The work in this field is not as extensive as on view maintenance itself, but a
number of studies exist. An early paper on measuring the performance of incremental view maintenance
strategies is Hanson [Han87]. The ECA paper [ZGMHW95] contains a study on the performance of its

algorithm, but only in an analytical manner rather than actual performance studies. [MKK97] also contains
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a very simple analysis of their algorithm’s efficiency and Griffin and Libkin [GL95] give a analytical complexity

study of their algorithm but neither paper evaluates system performance.

8 Conclusions

In this paper, we have proposed the first incremental view maintenance algorithm for schema-restructuring
views in SchemaSQL. We have shown that the traditional approach at incremental view maintenance—
rewriting view queries and executing them against the source data—is not feasible for such views. We have
defined an update propagation scheme in which updates are propagated from the leaves to the root in the
algebra tree corresponding to the query and proved its correctness. Performance experiments on a prototype
of a view-maintenance-capable query engine have shown that update propagation has the expected large
benefits over recomputation of views. Lastly, we have also proposed a possible performance improvement by
the introduction of batched-update primitives. In summary, our work reports a significant step towards sup-
porting the integration of large yet schematically heterogeneous data sources into in integrated environment
such as a data warehouse, while allowing for incremental propagation of updates.

Future work includes an extension of our implementation towards such batched updates, a review of the
implementation in general with the goal of removing some of the performance obstacles (such as the use of
local relations to store intermediate data) and an extension of the implementation towards multi-databases.
Another direction of research could be the analysis of the concept presented in this paper with regard to its

usability for other data integration languages, such as XML query languages or object-relational languages.
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