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Abstra
t

The integration of data, espe
ially from heterogeneous data sour
es (ISs), is a hard and widely studied

problem. One parti
ularly 
hallenging issue is the integration of sour
es that are semanti
ally equivalent

(i.e., whose states 
an be mapped onto ea
h other by an isomorphism) but s
hemati
ally heterogeneous.

While two su
h data sour
es may represent the same information, one may store the information inside

tuples (data) while the other may store it in attribute or relation names (s
hema). The S
hemaSQL

query language is a re
ent solution to this problem powerful enough to restru
ture su
h sour
es into

ea
h other without the loss of information. However, the issue of maintenan
e of S
hemaSQL views,

on
e materialized over semanti
ally heterogeneous sour
es, has not yet been addressed. In this paper,

we propose an in
remental view maintenan
e strategy for su
h s
hema-restru
turing views. Our strategy

based on an algebrai
 representation of the view query 
orre
tly transforms a data update or a s
hema


hange to a sour
e into data updates, s
hema 
hanges, and even mixed sequen
es of s
hema and data

update requests to be applied to the view. We give a proof of the 
orre
tness of the strategy. We have

also developed a prototype implementation of both a S
hemaSQL query pro
essor and a S
hemaSQL

View Maintainer, and then used it to 
ompare the performan
e of in
remental view maintenan
e versus


omplete view re
omputation for this new 
lass of s
hema-restru
turing views. We des
ribe both the

implementation and the experiments in the paper and 
on
lude that in many 
ases in
remental view

maintenan
e in S
hemaSQL is signi�
antly faster than re
omputation.

Keywords: Heterogeneous Databases, Materialized Views, S
hemaSQL, In
remental View Maintenan
e,

S
hema Restru
turing.



1 Introdu
tion

Information sour
es, espe
ially on the Web, are in
reasingly independent from ea
h other, being designed,

administered and maintained by a multitude of autonomous data providers. Issues in data integration in
lude

the heterogeneity of data and query models a
ross di�erent sour
es, 
alled model heterogeneity [FRV95,

GRVB98, HGMI

+

95℄ and in
ompatibilities in s
hemati
 representations of di�erent sour
es even when using

the same data model, 
alled s
hema heterogeneity [MIR93, LSS96℄. Over
oming these problems is 
riti
al in

a
hieving integration of a wide variety of information sour
es. Mu
h work on these problems has dealt with

the integration of s
hemati
ally di�erent sour
es under the assumption that all \data" is stored in tuples

and all \s
hema" is stored in attributes. We will fo
us on another aspe
t of this issue in our paper, namely

on the integration of heterogeneous sour
es under the assumption that s
hema elements may express data

and vi
e versa.

One re
ent promising approa
h at over
oming su
h s
hemati
 heterogeneity is the language S
hemaSQL,

an SQL-extension devised by Lakshmanan et al. [LSS96, LSS99℄. S
hemaSQL allows to soften the distin
tion

between s
hema and data in the relational data model by allowing to query s
hema (su
h as lists of attribute

or relation names) in SQL-queries and also to use sets of values obtained from data tuples as s
hema in

the output relation. This 
on
ept leads to a versatile query language whi
h among other features allows to

transform semanti
ally equivalent but synta
ti
ally di�erent s
hemas [LSS96, Mil98℄ into ea
h other. Similar

to SQL-views, S
hemaSQL-views 
an be used to transform relational databases into whatever format is

required by a (relational) data integration system. Therefore, S
hemaSQL makes it possible to in
lude a

larger 
lass of information sour
es into an information system.

However, the issue of view maintenan
e in su
h a system is still open. View maintenan
e in a S
hemaSQL

view is non-trivial, espe
ially sin
e su
h views 
an transform data into s
hema and vi
e versa as illustrated

below. In this paper, we present the �rst in
remental maintenan
e strategy for S
hemaSQL. The strategy

works 
orre
tly not only under data updates, but also under s
hema 
hanges.

1.1 Motivating Example

Fig. 1 gives an example of a S
hemaSQL query to demonstrate the 
apabilities of this language. Note that

the two relational s
hemas in Fig. 1 are able to hold the same information and 
an be mapped into ea
h

other using S
hemaSQL queries. The view query restru
tures the input relations on the left side representing

BA

Destination Business E
onomy

Paris 1200 600

London 1100 475

LH

Destination Business E
onomy

Paris 1220 700

London 1180 500

)


reate view CITY(Type, AIRLINE) AS

sele
t PRICETYPE, FLIGHT.PRICETYPE

from

-> AIRLINE,

AIRLINE FLIGHT,

AIRLINE-> PRICETYPE,

FLIGHT.Destination CITY

where PRICETYPE <> 'Destination'

and FLIGHT.PRICETYPE <= 1100;

)

LONDON

Type BA LH

Business 1100 null

E
onomy 475 500

PARIS

Type BA LH

E
onomy 600 700

Figure 1: A S
hemaSQL Query and its E�e
ts.

airlines into attributes of the output relations on the right side representing destinations. The arrow -operator

(->) atta
hed to an element in the FROM-
lause of a S
hemaSQL-query allows to query s
hema elements,

giving S
hemaSQL its meta-data restru
turing power. Standing by itself, it refers to \all relation names in

that database", atta
hed to a relation name it means \all attribute names in that relation".
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S
hemaSQL is also able to transform data into s
hema. For example, data from the attribute Destination

in the input s
hema is transformed into relation names in the output s
hema, and vi
e versa attribute names

in the input (Business and E
onomy) are restru
tured into data.

Now 
onsider an update to one of the base relations in our example. Let a tuple t(Destination )

Berlin;Business ) 1400;E
onomy ) 610) be added to the base table LH (a data update). The 
hange to

the output would be the addition of a new relation Berlin (a s
hema 
hange) with the same s
hema as the

other two relations. This new relation would 
ontain one tuple t(Type ) E
onomy;BA ) null; LH ) 610).

In this example, a data update is transformed into a s
hema 
hange, but all other 
ombinations are also

possible. The e�e
t of the propagation of an update in su
h a query depends on numerous fa
tors, su
h as

the input s
hema, the view de�nition, the set of unique values in the attribute Destination a
ross all input

relations (
ity names), and the set of input relations (airline 
odes). For example, if a value Berlin already

existed in one of the input tables, the propagation would also depend on whether other airlines o�er a 
ight

to Berlin in the E
onomy-
lass.

In summary, a s
hema-restru
turing view must be able to propagate arbitrary data updates and s
hema


hanges that o

ur in its input. In the pro
ess of propagation, any su
h type of 
hange 
ould be transformed

into any other in the view. This situation is signi�
antly more 
ompli
ated than update propagation in the


ommon SQL views [BLT86, QW91, GMS93, GL95, MKK97, et al.℄ whi
h deals only with propagation of

data updates that are never transformed into s
hema 
hanges. This problem, to our knowledge, has not

been studied before.

1.2 Contributions

In the 
ontext of s
hema-restru
turing views, there are several new issues that we must address. First,

it is not suÆ
ient to 
onsider data updates (DUs) for S
hemaSQL, but also s
hema 
hanges (SCs). Also,

S
hemaSQL views 
an transform s
hema into data and vi
e-versa, thus requiring a framework that 
an

propagate fDU jSCg

�

! fDU jSCg

�

. As shown in this paper, using the standard approa
h of generating

query expressions that 
ompute some kind of \delta" relation � between the old and the new view after an

update is not possible for S
hemaSQL, sin
e the s
hema of � would not be de�ned.

The 
ontributions of this paper are as follows: (1) we give an algebra-based solution to the problem

of in
remental view maintenan
e of s
hema-restru
turing views de�ned in S
hemaSQL, (2) we prove this

approa
h 
orre
t by a method similar to the equational reasoning given in [GL95℄, (3) we present a prototype

implementation of a query pro
essor for a subset of S
hemaSQL and an in
remental view maintenan
e

system in Java over JDBC-
apable databases, and (4) we des
ribe experiments we have 
ondu
ted on our

implementation to gain insights into the performan
e of our algorithm.

1.3 Outline of Paper

Se
tion 2 reviews some ba
kground on S
hemaSQL, in parti
ular the additional algebra operators used in

S
hemaSQL evaluation, Se
tion 3 explains our view maintenan
e strategy and Se
tion 4 proves 
orre
tness

of our approa
h. Se
tion 5 gives a brief overview over our implementation. Se
tion 6 shows the results of

our performan
e experiments. Finally, Se
tions 7 and 8 give related work and 
on
lusions, respe
tively.
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2 Ba
kground

2.1 Notation

A value is an element of data that is stored in a relation. Examples in
lude strings, numbers, and dates. A

domain D is a set of values.

1

D

N

is the spe
ial domain of \attribute- and relation names". We impli
itly

assume that there is a bije
tive mapping from some domains to D

N

. This means that the values of some,

but not ne
essarily all, domains 
an be 
onverted to names and vi
e versa.

A relation is a 3-tuple R = (n; S;E) with n 2 D

N

(the relation name), S = (a

1

; a

2

; : : : ; a

n

) 2 (D

N

)

n

(the s
hema|a tuple of n attribute names) and E � fD

1

�D

2

� : : :�D

n

g (the relation extent, whi
h is a

subset of the 
ross-produ
t of the domains D

1

�D

2

� : : :�D

n

). Note that this de�nition asso
iates exa
tly

one value in S with ea
h domain from whi
h E is 
onstru
ted (the name of an \attribute").

A relational tuple t 2 E is an n-tuple and is an element of a relation's extent. An operator t[a

l

1

; a

l

2

; : : : ; a

l

k

℄

returns the proje
tion of t on the attributes named a

l

1

; a

l

2

; : : : ; a

l

k

. We also de�ne t[�nfa

1

; : : : ; a

n

g℄ to be

the proje
tion of t onto all its attributes ex
ept the ones named a

1

; : : : ; a

n

.

An attribute A

i

� D

i

is a multiset that is 
onstru
ted as follows: A

i

= ft[a

i

℄ j t 2 Eg, or short A

i

= E[a

i

℄.

Then attribute A

i

has attribute name a

i

. Note that we denote attributes by 
apital letters (as they are sets)

and attribute names by small letters. We extend this notation for E[a

1

; : : : ; a

k

℄ to mean the proje
tion of

extent E on the attributes A

1

; : : : ; A

k

. For readability, if we refer to attribute A of R = (n; S;E), we a
tually

mean the pair A = (a;E[a℄), with a 2 S. The term prime attribute refers to an attribute that is a member

of any key of R and the term non-prime attribute refers to an attribute that is not a member of any key of

R (
f. [Ull89℄). The distin
t-operator ha

i

i on an attribute A

i

in extent E returns the set of distin
t values

in A

i

by removing all dupli
ates from the multiset E[a

i

℄.

Fun
tional dependen
ies in R are de�ned as usual (
f. [Ull89, Chapter 7℄), with X ! A de�ning the

attribute A to be fun
tionally dependent on the set of attributes X (i.e., for any t 2 E, the value of t[a℄

depends only on t[x

1

; : : : ; x

k

℄) . Likewise, we assume the usual de�nitions of natural join ./ and 
ross produ
t

�.

2.2 S
hemaSQL

In relational databases it is possible to store equivalent data in di�erent s
hemas, as Miller et al. [MIR93℄ have

shown. It is also possible under 
ertain 
onditions to transform data in su
h s
hemas into ea
h other without

the loss of information [Mil98℄. S
hemaSQL is an SQL derivative designed by Lakshmanan et al. [LSS96℄

whi
h 
an be used to a
hieve su
h s
hema transformations.

In [LSS99℄, Lakshmanan et al. des
ribe an extended algebra and algebra exe
ution strategies to implement

a S
hemaSQL query evaluation system. It extends the standard SQL algebra whi
h uses operators su
h

as �(R), �(R), and R ./ S by adding four operators named Unite, Fold, Unfold, and Split originally

introdu
ed by Gyssens et al. [GLS96℄. Lakshmanan et al. show that any S
hemaSQL query 
an be translated

into this extended algebra.

We now de�ne the four operators used in S
hemaSQL in a 
on
ise manner. Examples for the four

operators de�ned in this se
tion 
an be found in Fig. 2. We will refer to the input relation of ea
h operator

as R and to the output relation as Q.

1

Throughout this paper, we will use 
apital letters R to denote (multi)sets and small letters a to denote elements of sets.
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BA

Destination Business E
onomy

Paris 1200 600

London 1100 475

LH

Destination Business E
onomy

Paris 1220 700

London 1180 500

LONDON

Type BA LH

Business 1100 null

E
onomy 475 500

PARIS

Type BA LH

E
onomy 600 700

+ Unite

Airline

* Split

Destination

TMP REL 0001

Airline Destination Business E
onomy

BA Paris 1200 600

BA London 1100 475

LH Paris 1220 700

LH London 1180 500

TMP REL 0004

Type Destination BA LH

Business London 1100 null

E
onomy Paris 600 700

E
onomy London 475 500

+ Fold

Type, Pri
e,fBusiness,E
onomyg

* Unfold

Airline, Pri
e

TMP REL 0002

Airline Type Destination Pri
e

BA Business Paris 1200

BA Business London 1100

BA E
onomy Paris 600

BA E
onomy London 475

LH Business Paris 1220

� � � � � � � � � � � �

=)

Standard-SQL

sele
t *

from tmp rel 0002

where pri
e <=

1100;

TMP REL 0003

Airline Type Destination Pri
e

BA Business London 1100

BA E
onomy Paris 600

BA E
onomy London 475

� � � � � � � � � � � �

Figure 2: The Four S
hemaSQL Operators Unite, Fold, Unfold, Split.

2.2.1 Unite

This operator is de�ned on a set of k relations R

�

= fR

1

; : : : ; R

k

g with a

p

as an argument. We de�ne a

set N

�

= fn

R

1

; : : : ; n

R

k

g, whi
h is the set of all relation names in R

�

, in the new domain D

p

. We further

denote by N

k

the relation R(n;E; S) with N = n

k

. Then, for ea
h R

i

, we assume S

R

i

= (a

1

; : : : ; a

n

) and

E

R

i

� fD

1

� : : :�D

n

g. Note that this implies that all R

i

have the same s
hema. The output of the Unite

operator is then one relation Q = Unite

a

p

(R

�

) with:

E

Q

� fD

1

� : : : � D

n

� D

p

g and S

Q

= (a

1

; : : : ; a

n

; a

p

) with E

Q

=

S

n

k

2N

�

(N

k

� fn

k

g). Note that N

k

appears both as a relation (N

k

) and a relation name (n

k

). In words, a new relation is 
onstru
ted by taking

the union of all input relations and adding a new attribute A

p

whose values are the relation names of the

input relations.

In Fig. 2, the Unite-operator is de�ned over the set of relations BA, LH and has the attribute name

Airline as its argument.

2.2.2 Fold

The Fold-operator works on a relation R = (n

R

; E

R

; S

R

) with

E

R

� fD

1

� : : :�D

n

�D

d

� : : :�D

d

| {z }

k times

g

and S

R

= (a

1

; : : : ; a

n

; a

n+1

; : : : a

n+k

) and takes as arguments the names of the pivot and data attributes a

p

and a

d

in its output relation. Note that this de�nition requires that k attributes of R have to be of the same

domain. With R having n+ k attributes, we then de�ne:

Q = Fold

a

p

;a

d

(R) = (n

Q

; E

Q

; S

Q

) with n

Q

= n

R

, E

Q

� fD

1

� : : : � D

n

� D

d

� D

p

g and S

Q

=

5



(a

1

; : : : ; a

n

; a

d

; a

p

). We de�ne A

�

= fa

n+1

; : : : a

n+k

g as a set of values in a new domain D

p

where the

values are obtained by the above-mentioned 
onversion of attribute names into data values. Finally, E =

S

a

k

2A

�

(R[a

1

; : : : ; a

n

; a

k

℄� fa

k

g). In words, the operator takes all data values from the set of related at-

tributes, and sorts them into one new attribute a

d

, introdu
ing another new attribute a

p

that holds the

former attribute names. Note that, sin
e a

p

be
omes part of a key for a

d

, it has to be in
luded in the set X

for any fun
tional dependen
y X ! A

d

.

In Fig. 2, the Fold-operator is de�ned on relation TMP REL 0001 and has the arguments a

p

= Type; a

d

=

Pri
e; A

�

= fBusiness,E
onomyg.

2.2.3 Unfold

The Unfold-operator is the inverse of Fold.

The Unfold-operator on a relation R = (n

R

; E

R

; S

R

) with E

R

� fD

1

� : : : � D

n

� D

p

� D

d

g and

S

R

= (a

1

; : : : ; a

n

; a

p

; a

d

) takes two arguments a

p

; a

d

whi
h are attribute names from S

R

. To simplify the

notation and without loss of generality, we reorder the attributes in R (by ex
hanging the indi
es on both

S

R

and E

R

a

ordingly), su
h that A

p

and A

d

be
ome the last two attributes in R. We 
all A

p

the pivot

attribute and A

d

the data attribute. Let R have n+ 2 attributes. Let us further impose two 
onditions on

fun
tional dependen
ies in R: (X ! Y ) ) A

d

62 X and 9(X ! A

d

) with A

p

2 X . That is, A

d

must be

non-prime, A

p

must be prime and A

d

must depend on A

p

. We also set A

�

= RhA

p

i (the set of distin
t

values in A

p

), k = jA

�

j and impose a total order on A

�

to assign an index 1 � i � k to ea
h of its elements

(A

�

= fa

�

1

; : : : ; a

�

k

g).

Then, Q = Unfold

a

p

;a

d

(R) = (n

Q

; S

Q

; E

Q

) with N

Q

= n

R

,

E

Q

� fD

1

� : : :�D

n

�D

d

� : : :�D

d

| {z }

k times

g

and S

Q

= (a

1

; : : : ; a

n

; a

�

1

; : : : ; a

�

k

). The extent is 
onstru
ted by E

Q

= E

R

[a

1

; : : : ; a

n

℄ ./ E

1

./ : : : ./ E

k

with

E

i

= ft[a

1

; : : : ; a

n

; a

d

℄ j t 2 E

R

^ t[a

p

℄ = a

�

i

g.

In words, the s
hema of Q 
onsists of all attributes in R ex
ept the data and pivot attribute, plus one

attribute for ea
h distin
t data value in the pivot attribute. Then, ea
h tuple t

0

in Q is 
onstru
ted by taking

a tuple t in R and �lling ea
h new attribute A

i

with the value from attribute A

d

in a tuple from R that has

the name a

i

as value in A

p

(assuming an impli
it 
onversion between names and values as required above).

The new attributes all have the domain D

d

of the old attribute A

d

. Note that the requirement for a

p

to be

prime is not expli
it in Lakshmanan's original operator. This is a design de
ision that helps to 
larify the

semanti
s of the Unfold/Fold-operator pair, ensuring the output relation for Unfold to be in 1NF.

In Fig. 2, the Unfold-operator is de�ned over relation TMP REL 0003 and takes as its arguments

a

p

= Airline and a

d

= Pri
e. The operator then produ
es output by taking tuples from TMP REL 0003,

and �lling the attributes representing airlines with values from the data attribute Pri
e in TMP REL 0003,

mat
hing attribute names in the output relation with the values of the pivot attribute Airline in the input

relation.

2.2.4 Split

The Split-operator is the inverse of the Unite-operator. It transforms a single relation R = (n

R

; E

R

; S

R

)

with E

R

� fD

1

� : : :�D

n

�D

p

g and S

R

= (a

1

; : : : ; a

n

; a

p

) into a set of k relations with the same s
hema.
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It takes as argument the name of the pivot attribute a

p

whi
h we assume to be the last in R. We require

that A

p

does not have NULL-values, i.e., 8x 2 A

p

: x 6= ?. The output of Split is a set of relations

Q

�

= Split

a

p

(R) = fQ

1

; : : : ; Q

k

g with A

�

= RhA

p

i and k = jA

�

j. We will refer to the ordered elements of

A

�

as in the Unfold-
ase, i.e., A

�

= fa

�

1

; : : : ; a

�

k

g. For ea
h output relation Q

i

, we have:

n

Q

i

= a

�

i

, E

Q

i

� fD

1

� : : : �D

n

g, S

Q

i

= (a

1

; : : : ; a

n

), and E

Q

i

= ft[a

1

; : : : ; a

n

℄ j t 2 R ^ t[a

p

℄ = a

�

i

g.

In words, we break down R into k relations of the same s
hema, with the new relation names the k distin
t

values from R's attribute A

p

.

In Fig. 2, the Split-operator is de�ned over relation TMP REL 0004, takes as its only argument a

p

=

Destination, and produ
es 2 tables names LONDON and PARIS.

2.2.5 Flat S
hemas

As suggested by the example in Fig. 1, existing relational s
hemas are often built with data-
arrying attribute-

and relation-labels, whi
h is an important reason for s
hemati
 heterogeneity [LSS96℄. In the relational

model, relation and attribute labels are assumed to not 
ontribute to the semanti
 
ontent of the relation|a

prin
iple that is often misunderstood in database design. Lakshmanan et al. show that, while there are

many representations of a real-world 
on
ept in the relational model, only some su
h s
hemas will not 
arry

semanti
 information in their attribute and relation names. They give a de�nition for the notion of su
h 
at

s
hemas whi
h we will only use in an informal way in this paper.

De�nition 1 (Flat S
hema) Assume in�nite pairwise disjoint sets of names N and values V. Let dom :

N ! 2

V

be a partial fun
tion su
h that for ea
h n 2 N , whenever dom(n) is de�ned, it asso
iates name

n with a non-empty set of values dom(n) � V. Then, a relation s
hema R(A

1

; : : : ; A

n

) is said to be 
at

i� all the entries R;A

1

; : : : ; A

n

are names. A database s
hema is 
at if all relation s
hemas in it have this

property.

With the notion of s
hema equivalen
e presented in [MIR93℄, \
attening" a relation refers to the pro
ess

of transforming a relation into its 
at s
hema-equivalent relation, preserving the information 
apa
ity of the

relation.

1. If the input s
hema 
onsists of n > 1 tables of the same s
hema, apply a Unite-operator with the

name of the \pivot"-attribute as a parameter to obtain relation R

0

(i.e., S

Unite

�! R

0

).

2. If R or R

0


ontains a set of attributes fu

1

; : : : ; u

n

g whose labels are not from N , apply a fold operator

on fu

1

; : : : ; u

n

g, with the names of the two resulting attributes B;C as parameters (i.e., R

0

Fold

�! R

00

).

2.2.6 S
hemaSQL Query Evaluation

Similar to traditional SQL evaluation, [LSS99℄ proposes a strategy for S
hemaSQL query evaluation that �rst


onstru
ts and then pro
esses an algebra query tree. In that way, S
hemaSQL 
an be eÆ
iently implemented

over an SQL database system, whi
h Lakshmanan et al. have shown in [LSS99℄.

For simpli
ity of notation, we will treat a database 
onsisting of n relations R

1

; : : : ; R

n

of the same

s
hema as a relation and denote it by R.

In order to evaluate a S
hemaSQL query, an algebra expression using standard relational algebra plus

the four operators introdu
ed above is 
onstru
ted. This expression is of the following form [LSS99℄:
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V = Split

a

(Unfold

b;


(�

�

d

(�


ond

(Fold

e

1

;f

1

; �g

1

(Unite

h

(R

1

))� : : :� Fold

e

m

;f

m

; �g

m

(Unite

h

(R

m

)))))) (1)

with attribute names a; b; 
; e

i

; f

i

; h

i

, the sets of attribute names

�

d and �g

i

, and sele
tion predi
ates 
ond

determined by the query. Any of the four S
hemaSQL operators may be missing from the expression (i.e.,

may not be needed for a parti
ular query). R

1

: : : R

m

are base relations, or, in the 
ase that the expression


ontains a Unite-operator, sets of relations with equal s
hema.

The algebrai
 expression for our running example (Fig. 1) is:

V = Split

Destination

(Unfold

Airline,Pri
e

(�

Pri
e<1100

( (2)

Fold

Type, Pri
e, fBusiness,E
onomyg

(Unite

Airline

(BA,LH)))))

This algebrai
 expression is then used to 
onstru
t an algebra tree (Fig. 3) whose nodes are any of the four

S
hemaSQL operators or a \Standard-SQL"-operator (in
luding the �, �, and �-operators of the algebra

expression) with standard relations \traveling" along its edges. The query is then evaluated by traversing

the algebra tree and exe
uting a query pro
essing strategy for ea
h operator, analogous to traditional SQL

query evaluation.

Note that the query tree 
ould in
lude �-operators (whi
h do not exist in our example), but that the

order of Unite, Fold, Unfold, Split (if they exist) is �xed by the template in Equation 1. The Unite

operator takes a number of relations of the same s
hema as an input, while the Split-operator produ
es as

output a set of relations of the same s
hema. Note that the algebra tree in Fig. 3 is very simple, in more


omplex queries, the tree 
ould \fork" at the Standard-SQL-node, and several smaller \
attening" trees using

Unite- and Fold-operators 
ould o

ur. In that 
ase, and also in the 
ase of standard relational joins, the

Standard-SQL-node would itself 
ontain a more 
omplex algebra tree 
ontaining simple SQL algebra nodes.

Standard-SQL

Relation LH

Relation BA
PSfrag repla
ements

SplitUnfoldFoldUnite

Figure 3: The Algebra Tree for the Example in Fig.1

3 The S
hemaSQL Update Propagation Strategy

3.1 Classes of Updates and Transformations

The updates that 
an be propagated through S
hemaSQL views 
an be grouped into two 
ategories: S
hema

Changes (SC) and Data Updates (DU). S
hema 
hanges that we 
onsider are: add-relation(n; S), delete-

relation(n), rename-relation(n; n

0

) with relation names n; n

0

and s
hema S as introdu
ed in Se
tion 2.1 and

add-attribute(r; a), delete-attribute(r; a), rename-attribute(r; a; a

0

) with r the name of the relation R that the

8



attribute named a belongs to, a

0

the new attribute name in the rename-
ase, and the notation otherwise

as above. Data updates are any 
hanges a�e
ting a tuple (and not the s
hema of the relation), i.e., add-

tuple(r,t), delete-tuple(r,t), update-tuple(r,t,t

0

)), with t and t

0

tuples in relation R with name r. Note that

we 
onsider update-tuple as a basi
 update type, instead of breaking it down into a delete-tuple and an add-

tuple. An update-tuple update 
onsists of two tuples, one representing an existing tuple in R and the other

representing the values of that tuple after the update. This allows to keep relational integrity 
onstraints

valid that would otherwise be violated temporarily.

3.2 S
hemaSQL Update Propagation vs. Relational View Maintenan
e

Update propagation in S
hemaSQL-views, as in any other view environment, 
onsists in re
ording updates

that o

ur in the input data and translating them into updates to the view extent. In in
remental view

maintenan
e of SQL views [QW91, GL95, MKK97℄, many update propagation me
hanisms have been pro-

posed. Their 
ommon feature is that the new view extent is obtained by �rst 
omputing extent di�eren
es

between the old view V and the new view V

0

and then adding them to or subtra
ting them from the view,

i.e., V

0

= (V nrV )[�V , with rV denoting some set of tuples 
omputed from the base relations that needs

to be deleted from the view and �V some set that needs to be added to the view [QW91℄.

In S
hemaSQL, this me
hanism leads to diÆ
ulties. If S
hemaSQL views must propagate both s
hema

and data updates, the s
hema of �V or rV does not ne
essarily agree with the s
hema of the output

relation V . But even when 
onsidering only data updates to the base relations, the new view V

0

may have

a di�erent s
hema than V . That means the 
on
ept of set di�eren
e between the tuples of V

0

and V is not

even meaningful. Thus, we must �nd a way to in
orporate the 
on
ept of s
hema 
hanges. For this purpose,

we now introdu
e a data stru
ture � whi
h represents a sequen
e of n data updates DU and s
hema 
hanges

SC.

De�nition 2 (de�ned update) Assume two sets DU and SC whi
h represent all possible data updates

and s
hema 
hanges, respe
tively. A 
hange 
 2 DU [ SC is de�ned on a given relation R if one of the

following 
onditions holds:

� if 
 2 DU , the s
hema of the tuple added or deleted must be equal to the s
hema of R.

� if 
 2 SC, the obje
t 
 is applied to (an attribute or relation) must exist (for delete- and update-
hanges)

or must not exist (for add-
hanges) in R.

De�nition 3 (valid update sequen
e) A sequen
e of updates (


1

; : : : ; 


n

) with 


i

2 DU [ SC, denoted

by �R, is 
alled valid for R if for all i (1 < i � n), 


i

is de�ned on the relation R

(i�1)

that was obtained

by applying 


1

; : : : ; 


i�1

to R.

For simpli
ity, we will also use the notation �! to refer to a valid update sequen
e to the output table of

an algebra operator !. Note that these de�nitions naturally extend to views, sin
e views 
an also be seen as

relational s
hemas. For an example, 
onsider propagation of the update add-tuple('Berlin',1400,610)

to LH in Fig. 10 (p. 15). Having the value Berlin in the update tuple will lead to the addition of a new

relation BERLIN in the output s
hema of the view|forming a sequen
e �V whi
h 
ontains both a s
hema


hange and a data update:

�V = (add-relation(BERLIN; (Type,Destination,BA,LH)); add-tuple(BERLIN; ('E
onomy',null,610)))
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The add-relation-update is valid sin
e the relation BERLIN did not exist in the output s
hema before, and

the add-tuple-update is valid sin
e its s
hema agrees with the s
hema of relation BERLIN de�ned by the

previous update.

3.3 Overall Propagation Strategy

Given an update sequen
e implemented by a List data stru
ture, our update propagation strategy works

a

ording to the algorithm in Fig. 4. Ea
h node in the algebra tree has knowledge about the operator it

represents. This operator is able to a

ept one input update and generate a sequen
e of updates as output.

Ea
h (leaf node) operator 
an also re
ognize whether it is a�e
ted by an update (by 
omparing the relation(s)

on whi
h the update is de�ned with its own input relation(s)). If it is not a�e
ted, it simply returns an

empty update sequen
e.

After all the updates for the 
hildren of a node n are 
omputed and 
olle
ted in a list (variable s in

the algorithm in Fig. 4), they are propagated one-by-one through n. Ea
h output update generated by the

operator of n when pro
essing an input update will be pla
ed into one update sequen
e, all of whi
h are


on
atenated into the �nal return sequen
e r (see Fig. 4,  is the assignment operator).

fun
tion propagateUpdate(Node n;Update u)

List r ;; s ;

if (n is leaf)

if (n.operator is a�e
ted by u)

r:append(n:operator:operatorPropagate(u))

else

for(all 
hildren 


i

of n)

/* s will 
hange exa
tly on
e, see text */

s:append(propagateUpdate(


i

; u))

for(all updates u

i

in s)

r:append(n.operator.operatorPropagate(u

i

))

return r

Figure 4: The S
hemaSQL View Maintenan
e Algorithm

The algorithm performs a postorder traversal of the algebra tree. This ensures that ea
h operator

pro
esses input updates after all its 
hildren have already 
omputed their output

2

. At ea
h node n, an

in
oming update is translated into an output sequen
e �n of length greater than or equal to 0 whi
h is then

propagated to n's parent node. Sin
e the algebra tree is 
onne
ted and 
y
le-free (not 
onsidering joins of

relations with themselves) all nodes will be visited exa
tly on
e. Also note that sin
e updates o

ur only

in one leaf at a time, only exa
tly one 
hild of any node will have a non-empty update sequen
e to be

propagated. That is, the �rst for-loop will �nd a non-empty addition to s only on
e per fun
tion 
all. After

all nodes have been visited, the output of the algorithm will be an update sequen
e �V to the view V that

we will prove to have an e�e
t on V equivalent to re
omputation.

3.4 Propagation of Updates through Individual S
hemaSQL Operators

Sin
e update propagation in our algorithm o

urs at ea
h operator in the algebra tree, we have to design a

propagation strategy for ea
h type of operator.

2

We are not 
onsidering 
on
urrent updates in this paper.
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3.4.1 Propagation of S
hema Changes through SQL Algebra Operators

The propagation of updates through standard SQL algebra nodes is simple. Deriving the update propagation

for data updates is dis
ussed in the literature on view maintenan
e [QW91, GL95℄. It remains to de�ne

update propagation for sele
tion, proje
tion, and 
ross-produ
t operators under s
hema 
hanges

3

. In short,

delete-relation-updates will make the output invalid, while other relation-updates do not a�e
t the output.

Attribute-updates are propagated by appropriate 
hanges of update parameters or ignored if they do not

a�e
t the output. For example, a 
hange delete-attribute(r; a) would not be propagated through a proje
tion

operator �

�

A

if a 62

�

A, and would be propagated as delete-attribute(q; a) otherwise, with q the name of the

output relation of �

�

A

. We refer to our te
hni
al report [KR01℄ for further details, as they are not important

for the 
omprehension of this paper.

3.4.2 S
hemaSQL Operators

In Figs. 5{8, we give the update propagation tables for the four S
hemaSQL operators. For the notation and

meaning of variables and 
onstants, please refer to Se
tion 2.1. In order to avoid repetitions in the notation,

the 
ases for ea
h update type are to be read in an \if-else"-manner, i.e., the �rst 
ase that mat
hes a given

update will be used for the update generation (and no other). Also, NULL-values are like other data values,

ex
ept where stated otherwise.

Input Change Conditions Propagation

add-tuple (r; t) t[a

1

; : : : ; a

n

; a

p

℄ 2 R invalid view (key violation)

t[a

p

℄ 2 A

�

t[a

1

; : : : ; a

n

℄ 2 R

update Q set [t[a

p

℄℄ = t[a

d

℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

t[a

p

℄ 2 A

�

t[a

1

; : : : ; a

n

℄ 62 R

insert into Q (a

1

; : : : ; a

n

; a

p

)

values (a

1

; : : : ; a

n

; a

d

)

t[a

p

℄ 62 A

�

t[a

1

; : : : ; a

n

℄ 2 R

add-attribute(q,t[a

p

℄),

update Q set [t[a

p

℄℄ = t[a

d

℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

t[a

p

℄ 62 A

�

t[a

1

; : : : ; a

n

℄ 62 R

add-attribute(q,t[a

p

℄),

insert into Q (a

1

; : : : ; a

n

; a

p

)

values (a

1

; : : : ; a

n

; a

d

)

delete-tuple (r; t) t[a

p

℄ exists in R[a

p

℄ exa
tly on
e
delete-attribute(q,t[a

p

℄)

t[a

p

℄ exists in R[a

p

℄ more than on
e

update Q set [t[a

p

℄℄ = NULL

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

4

update-tuple (r; t; t

0

) t[a

1

; : : : ; a

n

; a

p

℄ = t

0

[a

1

; : : : ; a

n

; a

p

℄

update Q set [t[a

p

℄℄ = t[a

d

℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

t[a

1

; : : : ; a

n

; a

p

℄ 6= t

0

[a

1

; : : : ; a

n

; a

p

℄ break down into (delete-tuple, add-tuple)

add-attribute(r; a) add-attribute(q; a)

delete-attribute(r; a) a 2 fA

d

; A

p

g invalid view

a 62 fA

d

; A

p

g delete-attribute(q; a)

rename-attribute(r; a; a

0

) a = A

d

Unfold

a

p

;a

=) Unfold

a

p

;a

0

a = A

p

Unfold

a;a

d

(R) =) Unfold

a

0

;a

d

(R)

a 62 fA

d

; A

p

g rename-attribute(q; a; a

0

)

delete-relation(r) delete-relation(q)

rename-relation(n; n

0

) Unfold

a

p

;a

d

(N) =) Unfold

a

p

;a

d

(N

0

)

(renaming the input relation)

4

if this update leads to a tuple with all NULL-values, the tuple must be deleted.

Figure 5: Propagation Rules for Q=Unfold

a

p

;a

d

(R)

3

these are the only operators ne
essary for the types of queries dis
ussed in this paper
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Input Change Conditions and Variable Binding Propagation

add-tuple (r; t) (A

�

= fa

�

1

; : : : ; a

�

k

g,k jA

�

j)

for i := 1..k

insert into Q

values (a

1

; : : : ; a

n

,a

�

i

,t[a

�

i

℄)

delete-tuple (r; t)

delete from Q

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

update-tuple (r; t; t

0

) A 2 A

�

; set t[a℄ to a value 


update Q set a

d

= 


where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄ and

a

p

= a

A 62 A

�

; set t[a℄ from a value b to a

value 


update Q set a = 
 where a = b

add-attribute(r; a) A 2 A

�5

forea
h tuple u 2 R

insert into Q (a

1

; : : : ; a

n

; a

p

; a

d

)

values (u[a

1

; : : : ; a

n

℄; a,NULL)

A 62 A

�

add-attribute(q; a)

delete-attribute(r; a) A 2 A

�

delete from Q where a

p

= a

A 62 A

�

delete-attribute(q; a)

rename-attribute(r; a; a

0

) A 2 A

�

update Q set a

p

= a

0

where a

p

= a

A 62 A

�

rename-attribute(q; a; a

0

)

delete-relation(r) delete-relation(q)

rename-relation(n; n

0

) Fold

a

p

;a

d

(N) =) Fold

a

p

;a

d

(N

0

)

5

Note that the de
ision whether a new attribute should be a member of a

1

; : : : ; a

n


an only be made by evaluating the

view query.

Figure 6: Propagation Rules for Q=Fold

a

p

;a

d

;A

�

(R)

Input Change Conditions Propagation

add-tuple (r; t) t[a

p

℄ 62 A

�

add-relation [t[a

p

℄℄

with s
hema (S

R

nR:A

p

);

insert into [t[a

p

℄℄

values (t[a

1

; : : : ; a

n

℄)

t[a

p

℄ 2 A

�

insert into [t[a

p

℄℄

values (t[a

1

; : : : ; a

n

℄)

delete-tuple (r; t) t[a

p

℄ exists in R[a

p

℄ exa
tly on
e
delete-relation [t[a

p

℄℄

t[a

p

℄ exists in R[a

p

℄ more than on
e

delete from [t[a

p

℄℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

update-tuple (r; t; t

0

) t[a

1

; : : : ; a

n

; a

p

℄ = t

0

[a

1

; : : : ; a

n

; a

p

℄

update [t[a

p

℄℄ set [a

d

℄ = t[a

d

℄

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄

t[a

1

; : : : ; a

n

; a

p

℄ 6= t

0

[a

1

; : : : ; a

n

; a

p

℄ break down into (delete-tuple,add-tuple)

add-attribute(r; a) 8q 2 fq

1

: : : q

n

g : add-attribute(q; a)

delete-attribute(r; a) a = A

p

invalid view

a 6= A

p

8q 2 fq

1

: : : q

n

g : delete-attribute(q; a)

6

rename-attribute(r; a; a

0

) a = A

p

Split

a

(R) =) Split

a

0(R)

a 6= A

p

8q 2 fq

1

: : : q

n

g : rename-attribute(q; a; a

0

)

delete-relation(r) 8q 2 fq

1

: : : q

n

g : delete-relation(q)

rename-relation(n; n

0

) Split

a

p

(N) =) Split

a

p

(N

0

)

6

If this update leads to a tuple with all NULL-values in an output relation, the tuple must be deleted.

Figure 7: Propagation Rules for Q=Split

a

p

(R)
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Input Change Conditions and Variable Bindings Propagation

add-tuple (r

x

; t)

insert into Q (a

1

; : : : ; a

n

; a

p

)

values (t[a

1

; : : : ; a

n

℄; r

x

)

delete-tuple (r

x

; t)

delete from Q

where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄ and

a

p

= r

x

update-tuple (r

x

; t; t

0

) A = A

d

; set t[a℄ to a value 


update Q set a = 


where a

1

; : : : ; a

n

= t[a

1

; : : : ; a

n

℄ and

a

p

= r

x

A 6= A

d

; set t[a℄ from a value b to a

value 


update Q set a = 


where a = b and a

p

= r

x

add-attribute(r; a) add simultaneously to all R

i

add-attribute(q; a)

otherwise invalid view

delete-attribute(r; a) delete simultaneously from all R

i

delete-attribute(q; a)

otherwise invalid view

rename-attribute(r; a; a

0

) rename simultaneously in all R

i

rename-attribute(q; a; a

0

)

otherwise invalid view

add-relation(r

x

; S) no 
hange (until �rst add-tuple to R

x

)

delete-relation(r

x

)

delete from Q where a

p

= r

x

rename-relation(n; n

0

) Unite

a

p

(fR

1

; : : : ; N; : : : ; R

n

g) =)

Unite

a

p

(fR

1

; : : : ; N

0

; : : : ; R

n

g)

Figure 8: Propagation Rules for Q=Unite

a

p

(R

1

; R

2

; : : : ; R

n

)

7

7

Note that r

x

is the name of Relation R

x

, whi
h is one of the n relations of equal s
hema that are united by the Unite-

operator.

Inspe
tion of the update propagation tables shows several properties of our algorithm. For example, the

view be
omes invalid under some s
hema 
hanges or data updates, mainly if an attribute or relation that

was ne
essary to determine the output s
hema of the operator is deleted (e.g., when deleting the pivot or

data attribute in Unfold). In the 
ase of rename-s
hema 
hanges (e.g., under rename-relation in Fold),

some operators 
hange their parameters. Those are simple renames that do not a�e
t operators otherwise.

In those 
ases we denote renaming by ). The operator will produ
e a zero-element output sequen
e.

3.4.3 Formalization of the Propagation of Updates

A formalization of the propagation of updates is extensive and la
ks the 
on
iseness of the propagation tables

given in this se
tion. Therefore, we will only give an example of how su
h a de�nition 
ould be a

omplished.

We will 
onsider the propagation of add-tuple through Unfold (Fig. 9):

Using the notation from Se
tion 2.2.3, assume a relation R = (N

R

; S

R

; E

R

) with n attributes that is the

input for an operator Q = Unfold

a

p

;a

d

(R) produ
ing an output relation Q = (N

Q

; S

Q

; E

Q

) with n� 2 + k

attributes and an update to R, denoted by �

R

= t[a

1

; : : : ; a

n

; a

p

; a

d

℄ = (x

1

; : : : x

n

; x

p

; x

d

). Let A

�

be a set

of the k distin
t values in A

p

(the pivot attribute, see the de�nition of Unfold in Se
. 2.2).

The propagation of this update is shown in Fig. 9.

The stru
ture (E

Q

n T

1

)

�

in the �gure

8

is 
onstru
ted by adding an attribute to E

Q

n T

1

, i.e., (E

Q

n T

1

�

D

1

� : : :�D

n+k

)) ((E

Q

n T

1

)

�

� D

1

� : : :�D

n+k

�D

d

) with all data values in this new attribute set to

NULL (?). Note that the output relation be
omes invalid i� an update is inserted into the input relation

that agrees in a

1

; : : : ; a

n

; a

p

with an existing tuple (similar to a key violation).

8

We use the symbol n to denote set-di�eren
e.
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E

0

R

 E

R

[�

R

a tuple-add

+

�  �

R

[a

p

℄ the pivot-value of the new tuple

T

0

 ft 2 E

R

j t[a

1

; : : : ; a

n

; a

p

℄ = �

R

[a

1

; : : : ; a

n

; a

p

℄g �nd out if added tuple exists in E

R

S

0

Q

 

8
<

:

; if T

0

6= ; key violation

S

Q

if � 2 A

�

note that k = jA

�

j

(a

1

; : : : ; a

n

; a

�
1

; : : : ; a

�
k

; a

p

) otherwise s
hema 
hange if ne
essary

T

1

 ft 2 E

Q

j t[a

1

; : : : ; a

n

℄ = �

R

[a

1

; : : : ; a

n

℄g the mat
hing tuples in the output relation

T

2

 ft 2 T

1

j t[�℄ �

R

[a

d

℄g set pivot attribute to value in data attribute

T

3

 

8
>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
:

ft[a

1

; : : : ; a

n

; a

�
1

; : : : ; a

�
k

; a

p

℄ j t[a

1

; : : : ; a

n

; a

p

℄ �

R

[a

1

; : : : ; a

n

; a

d

℄; t[a

�
i

℄ ?g

if T

1

= ;

if new row in output table, 
onstru
t new tuple, �ll unused attributes with NULL

ft[a

1

; : : : ; a

n

; a

�
1

; : : : ; a

�
k

; a

p

℄ j t[a

1

; : : : ; a

n

; a

�
1

; : : : ; a

�
k

℄ 2 T

1

; t[a

p

℄ �

R

[a

d

℄g

otherwise

just set appropriate value

E

0

Q

 

8
<

:

; if T

0

6= ;

(E

Q

n T

1

) [ T

2

if � 2 A

�

no s
hema 
hange

(E

Q

n T

1

)

�

[ T

3

otherwise an output s
hema 
hange

Figure 9: Propagation of add-tuple(�

R

) through an Unfold-Operator

1
4



3.5 Update Propagation Example

Fig. 10 gives an example for an update that is propagated through the S
hemaSQL-algebra-tree in Fig. 2

(see also Fig. 15). All updates are 
omputed by means of the propagation tables in the previous se
tion.

The operators appear in boxes with their output atta
hed below ea
h box (SQL-statements a

ording

�R: add-tuple to LH (input 
hange)

Destination Business E
onomy

Berlin 1400 610

�V : add-relation BERLIN, then

add-tuple to BERLIN

(output 
hange)

Type BA LH

E
onomy null 610

+

!

1

: Unite

Airline

insert into TMP REL 0001

values ('LH','Berlin',1400,610);

#

Legend

* updates

" SQL-statements

applied to

output relation

Unite operators

"

!

5

: Split

Destination


reate table BERLIN; (like LONDON)

insert into Berlin

values ('E
onomy',null,610);

*

�!

1

: add-tuple to TMP REL 0001

Airline Destination Business E
onomy

LH Berlin 1400 610

insert... queries

generated

by operator

tables data updates

generated

�!

4

: add-tuple to TMP REL 0004

Type Destination BA LH

E
onomy Berlin null 610

+

!

2

: Fold

Type, Pri
e,fBusiness,E
onomyg

insert into TMP REL 0002

values ('LH','E
onomy','Berlin',610);

insert into TMP REL 0002

values ('LH',Business','Berlin',1400);

#

"

!

4

: Unfold

Airline, Pri
e

insert into TMP REL 0004

values ('E
onomy','Berlin',null,610);

*

�!

2

: 2 add-tuple to TMP REL 0002

Airline Type Destination Pri
e

LH E
onomy Berlin 610

LH Business Berlin 1400

!

3

:

)

Standard-SQL

sele
t * from

tmp rel 0002

where pri
e

<= 1100;

!

�!

3

: add-tuple to TMP REL 0003

Airline Type Destination Pri
e

LH E
onomy Berlin 610

Figure 10: Update Propagation in the View from Figure 2. See Se
tion 3.5 for explanation.

to our update tables in [KR01℄). The a
tual tuples added by these SQL-statements are shown in tabular

form. The sending of updates to another operator is denoted by double arrows (*), while single arrows (")

symbolize the transformation of SQL-statements into updates. We are propagating an add-tuple-update to

base relation LH. Algorithm propagateUpdate will perform a postorder tree traversal, i.e., pro
ess the deepest

node (Unite) �rst, and the root node (Split) last. The operators are denoted by !

1

through !

5

, in order of

their pro
essing. First, the Unite operator propagates the in
oming update into a one-element sequen
e �!

1

of updates whi
h is then used as input to the Fold-operator. The Fold-operator propagates its input into

a two-element sequen
e �!

2

, sent to the StandardSQL-operator. This operator then propagates ea
h of the

two updates separately, 
reating two sequen
es �!

3

1

and �!

3

2

, with 1 and 0 elements, respe
tively. Re
all

from Se
tion 3.3 that in the 
ase of more than one update sequen
e being 
reated by an operator, those

sequen
es 
an simply be 
on
atenated before the next operator's propagation is exe
uted, yielding �!

3

. Sin
e

one update is not propagated due to the WHERE-
ondition in the StandardSQL-node, we have �!

3

= �!

3

1

.

Unfold now transforms its in
oming one-element update sequen
e �!

3

into another one-element sequen
e

�!

4

whi
h be
omes the input for the Split-operator. This operator �nally 
reates a two-element sequen
e,


onsisting of an add-relation s
hema 
hange followed by an add-tuple data update. This sequen
e is the �nal

update sequen
e �V whi
h is applied to view V , leading to the new view V

0

equivalent to the view obtained

by re
omputation.
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3.6 Grouping Similar S
hemaSQL Updates in Bat
hes

Certain updates in our strategy are transformed by some operators into update sequen
es � in whi
h all the

updates are similar. This gives an opportunity for optimization on our update propagation strategy.

For example, a Fold-node 
an transform a single s
hema 
hange (su
h as a attribute-delete) into a

sequen
e of data updates (su
h as a sequen
e of tuple-deletes). An inspe
tion of the update propagation

tables in this se
tion shows that, typi
ally, su
h a sequen
e 
onsists of similar updates. Consider the example

in Fig. 10, where a deletion of attribute Business in relation TMP REL 0001would lead to a sequen
e of delete-

tuple updates of all tuples in TMP REL 0002 that have the value Business in the attribute Type. A simple

way of exe
uting all those updates eÆ
iently using SQL would be to issue a query su
h as delete from

TMP REL 0002 where type='Business'. Thus, instead of propagating all individual tuple updates using

some delta relation, as done in traditional view maintenan
e, we instead propose to abstra
t this sequen
e

of updates into an SQL update statement and push the 
omplete statement through the algebra tree.

We have identi�ed two 
lasses of su
h bat
hed updates that o

ur frequently as outputs of our propagation

strategy, as des
ribed below.

De�nition 4 (Bat
hed Update) A bat
hed update is a sequen
e of S
hemaSQL updates, denoted by �,

whi
h adheres to one of the following stru
tures:

� � 
onsists entirely of delete-tuple-updates to the same relation R, with equal s
hema and a set of

attributes a

1

: : : a

k

whose values are a unique identi�er for ea
h tuple in � (i.e., form a key). We

denote su
h a sequen
e by

delete-tuple-bat
h(r; 
ond(a

1

; 


1

); : : : ; 
ond(a

k

; 


k

))

with 
ond(a

i

; 


i

) a 
ondition sele
ting tuples t 2 R that have value 


i

in attribute a

i

(t[a

i

℄ = 


i

).

This represents a set of delete-tuple statements on the output relation R that 
ould be generated by an

SQL-delete statement with the WHERE-
onditions a

1

= 


1

; : : : ; a

k

= 


k

.

� � 
onsists entirely of update-tuple-updates to relation R. All update-tuples have equal s
hema. Pa-

rameters are a single attribute b with (unique or dupli
ate) values, and a fun
tion f between the old

and new values of another attribute a in ea
h tuple. We denote su
h a sequen
e by

update-tuple-bat
h(r; a; f; b; 
)

with a; b denoting attribute names, f denoting a fun
tion over the domain of the attribute with name

a (that is, f : D

a

! D

a

), and 
 denoting a 
onstant. This represents a set of update-tuple updates

a�e
ting every tuple t for whi
h the value of attribute b is 
, by 
hanging the value t[a℄ to f(t[a℄), i.e.,

8t 2 R s.t. t[b℄ = 
 : t[a℄  f(t[a℄). In words, the update update-tuple-bat
h(r; a; f; b; 
) means \in

relation r, set a = f(a) where b = 
". Note that for simpli
ity, we are restri
ting bat
hed updates to a

single WHERE-
ondition.

With this de�nition of bat
hed update, the above example 
an now be represented as delete-tuple-bat
h

(TMP REL 0002, 
ond(type, 'Business')).

We do not de�ne insert-tuple bat
hes sin
e we 
onsider only single data updates or s
hema 
hanges

entering our algebra tree, and su
h updates will never be transformed into larger \bat
hes". In parti
ular,

16



adding an attribute or a relation in a base table means adding an empty stru
ture 
ontaining no data. As

only stru
tures with mat
hing s
hemas (i.e., attribute of a mat
hing data type or relations with a mat
hing

set of attributes) 
an be added to the information spa
e, the only new information to the system is the name

of the new attribute or relation, respe
tively. Thus, su
h updates do not lead to bat
hes of updates, and in

fa
t often do not lead to any updates on the view extent at all.

Bat
hes of s
hema-
hanges are also not useful be
ause meaningful s
hema-
hange bat
hes do not o

ur in

our 
ontext. Inspe
tion of the update tables in this se
tion shows that, with the ex
eption of the Split node,

propagation of s
hema 
hanges always leads to a single s
hema 
hange, not sequen
es of related 
hanges.

In the 
ase of the Split-node, any resulting \bat
h" of s
hema 
hanges will lead to 
hanges a
ross several

relations, an operation that 
annot be optimized using our bat
hed-approa
h and SQL-statements.

As mentioned above, the main bene�t of bat
hed updates lies in a possible optimization of the imple-

mentation of our update propagation strategy. Sin
e some operators generate bat
hes of related updates,


onsidering bat
hes as types of updates and propagating those through the algebra tree just like single updates


ould lead to performan
e improvements of the system. For an example, 
onsider again Fig. 10 and an up-

date delete-attribute(TMP REL 0001;Business) as input to the Fold-operator. Setting n = jTMP REL 0001j,

this update in the 
urrent strategy would lead to a propagation of n single delete-tuple updates, whereas a

treatment of all those updates as a bat
h would require the propagation of only one update, namely delete-

tuple-bat
h(TMP REL 0002,
ond(type,'Business')). Figures 11{14 show the propagation tables. As before,

the input table is denoted by R (with name r) and the output table by Q (with name q). The remaining

syntax follows Def. 4.

Input

Change

Parameters Conditions Propagation

delete-

tuple-bat
h

(r; 
ond(a; 
)) a = a

p

delete-attribute(q,
)

a = a

d

,

A

�

un
hanged

forea
h a 2 A

�

update Q

set a = NULL

where a = 


other delete-tuple-bat
h

(q; 
ond(a; 
))

(r; 
ond(a

1

; 


1

); : : : ;


ond(a

n

; 


n

))

delete-tuple-bat
h

(q; 
ond(a

1

; 


1

); : : : ; 
ond(a

n

; 


n

))

update-

tuple-bat
h

(r; a; f; b; 
) f(v) = 


new

(a 
onstant

fun
tion),

a = b = a

p

rename-attribute(q,
,


new

)

a = a

d

; b = a

p

update Q set [
℄ = f([
℄)

or

update-tuple-bat
h

(q; 
; f; null; null)

a = a

d

; b 6= a

p

forea
h � 2 A

�

update-tuple-bat
h(q; �; f; b; 
)

Figure 11: Bat
hed Update Propagation Rules for Q=Unfold

a

p

;a

d

(R)

4 Corre
tness

Our update propagation strategy is equivalent to a stepwise evaluation of the algebrai
 expression 
onstru
ted

for a query. Ea
h operator transforms its input 
hanges into a set of semanti
ally equivalent output 
hanges,

eventually leading to a set of 
hanges that must be applied to the view to syn
hronize it with the base
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Input

Change

Parameters Conditions Propagation

delete-

tuple-bat
h

(r; 
ond(a; 
)) a 2 A

�

delete from Q

where a

p

= a and a

d

= 


other delete-tuple-bat
h

(q; 
ond(a; 
))

(r; 
ond(a

1

; 


1

); : : : ;


ond(a

n

; 


n

))

delete-tuple-bat
h

(q; 
ond(a

1

; 


1

); : : : ; 
ond(a

n

; 


n

))

update-

tuple-bat
h

(r; a; f; b; 
) a 2 A

�

; b 2 A

�

update Q

set a

d

= f(a

d

)

where a

p

= a and b = 


other update-tuple-bat
h(q; a; f; b; 
)

Figure 12: Bat
hed Update Propagation Rules for Q=Fold

a

p

;a

d

;A

�

(R)

Input

Change

Parameters Addtl. Condi-

tions

Propagation

delete-

tuple-bat
h

(r; 
ond(a; 
)) a = a

p

del-relation(q,
)

a = a

d

,

A

�

un
hanged

forea
h q 2 A

�

update q

set q:a

d

= NULL

where q:a

d

= 


other forea
h q 2 A

�

delete-tuple-

bat
h(q; 
ond(a; 
))

(r; 
ond(a

1

; 


1

); : : : ;


ond(a

n

; 


n

))

forea
h q 2 A

�

delete-tuple-bat
h

(q; 
ond(a

1

; 


1

); : : : ; 
ond(a

n

; 


n

))

update-

tuple-bat
h

(r; a

p

; f; b; 


old

) with

f(v) = 


new

(a 
on-

stant fun
tion)

b = a

p

rename-relation(


old

,


new

)

b 6= a

p

; a 2 A

�

forea
h q 2 A

�

update-tuple-bat
h(q; a; f; b; 
)

Figure 13: Bat
hed Update Propagation Rules for Q=Split

a

p

(R). Note that A

�

= fq

1

; q

2

; : : : ; q

k

g is the

set of output relation names.

Input

Change

Parameters Addtl. Condi-

tions

Propagation

delete-

tuple-bat
h

(r

x

; 
ond(a; 
))

delete from Q

where a

p

= r

x

and a = 


update-

tuple-bat
h

(r

x

; a; f; b; 
) a 2 A

�

update Q

set a = f(a)

where a

p

= r

x

and b = 


Figure 14: Bat
hed Update Propagation Rules forQ=Unite

a

p

(R

1

; R

2

; : : : ; R

n

)
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Standard-SQL

PSfrag repla
ements

Unite Fold Unfold Split

V

R

2

X

1

X

3

X

4

X

2

R

1

Figure 15: A S
hemaSQL Algebra Tree.

relation 
hange. In this se
tion, we will show that this strategy leads to 
orre
t update propagation. Re
all

that we denote an update sequen
e applied to relation R by �R. We will use the notation R for the input

relation and Q for the output relation throughout this se
tion.

Before we prove the 
orre
tness of the algorithm, we state some observations: The stru
ture of the algebra

tree for a view depends only on the query, not on the base data [LSS99℄. The only 
hanges to operators

under base relation updates are possible 
hanges of parameters (s
hema element names) inside the operators;

an algebra operator 
an not disappear or appear as the result of a base update. However, the entire view

query may be rendered invalid, for example under some delete-relation-updates.

Furthermore, an inspe
tion of the update propagation algorithm (Fig. 4) shows that the propagation

of any single base relation update o

urs stri
tly along a path in the algebra tree, stri
tly from a leaf to

the root. That is, only S
hemaSQL algebra operators along the single path from the updated base relation

to the root are a�e
ted by an update. This is in 
ontrast to SQL view maintenan
e, where maintenan
e

queries to related sour
es are ne
essary for some operators. The four S
hemaSQL operators do not 
ombine

input relations in a way similar to an SQL-join, so that maintenan
e queries to other bran
hes of the algebra

tree are not generated by the S
hemaSQL operators. For 
orre
tness of standard SQL maintenan
e queries

(whi
h only o

ur for some operators su
h as join), we rely on well-known related work.

Let us label the output relations of ea
h operator along the path of update propagation with X

1

; : : : ; X

n

,

in as
ending order from the operator 
losest to the leaf to the operator 
losest to the root of the algebra tree.

In Fig. 15, we have labeled the output relations of ea
h operator (X

1

; : : : ; X

4

), as well as the base relations

(R

1

; R

2

) and the view (V ).

We �rst prove 
orre
tness of operators and then show the overall propagation s
heme to be 
orre
t.

Theorem 1 (Corre
tness of In
remental Propagation for Individual Operators) Let

! 2 fUnite;Split;Unfold;Fold; �; �;�g be a node in a S
hemaSQL algebra tree. Let R be the input

relation(s) for ! and Q = !(R) be its output relation(s). Furthermore, let �R be a data update or s
hema


hange to R, transforming R ! R

0

and Q

REC

the output relation of ! after re
omputation. Applying the

rules from the update propagation tables Figs. 5{8 and Se
tion 3.4.1 for ! and �R will generate a sequen
e

of updates de�ned on the node's output relation (denoted by �Q, see Def. 2) that transforms Q! Q

INC

, with

Q

INC

= Q

REC

.

Proof: The proof is given by inspe
ting the update propagation tables, Figs. 5{8, and 
omparing their

output with the expe
ted output after re
omputation for ea
h 
ase. Due to spa
e 
onstraints, we 
an only

give two examples for su
h 
omparisons as a proof idea. Consider the propagation of a delete-tuple data

update in the Fold-operator (Fig. 6). Let a relation R be folded by Q = Fold

a

p

;a

d

;A

�

(R). Now 
onsider the

relation R

0

= Rnftg, with tuple t deleted. Note that t has up to jA

�

j non-null values in its data attributes
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(i.e., in attributes whose names are in A

�

). For ea
h of those non-null values, the pre-update output relation

Q 
ontained a separate tuple whi
h now has to be deleted. Therefore, after re
omputation, the Fold-

operator produ
es an output relation Q

0

that di�ers from Q in that it has up to jA

�

j tuples less. All those

missing tuples have as a 
ommon feature that they agree in the values of their attributes a

1

; : : : ; a

n

(i.e., all

attributes ex
ept the ones in A

�

) with the deleted tuple. This is pre
isely what the update propagation rule

(line 2 of Fig. 6) a

omplishes by deleting all tuples with that 
ondition.

Let us also 
onsider the propagation of the delete-attribute s
hema 
hange in Fold (line 5 of Fig. 6).

Re
omputation of the operator yields a Q

0

that di�ers from Q in one of two ways: if a data attribute A

(a 2 A

�

) in R is deleted, all tuples whose values in A

p


orrespond to the name of A are missing from Q

0

. If

a non-data attribute is deleted from R, the attribute in Q

0

that has the same name as the deleted attribute

in R is deleted. In both 
ases, the update propagation rules 
hange Q in exa
tly that way.

The remaining operators and 
ases 
an be veri�ed in a similar fashion. �

The following 
orollary is immediate sin
e if an update sequen
e 
orre
tly transforms a relation, it must also

be valid (Def. 3) on that relation.

Corollary 1 The propagation of any update de�ned on input relation R through an operator ! will produ
e

a valid update sequen
e for output relation Q.

Theorem 2 (Corre
tness of S
hemaSQL View Maintenan
e) Let V be a view de�ned over the set of

base relations R

1

; : : : ; R

p

, and �R

u

2 fDU;SCg an update applied to one relation R

u

(1 � u � p). Let R

0

u

be the relation R

u

after the appli
ation of �R

u

and V

0

REC

be the view after re
omputation. Furthermore, let

the S
hemaSQL View Maintenan
e Algorithm as de�ned in Se
tion 3.3 produ
e a 
hange sequen
e �V that

transforms view V into view V

0

INC

. Then, V

0

REC

= V

0

INC

.

Proof: Let n be the number of intermediate relations X

i

a�e
ted by an update (along the path from R

u

to V ). We want to prove that re
omputation generates the same intermediate relations (and therefore the

same view relation) as in
remental updating, i.e, 8i (1 � i � n) : (X

0

i

)

REC

= (X

0

i

)

INC

and thus V

0

REC

= V

0

INC

.

The proof is by indu
tion over X

i

for i = 0 : : : n+ 1. Set X

0

= R

u

, (X

0

n+1

)

REC

= V

0

REC

, (X

0

n+1

)

INC

= V

0

INC

.

Base Case: The base 
ase for i = 0 is trivial. R

0

u

is the same relation, whether the algebra tree is

re
omputed or in
rementally updated, i.e., (X

0

0

)

REC

= (X

0

0

)

INC

= R

0

u

.

Indu
tion Hypothesis: (X

0

k

)

REC

= (X

0

k

)

INC

(k � 0).

Indu
tion Step: It is to show that (X

0

k+1

)

REC

= (X

0

k+1

)

INC

.

Sin
e by hypothesis, (X

0

k

)

REC

= (X

0

k

)

INC

, there must exist an update sequen
e �X

k

that 
orre
tly trans-

forms X

k

to X

0

k

(and must therefore be valid on X

k

). Let us denote the operator whose input table is

X

k

by !

k

and let m = j�X

k

j. By Thm. 1, any single valid update to any relation is 
orre
tly propagated

through any one operator, in the sense that re
omputation of the operator will yield the same result as

in
remental propagation. If m = 1, the indu
tion step is thus proven. For m > 1, a valid sequen
e of

m updates on X

k

will trigger a sequen
e of in
remental propagation steps in !

k

. This will 
ause !

k

to

transform X

k+1

into a sequen
e of m intermediate (temporary) relations (X

(1)

k+1

)

INC

: : : (X

(m)

k+1

)

INC

, ea
h of

whi
h is equivalent to the 
orresponding state (X

(1)

k+1

)

REC

; : : : ; (X

(m)

k+1

)

REC

that 
ould be rea
hed by re
om-

puting !

k

after ea
h update. Note that X

(m)

k+1

� X

0

k+1

. After appli
ation of all m updates to X

k+1

we have

X

0

k+1

= (X

(m)

k+1

)

INC

= (X

(m)

k+1

)

REC

, or (X

0

k+1

)

INC

= (X

0

k+1

)

REC

. If any valid sequen
e of updates gets propa-

gated 
orre
tly, the sequen
e �X

k

(valid by Corollary 1) in parti
ular must also be 
orre
tly propagated, i.e,

produ
e a relation (X

0

k+1

)

INC

with (X

0

k+1

)

INC

= (X

0

k+1

)

REC

. q.e.d. �
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5 Implementation

5.1 S
hemaSQL Query Engine

The update propagation strategy des
ribed in this paper has been implemented in Java on top of a S
hema-

SQL query evaluation module also written by us. This query engine was built along the lines of [LSS99℄. Our


ode �rst parses S
hemaSQL queries (using JavaCC), then builds an algebra tree out of the parsed query,

and �nally evaluates the query result through a postorder traversal of that tree, 
omputing the output of

ea
h algebra node as it is visited (
f. Fig. 16). The next node then reads its 
hild node's temporary relation

to 
ompute its output. For this prototype implementation, ea
h node temporarily stores its output through

JDBC in the query engine's \lo
al" relational database (Ora
le 8) as keeping relations in memory only in
urs

limitations on the size of input relations and also would have required us to reimplement signi�
ant parts of

relational query te
hnology. For performan
e reasons, all intermediate nodes in the algebra tree share one

JDBC-
onne
tion to the lo
al database.

The implementation of the query engine uses pure Java and JDBC-
onne
tions to several instan
es

of Ora
le 8. We use standard SQL DDL and DML statements (sele
t, insert, delete, update and

statements for s
hema 
hange operations like alter table) for all queries|thus making full use of the

sour
e database's SQL query evaluation 
apabilities. We do not use any system spe
i�
 fun
tions other than

simple s
hema 
hanges. A wrapper 
lass (whi
h we have also su

essfully implemented for Mi
rosoft's A

ess)

makes di�eren
es in the syntax of s
hema 
hange operations transparent. Therefore, the implementation is

independent of the database used.

To improve performan
e and simplify our 
ode, our implementation attempts to use as mu
h of the

SQL query 
apability as possible, in parti
ular by extra
ting standard SQL out of the S
hemaSQL query

and evaluating it in a single StandardSQL-node, whi
h simply exe
utes its stored SQL-statement against

the lo
al SQL-database. The S
hemaSQL query engine 
urrently does not perform or utilize any query

optimization strategies other than those provided by the underlying SQL query engine when exe
uting

queries against the lo
al database.

5.2 In
remental Update Propagation

To perform update propagation in the manner des
ribed in this paper, we added update propagation


apabilities to ea
h algebra operator 
lass (Unite, Fold, Unfold, Split, StandardSQL). A method

propagateUpdate() in ea
h node a

epts one update and returns a list of (data and/or s
hema) updates

whi
h represent the result of the update propagation. Then, we added 
ode for the propagation of the

output updates of ea
h operator to its parent. Thus, the same 
ode that performs the postorder traversal

of the operator tree for the initial materialization of the view 
an now also perform the in
remental update

propagation, by simply 
alling the update propagation method instead of the materialization method on

ea
h node and re
ursively using ea
h operator's output as the input for the parent operator.

Updates were modeled into a small 
lass hierar
hy 
onsisting mainly of the 
lasses S
hemaUpdate and

DataUpdate. Ea
h node in the algebra tree is now extended by the ability to propagate all su
h updates.

The 
urrent 
ode does not support bat
hed updates.

Fig. 16 shows the ar
hite
ture of our system.
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create view AIRLINE(DEST, X)

as select (DEST, Y.PRICETYPE)

from AIRLINES Y

........

RDBMSRDBMSRDBMS

SchemaSQL-
Query Processor

Algebra-Tree

Builder

SchemaSQL-

Parser

SchemaSQL View Definition

View Extent

Local

RDBMS

Incremental Update

Propagation*

User Application

Middleware

Extent Computation*

QueriesQuery Results

Updates

* One instance of this module for each node in algebra tree

Figure 16: The Ar
hite
ture of the S
hemaSQL View Maintenan
e System

6 Performan
e Evaluation

6.1 Experimental Setup

6.1.1 Performan
e-Relevant Fa
tors

As explained in this paper, S
hemaSQL update propagation is signi�
antly di�erent from traditional in
re-

mental view maintenan
e. Major di�eren
es are the transformation of data updates into s
hema 
hanges

and vi
e-versa, the need for the propagation of base s
hema 
hanges, and the propagation strategy based

on propagating an update through an algebra tree rather than 
omputing delta-queries against the base

relations.

To assess the in
uen
e of those issues on performan
e, we exe
uted a number of experiments on our

prototype. We are reporting some of the results in this se
tion. For the experiments des
ribed here, we

fo
used on the following fa
tors 
ontributing to S
hemaSQL update propagation performan
e:

� the type of update (data update or s
hema 
hange) at the base relations;

� the transformation type of the update (i.e., the type, data update or s
hema 
hange, into whi
h a base

update is propagated);

� the sele
tivity of 
onditions in the view query that determines the size of the view relative to the sizes

of the base relations;

� the size of base relations.

6.1.2 S
hema and View Queries

If not stated otherwise, all our experiments use the following view query, over the same base s
hema as in

our running example (Fig. 1):
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reate view CITY(Type, AIRLINE) AS

sele
t PRICETYPE, FLIGHT.PRICETYPE

from -> AIRLINE,

AIRLINE FLIGHT,

AIRLINE-> PRICETYPE,

FLIGHT.Destination CITY

where PRICETYPE <> 'Destination'

and AIRLINE like 'AIRLINE%'

and FLIGHT.PRICETYPE <= '1101';

The output s
hema of this query, 
onsidering the input s
hemas from Fig. 1, 
onsists of two relations

Business and E
onomy whi
h both have the s
hema (Destination,AIRLINE 1,...,AIRLINE K), with one attribute

named AIRLINE X for ea
h relation named AIRLINE X in the input s
hema. The output s
hema may 
hange

during an experiment.

The base data was generated from a list of strings (representing 
ity names), augmented by random

numbers representing \
ight pri
es". Those numbers were generated using uniformly distributed random

numbers in a 
ertain range. The base relation sizes and distribution of updates are des
ribed with ea
h

experiment.

Sin
e we have multiple output relations, we need to extend the 
on
ept of view size to multiple relations.

We thus de�ne the view size to be the sum of the sizes of all output relations.

6.1.3 Measurements and System Parameters

The test system was a Pentium II/400 running Linux and Java 1.2.2. Database 
onne
tivity was a
hieved

through JDBC. The databases used for our tests (lo
al database and information sour
e) were two instal-

lations of Ora
le 8i, running on a Pentium 233 under Windows NT and a 4-pro
essor 300MHz DEC Alpha

under DEC OSF1, respe
tively.

For our experiments, we measured the total exe
ution time of the initial materialization of the view

(for 
ontrol purposes, not shown in the 
hart), then the time for a number of updates, depending on the

experiment, and �nally the time for a re
omputation of the view extent. The times were measured by


omparing the system time before and after exe
uting update propagation or re
omputation, i.e., they

in
lude system, user, and I/O time.

6.2 Deleting Base Relations of Di�erent Sizes

In our 
lassi�
ation of updates (Se
tion 3), inserting a table implies inserting an empty table. The data would

have to be added in subsequent data updates. Therefore, inserting (and also renaming) s
hema elements

leads to relatively simple propagation results, as the information 
ontent of the database does not 
hange

mu
h under su
h updates. Therefore the experiments reported here 
on
entrate mainly on the deletion of

s
hema elements (attributes, relations), as well as on the insertion and deletion of data. We will report on

view maintenan
e time both with and without the optimization of bat
hed updates (Se
. 3.6).

We ran the above query over a s
hema 
ontaining four base relations (representing four di�erent airlines)

with approximately 100, 200, 300, and 400 tuples, respe
tively. We then deleted ea
h of those base relations

and 
ompared the time for in
remental update propagation with the time for re
omputation after a base

relation was deleted. After ea
h deletion and measurement, the original information spa
e was restored.

With the above query, the original view extent had two relations Business and E
onomy with 378 and 444
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tuples, respe
tively and de
reased roughly proportionally after deletions of base relations. Fig. 17 shows the

times measured.

Without the bat
hed-update optimization, deleting a base relation R in a query like above will result

in the 
reation of approximately jRj updates inside the operator tree. Therefore, deleting larger relations

takes longer than deleting smaller relations. On the other hand, re
omputation time will de
rease with

larger sizes of the deleted relation, as the resulting view extent has less tuples. The 
rossover point between

view maintenan
e and re
omputation is at about a base size of 225, i.e., deleting a relation of more than

225 tuples (about 25% of the view size) will take longer than re
omputing the view. This means that our

update propagation strategy will perform better than re
omputation for tuple-wise deletions of up to 25%

of the entire information spa
e. Propagating 225 delete-tuple updates will have a smaller total exe
ution

time than a single re
omputation of the view. On the other hand, this experiment shows that a single input

update (in this 
ase a delete-relation update) 
an be very expensive as it may lead to many updates in the

view extent. On the other hand, when using bat
hed updates, the deletion of a base relation translates into a

bat
hed update, whi
h is then propagated as far as possible as a bat
hed update as well. In the 
ase of this

parti
ular query, the deletion of a relation 
an be propagated through the Unite, Fold, and StandardSQL

nodes as a delete-tuple-bat
h, and is then turned into a delete-attribute update in the Unfold-node (
f. the

propagation table in Se
. 3.6). This explains the very low update propagation time for the delete-relation

s
hema 
hange in this 
ase.
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Figure 17: View Maintenan
e and Re
omputation Times vs. Size of Deleted Base Relations

We also ran the same set of updates under the view query from our running example (Fig. 1), whi
h


reates one output relation for ea
h unique destination in any of the input relations. Given that the input

tables 
ontain a large number of unique destinations (
ities), many output tables are generated, at worst

one output table per tuple in ea
h base relation.

Note that in this 
ase, the deletion of a base relation eventually leads to one delete-attribute s
hema


hange per output relation, so deleting a base relation with 200 tuples will �rst lead to the propagation of

200 delete-tuple updates, propagated to one output relation ea
h, and then to many delete-attribute s
hema


hanges|exa
tly one for ea
h output relation. The experiment shows that in this 
ase, whi
h in
urs many
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s
hema 
hanges in the output relations, a re
omputation has a performan
e advantage over the unoptimized

in
remental update propagation. However, with bat
hed updates, signi�
ant performan
e bene�ts 
an be

realized that make in
remental view maintenan
e almost as fast as re
omputation. Figure 18 shows the

results of this experiment. The in
remental view maintenan
e still takes signi�
ant time sin
e many s
hema


hanges still have to be exe
uted on the output relations of the view.
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Figure 18: View Maintenan
e and Re
omputation Times for a View with Many Relations

6.3 Deleting Tuples from Base Relations

In this experiment (Fig. 19), we delete a sequen
e of random tuples from the base s
hema and measured

the 
umulative propagation time. For our 
hart, we numbered the updates by 
onse
utive numbers i. The


umulative propagation time for update i is the sum of the propagation times for all updates numbered

0 : : : i. We also measured the time to re
ompute the view after the entire update sequen
e was exe
uted.

This experiment shows again that in our s
hema, the 
rossover point between in
remental maintenan
e and

re
omputation is at roughly 200 tuples, i.e., after 200 updates, re
omputation of our view (with view size

888) would be
ome more eÆ
ient. The view size is the major fa
tor determining the re
omputation time for

a view, whereas the time for in
remental propagation of a single data-update mainly depends on the system

implementation, i.e., is roughly 
onstant for our implementation and test environment. The average time to

propagate a single update 
an be estimated from the slope of the 
urve in Fig. 19 to be about 285ms, whi
h

is a value depending mainly on the size of the tuples propagated.

From those fa
ts, it 
an be 
on
luded that the ratio between the number of propagated updates at the


rossover point and the view size is a system 
onstant depending only on the implementation, i.e., we expe
t

that re
omputation of a view will take roughly the same time as the in
remental propagation of the deletion

of a 
ertain per
entage of the view's tuples. In our experiment, this ratio was about 1/4 (a 
rossover point

of 200 for a view with roughly 800 tuples).

Note the jump in the in
remental maintenan
e time at the end of the 
urve. This time represents a data

update that led to a s
hema 
hange in the output relation. The reason is that the last tuple from a base

relation was deleted whi
h led to a delete-attribute 
hange in an output relation.
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Figure 19: Deleting Tuples from the Input S
hema

6.4 Deleting Tuples Leading to S
hema Changes

In this experiment, we wanted to assess the di�eren
e in propagation time of the same updates, depending

on whether these updates lead to data updates or s
hema 
hanges in the view. S
hema 
hanges a
tually

exe
uted on a relation database are slow operations. Therefore, the expe
tation is that an update propagation

(in
luding the appli
ation of those updates against a database) that leads to a s
hema 
hange will be slower

than an update propagation leading to only a data update in the view.

Thus, in this experiment we are deleting tuples from the base s
hema. This time we have four base

relations R

1

; R

2

; R

3

; R

4

of sizes 1, 10, 100, and 1000, respe
tively, but make sure that some of the updates

in
ur s
hema 
hanges in the output s
hema. First, we inserted 10 tuples into relation R

1

, then removed

tuples from relation R

2

one-by-one, until R

2

was empty. This leads to a s
hema 
hange in the output s
hema

sin
e the 
orresponding attribute is removed from ea
h output relation. Then, we removed all 11 tuples from

relation R

1

(in
urring another s
hema 
hange), followed by a removal of 10 random tuples from relation R

3

.

Note that in this sequen
e, updates #19 and #30 lead to s
hema 
hanges in the output.

We then plotted the time ea
h update took to propagate. Note the relatively even distribution of update

propagation times around 250 ms in Fig. 20, ex
ept for two updates, whi
h take over 2 se
onds to propagate.

Those are 
learly those updates that led to s
hema 
hanges in the output relations. The measured update

time (if no s
hema 
hange is in
urred) is similar to the average time measured in Fig. 19. Again, the

propagation time for the data updates depends mainly on the tuple size, and the underlying database,

whereas the time for s
hema 
hanges depends on the underlying database only (as pra
ti
ally no data has

to be transported).

6.5 View Sele
tivity

In this experiment, we measure how the performan
e advantage of in
remental view maintenan
e over

re
omputation is a�e
ted by the view sele
tivity, i.e., by the probability that a base tuple's data will a
tually

be re
e
ted in a view.

To assess the e�e
t of di�erent view sele
tivities on view maintenan
e times, we ran an experiment
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Figure 20: Base Updates lead to Data Updates or S
hema Changes

over di�erent sele
tivities in the view query. We adjusted sele
tivity in the range [0:02 : : :1℄ by using dif-

ferent 
onstant values for lo
al 
onditions in the WHERE-
lause of our query (i.e., 
onditions of the type

FLIGHT.PRICETYPE<=1100). We de�ne view sele
tivity over our multiple-relation output s
hema in analogy

to view size as the ratio of the view size of the 
urrent query and the view size of a query without WHERE-


lause. For ea
h sele
tivity setting, we deleted a relation with 100 tuples (10% of the input tuples) from the

base s
hema and measured in
remental view maintenan
e time and view re
omputation time. Fig. 21 shows

the result of the experiment. The graph shows that both in
remental view maintenan
e time and re
ompu-

tation time in
rease with the view sele
tivity, whi
h is not surprising, sin
e in both 
ases more tuples have to

be pro
essed when the view sele
tivity (and thus the view) be
omes larger. However, the relative in
rease in

the in
remental update propagation time is similar to the relative in
rease in re
omputation time, meaning

that our propagation strategy will keep its performan
e bene�ts under 
hanges of the view's sele
tivity.
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Figure 21: Update Propagation under Views of Di�erent Sele
tivities
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7 Related Work

The integration of data stored in heterogeneous s
hemas has long been an obje
t of intensive studies. The

problem of s
hemati
 heterogeneity or di�erent sour
e 
apabilities is repeatedly en
ountered when attempt-

ing to integrate data. Some examples are Garli
 [TAH

+

96℄, TSIMMIS [HGMI

+

95℄, and DISCO [TRV95℄.

Several logi
-based languages have been developed to integrate heterogeneous data sour
es (e.g., work by

Krishnamurthy et al. [KLK91℄, HiLog [CKW89℄ or S
hemaLog [GLS

+

97℄). Some SQL-extensions have also

been proposed, su
h as MSQL [LAZ

+

89℄ whi
h has 
apabilities for basi
 querying of s
hema elements, and,

in parti
ular, S
hemaSQL ([LSS96, LSS01℄, see below).

Those approa
hes are able to over
ome di�erent 
lasses of s
hemati
 heterogeneities. However, the

important 
lass of s
hemati
 heterogeneities in semanti
ally equivalent relational databases is often ex
luded

from integration language proposals. Miller et al. [MIR93, Mil98℄ show that relational databases may 
ontain

equivalent information in di�erent s
hemas and give a formal model (S
hema Intension Graphs) to determine

su
h \semanti
 equivalen
e" of heterogeneous s
hemas.

The predominant approa
h at integrating su
h semanti
ally equivalent s
hemas has been done by Gyssens

et al. [GLS96℄ and later by Lakshmanan, Sadri, and Subramanian [LSS96, LSS99℄. In [LSS96℄, the authors

present S
hemaSQL, whi
h is used as the basis for our work. A more thorough treatment of the language and,

in parti
ular, its use for aggregation, is given in [LSS01℄. S
hemaSQL builds upon earlier work in S
hema-

Log [GLS

+

97℄. It is a dire
t extension of SQL, with the added 
apability of querying and restru
turing not

only data, but also s
hema in relational databases, and transforming data into s
hema and vi
e-versa. Thus,

using S
hemaSQL as a query language makes it possible to over
ome synta
ti
 (s
hemati
) heterogeneities

between relational data sour
es.

A se
ond foundation of our work is the large body of work on in
remental view maintenan
e. After early

models for view maintenan
e [BLT86℄, many algorithms for eÆ
ient and 
orre
t view maintenan
e under

a variety of assumptions have been proposed. Prominent results, often taking 
on
urren
y into a

ount,

in
lude ECA [ZGMHW95℄, SWEEP [AESY97℄, Mohania et al. [MKK97℄ and the approa
h by Gupta et

al. [GMS93℄. Those approa
hes follow an algorithmi
 approa
h in that they propose algorithms to 
ompute


hanges to a view.

GriÆn and Libkin [GL95℄ 
onsider views with dupli
ates, and, more importantly, follow an algebrai


approa
h whi
h de�nes a 
omplete and minimal set of relational algebra operators. They a
hieve a rigorous

proof of the 
orre
tness of view maintenan
e by proving the 
orre
tness of those operators and their nesting.

This is an idea that we have adopted for our work. GriÆn and Libkin's work is partly based on the algebrai


approa
h by Qian and Wiederhold [QW91℄. Colby et al. [CGL

+

96℄ 
orre
t the state bug that o

ured in

earlier work by GriÆn and Libkin as well as in other authors' proposals. Our work builds on existing

in
remental view maintenan
e literature but handles s
hema 
hanges in addition to data updates. Sin
e

S
hemaSQL is able to transform data updates into s
hema updates and vi
e-versa, any operator in the

S
hemaSQL algebra tree must be able to propagate both 
lasses of updates. To our knowledge, our view

maintenan
e strategy is the �rst that a
hieves in
remental update propagation in su
h s
hema-restru
turing

views.

Another body of literature that is related to our work are performan
e studies on in
remental view

maintenan
e algorithms. The work in this �eld is not as extensive as on view maintenan
e itself, but a

number of studies exist. An early paper on measuring the performan
e of in
remental view maintenan
e

strategies is Hanson [Han87℄. The ECA paper [ZGMHW95℄ 
ontains a study on the performan
e of its

algorithm, but only in an analyti
al manner rather than a
tual performan
e studies. [MKK97℄ also 
ontains
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a very simple analysis of their algorithm's eÆ
ien
y and GriÆn and Libkin [GL95℄ give a analyti
al 
omplexity

study of their algorithm but neither paper evaluates system performan
e.

8 Con
lusions

In this paper, we have proposed the �rst in
remental view maintenan
e algorithm for s
hema-restru
turing

views in S
hemaSQL. We have shown that the traditional approa
h at in
remental view maintenan
e|

rewriting view queries and exe
uting them against the sour
e data|is not feasible for su
h views. We have

de�ned an update propagation s
heme in whi
h updates are propagated from the leaves to the root in the

algebra tree 
orresponding to the query and proved its 
orre
tness. Performan
e experiments on a prototype

of a view-maintenan
e-
apable query engine have shown that update propagation has the expe
ted large

bene�ts over re
omputation of views. Lastly, we have also proposed a possible performan
e improvement by

the introdu
tion of bat
hed-update primitives. In summary, our work reports a signi�
ant step towards sup-

porting the integration of large yet s
hemati
ally heterogeneous data sour
es into in integrated environment

su
h as a data warehouse, while allowing for in
remental propagation of updates.

Future work in
ludes an extension of our implementation towards su
h bat
hed updates, a review of the

implementation in general with the goal of removing some of the performan
e obsta
les (su
h as the use of

lo
al relations to store intermediate data) and an extension of the implementation towards multi-databases.

Another dire
tion of resear
h 
ould be the analysis of the 
on
ept presented in this paper with regard to its

usability for other data integration languages, su
h as XML query languages or obje
t-relational languages.
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