On edge colorings with at least q colors in every subset of p vertices
by
Gábor N. Sárközy
Stanley Selkow

Computer Science Technical Report Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

On edge colorings with at least q colors in every subset of p vertices

Gábor N. Sárközy, Stanley Selkow
Computer Science Department
Worcester Polytechnic Institute
Worcester, MA 01609

Abstract

For fixed integers p and q an edge coloring of K_{n} is called a (p, q)-coloring if the edges of K_{n} in every subset of p vertices are colored with at least q distinct colors. Let $f(n, p, q)$ be the smallest number of colors needed for a (p, q)-coloring of K_{n}. In [3] Erdős and Gyárfás studied this function, if p and q are fixed and n tends to infinity. They determined for every p the smallest $q\left(=\binom{p}{2}-p+3\right)$ for which $f(n, p, q)$ is linear in n and the smallest q for which $f(n, p, q)$ is quadratic in n. They raised the question whether perhaps this is the only q value which results in a linear $f(n, p, q)$. In this paper we study the behavior of $f(n, p, q)$ between the linear and quadratic orders of magnitude. In particular we show that that we can have at most $\log p$ values of q which give a linear $f(n, p, q)$.

1 Introduction

1.1 Notations and definitions

For basic graph concepts see the monograph of Bollobás [1].
$V(G)$ and $E(G)$ denote the vertex-set and the edge-set of the graph $G . K_{n}$ is the complete graph on n vertices. In this paper $\log n$ denotes the base 2 logarithm. $\operatorname{pr}(n)$ denotes the parity of the natural number n, so it is 1 if n is odd and 0 otherwise.

1.2 Edge colorings with at least q colors in every subset of p vertices

The following interesting concepts were created by Erdős, Elekes and Füredi (see [2]) and then later studied by Erdős and Gyárfás in [3] (see also [4]). For fixed integers p and q an
edge coloring of K_{n} is called a (p, q)-coloring if the edges of K_{n} in every subset of p vertices are colored with at least q distinct colors. Let $f(n, p, q)$ be the smallest number of colors needed for a (p, q)-coloring of K_{n}. It will be always assumed that $p \geq 3$ and $2 \leq q \leq\binom{ p}{2}$. We restrict our attention to the case when p and q are fixed and n tends to infinity. The study of $f(n, p, q)$ leads to many interesting and difficult problems. For example determining $f(n, p, 2)$ is equivalent to determining classical Ramsey numbers for multicolorings.

Among many other interesting results and problems in [3] Erdős and Gyárfás determined for every p the smallest $q\left(q_{\text {lin }}=\binom{p}{2}-p+3\right)$ for which $f(n, p, q)$ is linear in n and the smallest $q\left(q_{\text {quad }}=\binom{p}{2}-\left\lfloor\frac{p}{2}\right\rfloor+2\right)$ for which $f(n, p, q)$ is quadratic in n. They raised the striking question whether perhaps $q_{l i n}$ is the only q value which results in a linear $f(n, p, q)$. In this paper we study the behavior of $f(n, p, q)$ between the linear and quadratic orders of magnitude, so for $q_{l i n} \leq q \leq q_{q u a d}$. In particular we show that that we can have at most $\log p$ values of q which give a linear $f(n, p, q)$.

In order to state our results, first we need some definitions. We define the following two strictly decreasing sequences a_{i} and b_{j} of positive integers. $a_{0}=p$. Roughly speaking $a_{i+1}=\left\lfloor\frac{a_{i}}{2}\right\rfloor$ but for every second odd a_{i} we have to add 1 . The other sequence b_{j} is just the subsequence consisting of the odd a_{i}-s. More precisely, assume that $a_{0}, a_{1}, \ldots, a_{i}$ are already defined. $b_{1}, b_{2}, \ldots, \ldots, b_{i^{\prime}}$ is just the subsequence of $a_{0}, a_{1}, \ldots, a_{i}$ which contains only the odd a_{j}-S which are greater than 1 . Then we define

$$
a_{i+1}= \begin{cases}\left\lceil\frac{a_{i}}{2}\right\rceil & \text { if } a_{i}=b_{j} \text { for an even } j \\ \left\lfloor\frac{a_{i}}{2}\right\rfloor & \text { otherwise }\end{cases}
$$

Furthermore if a_{i+1} is odd and greater than 1, then $b_{i^{\prime}+1}=a_{i+1}$.
Thus we have

$$
2 a_{i+1}=a_{i}+ \begin{cases}0 & \text { if } a_{i} \neq b_{j} \text { for any } j \text { (if } a_{i} \text { is even) } \tag{1}\\ 1 & \text { if } a_{i}=b_{j} \text { for an even } j \\ (-1) & \text { if } a_{i}=b_{j} \text { for an odd } j\end{cases}
$$

Let l_{p} be the smallest integer for which $a_{l_{p}}=1$. Let l_{p}^{\prime} be the number of b_{j}-s among $a_{0}, a_{1}, \ldots, a_{l_{p}-1}$. We will need the following simple lemma.

Lemma 1. For $1 \leq i \leq l_{p}$, we have

$$
\begin{equation*}
a_{i} \leq \frac{p}{2^{i}}+1-\frac{1}{2^{i-1}}\left(\leq \frac{p}{2^{i}}+1\right) \tag{2}
\end{equation*}
$$

The simple inductive proof is given in the next section. This lemma immediately gives the bound

$$
\begin{equation*}
l_{p} \leq\lceil\log p\rceil \tag{3}
\end{equation*}
$$

Our main result is the following.

Theorem 1. For positive integers $p, 1 \leq k \leq l_{p}$, if $q \geq q_{l i n}+a_{k}+k-1$, then

$$
f(n, p, q)>\frac{1}{4 p^{2}} n^{\frac{2^{k}}{2^{k}-1}} .
$$

Using Lemma 1, we immediately get the following.
Corollary 2. For positive integers $p, 1 \leq k \leq l_{p}$, if $q \geq q_{l i n}+\frac{p}{2^{k}}+k$, then

$$
f(n, p, q)>\frac{1}{4 p^{2}} n^{\frac{2^{k}}{2^{k}-1}}
$$

Note that this is not far from the truth. (In fact, for $k=1$ it gives the right order of magnitude, namely quadratic.) Indeed, from the general probabilistic upper bound of [3], we get the following.

Theorem 3. ([3]) For positive integers $p, 1 \leq k \leq l_{p}$, if $q \leq q_{l i n}+\frac{p}{2^{k}}-\frac{1}{2^{k-1}}$, then

$$
f(n, p, q) \leq c_{p, q} n^{\frac{2^{k}}{2^{k}-1}}
$$

where $c_{p, q}$ depends only on p and q.
Another corollary of the lower bound in Theorem $1\left(k=l_{p}\right.$ and we use (3)) is that we can have at most $\log p$ values with a linear $f(n, p, q)$.

Corollary 4. If $q \geq q_{l i n}+\log p$, then

$$
f(n, p, q)>\frac{1}{4 p^{2}} n^{\frac{2^{l_{p}}}{2^{l_{p}}-1}}
$$

We have roughly a "gap" of size at most k in the values of q between the lower bound of Corollary 2 and the upper bound of Theorem 3. It would be desirable to close this gap. We believe, as is often the case, that the probabilistic upper bound (Theorem 3) is closer to the truth.

First we give some preliminary facts in the next section. Then in Section 3 we prove Theorem 1.

2 Preliminaries

To prove Lemma 1 we use induction on $i=1,2, \ldots, l_{p}$. It is true for $i=1$. Assume that it is true for i and then for $i+1$ from the definition of a_{i+1} we get

$$
a_{i+1} \leq \frac{a_{i}+1}{2} \leq \frac{\frac{p}{2^{i}}+1-\frac{1}{2^{i-1}}+1}{2}=\frac{p}{2^{i+1}}+1-\frac{1}{2^{i}}
$$

and thus proving Lemma 1.
We introduce the following indicator for $0 \leq i \leq l_{p}-1$.

$$
\delta_{i}= \begin{cases}1 & \text { if } b_{j-1}>a_{i} \geq b_{j} \text { for an odd } j>1, \text { or if } a_{i} \geq b_{1}, \text { or for even } l_{p}^{\prime} \text { if } a_{i}<b_{l_{p}^{\prime}} \\ 0 & \text { otherwise }\end{cases}
$$

We will need the following.
Lemma 2. For any $0 \leq i \leq l_{p}-1$

$$
\begin{equation*}
\sum_{j=0}^{i} a_{l_{p}-j}=a_{l_{p}-i-1}-\delta_{l_{p}-i-1}-p r\left(l_{p}^{\prime}\right) \tag{4}
\end{equation*}
$$

Proof: We use induction on $i=0,1, \ldots, l_{p}-1$. (4) is true for $i=0$, since $a_{l_{p}}=1$ and $a_{l_{p}-1}=1+\delta_{l_{p}-1}+p r\left(l_{p}^{\prime}\right)$.

Assuming that (4) is true for i, for $i+1$ using (1) we get

$$
\sum_{j=0}^{i+1} a_{l_{p}-j}=\sum_{j=0}^{i} a_{l_{p}-j}+a_{l_{p}-i-1}=2 a_{l_{p}-i-1}-\delta_{l_{p}-i-1}-p r\left(l_{p}^{\prime}\right)=a_{l_{p}-i}-\delta_{l_{p}-i}-p r\left(l_{p}^{\prime}\right),
$$

proving the lemma.
¿From this we get:
Lemma 3. For any $1 \leq k \leq l_{p}$

$$
\sum_{j=1}^{k} a_{j} \geq a_{0}-a_{k}-1=p-a_{k}-1
$$

Proof:

$$
\sum_{j=1}^{k} a_{j}=\sum_{j=0}^{l_{p}-1} a_{l_{p}-j}-\sum_{j=0}^{l_{p}-k-1} a_{l_{p}-j}=a_{0}-\delta_{0}-a_{k}+\delta_{k} \geq a_{0}-a_{k}-1
$$

3 Proof of Theorem 1

Let $1 \leq k \leq l_{p}$ and $q \geq q_{l i n}+a_{k}+k-1$. Denote

$$
\begin{equation*}
h=h(n, k)=\frac{1}{4 p^{2}} n^{\frac{2^{k}}{2^{k}-1}} . \tag{5}
\end{equation*}
$$

Assume indirectly that there is a (p, q)-coloring of K_{n} with at most h colors. From this assumption we get a contradiction.

Consider a fixed (p, q)-coloring of K_{n} with at most h colors. First we find a sequence of monochromatic matchings $M_{1}, M_{2}, \ldots, M_{k}$ in K_{n}. For M_{1}, there is a color class (denoted by C_{1}) in K_{n} which contains at least $\frac{\binom{n}{2}}{h}$ edges. In C_{1} all the connected components have size at most $p-1$, since otherwise we immediately have a K_{p} with fewer than q colors, a contradiction. Then in C_{1} we can clearly choose a matching M_{1} (for example by taking one edge from each component) of even size at least

$$
\frac{\binom{n}{2}}{p h} .
$$

Partition the vertices spanned by M_{1} into A and B, so M_{1} is a matching between A and B. Halve the vertices of A arbitrarily and denote one of the halves by A_{1}. Denote by B_{1} the set of vertices in B which are not matched to vertices in A_{1} by M_{1}. Consider the complete bipartite graph between A_{1} and B_{1} and the color class (denoted by C_{2}) which contains the most edges in it. Again from these edges in C_{2} we can choose a matching M_{2} of even size at least

$$
\frac{\left(\frac{\left|M_{1}\right|}{2}\right)^{2}}{p h}
$$

We continue in this fashion. Assume that M_{i} is already defined. Denote an arbitrary half of the endvertices of M_{i} in A by A_{i+1}. The set of endvertices of the edges of M_{i} in B which are not matched to vertices in A_{i+1} is denoted by B_{i+1}. Consider the complete bipartite graph between A_{i+1} and B_{i+1} and the color class (denoted by C_{i+1}) which contains the most edges in it. ¿From these edges in C_{i+1} we can choose a matching M_{i+1} of even size at least

$$
\frac{\left(\frac{\left|M_{i}\right|}{2}\right)^{2}}{p h}
$$

Thus

$$
\left|M_{i+1}\right| \geq \frac{\left(\frac{\left|M_{i}\right|}{2}\right)^{2}}{p h} .
$$

Then by induction we have

$$
\left|M_{i}\right| \geq \frac{n^{2^{i}}}{(4 p h)^{2^{i}-1}} .
$$

Indeed, this is true for $i=1$

$$
\left|M_{1}\right|>\frac{n^{2}}{4 p h}
$$

For $i+1$ we get

$$
\left|M_{i+1}\right| \geq \frac{\left(\frac{\left|M_{i}\right|}{2}\right)^{2}}{p h} \geq \frac{\left(\frac{n^{2^{i}}}{2(4 p h)^{2^{i}-1}}\right)^{2}}{p h}=\frac{n^{2^{i+1}}}{(4 p h)^{2^{i+1}-1}}
$$

This and (5) implies that $\left|M_{i}\right| \geq p \geq a_{i}, 1 \leq i \leq k$ and thus the matchings $M_{1}, M_{2}, \ldots, M_{k}$ can be chosen.

Next using these matchings M_{i} we choose a K_{p} such that it contains at most $q-1$ colors, a contradiction. For this purpose we will find another sequence of matchings M_{i}^{\prime} such that $M_{i}^{\prime} \subset M_{i},\left|M_{i}^{\prime}\right|=a_{i}$ for $1 \leq i \leq k$ and $\left|\cup_{i=1}^{k} V\left(M_{i}^{\prime}\right)\right| \leq p$.
M_{k}^{\prime} is just a set of a_{k} arbitrary edges from M_{k}. Assume that $M_{k}^{\prime}, \ldots, M_{i+1}^{\prime}$ are already defined and now we define M_{i}^{\prime}. We consider the $2 a_{i+1}$ vertices in $V\left(M_{i+1}^{\prime}\right)$ and the edges of M_{i} incident to these vertices. We have four cases.

Case 1: If $2 a_{i+1}=a_{i}$ (so we have the first case in (1)), then this is M_{i}^{\prime}.
Case 2: If $2 a_{i+1}=a_{i}+1$ (second case in (1)), so $a_{i}=b_{j}$ for an even j, then we remove one of the edges from this set incident to a vertex in $V\left(M_{i+1}^{\prime}\right) \cap A$ to get M_{i}^{\prime}. Furthermore, we mark this vertex in $V\left(M_{i+1}^{\prime}\right) \cap A$ which is not covered by M_{i}^{\prime}. This marked vertex is going to be covered only by $M_{i^{\prime}}^{\prime}$ if $a_{i^{\prime}}=b_{j-1} \quad\left(\right.$ unless $\left.i^{\prime}=0\right)$.

Case 3: If $2 a_{i+1}=a_{i}-1$ (third case in (1)) and there is no marked vertex at the moment, then to get M_{i}^{\prime} we add one arbitrary edge of M_{i} to these $2 a_{i+1}$ edges.

Case 4: Finally, if $2 a_{i+1}=a_{i}-1$ and there is a marked vertex then to get M_{i}^{\prime} we add to these $2 a_{i+1}$ edges the edge of M_{i} incident to the marked vertex and we "unmark" this vertex.

We continue in this fashion until $M_{k}^{\prime}, \ldots, M_{1}^{\prime}$ are defined. Then $\left|\cup_{i=1}^{k} V\left(M_{i}^{\prime}\right)\right|=p$ or $p-1$. Note that it can be $p-1$ only if $a_{0}=p=b_{1}$ is odd, and there is no other odd a_{i} among $a_{1}, a_{2}, \ldots, a_{k-1}$. In this case we add one more arbitrary vertex to get the K_{p}, otherwise $\cup_{i=1}^{k} V\left(M_{i}^{\prime}\right)$ is the K_{p}.

By the above construction this K_{p} contains a_{i} edges from the matching M_{i} (and thus from color class C_{i}) for $1 \leq i \leq k$.

Now since Lemma 3 implies

$$
\sum_{j=1}^{k}\left(a_{j}-1\right) \geq p-a_{k}-1-k
$$

thus the number of colors used in this K_{p} is at most

$$
\binom{p}{2}-p+a_{k}+k+1 \leq q-1
$$

a contradiction. This completes the proof of Theorem 1.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
[2] P. Erdős, Solved and unsolved problems in combinatorics and combinatorial number theory, Congressus Numerantium 32 (1981), 49-62.
[3] P. Erdős, A. Gyárfás, A variant of the classical Ramsey problem, Combinatorica 17 (4) (1997), 459-467.
[4] D. Mubayi, Edge-coloring cliques with three colors on all 4-cliques, Combinatorica 18 (2) (1998), 293-296.

