
MicroEMACS for MS-Windows
Index

update 1.1
Introduction
Keyboard
Procedures
Modes of Operation
Macro Language
Start-up
Memory Usage
MS-Windows Specifics
Glossary
History
Support
Copyright

Introduction

MicroEMACS is a tool for creating and changing documents, programs, and other text files. It
is both relatively easy for the novice to use, but also very powerful in the hands of an expert.
MicroEMACS can be extensively customized for the needs of the individual user.
MicroEMACS allows several files to be edited at the same time. The display can be split into
different windows and screens, and text may be moved freely from one window on any
screen to the next. Depending on the type of file being edited, MicroEMACS can change how
it behaves to make editing simple. Editing standard text files, program files and word
processing documents are all possible at the same time.
There are extensive capabilities to make word processing and editing easier. These include
commands for string searching and replacing, paragraph reformatting and deleting,
automatic word wrapping, word move and deletes, easy case controlling, and automatic
word counts.
For complex and repetitive editing tasks editing macros can be written. These macros allow
the user a great degree of flexibility in determining how MicroEMACS behaves. Also, any and
all the commands can be used by any keystroke by changing, or rebinding, what commands
various keys invoke.
Special features are also available to perform a diverse set of operations such as file
encryption, automatic backup file generation, entabbing and detabbing lines, executing
operating system commands and filtering of text through other programs (like SORT to allow
sorting text).

History

EMACS was originally a text editor written by Richard Stallman at MIT in the early 1970s for
Digital Equipment computers. Various versions, rewrites and clones have made an
appearance since.
This version of MicroEMACS is derived from code written by David G. Conroy in 1985. Later
modifications were performed by Steve Wilhite and George Jones. In December of 1985
Daniel Lawrence picked up the then current source (version 2.0) and made extensive
modifications and additions to it over the course of the next six years.
In November 1990, Pierre Perret produced a port of MicroEMACS 3.10e to the Microsoft
Windows 3.0 environment (BETA version 0.6a which never enjoyed a full release). The first
public version, 1.0, based on MicroEMACS 3.11c, was released in April 1992.
Update 1.1 includes bug fixes, port to Windows NT, support of scroll bars and drag and drop
mechanism. It is the first release to include a complete help file.

Support

Updates and support for the current version are available. Commercial support and usage
and resale licences are also available.
For questions regarding the official MicroEMACS editor, contact Daniel Lawrence. For
technical questions specific to the port of MicroEMACS to the Microsoft Windows
environment, contact Pierre Perret.
The home BBS of MicroEMACS is "The Programmer's Room".

Bulletin Board System
The latest executables, sources and documentations can be obtained from:

The Programmer's Room
Opus 201/10
300/1200/2400 and 9600 (Hayes V series only)
(317) 742-5533    no parity    8 data bits    no stop bits

The current MicroEMACS author can be contacted by writing to:
USMAIL: Daniel Lawrence

 617 New York Street
 Lafayette, IN 47901

UUCP: pur-ee!mdbs!dan
Internet: mdbs!dan@ee.ecn.purdue.edu

The Programmer's Room BBS:
 Dan Lawrence

The author of the port of MicroEMACS to the Microsoft Windows environment can be
contacted by writing to:

USMAIL: Pierre Perret
 4326 W Michigan Ave
 Glendale, AZ 85308

Internet: P.Perret@az05.bull.com
CompuServe: 73757,2337

BIX: pierre_perret
The Programmer's Room BBS:

 Pierre Perret

Copyright

MicroEMACS is Copyright © 1988, 1989, 1990, 1991 and 1992 by Daniel M. Lawrence.
MicroEMACS 3.11 can be copied and distributed freely for any non-commercial purposes.
Commercial users may use MicroEMACS 3.11 in house. Shareware distributors may
redistribute MicroEMACS 3.11 for media costs only. MicroEMACS 3.11 can only be
incorporated into commercial software or resold with the permission of the current author.
MicroEMACS for Windows update 1.1 is derivative work of MicroEMACS 3.11. As such, it is
subject to the Copyright statement and distribution conditions stated above for MicroEMACS
3.11.
This help file was authored by Pierre Perret.

Keyboard
All the MicroEMACS documentation talks about commands and the keystrokes needed to use
them. Each MicroEMACS command has a name, and most of them are bound to a sequence
of keys. Some of them are bound to mouse actions. The following commands are useful
when looking for a binding:

M-? apropos looks up commands
 describe-bindings lists all the bindings

^X? describe-key displays the command bound to a keystroke
In this help file, when a command is mentioned, its default key binding is often shown. Note
that these bindings can be modified, in particular by the start-up file.
Keystrokes for commands include one of several prefixes, and a command character.
Command keystrokes look like these:

^A hold down Ctrl, press 'A'
M-A press the meta key, release it and press 'A'

^XA hold down Ctrl, press 'X', release, press 'A'
^X^A hold down Ctrl, press 'X', release, hold Ctrl, press 'A'

A-C hold down Alt, press 'C'
S-FN1 hold down Shift, press function key F1
FN^1 hold down Ctrl, press function key F1

Under Microsoft Windows, key bindings are displayed in front of menu items, using a CUA
type syntax instead of the above-mentioned one. Though this may seem inconsistent, it
looks more familiar to inexperienced users and is far less cryptic when it comes to special
keys (Ins, Del, Arrows...).

Procedures
The Basics:

Getting at Files
Searching and Replacing
Cutting and Pasting
Using the Mouse
Using Menus
Customizing Command Keys
Issuing Commands by Name
The Outside World

Juggling:
Buffers
Regions
Paragraphs
Words
Screens
Windows
Setting Colors
Setting the Font

Advanced topics:
Case Control
Controlling Tabs
Repetitive Tasks
Narrowing Your Scope
Creating New Commands
Customizing Menus

The Basics

MicroEMACS is a very powerful tool to use for editing text files. It has many commands,
options and features to let you do just about anything you can imagine with text. But don't
let this apparent complexity keep you from using it.... MicroEMACS can also be very simple.
To start editing text, all the keys you really need to know are the arrow keys. These keys let
you move around in your file.
MicroEMACS also works by using control keys. Here are a few basic commands:

^P Move upward
^B Move backward
^F Move forward
^N Move downward

^X^S Save your file
^X^C Exit MicroEMACS

A hat sign "^" before a key means to hold the Ctrl key down and press the next character.
For example, to exit MicroEMACS, hold down the Ctrl key and strike X and then C.

Getting at Files

The way you edit a file within MicroEMACS is by first reading it into a buffer, altering it and
then saving it. Therefore, the most commonly used commands to access files are:

^X^F find-file to read a file from disk for editing
^X^S save-file to save an edited file to disk

Other read commands are:
^X^I insert-file to insert at the point

^X^R read-file to replace the whole buffer contents
^X^V view-file to read for viewing, preventing any alterations

To save a buffer to another file than the one MicroEMACS would normally access, use:
^X^W write-file to overwrite the file's previous contents
^X^A append-file to append to the end of the file

Searching and Replacing

Commands for searching for and replacing strings come in a number of different flavors. The
simplest command is:

^S search-forward
Following that, you can search for yet another occurrence of the same string by using:

A-S hunt-forward
You can also search towards the beginning of the file instead of towards the end by using:

^R search-reverse
A-R hunt-backward

To replace strings, use:
M-R replace-string to replace all occurrences

M-^R query-replace-string to get queried for each replacement
MicroEMACS also supports incremental searching:

^XS incremental-search towards the beginning
^XR reverse-incremental-search towards the end

Cutting and Pasting

MicroEMACS allows you to manipulate text by blocks of any size. You can copy or move text
within MicroEMACS through the kill buffer.
Under Microsoft Windows, you can also exchange text with other Windows applications via
the clipboard, using the cut-region, clip-region and insert-clip commands.

Moving Text
To move text from one place to another:
1. Move to the beginning of the text you want to move.
2. Set the mark there with the set-mark (M-) command.
3. Move the point to the end of the text.
4. Use the kill-region (^W) command to delete the region you just defined. The text will be

saved in the kill buffer.
5. Move the point to the place you want the text to appear.
6. Use the yank (^Y) command to copy the text from the kill buffer to the current point.
Repeat steps 5 and 6 to insert more copies of the same text.

Copying Text
To copy text from one place to another:
1. Move to the beginning of the text you want to copy.
2. Set the mark there with the set-mark (M-) command.
3. Move the point to the end of the text.
4. Use the copy-region (M-W) command to copy the region to the kill buffer.
5. Move the point to the place you want the text to appear.
6. Use the yank (^Y) command to copy the text from the kill buffer to the current point.
Repeat steps 5 and 6 to insert more copies of the same text.

Using the Mouse

MicroEMACS can use the mouse to perform many basic editing tasks. Unless mouse behavior
has been altered by a macro, you can perform the following actions:

Copying a Region
Killing a Region
Moving a Mode Line
Pasting Text
Repositioning the Point
Scrolling Text Inside a Window

Repositioning the Point with the Mouse
Move the mouse to where you want the point to be, and click once with the left mouse
button and release. The point will move there, making any screen or window active to do so.

Scrolling Text Inside a Window with the Mouse
Position the mouse on the text to drag, press the left button, move the mouse to where to
display the text (horizontally or vertically), and release the mouse button.
If you are using the CUA.CMD page (which is usually the case under Microsoft Windows), the
above action is performed by pressing the right mouse button instead of the left one.
Note that if you drag diagonally and the $diagflag variable is set to FALSE (the default
value), the text will move only in the vertical direction.

Moving a Mode Line with the Mouse
Position the mouse on a mode line (except the bottom one which cannot be moved), press
the left button, move to another position and release the button. The mode line will move,
resizing the windows which are above and below.
If you are using the CUA.CMD page (which is usually the case under Microsoft Windows), the
above action is performed by pressing the right mouse button instead of the left one.

Copying a Region with the Mouse
Position the mouse at the beginning of the text to be copied, press the right button, move
the mouse to the other end of the text, release the button. This actually makes the selected
text the current region and then copies it into the kill buffer.
If you are using the CUA.CMD page (which is usually the case under Microsoft Windows), the
above action is performed by pressing the Shift key and the right mouse button together
instead of just the right mouse button.

Killing a Region with the Mouse
After copying a region, without moving the mouse, click the right mouse button once. The
text will be deleted, but it will still be kept in the kill buffer.
If you are using the CUA.CMD page (which is usually the case under Microsoft Windows), the
above action is performed by pressing the Shift key and the right mouse button together
instead of just the right mouse button.

Pasting Text with the Mouse
Move anywhere away from the place the mouse was last clicked, and click the right button
once. The last text placed in the kill buffer will be inserted there.
If you are using the CUA.CMD page (which is usually the case under Microsoft Windows), the
above action is performed by pressing the Shift key and the right mouse button together
instead of just the right mouse button.

Using menus

Under Microsoft Windows, MicroEMACS sports an extensive menu system. Menu items can
point to a pop-up menu or directly invoke a command or a macro. A few menu items are not
linked to any MicroEMACS commands or macro (for instance, the "About..." item in the
"Help" menu).
The text of each menu item can contain the following hints:

Items that lead to the apparition of a dialog box are followed by an ellipsis "...".
Items that require the user to type additional information in the message line are
followed by a colon ":".
Items that require a numeric argument are preceded by an equal sign "=".
Items that are equivalent to a key binding have the corresponding key sequence
displayed on the right side of the menu.

The MicroEMACS menus can be modified by macros to add/remove menus or menu items.
The initial menus on the menu bar are:

File
Edit
Search
Execute
Miscellaneous
Screen
Help

File menu
This menu contains the following items:

Open... invokes the find-file command. If the MDI.CMD page is loaded,
this menu item is modified and bound to the open-file macro

View... invokes the view-file command
Insert... invokes the insert-file command
Read over... invokes the read-file command
Rename... invokes the change-file-name command
Save invokes the save-file command
Save as... invokes the write-file command
Append... invokes the append-file command
Encryption key : invokes the set-encryption-key command
Buffer submenu
Window submenu
Mode... brings up a dialog box to change the modes of operation for the

current buffer.
Global mode... brings up a dialog box to change the global modes of operation.
Save + exit invokes the quick-exit command
Exit invokes the exit-emacs command

Buffer submenu
This menu is accessed via the File menu. It contains the following items:

Next invokes the next-buffer command
Select : invokes the select-buffer command
Unmark invokes the unmark-buffer command
Rename : invokes the name-buffer command
Delete : invokes the delete-buffer command
Narrow to region invokes the narrow-to-region command
Widen from region invokes the widen-from-region command
List invokes the list-buffers command

Window submenu
This menu is accessed via the File menu. It contains the following items:

Split invokes the split-current-window command
Delete invokes the delete-window command
Delete others invokes the delete-other-windows command
Next invokes the next-window command
Previous invokes the previous-window command
Scroll submenu
Size submenu

Window Scroll submenu
This menu is accessed via the Window submenu of the File menu. It contains the following
items:

= Up invokes the move-window-up command
= Down invokes the move-window-down command
= Next up invokes the scroll-next-up command
= Next down invokes the scroll-next-down command

Window Size submenu
This menu is accessed via the Window submenu of the File menu. It contains the following
items:

= Grow invokes the grow-window command
= Shrink invokes the shrink-window command
= Height invokes the resize-window command

Edit menu
This menu contains the following items:

Clipboard submenu
Mark submenu
Yank invokes the yank command
Region submenu
Paragraph submenu
Line submenu
Word submenu
Delete blank lines invokes the delete-blank-lines command
Transpose characters invokes the transpose-characters command
Tab invokes the handle-tab command
Quote invokes the quote-character command
= Fill column invokes the set-fill-column command. The emacs.rc page

modifies this menu item slightly so that it prompts you for the
fill column value.

If the CUA.CMD page is loaded, the menu is modified by the addition of the following item
(before "Region"):

Selection submenu

Clipboard submenu
This menu is accessed via the Edit menu. It contains the following items:

Cut region invokes the cut-region command
Copy region invokes the clip-region command
Paste invokes the insert-clip command

If the CUA.CMD page is loaded, the menu is modified and, instead, contains the following
items:

Cut deletes and copies to the clipboard the text contained in the
current selection

Copy copies (without deleting) to the clipboard the text contained in
the selection

Paste inserts the text from the clipboard at the point

Mark submenu
This menu is accessed via the Edit menu. It contains the following items:

Set invokes the set-mark command
Remove invokes the remove-mark command
Exchange invokes the exchange-point-and-mark command

Selection submenu
This menu is accessed via the Edit menu when the CUA.CMD page is loaded. It contains the
following items:

Upper case converts all the selected text to upper case
Lower case converts all the selected text to lower case
Count words displays on the message line the number of words, characters

and lines that compose the selected text
Flip exchanges the point with the other end of the selection
Select region makes the current region the current selection

Region submenu
This menu is accessed via the Edit menu. It contains the following items:

Kill invokes the kill-region command
Copy invokes the copy-region command
Upper case invokes the case-region-upper command
Lower case invokes the case-region-lower command
Entab invokes the entab-region command
Detab invokes the detab-region command
Trim invokes the trim-region command
Indent invokes the indent-region command
Undent invokes the undent-region command
Count words invokes the count-words command

Edit Paragraph submenu
This menu is accessed via the Edit menu. It contains the following items:

Kill invokes the kill-paragraph command
Fill invokes the fill-paragraph command

Edit Line submenu
This menu is accessed via the Edit menu. It contains the following items:

Kill to end invokes the kill-to-end-of-line command
Open invokes the open-line command

Edit Word submenu
This menu contains the following items:

Kill next invokes the delete-next-word command
Kill previous invokes the delete-previous-word command
Capitalize invokes the case-word-capitalize command
Lower case invokes the case-word-lower command
Upper case invokes the case-word-upper command

Search menu
This menu contains the following items:

Search forward : invokes the search-forward command
Search backward : invokes the search-reverse command
Hunt forward invokes the hunt-forward command
Hunt backward invokes the hunt-backward command
Incremental search : invokes the incremental-search command
Reverse incremental : invokes the reverse-incremental-search command
Replace : invokes the replace-string command
Query replace : invokes the query-replace-string command
Goto submenu
Page submenu
Paragraph submenu
Line submenu
Word submenu

Goto submenu
This menu is accessed via the Search menu. It contains the following items:

Mark invokes the goto-mark command
Line invokes the goto-line command
Matching fence invokes the goto-matching-fence command
Beginning of file invokes the beginning-of-file command
End of file invokes the end-of-file command

Page submenu
This menu is accessed via the Search menu. It contains the following items:

Next invokes the next-page command
Previous invokes the previous-page command

Search Paragraph submenu
This menu is accessed via the Search menu. It contains the following items:

Next invokes the next-paragraph command
Previous invokes the previous-paragraph command

Search Line submenu
This menu is accessed via the Search menu. It contains the following items:

Next invokes the next-line command
Previous invokes the previous-line command
Beginning of invokes the beginning-of-line command
End of invokes the end-of-line command

Search Word submenu
This menu is accessed via the Search menu. It contains the following items:

Next invokes the next-word command
Previous invokes the previous-word command
End of invokes the end-of-word command

Execute menu
This menu contains the following items:

Windows program : invokes the execute-program command
Shell program : invokes the shell-command command
Pipe-in : invokes the pipe-command command
Filter : invokes the filter-buffer command
Shell invokes the i-shell command
EMACS command submenu
Keyboard macro submenu
Abort command invokes the abort-command command

If the DEV.CMD page is loaded, the menu is modified by the addition of the following item:
Make invokes the run-makefile macro.

EMACS command submenu
This menu is accessed via the Execute menu. It contains the following items:

Named command : invokes the execute-named-command command
Command line : invokes the execute-command-line command
Procedure : invokes the execute-procedure command
Buffer : invokes the execute-buffer command
File... invokes the execute-file command

Keyboard macro submenu
This menu is accessed via the Execute menu. It contains the following items:

Play invokes the execute-macro command
Start recording invokes the begin-macro command
End recording invokes the end-macro command

Miscellaneous menu
This menu contains the following items:

Key bindings submenu
Menu bindings submenu
Variable submenu
Show position invokes the buffer-position command

Key bindings submenu
This menu is accessed via the Miscellaneous menu. It contains the following items:

Bind to Command invokes the bind-to-key command
Bind to Macro invokes the macro-to-key command
Unbind invokes the unbind-key command
Describe key invokes the describe-key command
List invokes the describe-bindings command

Menu bindings submenu
This menu is accessed via the Miscellaneous menu. It contains the following items:

Bind to Command invokes the bind-to-menu command
Bind to Macro invokes the macro-to-menu command
Unbind invokes the unbind-menu command

Variable submenu
This menu is accessed via the Miscellaneous menu. It contains the following items:

Set invokes the set command
Display invokes the display command
List invokes the describe-variables command

Screen menu
This menu contains the following items:

Cascade invokes the cascade-screens command
Tile submenu
Arrange Icons causes iconized screens to be rearranged at the bottom left of

the MicroEMACS frame window.
Open invokes the find-screen command
Rename invokes the rename-screen command
Size submenu
Font... brings up a dialog box to change the font used by MicroEMACS

If the MDI.CMD page is loaded, the menu is modified by the addition of the following items:
Rebuild rebuilds the set of screens, to have a screen associated with

each editing buffer
Kill deletes the current screen and release the corresponding buffer.

Additional items are added dynamically at the end of the "Screen" menu, listing the
available screens. This allows quick switching between those screens.

Tile submenu
This menu is accessed via the Screen menu. It contains the following items:

Horizontally causes all non-iconic screens to be rearranged in a tiling
scheme, side by side if possible

Vertically causes all non-iconic screens to be rearranged in a tiling
scheme, on top of each other if possible

Screen Size submenu
This menu is accessed via the Screen menu. It contains the following items:

= Height invokes the change-screen-size command
= Width invokes the change-screen-width command
Normalize causes the current screens to be resized so that it is as small as

possible while retaining the same height and width in
characters.

If the MDI.CMD page is loaded, the menu is modified by the replacement of "= Height" and
"= Width" by the following item:

Set: prompts you for the width and height of the screen, supplying
the current values as defaults.

Help menu
This menu contains the following items:

Index brings up this help file, on the main index.
Keyboard brings up this help file, on the keyboard topic
Commands brings up this help file, on the commands topic
Procedures brings up this help file, on the procedures topic
List submenu
Apropos : invokes the apropos command
Describe key : invokes the describe-key command
Display variable : invokes the display command
About... brings up a dialog box giving some information about

MicroEMACS and the people involved in its making.
If the DEV.CMD page is loaded, the menu is modified by the addition of items (before "List")
that invoke the Windows help engine for, respectively, Windows 3.0, Windows 3.1 or Win32
Software Development Kits or for Turbo C++. Each of those attempt to select a help topic
based on the word currently at the point. You can eliminate the undesired items among
these by editing the macro-to-menu commands in the DEV.CMD file.

List submenu
This menu is accessed via the Help menu. It contains the following items:

Key bindings invokes the describe-bindings command
Functions invokes the describe-functions command
Variables invokes the describe-variables command
Buffers invokes the list-buffers command

Customizing Command Keys

MicroEMACS lets you decide what keys activate what command or macro through the use of:
M-K bind-to-key

^X^K macro-to-key
M-^K unbind-key

These commands can be used to permanently change your key bindings by placing them in
your start up file. For example, if you have one of those nasty keyboards with a tilde "~" in
the upper left corner, where the Escape key should be, and you want the tilde to become the
meta key, add this line to emacs.rc:

bind-to-key meta-prefix ~
You can use this to make MicroEMACS feel similar to another editor by changing what keys
activate which commands.
The unbind-key command is useful if you have a function key you keep tripping over, or if
you are trying to make MicroEMACS look like a much more minimalist editor.
You can get a list of all the key bindings that MicroEMACS uses by using the describe-
bindings command. Just do M-X and type:

describe-bindings

Issuing Commands

Commands within MicroEMACS have descriptive names which you can use to invoke them,
or bind them to a keystroke or a menu. To invoke one of these commands by name, you can
use:

M-X execute-named-command
You can supply numeric arguments to a such a command by prefixing it. You can also use a
command line invocation.
To get a list of all the commands in your current MicroEMACS, do M-X and type:

describe-bindings
The describe-bindings command will display a paged list of all legal commands and the
keystrokes to use to invoke them.

Interactive Numeric Arguments
Some commands take a number as an argument. For example, to move to a particular line
within a file, you use the goto-line (M-G) command. To go to a particular line, precede the
command with a number by striking the meta key, typing a number, and then the keys
bound to the command. To go to the 123rd line of a file, use:

Meta 123 Meta g
If a command does not need a numeric argument, it is usually taken as a repeat count. This
also works when typing any character. To make a line of 50 dashes type:

Meta 50 -

Command Lines
execute-command-line (M-^X) lets you type in a full command line. MicroEMACS macros are
made from sequences of these command lines. A command line has three parts:

Numeric argument Command Arguments

The numeric argument is optional and has the same effect as an interactive numeric
argument prefixing an interactive invocation of the same command.
Arguments following the command are not always required. If needed arguments have been
omitted, the user will be prompted for them on the message line.
To insert the string "<*><*><*>" at the point, do M-^X and then:

3 insert-string "<*>"
or to set the current fill column to 64, do M-^X and then:

64 set-fill-column

The Outside World

The following commands let you interact with the Operating System or with other
applications:
^X^C exit-emacs terminates MicroEMACS

M-Z quick-exit same as above, but saves all changed buffers first
^X! shell-command executes a program within an Operating System "shell"
^X$ execute-program launches another application

^X@ pipe-command pipes a program's output into a buffer
^X# filter-buffer filters a buffer through a program
^XC i-shell opens an Operating System "shell"

Synchronizing With Another Program
When the pipe-command or the filter-buffer commands are used under Microsoft Windows,
MicroEMACS creates a DOS box (or "shell box" under Windows NT) and waits for it to
terminate.Also, if the execute-program or the shell-command command is invoked with a
numeric argument, MicroEMACS waits for the launched application to terminate.
You can cancel the wait by pressing the Esc key or clicking on the "Cancel" button. Note that
doing so does not terminate the other program.
For synchronization to work with a DOS box, the DOSExec profile must be set properly. Under
Windows NT, shell boxes can be parametrized by setting the Shell and the ShellExecOption
profiles.

Buffers

A buffer is where MicroEMACS stores text. Normally that text is read from a file, and is visible
in an editing window. But text stored in buffers can also be MicroEMACS macros, temporary
storage for macros, or lists of screens, files, buffers, variables, commands or bindings
created by MicroEMACS commands. Commands that deal with buffers include:

^XB select-buffer
^XK delete-buffer

^X^B list-buffers
^XX next-buffer

Regions

Regions are used in MicroEMACS to specify what text is acted on by many commands. A
region is defined as all the text between the point, and the last placed mark. To define a
region:
1. Move the point to the beginning of the text you want to effect
2. Use the set-mark (M-) command to position the mark at the current point
3. Move the point to the end of the text you want to affect
At this time, the text between the mark and the point is the current region which will be
affected by many commands. Regions can be defined backwards as well as forwards, and
can include the entire buffer, or as little as one character.

Paragraphs

MicroEMACS defines a paragraph as any group of lines of text surrounded by blank lines. A
line starting with one of the characters in the $paralead variable is considered the first line
of a paragraph. Also, if line starts with one of the characters in the $fmtlead variable, the
following line is considered to be the beginning of a paragraph.
Commands that deal with paragraphs include:

M-N next-paragraph
M-P previous-paragraph

M-^W kill-paragraph
M-Q fill-paragraph

Words

Words are defined, by default, as a string of characters consisting of alphabetic, numeral
and the underscore "_" character. You can change this by setting the $wchars variable to a
list of all the characters you want considered as part of a word.
The commands that deal with words include:

M-F next-word
M-B previous-word
M-D delete-next-word

M-^H delete-previous-word
M-^C count-words

Screens

A screen is a collection of windows which are displayed together. On some non-graphically
oriented systems, only one screen is displayed at a time. Under other graphical oriented
operating systems like Microsoft Windows, X-Windows, the Macintosh or the Amiga, each
screen may be displayed in an operating system "window". Notice that the MicroEMACS
usage of the word window is different from the meaning used in these graphical systems:

MicroEMACS Operating System
Window Pane
Screen Window

Each screen has its own set of windows. Switching from one screen to another (for instance
by clicking on that screen) will preserve the window setup, the colors and the buffers being
displayed.
When MicroEMACS starts up, it displays a single screen named "MAIN". Extra screens can be
created by the command:

A-F find-screen

Windows

MicroEMACS uses windows to display and allow you to edit the contents of buffers. A single
screen will show one or more windows, separated by a mode line which describes the
contents of the window above it.
You can scroll text vertically and horizontally within a window by using the arrow keys or the
page-up, page-down, home and end keys. Note that if a line of text extends beyond the
boundary of a window, a dollar "$" sign is displayed instead of the last visible character.
Here are some window-related commands:

^X2 split-current-window
^X1 delete-other-windows
^X0 delete-window
^XO next-window
^XP previous-window

Notice that the MicroEMACS usage of the word window is different from the meaning used in
graphical systems:

MicroEMACS Operating System
Window Pane
Screen Window

Setting Colors

On systems which are capable of displaying colors, the mode commands can be used to set
the background and foreground character colors. Using add-mode (^XM) or delete-mode
(^X^M) and typing a lowercase color will set the background color in the current window. An
uppercase color will set the foreground color in the current window.
In a similar manner, add-global-mode (M-M) and delete-global-mode (M-^M) will set the
background or foreground colors of future windows.
Colors that MicroEMACS knows about are: white, gray (dark grey), grey (light grey), cyan,
lcyan (light cyan), magenta, lmagenta (light magenta), yellow, lyellow (light yellow),
blue, lblue (light blue), red, lred (light red), green, lgreen (light green) and black. If the
computer you are running on does not have enough colors, MicroEMACS will attempt to
guess at what color to use when you ask for one which is not there (systems with only 8
colors support: white, cyan, magenta, yellow, blue, red, green and black).
Under Microsoft Windows, the whole 16 colors above are available if the display system
supports them (depending on the value of the Colors profile). In that case, Mode lines are
displayed as black characters on a light grey background. The message line and desktop
colors can be modified through the Windows "control panel" as "window text", "window
background" and "application workspace". The value of the $deskcolor variable is always
irrelevant.

Setting the Font

Under Microsoft Windows, the font used by MicroEMACS to display text within the screens
and the message line can be selected by using the Font... item in the Screen menu. This
brings up a dialog box in which you can select:

The character set "ANSI" is the usual default within Windows application. "OEM" is
useful when displaying files that contain pseudo-graphics
characters.

The face name You can chose any of the available fixed-pitch faces.
The size of the font You can either chose one of the font heights listed or type one if

you have scalable fonts. All heights are expressed in pixels.
The font weight Normal unless you check the "Bold" box.

A sample of the selected font is shown, specifying its height and width. The maximum
screen size is calculated as the number of columns and rows (including mode lines) that
would be displayed in a maximized screen when the MicroEMACS frame is maximized.
Pressing the Enter key or the OK button effects the change of font in MicroEMACS. Pressing
the Alt+S keys or the Save button has the same effect, but also saves the font selection in
the profiles so that next time MicroEMACS is started, it uses that font. Pressing the Escape
key or the Cancel button returns to MicroEMACS without changing the font.

Case Control

The following commands let you change the case of the word at or following the point:
M-C case-word-capitalize
M-L case-word-lower
M-U case-word-upper

Setting a mark, moving to the other end of the region and using one of these commands will
change the case of all the words in the selected region:

^X^L case-region-lower
^X^U case-region-upper

Controlling Tabs

By default, MicroEMACS sets the default tab stops every eighth column. This behavior can be
changed (usually within the start-up file).
The behavior of the handle-tab (^I or Tab key) command depends on the numeric argument
that is supplied to it:

With no argument, handle-tab inserts space characters or a single tab character to get
to the next tab stop, depending on its configuration...
With an non-zero argument n, tabs stops are reset to every nth column and handle-tab
is reconfigured to insert space characters in sufficient number to get to the next tab
stop. This also sets the $softtab variable to n.
With an argument of zero, handle-tab is reconfigured so that it inserts true tab
characters (its default behavior) and the tab stop interval is reset to its default value of
8.

The distance which a true tab character moves the cursor is reflected by the value of the
$hardtab variable. Initially set to 8, this determines how far each tab stop is placed from the
previous one.
Tab characters can be globally replaced by the appropriate number of spaces by the detab-
region (^X^D) command. The reverse, entab-region (^X^E) changes multiple spaces to tab
characters.

Repetitive Tasks

To perform any repetitive task, where you have a list of things that need to be changed, for
instance one per line, follow these steps:
1) Position the point to the beginning of the line to change
2) Invoke begin-macro (^X()to start recording
3) make the change, staying on that line
4) move to the beginning of the next line
5) Invoke end-macro (^X)) to stop recording
Do execute-macro (^XE) once to test your change on the next line. If it is satisfactory, count
how many lines need to yet be changed, strike the meta key followed by that number and
^XE. This causes your change to be made on all the lines.

Narrowing Your Scope

Many times you will want to do something to a part of the text when the command works on
all the text. Also it is helpful to see or edit just a portion of the text.
This kind of editing can be performed by narrowing the buffer and later restoring the
invisible portions, using the following commands:

^X< narrow-to-region
^X> widen-from-region

Creating New Commands

MicroEMACS lets you create your own macros to perform any editing tasks, simple or
complex. These macros are written in the MicroEMACS macro language. Macros can be
invoked by other macros and they can be bound to keystrokes by the macro-to-key (^X^K)
command.
For examples of macros, look at the .CMD files supplied with MicroEMACS for Windows. In
that package, EMACS.RC is the file which is executed automatically whenever MicroEMACS is
started. and all the ???.CMD files contain the code for each page.

Customizing Menus

MicroEMACS menus can be modified by the following commands (usually employed in the
start-up file):

 bind-to-menu creates a menu item bound to a command
 macro-to-menu creates a menu item bound to a macro
 unbind-menu deletes a menu item

With these three commands, menus are specified by using the MicroEMACS menu name
syntax.

Menu Name Syntax
Menu names used by the bind-to-menu, macro-to-menu and unbind-menu commands follow
a common syntax. A menu name is composed of menu item names separated by right
brackets:

>item1>item2>item3
When a menu name begins by a right bracket ">", it means that the menu item immediately
following this right bracket is located within the menu bar. A menu name can also be
specified as:

item1>item2
In this case item1 is located within the last accessed menu. One or more left brackets "<"
can appear before the first item, meaning it is located as many levels up in the menu
hierarchy:

<<item1>item2
Notes: The tilde character "~" cannot be used to escape the meaning of the brackets ("<" or

">") and ampersand "&" characters within menu names. The brackets simply cannot
be escaped. The ampersand can be escaped (i.e. considered as a real ampersand
instead of indicating the underscoring of a character) by using two consecutive
ampersands: "&&".
It is good practice to enclose menu names in double quotes. This is necessary when
there are embedded spaces within a name. Also, when a menu name begins by an
ampersand, MicroEMACS may misinterpret it as a function name.

See the examples for a more practical explanation...

Menu Item Syntax
Menu item names are used as parts of menu names. They specify a single menu item within
a given popup menu or within the menu bar. A menu item name can be formed of an item
text and/or an item index:

item text@item index
or:

item text
or:

@item index
The item text specifies the text of the item that appears within the menu, using an
ampersand "&" as a prefix for the underlined character. Note that the key binding
description, if any, is automatically generated by MicroEMACS and should not be part of the
item text.
The item index is a decimal number that specifies the index of the item within the menu.
Indexes start at zero.
If the specified item is being created:

The item text is mandatory.
Separators (horizontal lines between parts of a popup menu) are specified by the item
text being a single dash "-". Note that either bind-to-menu or macro-to-menu can be
used for this, since the bound command or macro is irrelevant (although it has to be a
valid one).
The item index can be used to specify the position where the new item will be placed
If the item index is not specified, the new item is placed at the end of the menu or just
after the item that was used in a previous menu binding command.

If the specified item already exists:
If the item is not a separator, only one of item text or item index is needed (but both can
be specified).
If the item is a separator, the item index should be specified but not the    item text.

See the examples for a more practical explanation...

Menu Examples
bind-to-menu forward-character ">&Search>&Character@15>&Next"
bind-to-menu nop "-"
bind-to-menu backward-character "&Previous"

This creates a new popup menu named "Character" under the "Search" menu, containing
the two items "Next" and "Previous", with a separator (for the sake of the demonstration)
between the two.

unbind-menu ">&Search>&Character>@1"
removes the above-created separator.

macro-to-menu load-c-page ">Code &page@4>&Load>&C"
macro-to-menu load-cpp-page "C&++"
macro-to-menu load-p-page "&Pascal"
macro-to-menu remove-c-page "<&Remove>&C"
macro-to-menu remove-cpp-page "C&++"
macro-to-menu remove-p-page "&Pascal"
bind-to-menu nop "<-"
macro-to-menu remove-all-pages "Remove &all"

This (assuming the specified macros actually exist) creates a new menu "Code page",
located between the "Execute" and the "Miscellaneous" menus in the menu bar. This new
menu contains the "Load", "Remove" and "Remove all" items, the later being preceded by a
separator. Both the "Load" and "Remove" items actually lead to sub-menus that both
contain "C", "C++" and "Pascal".

Drag and Drop

Under MS-Windows 3.1 and above, MicroEMACS supports a "drag and drop" file-selection
mechanism. If you select one or more files in the Windows File Manager and drag them with
the mouse, dropping them over MicroEMACS generates a pseudo mouse action: MS! that can
be used by binding it to a macro.
For instance, the following command causes a macro named "drop-files" to be invoked every
time a group of files is dropped on MicroEMACS:

macro-to-key drop-files MS!
The macro that handles the drag and drop mechanism acquires the necessary information
from a buffer named "Dropped files":

The first line of that buffer contains the name of the screen on which the drop occurred.
It is empty if the files were not dropped on any specific screen (for instance if they were
dropped on the message line).
The second and following lines contain the list of dropped files, one pathname per line.

In addition, the $xpos and $ypos variables are set to the text coordinates where the drop
occurred (or to the value 255 if the files were not dropped on any specific screen).
The MDI.CMD page contains a sample macro that handles drag and drop.

Modes of Operation
Modes determine how MicroEMACS will treat text. Modes affect the contents of a buffer.
Global modes determine the modes of newly created buffers.

^XM add-mode Adds a mode to the current buffer
^X^M delete-mode Removes a mode from the current buffer

M-M add-global-mode Adds a global mode
M-^M delete-global-mode Removes a global mode

MicroEMACS's modes are:
ASAVE Automatically Save
CMODE Editing C programs
CRYPT Encryption
EXACT Character Case during Searches
MAGIC Regular Expression Pattern Matching
OVER Overstrike Mode
REP Replace Mode
VIEW No Changes Permitted
WRAP Wrap entered text

ASAVE Mode
When this mode is on, MicroEMACS automatically saves the contents of your current buffer
to disk every time you have typed 256 characters. The buffer is saved to the file named on
the mode line of the buffer. This mode assures you that you will loose very little text should
your computer crash while you are editing. Be sure you are willing to have your original file
replaced automatically before you add this mode.
The frequency of saving can be altered by changing the contents of the $asave variable.Use
the set (^XA) command like this:

^XA $asave 2048
to tell MicroEMACS to automatically save the current buffer after 2048 characters are typed.
Note: the $acount variable contains the count down to the next auto-save.

CMODE Mode
This mode is specifically for editing programs written in the C language. When CMODE is
active, MicroEMACS will try to anticipate what indentation is needed when the newline (^M
or Enter key) command is used. It will always bring a pound sign "#" with only leading white
space back to the left margin. It will also attempt to flash the cursor over the proper opening
fence character matching any closing fence character (one of ")}]") that is typed (the
duration of this flashing can be controlled by setting the $tpause variable).
Note that the standard start-up files for MicroEMACS install a macro which checks any file
being read into MicroEMACS and sets CMODE if the file ends with a .c or .h extension.
Related command:

M-^F goto-matching-fence

CRYPT Mode
For files of a sensitive nature, MicroEMACS can encrypt text as it is written or read. The
encryption algorithm is a Beaufort Cipher with a variant key. This is reasonably difficult to
decrypt.
When you write out text, if CRYPT mode is active and there is no encryption key,
MicroEMACS will ask:

Encryption String:
Type in a word or phrase of at least five and up to 128 characters for the encryption to use. If
you look at the file which is then written out, all the printable characters have been
scrambled.To read such a file later, you can use the -k switch when calling up MicroEMACS:

emacs -k filename
and you will be asked the encryption key before the file is read.
You can modify the encryption key by using the set-encryption-key (M-E) command.
Note: previous versions of MicroEMACS used a defective encryption method. For
compatibility, you can chose to use the older algorithm by setting the $oldcrypt variable to
TRUE.

EXACT Mode
Normally, when using search or replace commands, MicroEMACS ignores the case of letters
for comparisons. With EXACT mode set, the case of the characters must be the same for a
match to occur.

MAGIC Mode
Normally, MicroEMACS uses the string you type in response to a search or replace command
as the string to find.    When magic mode is enabled, MicroEMACS considers the string you
type as a pattern or template to use in finding a string to match.    Many characters in this
template have special meaning:

. any single character, except newline.
[set] any single character from the bracketed set.
^ beginning of a line.
$ end of a line.
\ the next character has no special meaning, take the next character literally

(unless it is a parenthesis)
? the preceding character (or "." or [set]) is optional.
* the preceding character (or "." or [set]) matches zero to many times.
+ the preceding character (or "." or [set]) matches one to many times.
\(group\) define a group for the replacement string, or for the &group function.

Some characters in the replacement string can have special meanings:
& insert all of the text matched by the search.
\ the next character has no special meaning (but see groups below...)
\1 to \9 insert the text defined by the nth group in the search string.

OVER Mode
MicroEMACS is normally in what many other editors consider "insert" mode. This means
when you strike a character, MicroEMACS makes room for that character in the current line,
inserting it between the existing characters. In OVER mode, MicroEMACS instead overwrites
characters, replacing the existing character under the point with the character you type.
OVER mode will maintain the position of text lined up using tabs while replacing existing
text.
Be wary of editing Japanese KANJI characters while in this mode: it is possible to overwrite
the first byte of the character, leaving the second byte meaningless and alone. REP mode is
more appropriate for such files.

WRAP Mode
This mode causes the point and the previous word to jump down to the next line when you
type a space and are beyond the current fill column. This is normally set to column 72,
allowing you to enter text non-stop on a standard screen without bothering to use the return
key.
To change the column that text is wrapped past, use the set (^XA) command to change the
value of the $fillcol variable, like this:

^XA $fillcol new_value
MicroEMACS will then be set to wrap words past column new_value.
The $wraphook variable contains the command or macro used to perform word wrapping. By
default, it is the wrap-word command.

VIEW Mode
When in VIEW mode, no command which would change the text is allowed. If you attempt
any such command, or try to type in any text, MicroEMACS responds with:

[Key Illegal in View Mode]
This mode is very useful when you want to just look at some existing text, as it will prevent
you from changing that text. Also MicroEMACS will not attempt a file lock if a file is read in
VIEW mode, allowing you to view files which you don't have write access to, or other people
have locked. To launch MicroEMACS and read a file in VIEW mode, use the -v switch:

emacs -v filename

REP Mode
MicroEMACS is normally in what many other editors consider "insert" mode. This means
when you strike a character, MicroEMACS makes room for that character in the current line,
inserting it between the existing characters. In REP mode, MicroEMACS instead replaces the
existing character under the point with the character you type. REP mode will not maintain
the position of text which takes up multiple columns using tabs since it will replace a single
tab character with the typed character which will not take up the same space on screen. For
this purpose, the OVER mode is more appropriate
However, Japanese KANJI characters will correctly replace and be replaced in this mode as
the two bytes will be considered together when either style character is used.

Start-up
There are different things that can be specified on the MicroEMACS command line to control
the way the editor operates. These can be switches, which are a dash "-" followed by a
letter, and possible other parameters, or a start-up file specifier, which is an at sign "@"
followed by a file name that overrides the default "EMACS.RC".
Under Microsoft Windows, MicroEMACS also uses some profiles from the WIN.INI file.

Start-up File

When MicroEMACS starts executing, it looks for a start-up file which it will execute as a
macro before it reads in any other file. This start-up macro usually redefines some bindings
(for instance to use function keys) and loads various useful macros.
The name of the start-up file can be specified on the MicroEMACS command line. By default,
it is: EMACS.RC.
Unless the pathname of the start-up file is fully qualified, MicroEMACS searches for the file
along the path.

Command Line Switches

The command line used to launch MicroEMACS looks like this:
EMACS.EXE switches files to edit

The following switches can be specified:
@file This causes the named file to be executed instead of the

standard EMACS.RC file before MicroEMACS reads in any other
files. More than one of these can be placed on the command
line, and they will be executed in the order that they appear.

-C The following source files on the command line can be changed
(as opposed to being in VIEW mode). This is mainly used to
cancel the effects of the -v switch used previously in the same
command line.

-E This flag causes emacs to automatically run the start-up file
"error.cmd" instead of emacs.rc. This can be used by compilers
for error processing.

-Gnum Upon entering MicroEMACS, position the cursor at the num line
of the first file.

-Ivar    value Initialize a MicroEMACS variable with value.
-Kkey This tells MicroEMACS to place the source files in CRYPT mode

and read it in using key as the encryption key. If no key is listed
after the -K switch, you will be prompted for a key, and it will
not be echoed as it is typed.

-R This places MicroEMACS in "restricted mode" where any
commands allowing the user to read or write any files other
than the ones listed on the command line are disabled. Also all
commands allowing the user access to the operating system are
disabled. This makes MicroEMACS a "safe" environment for use
within other applications and especially used as a remote editor
for an electronic Bulletin Board System (BBS).

-Sstring After MicroEMACS is started, it automatically searches for string
in the first source file.

-V This tells MicroEMACS that all the following files on the
command line should be in VIEW mode to prevent any changes
being made to them.

Profiles

Profiles are entries in the WIN.INI file and are used only under Microsoft Windows.
MicroEMACS uses a few profiles, all placed under the "[MicroEMACS]" section, to define the
initial window size, the initial font and the path names of some files.
The following profiles can be modified by editing the WIN.INI file:

Colors number of colors supported by the display.
DOSExec path name of a PIF file for pipe-command, filter-buffer and i-

shell
DOSBox path name of a PIF file for shell-command
HelpFile path name of this help file
InitialSize keywords: "maximize", "minimize" or "optimize"
Shell path name of the shell executable under Windows NT.
ShellExecOption command execution option for the shell under Windows NT.
TimeSlice number of milliseconds of processing before yielding to other

applications
The font-related profiles (FontName, FontWeight, FontWidth, FontHeight and CharSet)
are updated by MicroEMACS itself when a font selection is saved.

Colors Profile
The Colors profile is used to force MicroEMACS to run in either color or monochrome mode.
In color mode, the mode lines display back text over a light grey background and editable
text is displayed as white on black (these colors can be customized). In monochrome mode,
MicroEMACS uses the colors specified by the system (configurable through the Windows
Control Panel), using highlighted text for the mode lines.
The value associated to the colors profile is the number of colors supported by the system,
or zero (to allow MicroEMACS to automatically determine the proper value). Monochrome
mode is assumed for values 1 and 2. Values greater than 2 put MicroEMACS in color mode.
If this profile does not appear in the [MicroEMACS] section of the WIN.INI file, the default
value is 0.
Setting this profile is particularly useful on monochrome displays that allow multiple shades
of gray (in particular, laptop screens), as MicroEMACS mistakenly believes these to be actual
color displays.

DOSExec Profile
The DOSExec profile specifies the path name of a PIF file used by the pipe-command, filter-
buffer and i-shell commands under MS Windows 3.x. This profile is also used when the shell-
command command is invoked with a numeric argument.
If this profile does not appear in the [MicroEMACS] section of the WIN.INI file, the file
"DOSEXEC.PIF" is searched along the path. This is appropriate if, for instance, that file is
located in the directory where the MicroEMACS executable resides.

DOSBox Profile
The DOSBox profile specifies the path name of a PIF file used when the shell-command is
invoked without a numeric argument under MS Windows 3.x.
If this profile does not appear in the [MicroEMACS] section of the WIN.INI file, the file
"DOSBOX.PIF" is searched along the path. This is appropriate if, for instance, that file is
located in the directory where the MicroEMACS executable resides.

HelpFile Profile
The HelpFile profile specifies the path name of the Help file for MicroEMACS. It allows proper
function of the menu items that call-up this Help file.
The default value is the file "MEWIN.HLP" within the directory where the MicroEMACS
executable resides.

InitialSize Profile
The InitialSize profile specifies options for the sizing of the initial MicroEMACS frame window.
It can be one of the following keywords:

maximize the frame window fills the whole display
icon or minimize MicroEMACS starts as an icon
optimize the frame window fills the whole display, except a single row of

icons at the bottom.
If the InitialSize profile is not used, the initial size of the MicroEMACS frame window is
decided by the operating system.

Shell and ShellExecOption Profiles
The Shell profile specifies the path name of the shell executable used by the pipe-
command, filter-buffer, i-shell and shell-command commands under Windows NT. If this
profile does not appear in the [MicroEMACS] section of the WIN.INI file, the default path
name is "CMD.EXE". This is appropriate if that file is located in a directory that appears in
the system path.
The ShellExecOption profile specifies the string to be inserted between the string specified
by the Shell profile and the actual command to be executed (for pipe-command, filter-buffer
and shell-command). If this profile does not appear in the [MicroEMACS] section of the
WIN.INI file, the default is " /c ". This is appropriate for "CMD.EXE".

TimeSlice Profile
Under Microsoft Windows 3.x, when MicroEMACS performs a long operation (reading or
writing a large file, searching text, moving large chunks of text to/from the kill buffer or
clipboard, killing a buffer, etc...), it allows other applications to run concurrently with itself.
The TimeSlice profile specifies how often MicroEMACS should relinquish the processor: when
a long operation is in process, MicroEMACS does not yield to other applications until the
number of milliseconds thus specified has elapsed.
The default value is 100 milliseconds.
Notes: Under Windows NT, the preemptive multitasking nature of the operating system

alleviates the need for MicroEMACS to voluntarily yield to other applications. The
TimeSlice profile is still used to determine how often input (like a command to exit
the editor) is checked.
If the animated grinder (replacing the hourglass mouse cursor) is enabled, the
TimeSlice profile also determines the time interval between each change of the
cursor image.

Memory Usage
The only limit to the number of buffers is the memory of your computer. All the buffers, text,
screens and windows use memory for storage.
Under Microsoft Windows, the accessible storage can be rather large, depending on the
amount of extended memory installed on you system. If you are running in Windows 3.x
386-enhanced mode, MicroEMACS is able to use virtual memory, allowing you to edit very
large files.
Under MSDOS, the AMIGA, the Atari ST, the HP150 and other microcomputers you can
estimate the memory used by adding up the size of all the files you want to edit
simultaneously, multiply by 1.4, and add 170K for the size of MicroEMACS. This results in the
amount of free memory needed to edit these files. Under a MSDOS machine with 574K
conventional memory available, you can edit files totaling about 288K in size.
On UNIX, Windows NT and other systems with large virtual memory there is almost no limit
to the number and size of files you edit.

MS-Windows Specifics
The port of MicroEMACS to the Microsoft Windows environment exhibits a few particularities
not encountered with other versions of the editor:

All the standard commands are available. Additional commands are available: they allow
access to the clipboard, menu customization, invocation of the help engine and control of
screens as MDI (Multiple Document Interface) windows.
In interactive mode, the file access commands use a dialog box instead of the message
line prompt.
It is possible to drag files from the Windows File Manager onto MicroEMACS, providing a
macro has been set-up to handle them.
MDI windows (aka screens) and the MicroEMACS frame window can be resized by
dragging their border with the mouse or using the sizing buttons.
Text can be scrolled into view by using the scroll bars located at the right and bottom of
each screen.
When MicroEMACS is running a macro, waiting for user input on the message line, or
reading/writing a file, it is possible to input menu or other mouse commands, but only a
subset of features is available. In particular, resizing is disabled and most menu options
are grayed.
It is possible to terminate MicroEMACS at any time, using the "Close" (Alt+F4) item of the
upper-left corner menu box. If there are modified buffers, or a file write operation is in
progress, a confirmation is requested.
The amount of memory available for buffers is limited only by the actual (conventional
and extended) memory available, including virtual memory when running Windows NT or
Windows 3.x in 386-enhanced mode.
MicroEMACS can synchronize with other applications it launches.

MicroEMACS runs as a well-behaved Windows application, sharing the processor with other
applications, even when a lengthy operation is in process.
Under Windows 3.x, MicroEMACS is a protected mode-only application: it does not support
real mode, and runs only under standard or 386-enhanced mode.
The following page are distributed with MicroEMACS for Windows and loaded by the
emacs.rc start-up file supplied in the distribution package:

CUA.CMD Common User Access macros
DEV.CMD example macro for software development
MDI.CMD macros to map files to MDI windows

In addition, if a page named CUSTOM.CMD (to be supplied by the user) is found in the path,
it is loaded after the three above.

CUA.CMD

This page is distributed with MicroEMACS for Windows and loaded by the emacs.rc start-up
file. It contains a number of macros and rebinds many keys, in order make MicroEMACS more
similar to other Windows applications that use the Common User Access standard.
To that end, a set of clipboard-related macros are supplied and you can select a piece of text
by dragging the mouse across it while holding the left button held down or by moving
around with the arrows or page keys while holding the Shift key down. That selection can
then be deleted by pressing the Delete key, copied to the clipboard with the Ctrl+Insert
keys, cut with Shift+Delete and pasted from the clipboard with Shift+Insert
Additionally, the following general purpose macros that work on the selection are supplied:

A-U CUA-case-upper converts all the selected text to upper case
A-L CUA-case-lower converts all the selected text to lower case

A-W CUA-count-words displays on the message line the number of words, characters
and lines that compose the selected text

A-= CUA-flip-selection exchanges the point with the other end of the selection
A-^M CUA-select-region (Alt+Enter) makes the current region the current

selection

DEV.CMD

This sample page is distributed with MicroEMACS for Windows and loaded by the emacs.rc
start-up file. It contains a few of macros that demonstrate how some features of the macro
language can be used to facilitate software development:

The run-makefile macro is added to the Execute menu. It spawns a shell to run the
command specified by the %make user variable and synchronizes with it. When the
make process is finished, its output is displayed in a buffer named "Results".
A series of macros are added to the Help menu. They search a specific help file for a
topic matching the word under the point.

MDI.CMD

This page is distributed with MicroEMACS for Windows and loaded by the emacs.rc start-up
file. It contains macros that make it easier to associate each buffer with a separate screen
(i.e. an MDI window). To that end:

The open-file macro replaces the find-file command in the File menu and in key bindings
(^X^F). Instead of reusing the current screen, it creates a new screen to house each
newly opened file.
The rebuild-screens macro, invoked from the Screen menu, associates a screen to each
buffer.
The kill-screen macro (A-K) deletes a screen and the associated buffer.

MDI.CMD also contains the drop-files macro that handles drag and drop actions by invoking
the open-file macro for each dropped file.

Sorry, no help available on this topic
You have attempted to get Help for a term that the Help system does not recognize.
Here are some other ways to find Help for individual terms:
Help Search
1) Choose the Search button (Alt+S) from the top of this Help window (just below the menu

bar).
2) In the Help Search dialog box, under Search For, type in the term you want Help for. If

the term is indexed in the Help, you will go to that term in the upper list box. If the term
is not indexed, you will go to the closest lexical match instead.

3) Press Enter or choose the dialog's Search button. You will see a list of 1 or more Help
topics in the Topics Found

Alternatively, within the Help Search list box, scroll through the list to find a specific topic,
then press Enter or choose the Go To button to jump to that Help topic.
Help Index
1) Use the Index button (Alt+I) and then choose the category that best fits your query.
2) Then traverse Help links through the topics until you find what you are looking for. If it is

documented in the Help system, you should be able to find it within 4 or 5 topics.

Glossary
Argument
Binding
Buffer
Clipboard
Command
DOS Box
File Locking
Function
Group
Keyboard Macro
Keystroke
Kill Buffer
Kill Ring
Macro
Mark
Message Line
Meta Key
Mode Line
Mouse Action
Page
Path
Point
Popup Buffer
Region
Screen
Selection
Variable
Window

A DOS Box is a Microsoft Windows feature within which DOS programs are executed. In
Windows "386-enhanced" mode, a DOS box can appear as an icon, a window or it can
occupy the whole screen. In Windows "standard" mode, DOS programs can execute only
when their DOS box occupies the whole screen.
Under Windows NT, the equivalent of DOS Boxes are named "shell boxes"

Commands are built in functions that represent basic things that MicroEMACS does. For
example, the up arrow key activates the "previous-line" command which moves the cursor
up to the line of text immediately before the current line.

A binding is a link between a sequence of keys and a command or macro. For instance, the
command "previous-line" is bound to the up-arrow key, and to the ^P key. Pressing a key
sequence causes the command to which it is bound to execute.
Under Microsoft Windows, commands and macros can also be bound to menu items.

The meta key is the key used to start many commands. On most keyboards this is the
Escape key, but many times it is rebound/changed to the key in the upper left corner of the
keyboard. This is often the grave accent symbol.

Interactively, a numeric argument is supplied by typing the meta key (usually the Escape
key), followed by a decimal number, before invoking a command.
Within the macro language, a numeric argument is placed before the name of the associated
command.

Buffers are areas of memory set aside to hold text. Each buffer has a buffer name which is
used to refer to it, and a file name from which it has been read or where it will be written.

Popup Buffers are a way to display a buffer temporarily, without using a window. When a
popup buffer is displayed, it occupies the whole screen. If more than one screenfull is
needed, the text "-- more --" appears on the message line. The next screenfull can be viewed
by pressing the space bar. Pressing any other key cancels the popup buffer and the
keystroke is then processed    by MicroEMACS.

Windows are sections of the current screen which display a portion of a buffer. More than
one window may be visible at a time. Multiple windows split the screen horizontally.
Notice that the MicroEMACS usage of the word window is different from the meaning used in
window-based systems:

MicroEMACS Operating System
Window Pane
Screen Window

Screens are collections of windows. On a older text style system, one screen is displayed at
a time. On a newer window based system, like OS/2, the Macintosh or Microsoft Windows,
each operating system window can display a different MicroEMACS screen.
Notice that the MicroEMACS usage of the word window is different from the meaning used in
window-based systems:

MicroEMACS Operating System
Window Pane
Screen Window

The mode line is the line at the bottom of each window naming the buffer being displayed,
along with its file name. Also the active modes of the window are shown.

The command line or message line is the line at the bottom of the screen where you give
more information to some commands and also receive information or error messages.

Macros (also called procedures) are programs written in the MicroEMACS language which
let you customize the editor and, in particular, automate repetitive editing tasks.

A keyboard macro is a remembered sequence of keystrokes which can be used to greatly
speed quick and dirty repetitive editing.

Pages are groups of macros which have been written to handle a particular editing task,
and which have been packaged to be available from the MicroEMACS startup file. These files
usually have a filename extension of ".CMD".
The MS-Windows version of MicroEMACS is bundled with sample macro pages called
CUA.CMD, DEV.CMD and MDI.CMD.

The path is a list of directories that MicroEMACS searches for the following files:
EMACS.RC (the startup file)
The argument of the execute-file command
The argument of the &find function
The default DOSEXEC.PIF and DOSBOX.PIF files
EMACS.HLP (for the help command)

The following items compose the path (in order of decreasing priority):
1. The directory specified by the HOME system variable (or, under MS-Windows, the

directory where the MicroEMACS executable resides).
2. The directories specified in the PATH system variable.
3. The following directories (MS-DOS-based or Windows NT systems only. Other

implementations use different lists):
\sys\public
\usr\bin
\bin
\
the current working directory

The point is the position of the cursor in the text of the current window. The point can be
considered to lie between the character the cursor rests on and the one immediately after it.

The mark is the position in the current buffer which delimits the beginning or the end of a
region. Various commands operate on text from the mark to the point, or move the current
point to the mark. The mark can be set by the set-mark command.
Each buffer contains 10 independent marks, numbered 0 to 9. Most region-related
commands, however, only refer to mark 0.

A region is the text located between the point (i.e. the position of the cursor) and the mark
number 0. The mark can be set by the set-mark command.

The selection is available only if the macros from the CUA.CMD page have been loaded. It is
the piece of text that has been selected by dragging the mouse (with the left button held
down) over it, or by moving (with the arrow or the page keys) through the text with the Shift
key held down.
The CUA.CMD file is distributed as part of the MicroEMACS for Windows package.
In the current version of MicroEMACS, the selection is not highlighted.

The clipboard is a temporary storage area. Text can be cut or copied to the clipboard from a
Windows application and be pasted into another application.

Variables are elements of the MicroEMACS macro language. They carry numeric, boolean or
string values.
Variables that begin with a dollar sign "$" are called environmental variables. They control
various aspects of the editor.

Functions are elements of the MicroEMACS macro language. Functions have arguments and
return numeric, boolean or string values.
Function names begin by an ampersand "&". Only the first 3 characters of a function name
are significant.

Groups can be used with text substitution commands or macros in MAGIC mode, to
duplicate parts of the target into the result.
In the search string, a group is defined as a portion beginning by the characters backlash
and opening parenthesis "\(" and ended by the characters backlash and closing parenthesis
"\)". There can be up to nine such groups.
In the replace string, groups appear as a backlash followed by a decimal digit ("\1" to "\9").
The portion of the target string matched by the nth group is substituted to each occurrence
of \n to form the replacement string.
The function &group n can be used in macros to obtain the text matched by the nth group in
a search.

MicroEMACS may implement file locking to prevent simultaneous access of the same file by
different MicroEMACS instances. The method used for this is dependant on the base
operating system.
File locking is active only if MicroEMACS was compiled with a specific "FILOCK" option.
Standard release versions usually do not implement file locking.

The kill buffer accumulates any text which is "killed" by a number of delete commands. If
more than one delete command is used in a row, all the text from all the commands will be
in the kill buffer. Using any command between deletes causes the kill buffer to just hold the
most recent deletions.
Using this feature and the yank command, you can switch between windows, screens and
files and copy text from one file to another.There is no limit to the amount of text that can be
stored in the kill buffer except that of the memory of the computer running MicroEMACS.
Extremely large kills may take a few seconds.
The last 16 kill buffers are kept in the kill ring. You can retrieve their contents through the
cycle-ring or the yank-pop commands.

The kill ring is a circular list of the last 16 kill buffers. The position of the current kill buffer
can be changed by the cycle-ring and the yank-pop commands. The kill ring can be emptied
(and thus the used memory reclaimed) by using the delete-kill-ring command.

Mouse Syntax
Key bindings can include mouse actions which are represented as follows:

 Press Release
Left button: MSa MSb

Center button: MSc MSd
Right button: MSe MSf

Shift+Left button: MSA MSB
Shift+Center button: MSC MSD

Shift+Right button: MSE MSF
Ctrl+Left button: MS^A MS^B

Ctrl+Center button: MS^C MS^D
Ctrl+Right button: MS^E MS^F

Dropping files dragged from the MS-Windows File Manager: MS!

Keystroke Syntax:
In key bindings, regular characters are represented by the corresponding uppercase,
preceded by a hat "^" sign if the Ctrl key is depressed. For instance, for Ctrl+G: ^G.
Function keys are represented as:
F1 to F9, F10: FN1 to FN9, FN0

Arrows: up FNP,    down FNN,    left FNB,    right FNF
Page keys: up FNZ,    down FNV

Other keys: Home: FN<,    End: FN>,    Insert: FNC,    Del: FND (or ^?)
If the Ctrl key is depressed for a function key, the hat "^" is located before the last char. For
instance, for Ctrl+F1: FN^1.
The prefix, if any, appears before the keystroke:

M- the meta key (usually the Escape key) is depressed and released.
^X the Ctrl+X keys are depressed and released.
A- the Alt key is depressed.
S- (function keys only) the Shift key is depressed.

Macro Language
The MicroEMACS macro language allows you to add extensions to the editor. Statements
(one per line) are composed of the following elements:

Commands manipulate text, buffers, windows, etc... within the editor
Directives control the flow of execution within a macro
Arguments:

Constants
Variables
Functions

Comments
Macros are registered with MicroEMACS by the store-macro or store-procedure commands.
They get executed through menus or keystrokes they have been bound to, or through the
execute-macro- n or run commands.
Macros can also be executed directly from a buffer or a file by the execute-buffer or execute-
file commands.

Commands

By topic:
Binding
Block of Text
Buffer, Window and Screen
Clipboard and Kill Buffer
Execution, Macro and Variable
File
Mouse
Positioning
Search and Replace
Miscellaneous

Alphabetical lists:
Standard commands
Additional commands

Binding commands
apropos
bind-to-key
bind-to-menu
ctlx-prefix
describe-bindings
describe-key
macro-to-key
macro-to-menu
meta-prefix
unbind-key
unbind-menu

Block of Text commands
Commands that affect regions, lines, words and paragraphs.

case-region-lower
case-region-upper
case-word-capitalize
case-word-lower
case-word-upper
copy-region
count-words
delete-blank-lines
delete-next-word
delete-previous-word
detab-region
entab-region
fill-paragraph
indent-region
kill-paragraph
kill-region
kill-to-end-of-line
narrow-to-region
remove-mark
set-fill-column
set-mark
trim-region
undent-region
widen-from-region
wrap-word

Buffer, Window and Screen commands
add-global-mode
add-mode
cascade-screens
change-screen-column
change-screen-row
change-screen-size
change-screen-width
clear-and-redraw
cycle-screens
delete-buffer
delete-global-mode
delete-other-windows
delete-mode
delete-screen
delete-window
execute-buffer
filter-buffer
find-screen
grow-window
list-buffers
list-screens
maximize-screen
minimize-screen
move-window-down
move-window-up
name-buffer
narrow-to-region
next-buffer
next-window
pipe-command
pop-buffer
previous-window
rename-screen
resize-window
restore-screen
restore-window
save-window
scroll-next-up
scroll-next-down
select-buffer
shrink-window
split-current-window
tile-screens
unmark-buffer
update-screen
widen-from-region

Clipboard and Kill Buffer commands
clip-region
copy-region
cut-region
cycle-ring
delete-kill-ring
delete-next-character (with argument)
delete-next-word
delete-previous-character (with argument)
delete-previous-word
insert-clip
kill-paragraph
kill-region
kill-to-end-of-line
yank
yank-pop

Execution, Macro and Variable commands
abort-command
begin-macro
describe-functions
describe-variables
display
end-macro
execute-buffer
execute-command-line
execute-file
execute-macro
execute-macro- n
execute-named-command
execute-procedure
execute-program
filter-buffer
i-shell
nop
pipe-command
run
set
shell-command
source
store-macro
store-procedure
help-engine

File Commands
append-file
change-file-name
execute-file
find-file
insert-file
read-file
save-file
show-files
source
view-file
write-file

Mouse commands
mouse-move-down
mouse-move-up
mouse-region-down
mouse-region-up
mouse-resize-screen

Positioning commands
backward-character
beginning-of-file
beginning-of-line
buffer-position
end-of-file
end-of-line
end-of-word
exchange-point-and-mark
forward-character
goto-line
goto-mark
goto-matching-fence
next-line
next-page
next-paragraph
next-word
previous-line
previous-page
previous-paragraph
previous-word
redraw-display

Search and Replace commands
hunt-backward
hunt-forward
incremental-search
query-replace-string
replace-string
reverse-incremental-search
search-forward
search-reverse

Miscellaneous Commands
clear-message-line
exit-emacs
handle-tab
help
insert-space
insert-string
newline
newline-and-indent
nop
open-line
overwrite-string
print
quick-exit
quote-character
redraw-display
set-encryption-key
set-fill-column
transpose-characters
universal-argument
write-message

Standard commands
The following commands are available in all implementations of MicroEMACS:

abort-command Allows the user to abort out of any command that is waiting for
input

add-global-mode Add a global mode for all new buffers
add-mode Add a mode to the current buffer
append-file Append a buffer to the end of a file
apropos Lists commands and macros whose name contains the string

specified
backward-character Move one character to the left
begin-macro Begin recording a keyboard macro
beginning-of-file Move to the beginning of the file in the current buffer
beginning-of-line Move to the beginning of the current line
bind-to-key Bind a key to a command
buffer-position List the position of the point on the message line
case-region-lower Make a region all lower case
case-region-upper Make a region all upper case
case-word-capitalize Capitalize the following word
case-word-lower Lower case the following word
case-word-upper Upper case the following word
change-file-name Change the name of the file in the current buffer
change-screen-column change the column offset of the current screen
change-screen-row change the row offset of the current screen
change-screen-size Change the number of lines of the current screen
change-screen-width Change the number of columns of the current screen
clear-and-redraw Repaint all screens or center the point in the current window
clear-message-line Clear the message line
copy-region Copy the current region into the kill buffer
count-words Count how many words, lines and characters are in the current

region
ctlx-prefix Bound to the key used as the ^X prefix
cycle-ring moves the current position of the kill buffer within the kill ring
cycle-screens Bring the rearmost screen to front
delete-blank-lines Delete all blank lines around the point
delete-buffer Delete a buffer which is not being currently displayed in a

window
delete-kill-ring Reclaim the memory used by the kill ring
delete-global-mode Turn off a global mode

delete-mode Turn off a mode in the current buffer
delete-next-character Delete the character following the point
delete-next-word Delete the word following the point
delete-other-windows Make the current window cover the entire screen
delete-previous-character Delete the character to the left of the point
delete-previous-word Delete the word to the left of the point
delete-screen Delete a screen (not the top one)
delete-window Remove the current window from the screen
describe-bindings List all commands and macros
describe-functions List all functions
describe-variables List all variables
describe-key Describe what command or macro is bound to a keystroke

sequence
detab-region Change all tabs in a region to the equivalent spaces
display Displays a variable's current value
end-macro Stop recording a keyboard macro
end-of-file Move to the end of the current buffer
end-of-line Move to the end of the current line
end-of-word Move just past the end of the current word
entab-region Change multiple spaces to tabs where possible
exchange-point-and-mark Move the point to the last marked spot, make the

original position be marked
execute-buffer Execute a buffer as a macro
execute-command-line Execute a line typed on the command line as a macro
execute-file Execute a file as a macro
execute-macro Execute the keyboard macro (play back the recorded

keystrokes)
execute-macro- n Execute numbered macro n where n is an integer from 1 to 40
execute-named-command Execute a command by name
execute-procedure Execute a procedure by name
execute-program Execute a program directly (not through an intervening shell)
exit-emacs Exit MicroEMACS. If there are unwritten, changed buffers

MicroEMACS will ask to confirm
fill-paragraph Fill the current paragraph
filter-buffer Filter the current buffer through an external filter
find-file Find a file to edit in the current window
find-screen Bring the named screen on top, creating it if needed
forward-character Move one character to the right

goto-line Goto a numbered line
goto-mark Goto a numbered mark
goto-matching-fence Goto the matching fence
grow-window Make the current window larger
handle-tab Insert a tab or set tab stops
hunt-backward Hunt for the last match of the last search string
hunt-forward Hunt for the next match of the last search string
help Read EMACS.HLP into a buffer and display it
i-shell Shell up to a new command processor
incremental-search Search for a string, incrementally
indent-region Indent the current region one tab
insert-file Insert a file at the point in the current file
insert-space Insert a space to the right of the point
insert-string Insert a string at the point
kill-paragraph Delete the current paragraph
kill-region Delete the current region, moving it to the kill buffer
kill-to-end-of-line Delete the rest of the current line
list-buffers List all existing buffers
list-screens List all existing screens
macro-to-key Bind a key to a macro
meta-prefix Key used to precede all META commands
mouse-move-down Usually bound to a press on the left mouse button
mouse-move-up Usually bound to the release of the left mouse button
mouse-region-down Usually bound to a press on the right mouse button
mouse-region-up Usually bound to the release of the right mouse button
mouse-resize-screen Resize the screen to bring the bottom-left corner where the

mouse was clicked
move-window-down Scroll the current window down
move-window-up Scroll the current window up
name-buffer Change the name of the current buffer
narrow-to-region Hides all text not in the current region (see widen-from-region)
newline Insert a newline
newline-and-indent Insert a newline and indent the new line the same as the

preceding line
next-buffer Bring the next buffer in the list into the current window
next-line Move down one line
next-page Move down one page
next-paragraph Move to the next paragraph

next-window Move to the next window
next-word Move to the beginning of the next word
nop Does nothing
open-line Open a line at the point
overwrite-string Overwrite a string at the point
pipe-command Execute an external command and place its output in a buffer
pop-buffer Display a buffer temporarily, paging through it
previous-line Move up one line
previous-page Move up one page
previous-paragraph Move back one paragraph
previous-window Move to the last window
previous-word Move to the beginning of the word to the left of the point
print Display a string on the message line (synonym of write-

message)
query-replace-string Replace occurrences of a string with another string,

interactively querying the user
quick-exit Exit MicroEMACS, writing out all the changed buffers
quote-character Insert the next character literally
read-file Read a file into the current buffer
redraw-display Reposition the current line in the window
remove-mark Remove a numbered mark
replace-string Replace all occurrences of a string with another string
resize-window Change the number of lines in the current window
restore-window Move to the last saved window (see save-window)
reverse-incremental-search Search backwards, incrementally
run Execute a named procedure
save-file Save the current buffer if it is changed
save-window Remember the current window (see restore-window)
scroll-next-up Scroll the next window up
scroll-next-down Scroll the next window down
search-forward Search for a string
search-reverse Search backwards for a string
select-buffer Select a buffer to display in the current window
set Set a variable to a value
set-encryption-key Set the encryption key of the current buffer
set-fill-column Set the current fill column
set-mark Set a numbered mark
shell-command Causes an external shell to execute a command

show-files list files matching a pattern within a directory
shrink-window Make the current window smaller
source Execute a file as a macro
split-current-window Split the current window in two
store-macro Store the following macro lines as a numbered macro
store-procedure Store the following macro lines in a named procedure
transpose-characters Transpose the character at the point with the character

immediately to the left
trim-region Trim any trailing white space from a region
unbind-key Unbind a key from a command or macro
undent-region Remove a leading indent from a region
universal-argument Execute the following command or macro 4 times
unmark-buffer Unmark the current buffer (so it is no longer seen as changed)
update-screen Force a display update during macro execution
view-file Read a file in a buffer, in view mode
widen-from-region Restores hidden text (see narrow-to-region)
wrap-word Wrap the current word (internal command)
write-file Write the current buffer under a new file name
write-message Display a string on the message line
yank Yank the kill buffer into the current buffer at the point
yank-pop yank the kill buffer, subsequent invocations replacing the

yanked text by the next one from the kill ring.

Additional commands
The following commands are available only from the Microsoft Windows version of
MicroEMACS:

bind-to-menu creates a menu item and binds it to a command
cascade-screens arranges all non-iconic screens using a cascading scheme
clip-region copies the region to the Windows clipboard
cut-region moves the region to the Windows clipboard
help-engine invokes the Microsoft Windows help engine
insert-clip inserts the contents of the Windows clipboard at the point
macro-to-menu creates a menu item and binds it to a macro
maximize-screen makes the current screen occupy the whole MicroEMACS

window
minimize-screen iconizes the current screen
rename-screen change the current screen's name
restore-screen restores the current screen back from maximized    or iconized

state
tile-screens arranges all non-iconic screens using a tiling scheme
unbind-menu deletes a menu item

Directives

Directives are used within macros to control what lines are executed and in what order.
Directives always start with the exclamation mark "!" character and must be the first non-
white text placed on a line. They are:

!BREAK
!ENDM
!FORCE
!GOTO
!IF, !ELSE and !ENDIF
!RETURN
!WHILE and !ENDWHILE

Directives do not make sense as a single commands. As such, they cannot be called up
singly or bound to keystrokes.Directives executed interactively (via the execute-command-
line command) are ignored.

!BREAK
This directive lets you abort out of the most inner currently executing while loop, in a macro.
It is often used to abort processing for error conditions. For example:

; Read in files and substitute "beginning" with "beginning"
set %filename #list
!while ¬ &seq %filename "<end>"
!force        find-file %filename
        !if &seq $status FALSE
                write-message "[File read error]"
                !break
        !endif
        beginning-of-file
        replace-string "beginning" "beginning"
        save-file
        set %filename #list
!endwhile

!ENDM
This directive is used to terminate a macro being stored. For example:

; Read in a file in view mode, and make the window red
store-procedure get-red-viewed-file
        view-file @"File to view: "
        add-mode "red"
!endm

Related commands:
store-procedure
store-macro.

!FORCE
When MicroEMACS executes a macro, if any command fails, the macro is terminated at that
point. If a line is preceded by a !FORCE directive, execution continues whether the command
succeeds or not.
This is often used together with the $status variable to test if a command succeeded. For
example:

set %seekstring @"String to Find: "
!force search-forward %seekstring
!if $status
        print "Your string is Found"
!else
        print "No such string!"
!endif

!GOTO
The flow of execution within a MicroEMACS macro can be controlled using the !GOTO
directive. It takes a label as argument. A label consists of a line starting with an asterisk "*"
and then an alphanumeric label. Only labels in the currently executing macro can be jumped
to, and trying to jump to a non-existing label terminates execution of a macro. For example:

; Create a block of DATA statements for a BASIC program
insert-string "1000 DATA "
set %linenum 1000
*nxtin
update-screen        ;make sure we see the changes
set %data @@"Next number: "
!if &equal %data 0
        !goto finish
!endif
!if &greater $curcol 60
        2 delete-previous-character
        newline
        set %linenum &add %linenum 10
        insert-string &cat %linenum " DATA "
!endif
insert-string &cat %data ", "
!goto nxtin
*finish
2 delete-previous-character
newline

Note that loops constructed with !WHILE are usually more efficient than those constructed
purely by !GOTOs.

!IF, !ELSE and !ENDIF
The !IF directive allows for conditional execution within a macro.
Lines following the !IF directive, until the corresponding !ELSE or !ENDIF, are executed only if
the expression within the !IF line evaluates to a TRUE value. Lines following an !ELSE
directive, until the corresponding !ENDIF, are executed only if the expression within the
corresponding !IF line did not evaluate to a TRUE value.
For example, the following macro creates the portion of a text file automatically:

!if &sequal %curplace "timespace vortex"
        insert-string "First, rematerialize~n"
!endif
!if &sequal %planet "earth"        ;If we have landed on earth...
        !if &sequal %time "late 20th century"        ;and we are then
                write-message "Contact U.N.I.T."
        !else
                insert-string "Investigate the situation....~n"
                insert-string "(SAY 'stay here Sarah)~n"
        !endif
!else
        set %conditions @"Atmosphere conditions outside? "
        !if &sequal %conditions "safe"
                insert-string &cat "Go outside......" "~n"
                insert-string "lock the door~n"
        !else
                insert-string "Dematerialize..try somewhen else"
                newline
        !endif
!endif

!RETURN
This directive causes the current macro to exit, either returning to the caller (if any) or to
interactive mode. For example:

; Check the display type and set %wintyp
!if &sequal $sres "MSWIN"
        set %wintyp 1
        !return
!endif
set %wintyp 0
write-message "You are not running under MS-Windows!"
!return

!WHILE and !ENDWHILE
This pair of directives facilitates repetitive execution within a macro. If a group of statements
needs to be executed while a certain expression evaluates to TRUE, enclose them with a
while loop. For example:

!while &less $curcol 70
        insert-string &cat &cat "[" #stuff "]"
!endwhile

While loops may be nested and can contain and be the targets of !GOTOs with no ill effects. 
Using a while loop to enclose a repeated task will run much faster than the corresponding
construct using !IFs.

Arguments

In the MicroEMACS macro language, commands and functions often require arguments.
There are three types of arguments and they are automatically converted to the proper type
when used:

Numerical An ASCII string of digits which is interpreted as a numeric value.
Any string which does not start with a digit or a minus sign "-"
will be considered zero.

String An arbitrary string of characters. Strings are limited to 128
characters in length.

Boolean A logical value consisting of the string "TRUE" or "FALSE".
Numeric strings will also evaluate to "FALSE" if they are equal to
zero, and "TRUE" if they are non-zero. Arbitrary text strings will
be considered equivalent "FALSE".

While arguments usually follow the command or function that uses them, a single numerical
argument can also be placed in front of a command, producing an effect similar to the
numeric arguments used in interactive mode.
If a command needs more arguments than have be supplied on the line, the command fails.

Constants

Wherever macro language statements need to have arguments, it is legal to place
constants. A constant is a double quote character, followed by a string of characters, and
terminated by another double quote character.
The double quotes around constants are not needed if the constant contains no white space
and it also does not happen to meet the rules for any other MicroEMACS commands,
directives, variables, or functions. This is very practical for numeric constants.
To represent various special characters within a constant, the tilde "~" character is used.
The character following the tilde is interpreted according to the following table:

Sequence Meaning
~" double quote
~~ tilde
~b backspace (^H)
~f formfeed (^L)
~l linefeed (^J)
~n newline
~r carriage return (^M)
~t tab (^I)

Any character not in the above table which follows a tilde will be passed unmodified. This
action is similar to the quote-character (^Q) command available from the keyboard.
MicroEMACS may use different characters for line terminators on different computers. The
"~n" combination will always get the proper line terminating sequence for the current
system.

Variables

Variables are part of the MicroEMACS Macro language. They can be used wherever an
argument (number, boolean or string) is needed.
Environmental variables both control and report on different aspects of the editor. User
variables hold values which may be changed and inspected. Buffer variables allow lines from
buffers to be used as values. Interactive variables allow macros to prompt the user for
information.

Buffer Variables
Buffer variables are a way to take a line of text from a buffer and place it in a variable. They
can only be queried and cannot be set. A buffer variable consists of the buffer name,
preceded by a pound sign "#". Its value is the text between the point and the end of the
line. Each use of a buffer variable advances the point to the beginning of the following line.
For example, if you have a buffer by the name of RIGEL2, and it contains the text (the point
being on the "B" of "Bloomington"):

Richmond
Lafayette
Bloomington
Indianapolis
Gary

and within a command you reference #rigel2, like in:
insert-string #rigel2

MicroEMACS would start at the current point in the RIGEL2 buffer and grab all the text up to
the end of that line and pass that back. Then it would advance the point to the beginning of
the next line. Thus, after the insert-string command executes, the string "Bloomington" gets
inserted into the current buffer, and the buffer RIGEL2 now looks like this (the point is on the
"I" of "Indianapolis"):

Richmond
Lafayette
Bloomington
Indianapolis
Gary

Environmental Variables
These variables are used to change or get information about various aspects of the editor.
They return a current setting if used as part of an expression. All environmental variable
names begin with a dollar sign "$" and are in lower case:

$acount Countdown until next auto-save
$asave Auto-save frequency
$bufhook Command/macro run when entering a buffer
$cbflags Buffer attribute flags.
$cbufname Buffer name
$cfname File name
$cmdhook Command/macro run before each keystroke
$cmode Buffer modes
$curchar ASCII value of character
$curcol Current column
$curline Current line
$curwidth Number of columns
$curwind Window index
$cwline Line number in current window
$debug Macro debugging flag
$deskcolor Color for desktop
$diagflag Diagonal dragging flag
$discmd Prompt echo flag
$disinp Input echo flag
$disphigh High-bit characters display flag
$exbhook Command/macro run when leaving a buffer.
$fcol Line number at top of window
$fillcol Fill column.
$flicker Flicker flag (for CGA or animated grinder cursor)
$fmtlead Text formatter command prefixes
$gflags Global flags
$gmode Global mode flags
$hardtab Size of hard tabs
$hjump Horizontal scrolling quantum
$hscroll Horizontal scrolling flag
$hscrlbar Horizontal scroll bar flag
$kill Kill buffer contents
$language National language used by MicroEMACS
$lastkey Last keyboard character
$lastmesg Last message
$line Current line contents
$lterm Line terminator string
$lwidth Width of current line
$match Last string matched in a search
$modeflag Mode line display flag
$msflag Mouse flag
$numwind Number of windows
$oldcrypt Encryption method flag
$orgrow Row of current screen within desktop
$orgcol Column of current screen within desktop
$pagelen Number of lines in screen
$palette Color palette settings
$paralead Paragraph start characters
$pending Keystrokes pending flag
$popflag Popup buffer flag

$posflag Row&column display flag
$progname "MicroEMACS"
$readhook Command/macro run when a file is read
$region Contents of current region
$replace Default replace string.
$rval Exit value from last invoked subprocess
$scrname Screen name
$search Default search string
$searchpnt After-search-positioning flag
$seed Random number generator seed
$softtab Tab size for handle-tab command
$sres Display resolution (MSWIN under MS-Windows)
$ssave Safe-save flag
$sscroll Smooth scroll flag
$status Status from last command
$sterm Search string terminator key
$target Target for line moves
$time Date and time
$timeflag Time display flag
$tpause Duration of fence matching pause
$version MicroEMACS version
$vscrlbar Vertical scroll bar flag
$wchars List of characters that can be part of a word
$wline Window height (lines)
$wraphook Command/macro run when wrapping text
$writehook Command/macro run when writing a file
$xpos Column the mouse was in at last click
$yankflag After-yank-positioning flag
$ypos Line the mouse was in at last click

$acount
This variable is used in ASAVE mode. It contains the countdown on inserted character until
the next auto-save. When it reaches zero, it is reset to the value of $asave.
Initial value: 256

$asave
This variable is used in ASAVE mode. It specifies the value used to reset $acount after an
automatic save occurs.
Default value: 256

$bufhook
The command or macro named in this variable is run when a buffer is entered. This can be
used to implement modes which are specific to a particular file or file type.
Default value: nop

$cbflags
This variable contains the current buffer's attribute flags, encoded as the sum of the
following numbers:

1 Internal invisible buffer
2 Changed since last read or write
4 Buffer was truncated when read (due to lack of memory)
8 Buffer has been narrowed

Only the invisible (1) and changed (2) flags can be modified by setting $cbflags. The
truncated file (4) and narrowed (8) flags are read-only.

$cbufname
This variable contains the name of the current buffer.

$cfname
This variable contains the file name associated to the current buffer.

$cmdhook
This variable contains the name of a command or macro to run before accepting a
keystroke. This is by default set to the nop command.
Default value: nop

$cmode and $gmode
The two variables $cmode and $gmode contain a number that corresponds to the modes for
the current buffer ($cmode) and the new buffers ($gmode). They are encoded as the sum of
the following numbers for each of the possible modes:

WRAP 1 Word wrap
CMODE 2 C indentation and fence matching
SPELL 4 Interactive spell checking (Not implemented yet)
EXACT 8 Exact matching for searches
VIEW 16 Read-only buffer
OVER 32 Overwrite mode
MAGIC 64 Regular expressions in search
CRYPT 128 Encryption mode active
ASAVE 256 Auto-save mode

Thus, if you wished to set the current buffer to have CMODE, EXACT, and MAGIC on, and all
the others off, you would add up the values for those three, CMODE 2 + EXACT 8 + MAGIC
64 = 74, and use a statement like:

set    $cmode    74
or, use the binary or operator to combine the different modes:

set    $cmode    &bor    &bor    2    8    64
Alternatively, you can also modify the modes one by one, using the add-mode and add-
global-mode or delete-mode and delete-global-mode commands

$curchar
This variable contains the ASCII value of the character currently at the point.

$curcol
This variable contains the column (starting at 0) of the point in the current buffer.

$curline
This variable contains the line number (starting at 1) of the point in the current buffer.

$curwidth
This variable contains the number of columns displayed in the current screen.
Setting this variable is equivalent to using the change-screen-width command with a
numeric argument.

$curwind
This variable contains the index of the current window within the screen. Windows are
numbered from top to bottom, starting at 1. The number of windows within the current
screen is held by the $numwind variable.

$cwline
This variable contains the number of lines displayed in the current window.

$debug
This boolean variable contains a flag used to trigger macro debugging. If it is set to TRUE,
macros are executed step by step, and each statement and variable assignment is displayed
on the message line.
Default value: FALSE

$deskcolor
This variable contains the color to use for the desktop. In the MS-Windows version of
MicroEMACS, the value of this variable is irrelevant.
Default value: BLACK.

$diagflag
If this boolean variable is set to TRUE, diagonal dragging of text and mode lines is enabled. If
it is FALSE, text and modelines can either be dragged horizontally or vertically but not both
at the same time.

$discmd
If this boolean variable is set to TRUE, the echoing of command prompts and output on the
message line is enabled. If it is FALSE, most messages and prompts are disabled (this is
handy to avoid some cases of message line flashing while a macro is running).
Default value: TRUE.

$disinp
If this boolean variable is set to TRUE, the echoing of input at the command prompts is
enabled.
Default value: TRUE.

$disphigh
If this boolean variable is set to TRUE, high-bit characters (single byte characters that are
greater than 127 in value) will be displayed in a pseudo-control format. The characters "^!"
will lead off the sequence, followed by the character stripped of its high bit.
Default value: FALSE.

$exbhook
This variable holds the name of a command or macro which is run whenever you are
switching out of a buffer.
Default value: nop

$fcol
This variable contains the line position being displayed in the first column of the current
window.

$fillcol
This variable contains the current fill column. It is used by the fill-paragraph command. It
can be set through the set command or by using the set-fill-column command.
Default value: 72

$flicker
In the MS-DOS version of MicroEMACS, this variable contains a flicker flag that should be set
to TRUE if the display is an IBM CGA and set to FALSE for most others.
In the MS-Windows version of MicroEMACS, this variable can be set to FALSE to allow an
animated grinder to be displayed in place of the hourglass mouse cursor. Since this
animation results, on many video displays, in an annoying flicker of the cursor, it is disabled
when $flicker is set to TRUE.
Default value: TRUE

$fmtlead
A line starting with one of the characters in the $fmtlead variable is considered to be a text
formatter command. Therefore, the following line is considered to be the start of a
paragraph.
If you are editing text destined for use by a text formatter, set $fmtlead to the command
character for that formatter. That will prevent MicroEMACS from formatting what should be
lines of commands meant for the formatter. If, for example, you are editing SCRIBE source,
use the set (^XA) command to set $fmtlead to "@".
Default value: empty string

$gflags
Some of the ways MicroEMACS controls its internal functions can be modified by the value in
the $gflags variable. Each bit in this variable will be used to control a different function:

1 If this bit is set to zero, EMACS will not automatically switch to the buffer of
the first file after executing the startup macros.

2 If this bit is set to one, suppress redraw events.

$hardtab
This variable contains the number of spaces between hard tab stops. This can be used to
change the way tabs are displayed within the editor.
Default value: 8

$hjump
This variable contains the number of columns the editor should scroll the screen horizontally
when a horizontal scroll is required.
Default value: 1

$hscroll
This variable is a flag that determines if MicroEMACS will scroll the entire window
horizontally, or just the current line. The default value, TRUE, results in the entire window
being shifted left or right when the cursor goes off the edge of the screen.

$hscrlbar
This boolean variable exists only under the MS-Windows version of MicroEMACS. If it is TRUE,
an horizontal scroll bar is available at the bottom of each screen, allowing you to scroll the
text in the current window right and left.
If $hscrlbar is FALSE, the horizontal scroll bar is not present.
Default value: TRUE

$kill
This variable contains the first 127 characters currently in the kill buffer.
Attempts to set this variable are ignored.

$language
This variable contains the name of the national language in which MicroEMACS messages
will be displayed. (Currently MicroEMACS is available in English, French, Spanish, Latin,
Portuguese, Dutch, German, and Pig Latin).
The MS-Windows version of MicroEMACS is currently available in English only.
Attempts to set this variable are ignored. Changing the language used by MicroEMACS
requires recompiling.

$lastkey
This variable contains a number representing the ASCII value of the last key press processed
by MicroEMACS. This variable does not contain any indication that the last keystroke was
prefixed by the Meta or the Alt keys. Further more, function or special keys are perceived as
the last character of their keystroke representation.
Note that this variable does not change during playback of a keyboard macro.
Setting this variable does not have any effect on the editor beyond changing the variable's
value.

$lastmesg
This variable contains the text of the last message which MicroEMACS wrote on the message
line.
Setting this variable does not have any effect on the editor beyond changing the variable's
value.

$line
This variable contains the first 127 characters of the current line. Setting this variable
overwrites the contents of the current line.

$lterm
This variable contains the string of characters to use as a line terminator when writing a file
to disk. By default, it is an empty string, which causes a newline to be written (under MS-
DOS or MS-Windows, this translates into a carriage return character followed by a line feed
character).
Under some operating systems, the value of this variable is irrelevant.

$lwidth
This variable contains the number of characters of the current line.
Attempts to set this variable are ignored.

$match
This variable contains the last string matched by a search operation.
Attempts to set this variable are ignored.

$modeflag
If this boolean variable is TRUE, mode lines are visible. If it is FALSE, mode lines are not
displayed (thus allowing one more line per window).
Default value: TRUE

$msflag
Under some operating systems, this boolean variable can be used to control the use of the
pointing device: when it is TRUE, the mouse (if present) is active. When it is FALSE, the
mouse cursor is not displayed, and mouse actions are ignored.
Under MS-Windows, setting this variable to FALSE does not cause the cursor to be hidden,
but mouse actions within text areas are ignored. However, the mouse remains useable to
activate menus or select, move and resize screens.
Default value: TRUE

$numwind
This variable contains the number of windows displayed within the current screen.
Attempts to set this variable are ignored.

$oldcrypt
If this boolean variable is TRUE, the CRYPT mode uses the old method of encryption (which
had a bug in it). This allows you to read files that were encrypted with a previous version of
MicroEMACS.
Default value: FALSE.

$orgrow
This variable contains the position of the current screen's top row on the desktop, starting at
0.
Setting this variable is equivalent to invoking the change-screen-row command.
Under MS-Windows, the value of this variable is irrelevant.
Default value: 0

$orgcol
This variable contains the position of the current screen's left column on the desktop,
starting at 0.
Setting this variable is equivalent to invoking the change-screen-column command.
Under MS-Windows, the value of this variable is irrelevant.
Default value: 0

$pagelen
This variable contains the number of lines (including mode lines) displayed by the current
screen.
Setting this variable is equivalent to invoking the change-screen-size command with a
numeric argument.

$palette
This variable contains a string that is used to control the color palette settings on graphics
versions of MicroEMACS.
Under MS-Windows, $palette is composed of up to 48 octal digits. Each group of three digits
redefines an entry of the palette, by specifying the red, green and blue levels of that color.
Default value: empty string

$paralead
A line starting with one of the characters in the $paralead variable is considered to be the
first line of a    paragraph.
Default value: Space and TAB characters

$pending
This boolean variable is TRUE if there are type ahead keystrokes waiting to be processed.
Attempts to set this variable are ignored.

$popflag
If this boolean variable is TRUE, popup buffers are used instead of opening a window for
building completion lists and by the following commands:

apropos
describe-bindings
describe-functions
describe-variables
list-buffers
list-screens
show-files

Default value: TRUE

$posflag
If this boolean variable is TRUE, the position of the point (row and column) is displayed in the
current window's mode line.
Default value: TRUE

$progname
This variable contains the string "MicroEMACS" for standard MicroEMACS. It can be
something else if MicroEMACS is incorporated as part of someone else's program.
Attempts to set this variable are ignored. Changing it requires recompiling.

$readhook
The command or macro named in this variable is run when a file is read into a buffer. This
can be used to implement modes which are specific to a particular file or file type.
Default value: nop

$region
This variable contains the first 255 characters of the current region. If the region is not
defined (because the mark is not set), this variable contains the string: "ERROR".
Attempts to set this variable are ignored.

$replace
This variable contains the current default replace string. That is the replace string that was
specified in the last replace-string or query-replace-string command and will be used as
default value for the next such command.

$rval
This variable contains the returned value from the last subprocess which was invoked from
MicroEMACS's commands: execute-program, filter-buffer, i-shell, pipe-command.and shell-
command.
Under MS-Windows, this variable always has the value 0.
Attempts to set this variable are ignored.

$scrname
This variable contains the current screen's name.
Setting this variable causes the specified screen to be made the current one. If that screen
does not exist, nothing happens. To change the name of a screen, use the rename-screen
command.

$search
This variable contains the current default search string. That is the search string that was
specified in the last search-forward, search-reverse, incremental-search, reverse-
incremental-search, replace-string or query-replace-string command and will be used as
default value for the next such command or as the target for hunt-forward and hunt-
backward.

$searchpnt
The value of this variable specifies the positioning of the of the point at the end of a
successful search:
- If $searchpnt = 0, the cursor is placed at the end of the matched text on forward

searches, and at the beginning of this text on reverse searches.
- If $searchpnt = 1, the cursor is placed at the beginning of the matched text regardless of

the search direction.
- If $searchpnt = 2, the cursor is placed at the end of the matched text regardless of the

search direction.
Setting this variable to a value other than one of the above causes the value 0 to be used.
Default value: 0

$seed
This variable contains the integer seed of the random number generator. This is used by the
&rnd function and also to compute temporary file names (if $ssave is TRUE).
Initial value: 0

$softtab
The value of this variable relates to the number of spaces inserted by MicroEMACS when the
handle-tab command (which is normally bound to the TAB key) is invoked:

If $softtab is n, strictly positive, tabs stops are located at every nth column and the
handle-tab command inserts space characters in sufficient number to move the point to
the next tab stop.
If $softtab is zero, the handle-tab command inserts true tab characters.
If $softtab is strictly negative, the handle-tab command fails.

This variable can be set by passing a numeric argument to handle-tab or by directly using
the set command.
Default value: 0

$sres
This variable contains a string that identifies the current screen resolution (CGA, MONO, EGA
or VGA on the IBM-PC, LOW, MEDIUM, HIGH or DENSE on the Atari ST1040, MSWIN under
Microsoft Windows and NORMAL on most others).
Depending on the hardware and operating system MicroEMACS is running on, setting this
variable may allow you to change the screen resolution. Not that under MS-Windows,
attempts to set this variable are ignored.

$ssave
If this boolean variable is TRUE, MicroEMACS perform "safe saves": when it is asked to save
the current buffer to disk, it writes it out to a temporary file, deletes the original file, and
then renames the temporary to the old file name.
If $ssave is FALSE, MicroEMACS performs saves by directly overwriting the original file, thus
risking loss of data if a system crash occurs before the end of the save operation. On the
other hand, this mode insures that the original file attributes (ownership and access rights)
are preserved on systems that support these (like UNIX).
Default value: TRUE.

$sscroll
If this boolean variable is TRUE, MicroEMACS is configured for smooth vertical scrolling: when
the cursor moves off the top or bottom of the current window, the window's contents scroll
up or down one line at a time.
If $sscroll is FALSE, scrolling occurs by half pages.
Default value: FALSE

$status
This boolean variable contains the status returned by the last command. This is usually used
with the !FORCE directive to check on the success of a search, or a file operation.
Setting this variable can be used to return a FALSE status from a macro.

$sterm
This variable contains the character used to terminate search string inputs.
Default value: the last key bound to meta-prefix (initially: Escape character)

$target
This variable contains the column position where the point will attempt to move after a next-
line or previous-line command. Unless the previous command was next-line or previous-line,
the default value for this variable is the current column.

$time
This variable contains a string corresponding to the current date and time. Usually this is
given in a form like to "Mon May 09 10:10:58 1988". Not all operating systems support this.

$timeflag
If this boolean variable is TRUE, the current time is displayed on the bottom mode line of
each screen.
Default value: FALSE.
Note: Under MS-Windows, this feature currently does not operate properly because
MicroEMACS makes incorrect assumptions about the format of the time string (see $time).

$tpause
This variable contains the length of the pause used to show a matched fence when the
current buffer is in CMODE and a closing fence (a character among ")}]") has been typed.
On most systems, this pause is performed by a CPU loop and therefore, the value of $tpause
may need to be adjusted to compensate for the processor's speed.
Under MS-Windows, the pause is performed by a bona-fide timer and $tpause is expressed in
milliseconds. The default value is 1000.

$version
This variable contains the current MicroEMACS version number (i.e. "3.11c").
Attempts to set this variable are ignored.

$vscrlbar
This boolean variable exists only under the MS-Windows version of MicroEMACS. If it is TRUE,
a vertical scroll bar is available at the right end of each screen, allowing you to scroll the text
in the current window up and down.
If $vscrlbar is FALSE, the vertical scroll bar is not present.
Default value: TRUE

$wchars
This variable is used to define what a word is for MicroEMACS. It contains the list of all the
characters that can be considered part of a word.
If $wchar is empty, a word is defined as composed of upper and lower case letters, numerals
(0 to 9) and the underscore character.
Default value: empty

$wline
This variable contains the number of lines displayed in the current window, excluding the
mode line.
Setting this variable is equivalent to using the resize-window command with a numeric
argument.

$wraphook
This variable contains the name of a command or macro which is executed when a buffer is
in WRAP mode and it is time to wrap the current line.
Default value: wrap-word

$writehook
This variable contains the name of a command or macro which is invoked whenever
MicroEMACS attempts to write a file out to disk. This is executed before the file is written,
allowing you to process a file on the way out.
Default value: nop

$xpos
This variable contains the horizontal screen coordinate where the mouse was located the
last time a mouse button was pressed or released.
The leftmost column is considered to be 0 in screen coordinates.

$yankflag
This boolean variable controls the placement of the point after a yank, yank-pop, insert-file
or insert-clip command.
If $yankflag is FALSE, the point is moved to the end of the yanked or inserted text.
If $yankflag is TRUE, the cursor remains at the start of the yanked or inserted text.
Default value: FALSE

$ypos
This variable contains the vertical screen coordinate where the mouse was located the last
time a mouse button was pressed or released.
The top row is considered to be 0 in screen coordinates.

Interactive Variables
Interactive variables are actually a method to prompt the user for a string. This is done by
using an at sign "@" followed with a string argument. The string is displayed on the message
line, and the editor waits for the user to type in a string which is then returned as the value
of the interactive variable. For example:

find-file @"What file? "
will ask the user for a file name, and then attempt to find it. Note also that complex
expressions can be built up with these operators, such as:

set %default "file1"
@&cat &cat "File to decode[" %default "]: "

which prompts the user with the string:
File to decode[file1]:

User Variables
User variables allow you to store strings and manipulate them. These strings can be pieces
of text, numbers (in text form), or the logical values TRUE and FALSE. These variables can be
combined, tested, inserted into buffers, and otherwise used to control the way your macros
execute. Up to 512 user variables may be in use in one editing session. All user variable
names must begin with a percent sign "%" and may contain any printing character. Only the
first 10 characters are significant (i.e. differences beyond the tenth character are ignored).
When a user variable has not been set, it has the value: "ERROR".

Functions

Functions are part of the MicroEMACS Macro language. They can be used wherever an
argument (number, string or boolean) is needed.
Function names always begin with the ampersand "&" character, and only the first three
characters after the ampersand are significant. Functions are always used in lower case.
Functions can be used to act on variables in various ways. Functions can have one, two, or
three arguments. These are always placed after the function, and they can include functions
(with their own arguments).
By topic:

Boolean functions
Numeric functions
String functions
Miscellaneous functions

By returned value:
Boolean: &and, &equal, &exist, &greater, &isnum, &less, ¬, &or,

&sequal, &sgreater and &sless
Numeric: &abs, &add, &ascii, &band, &bnot, &bor, &bxor, ÷,

&length, &mod, &negate, &rnd, &sindex, &sub and ×
String: &bind, &cat, &chr, &env, &find, &group, >c, >k, &indirect,

&left, &lower, &mid, &right, &slower, &supper, &trim, &upper
and &xlate

Boolean Functions
These functions perform operations on boolean arguments:
&and log1      log2 Returns TRUE if both boolean arguments are TRUE
¬ log Returns the opposite boolean value
&or log1      log2 Returns TRUE if either argument is TRUE

Numeric Functions
These functions perform operations on numerical arguments:
&abs num Returns the absolute value of num
&add num1      num2 Adds two numbers
&band num1      num2 Bitwise AND function
&bnot num Bitwise NOT function
&bor num1      num2 Bitwise OR function
&bxor num1      num2 Bitwise XOR function
&chr num Returns a string with the character represented by ASCII code

num. This function is the opposite of &ascii
÷num1      num2 Divides num1 by num2,giving an integer result
&equal num1      num2 Returns TRUE if num1 and num2 are numerically equal
&greater num1      num2Returns TRUE if num1 is greater than, or equal to

num2
&isnum num Returns TRUE if the given argument is a legitimate number
&less num1      num2 Returns TRUE if num1 is less than num2
&mod num1      num2 Returns the reminder of dividing num1 by num2
&negate num Multiplies num by -1
&rnd num Returns a random integer between 1 and num
&sub num1      num2 Subtracts num2 from num1
× num1      num2 Multiplies num1 by num2

String Functions
These functions perform operations related to strings. All of them have at least one string
argument:
&ascii str Returns the ASCII code of the first character in str. This function

is the opposite of &chr
&cat str1      str2 Concatenates the two strings to form one
&indirect str Evaluate str as a variable.
&left str        num Returns the num leftmost characters from str
&length str Returns length of string
&lower str Transforms str to lowercase
&mid str      num1      num2 Starting from num1 position in str, returns num2

characters
&right str      num Returns the num rightmost characters from str
&sequal str1      str2 Returns TRUE if the two strings are the same
&sgreater str1      str2 Returns TRUE if str1 is alphabetically greater than

or equal to str2
&sindex str1      str2 Returns the position of str2 within str1. Returns

zero if not found
&sless str1      str2 Returns TRUE if str1 is less alphabetically than str2
&slower str1      str2 Translate the first char in str1 to the first char in

str2 when lowercasing.
&supper str1      str2 Translate the first char in str1 to the first char in

str2 when uppercasing.
&trim str Trims the trailing white space from a string
&upper str Transforms str to uppercase
&xlate source      lookup      transTranslate each character of source that appears in lookup

to the corresponding character from trans

Miscellaneous Functions
&bind str Returns the name of the command bound to the keystroke str
&env str If the operating system has this capability, this returns the

environment string associated with str
&exist str Returns TRUE if the named file str exists
&find str Finds the named file str along the path and return its full file

specification or an empty string if no such file exists
&group num Return group num as set by a MAGIC mode search.
>c Returns a string of characters containing a MicroEMACS

command input from the user
>k Returns a string containing a single keystroke from the user

&indirect
The &indirect function evaluates its argument, takes the resulting string, and then uses it as
a variable name. For example, given the following piece of macro language:

; set up reference table
set %one "elephant"
set %two "giraffe"
set %three "donkey"
set %index "%two"
insert-string &ind %index

The string "giraffe" would have been inserted at the point in the current buffer. This
indirection can be safely nested up to about 10 levels.

Comments

Within the macro language, a semicolon ";" signals the beginning of a comment. The text
from the semicolon to the end of the line is ignored by MicroEMACS.
A comment can be the only content of a line, in which case the semicolon must be the first
non-blank character on the line. A comment can also appear at the end of any statement.
Note that empty lines are legal (treated as comments).

abort-command
Default binding: ^G
This command is used interactively to abort out of any command that is waiting for input.
It can be used within a macro to sound a beep but, unless it is used with the !FORCE
directive, it causes the macro to abort.
This command is unaffected by numeric arguments.

add-global-mode
Default binding: M-M
Syntax:

add-global-mode        mode
or:

add-global-mode        color
This command causes the specified mode to be inherited by future (not yet created) buffers
(These global modes can later be revoked by the delete-global-mode command). It can also
be used to specify the foreground or background color for future windows.
This command does not modify the modes/colors of the current buffer/window. To do so, use
the add-mode command.
This command is unaffected by numeric arguments.

add-mode
Default binding: ^XM
Syntax:

add-mode    mode
or:

add-mode    color
This command adds the specified mode to the current buffer. It can also be used to specify
the foreground or background color for the current window.
To set the default modes/colors for all future buffers/windows, use the add-global-mode
command.
This command is unaffected by numeric arguments.

append-file
Default binding: ^X^A
Syntax:

append-file    file name
Similar to write-file, this command writes out the current buffer to the named file, but rather
than replacing its contents, it appends the buffer to the end of the existing text in the file.
This does not change the filename of the current buffer. It is especially handy for building log
files.
This command is unaffected by numeric arguments.

apropos
Default binding: M-A
Syntax:

apropos    string
This command builds a list of all the MicroEMACS commands and macros whose name
contains the specified string. The list is stored in a buffer named "Binding list" and is
displayed either in a popup buffer or in a regular window, depending on the value of the
$popflag variable.
Commands are listed first, followed by macros (macro names are enclosed in square
brackets "[" and "]"). For each command or macro listed, the associated bindings are also
listed.
This command is unaffected by numeric arguments.

backward-character
Default bindings: ^B and FNB (left arrow)
Syntax:

n    backward-character
This command moves the point backward by n characters. If n is a negative number, the
point is moved forward. If no numeric arguments is specified, the point is moved backward
by one character.
Note: end of lines count as one character.
If the move would take the point beyond the boundaries of the buffer, this command fails
and the point is left at said boundary.

begin-macro
Default binding: ^X(
This command tells MicroEMACS to begin recording all keystrokes, commands and mouse
clicks into the keyboard macro. MicroEMACS stops recording when the end-macro (^X))
command is given.
The recording can be replayed by execute-macro (^XE).
This command is unaffected by numeric arguments.
Note: mouse clicks are recorded with the screen (row/column) position they occurred at.

beginning-of-file
Default binding: M-<
This command causes the point to move to the beginning of the buffer.
It is unaffected by numeric arguments.

beginning-of-line
Default binding: ^A
This command causes the point to move to the beginning of the current line.
It is unaffected by numeric arguments.

bind-to-key
Default binding: M-K
Syntax:

bind-to-key    command name    keystroke
This command associates a command with a keystroke, thus creating a binding. A keystroke
can be bound only to one command or macro at a time, so when you rebind it, the previous
binding is forgotten. On the other hand, a command can have more than one keystroke
bound to it.
The keystroke is specified using the keystroke syntax or the mouse syntax.
This command cannot be used to specify the key binding for a macro. That is performed by
the macro-to-key command.
This command is unaffected by numeric arguments.

bind-to-menu
No default binding
Syntax:

bind-to-menu    command name    menu name
This command is available only under Microsoft Windows. It creates a menu item associated
with the specified command. The menu name is specified using the menu name syntax.
If the menu name designates a menu item that already exists, the command fails.
If the menu name specifies menus that do not exist yet, they are created as part of the
creation of the menu item.
This command cannot be used to bind a macro to a menu. That is performed by the macro-
to-menu command.
This command is unaffected by numeric arguments.

buffer-position
Default binding: ^X=
This command displays, on the message line, the position of the point within the current
window. It lists:

The line (starting at 1), followed by the total number of lines in the buffer
The column (starting at 0), followed by the length of the current line
The character offset (starting at 0, newlines counting as a single character) from the
beginning of the buffer, followed by the total number of character in the buffer
The percentage of text before the point
The hexadecimal value of the current character

This command is unaffected by numeric arguments.

cascade-screens
No default binding
This command is available only under Microsoft Windows. It causes all non-iconic screens to
be rearranged in a cascading scheme. If the current screen is maximized (see maximize-
screen) at the time this command is invoked, it is restored to its non-maximized size first.
This command is unaffected by numeric arguments.

case-region-lower
Default binding: ^X^L
This command causes all the upper case characters in the region to be changed into their
lower case counterpart.
The command fails if the mark is not defined in the current window.
This command is unaffected by numeric arguments.

case-region-upper
Default binding: ^X^U
This command causes all the lower case characters in the region to be changed into their
upper case counterpart.
The command fails if the mark is not defined in the current window.
This command is unaffected by numeric arguments.

case-word-capitalize
Default binding: M-C
Syntax:

n    case-word-capitalize
This command capitalizes n words after the point: it causes the first character of each word
to be forced to upper case and the other characters to be forced to lower case. After the
command has executed, the point is located just after the last processed word.
Note that since it starts by capitalizing the first letter after the point, this command would
normally be issued with the cursor positioned in front of the first letter of the word you wish
to capitalize. If you issue it in the middle of a word, you can end up with some strAnge
looking text.
The command fails if the numeric argument is negative or if it goes beyond the end of the
buffer. If n is null, nothing happens. If the numeric argument is not specified, only one word
is affected.

case-word-lower
Default binding: M-L
Syntax:

n    case-word-lower
This command forces to lower case n words after the point. After the command has
executed, the point is located just after the last processed word.
Note that since it starts by processing the first letter after the point, this command would
normally be issued with the cursor positioned in front of the first letter of the word you wish
to make lower case.
The command fails if the numeric argument is negative or if it goes beyond the end of the
buffer. If n is null, nothing happens. If the numeric argument is not specified, only one word
is affected.

case-word-upper
Default binding: M-U
Syntax:

n    case-word-upper
This command forces to upper case n words after the point. After the command has
executed, the point is located just after the last processed word.
Note that since it starts by processing the first letter after the point, this command would
normally be issued with the cursor positioned in front of the first letter of the word you wish
to make upper case.
The command fails if the numeric argument is negative or if it goes beyond the end of the
buffer. If n is null, nothing happens. If the numeric argument is not specified, only one word
is affected.

change-file-name
Default binding: ^XN
Syntax:

change-file-name    file name
This command lets you change the file name associated with the current buffer. It does not
change the buffer name. The disk file is unaffected.
This command is unaffected by numeric arguments.

change-screen-column
No default binding.
Syntax:

n    change-screen-column
This command modifies the offset of the current screen's left column on the desktop. The
numeric argument n specifies that offset in number of characters. If n is not specified, it is
taken as zero.
Using this command is equivalent to setting the $orgcol variable.
If n is negative or if it is positive but would cause the right border of the screen to be moved
off the desktop, the command fails.
Under Microsoft Windows, this command always resets $orgcol to zero and it has no other
effect.

change-screen-row
No default binding.
Syntax:

n    change-screen-row
This command modifies the offset of the current screen's top row on the desktop. The
numeric argument n specifies that offset in number of characters. If n is not specified, it is
taken as zero.
Using this command is equivalent to setting the $orgrow variable.
If n is negative or if it is positive but would cause the bottom border of the screen to be
moved off the desktop, the command fails.
Under Microsoft Windows, this command    always resets $orgrow to zero and it has no other
effect.

change-screen-size
No default binding.
Syntax:

n    change-screen-size
This command modifies the height of the current screen, causing it to be n lines. If the
numeric argument n is not specified, it is taken to be the height of the whole desktop.
As the height of the screen changes, the bottom window is resized to fit. If the height is
decreased, windows that do not fit any more are eliminated, starting from the bottom one.
Using this command is equivalent to setting the $pagelen variable.
If n is lower than 3 or if it is greater than the height of the desktop, the command fails.
Under Microsoft Windows:

The height of a screen does not include the message line.
If n is not specified, the command fails.

change-screen-width
No default binding.
Syntax:

n    change-screen-width
This command modifies the width of the current screen, causing it to be n characters. If the
numeric argument n is not specified, it is taken to be the width of the whole desktop.
Using this command is equivalent to setting the $curwidth variable.
If n is lower than 10 or if it is greater than the width of the desktop, the command fails.
Under Microsoft Windows, if n is not specified, the command fails.

clear-and-redraw
Default binding: ^L
Syntax:

clear-and-redraw
or:

n    clear-and-redraw
This command performs two different functions, depending on the way it is invoked:
 wether it is invoked with a    or not:

If the command is invoked without a numeric argument, it causes all screens to be
completely repainted.
If the command is invoked with a numeric argument, it centers the line containing the
point in the current window. The value of the numeric argument is irrelevant.

clear-message-line
No default binding.
This command erases the text (if any) displayed on the message line.
This command is unaffected by numeric arguments.

clip-region
Default binding: FN^C (Control+Insert)
This command copies the contents of the current region into the clipboard, overwriting any
previous clipboard data.
This command is unaffected by numeric arguments.

copy-region
Default binding: M-W
This command copies the contents of the current region into the kill buffer.
This command is unaffected by numeric arguments.

count-words
Default binding: M-^C
This command displays, on the message line, the number of words in the current region,
along with the number of characters, lines and the average number of characters per word.
This command is unaffected by numeric arguments.

ctlx-prefix
Default binding: ^X
This command is rarely used for execution in the macro language. Its main purpose is to be
mentioned in a bind-to-key command, to redefine the ^X prefix. For instance, the line:

bind-to-key    ctlx-prefix    FN1
redefines function key F1 as the prefix to be used in all keystrokes that begin by "^X-". After
this, keystrokes such as ^X^C would be actually typed by pressing and releasing the F1 key
and then pressing the Control key and the C key together.

cut-region
Default binding: S-FND (Shift+Delete)
This command deletes the contents of the current region after copying them into the
clipboard, overwriting any previous clipboard data.
This command is unaffected by numeric arguments.

cycle-ring
Default binding: ^XY
Syntax:

n    cycle-ring
This command causes the kill ring to rotate by n positions. For instance, if the contents of
the kill ring were K1, K2 ... K14, K15 and K16, the kill buffer would be K16. After a command:

2    cycle-ring
the kill buffer would be K14 and the kill ring would now be ordered: K15, K16, K1, K2 ... K14.
If no numeric arguments is specified, this command does not have any effect.

cycle-screens
Default binding: A-C
This command takes the rearmost screen (actually, the last screen in the screen list) and
moves it to the front.
This command is unaffected by numeric arguments.

delete-blank-lines
Default binding: ^X^O
If the point is on an empty line, this command deletes all the empty lines around (above and
below) the current line. If the point is on a non empty line then this command deletes all of
the empty lines immediately following that line.
This command is unaffected by numeric arguments.

delete-buffer
Default binding: ^XK
Syntax:

delete-buffer    buffer name
This command attempts to discard the named buffer, reclaiming the memory it occupied. It
will not allow the destruction of a buffer which is currently visible through any window on
any screen.
This command is unaffected by numeric arguments.

delete-global-mode
Default binding: M-^M
Syntax:

Syntax:
delete-global-mode    mode

or:
delete-global-mode    color

This command causes the specified mode to be removed from the ones inherited by future
(not yet created) buffers (such global modes would have been set by the add-global-mode
command). It can also be used to specify the foreground or background color for future
windows.
This command does not modify the modes/colors of the current buffer/window. To do so, use
the delete-mode command.
This command is unaffected by numeric arguments.

delete-kill-ring
Default binding: M-^Y
This command empties the kill ring (this includes the current contents of the kill buffer) and
reclaims the memory space it occupied.
This command is unaffected by numeric arguments.

delete-mode
Default binding: ^X^M
Syntax:

delete-mode    mode
or:

delete-mode    color
This command removes the specified mode from the current buffer (these modes would
have been set by the add-mode or add-global-mode commands). It can also be used to
specify the foreground or background color for the current window.
To set the default modes/colors for all future buffers/windows, use the delete-global-mode
command.
This command is unaffected by numeric arguments.

delete-next-character
Default binding: ^D
Syntax:

n    delete-next-character
or:

delete-next-character
If n is positive, this command deletes, and stores into the kill buffer, n characters after the
point. If n is negative, the -n characters preceding the point are deleted and stored into the
kill buffer.
If no numeric argument is specified, the character following the point is deleted, but it is not
stored into the kill buffer.
If an attempt to delete past the end or beginning of the buffer is made, the command fails.
Note that end of lines are counted as one character each for the purpose of deletion.

delete-next-word
Default binding: M-D
Syntax:

n    delete-next-word
This command deletes the text from the point to the beginning of the next word, saving it
into the kill buffer.
If a positive numeric argument is present, it specifies the number of words to be deleted. A
null numeric argument is treaded as a 1. A negative numeric argument causes the command
to fail.

delete-other-windows
Default binding: ^X1
This command deletes all other windows but the active one from the current screen.    It does
not discard or destroy any text, just stops looking at those buffers.
This command is unaffected by numeric arguments.

delete-previous-character
Default binding: ^H (Backspace key) and FND (Delete key)
Syntax:

n    delete-previous-character
or:

delete-previous-character
If n is positive, this command deletes, and stores into the kill buffer, the n characters
preceding the point. If n is negative, the -n characters following the point are deleted and
stored into the kill buffer.
If no numeric argument is specified, the character preceding the point is deleted, but it is
not stored into the kill buffer.
If an attempt to delete past the end or beginning of the buffer is made, the command fails.
Note that end of lines are counted as one character each for the purpose of deletion.

delete-previous-word
Default binding: M-^H
Syntax:

n    delete-previous-word
This command deletes the text from the point to the beginning of the previous word, saving
it into the kill buffer.
If a positive numeric argument is present, it specifies the number of words to be deleted. A
negative or null numeric argument causes the command to fail.

delete-screen
Default binding: A-D
Syntax:

delete-screen    screen name
This command deletes the named screen, providing it is not the active one. Note that buffers
being displayed on that screen are not discarded.
This command is unaffected by numeric arguments.

delete-window
Default binding: ^X0
This command removes the active window from the screen, giving its space to the window
above (or, if there is none, the window below). It does not discard or destroy any text, just
stops looking at that buffer.
If the window is alone on the screen, it cannot be removed and the command fails.
This command is unaffected by numeric arguments.

describe-bindings
No default binding
This command creates a list of all commands and macros, each with all the keys which are
currently bound to it. Commands are listed first, followed by the macros (macro names are
surrounded by square brackets "[" and "]").
This command is unaffected by numeric arguments.
Note: The list is actually built in a special buffer named "Binding list". It is displayed as a

popup buffer or in a normal window, depending on the value of the $popflag variable.

describe-functions
No default binding.
This command creates a list of all the functions available in the MicroEMACS macro
language..
This command is unaffected by numeric arguments.
Note: The list is actually built in a special buffer named "Function list". It is displayed as a

popup buffer or in a normal window, depending on the value of the $popflag variable.

describe-key
Default binding: ^X?
Syntax:

describe-key    keystroke
This command displays the command or macro bound to the specified keystroke on the
message line (macro names are surrounded by square brackets "[" and "]"). If the keystroke
has no binding, the text "Not Bound" is displayed.
When this command is used within a macro, the keystroke is specified using the
MicroEMACS keystroke syntax    or the mouse syntax(a ^G, for instance, is typed as a hat
character "^" followed by the letter "G").
When this command is used interactively mode, it displays a prompt: ": describe-binding"
and the keystroke is expected to by typed as if the actual bound command or macro was
being invoked (a ^G, for instance, is typed by holding down the Control key and pressing the
G key).
This command is unaffected by numeric arguments.

describe-variables
Default binding:
No default binding.
This command creates a list of all the variables and their value. Environmental variables are
listed first, followed by user variables.
This command is unaffected by numeric arguments.
Note: The list is actually built in a special buffer named "Variable list". It is displayed as a

popup buffer or in a normal window, depending on the value of the $popflag variable.

detab-line and detab-region
Default binding: ^X^D
Syntax:

n    detab-line
or:

detab-region
These two commands are synonyms. Both cause tab characters to be changed into the
appropriate number of spaces in the affected lines (the spacing between tab stops is
considered to be the value of the $hardtab variable).
If a numeric arguments is specified, n lines, starting from the one containing the point, are
affected. If n is null, the command modifies no line.
If no numeric argument is specified, all the lines belonging to the current region are affected.
If no region is defined, the command modifies no line.
After this command has executed, the point is left at the beginning of the last affected line.
The buffer is marked as modified, even if no modification actually took place.

display
Default binding: ^XG
Syntax:

display    variable
This command displays the value of the specified variable on the message line. If variable is
not an existing environmental variable or user variable, the command fails.
This command is unaffected by numeric arguments.

end-macro
Default binding: ^X)
This command stops the recording of keystrokes, commands or mouse clicks into the
keyboard macro.
The command fails if MicroEMACS is not currently in recording mode.
This command is unaffected by numeric arguments.
See also: begin-macro and execute-macro.

end-of-file
Default bindings: M-> and FN> (End key)
This command places the point at the end of the buffer.
This command is unaffected by numeric arguments.

end-of-line
Default binding: ^E
This command places the point at the end of the current line.
This command is unaffected by numeric arguments.

end-of-word
No default binding.
Syntax:

n    end-of-word
This command moves the point to the end of the nth following word. If the point was located
within a word before invoking the command, that word counts as the first one (thus, if n is 1,
the point moves to the first character following the current word). If an attempt is made to
move past the buffer's end, the command fails but the point is still moved to the end of the
buffer.
If no numeric argument is specified, it is equivalent to n = 1.
If n is null, the command has no effect.
If n is negative, it causes the command to behave like previous-word (invoked with the
numeric argument -n).

entab-line and entab-region
Default binding: ^X^E
Syntax:

n    entab-line
or:

entab-region
These two commands are synonyms. Both cause space characters to be compressed into
tab characters wherever possible in the affected lines (the spacing between tab stops is
considered to be the value of the $hardtab variable).
If a numeric arguments is specified, n lines, starting from the one containing the point, are
affected. If n is null, the command modifies no line.
If no numeric argument is specified, all the lines belonging to the current region are affected.
If no region is defined, the command modifies no line.
After this command has executed, the point is left at the beginning of the last affected line.
The buffer is marked as modified, even if no modification actually took place.

exchange-point-and-mark
Default binding: ^X^X
Syntax:

n    exchange-point-and-mark
This command swaps the point and the mark number n.
If no numeric argument is specified, it is equivalent to n = 0.
If markn does not exist, the command fails.

execute-buffer
No default binding.
Syntax:

n    execute-buffer    buffer
This command executes the macro language statements from the specified buffer.
The command fails if the buffer does not exist or if an executed macro statement (within the
buffer) fails.
If a positive numeric argument is specified, the buffer is executed n times. If n is negative or
null, the command has no effect.

execute-command-line
Default binding: M-^X
Syntax:

execute-command-line    command line
This command executes the specified command line exactly as if it were part of a macro.
This is mostly used interactively to invoke a command but prevent it from fetching its own
arguments interactively.
This command is unaffected by numeric arguments (note that the command line itself may
have its own numeric argument).

execute-file or source
Default binding: M-^S
Syntax:

n    execute-file    file
or:

n    source    file
This command executes the macro language statements from the specified file, after
reading it into an invisible buffer.
The file does not need to be a fully qualified path name: if it is a simple filename, it is
searched along the path.
The command fails if the file cannot be found or if an executed macro statement (within the
file) fails.
If a positive numeric argument is specified, the file is executed n times. If n is negative or
null, the command has no effect.

execute-macro
Default binding: ^XE
Syntax:

n    execute-macro
This command replays the last recorded keyboard macro.
If a negative or null numeric argument is specified, the command does nothing. If a positive
numeric argument is given, the recorded keyboard macro is played n times. If no numeric
argument is given, the recorded macro is played once.
The command fails if MicroEMACS is currently in recording mode.
See also: begin-macro and end-macro.

execute-macro-n
Default binding (n from 1 to 9): S-FN n , for n = 10: S-FN0
No default binding for n greater than 10.
Syntax:

arg    execute-macro-n
MicroEMACS has 40 such commands (i.e. n can be a number from 1 to 40). Each causes the
execution of the corresponding numbered macro (created by the store-macro command).
If a strictly positive numeric argument is specified, the macro is executed repetitively arg
times. If arg is negative or null, nothing happens.
See also: execute-procedure

execute-named-command
Default binding: M-X
Syntax:

n    execute-named-command    command
In interactive mode, this command causes a colon ":" to appear on the message line. You
can then type the name of the command you want to execute and strike Enter. If you type a
space or the meta key, MicroEMACS will attempt to complete the name for you. This
interactive use provides access to commands that do not have a key binding.
When used within a macro, execute-named-command makes the named command
behave as if it had been called interactively, thus causing it to prompt the user for any
arguments it needs.
If a numeric argument is specified, it is simply transmitted to the named command.

execute-procedure or run
Default binding: M-^E
Syntax:

n    execute-procedure    macro
or:

n    run    macro
These two commands are synonyms. They both cause the execution of the named macro
(created by the store-procedure command).
If a strictly positive numeric argument is specified, the macro is executed repetitively n
times. If n is negative or null, nothing happens.
See also: execute-macro- n

execute-program
Default binding: ^X$
Syntax:

execute-program    program
or:

n    execute-program    program
This command spawns an external program, without an intervening shell.
The program argument is a string. Note that if it contains spaces (as would be necessary to
specify command line options), the string should be quoted.
Under MS-Windows:

This command allows you to launch a Windows application from MicroEMACS. The
current working directory where the application executes is set to the directory of the
file in the current window (or, if that window is not associated to a filename, to the
last visited directory).
If no numeric argument is specified, MicroEMACS and the launched application run
independently. If a numeric argument is specified, MicroEMACS synchronizes with the
application.

Note: Under MS-DOS, you cannot use this command to invoke built-in system commands
(like DIR, for instance). Use shell-command instead.

exit-emacs
Default binding: ^X^C
Syntax:

n    exit-emacs
This command terminates MicroEMACS.
If no numeric argument is specified and some buffers contain text that has been changed
but not yet saved, you will be asked for a confirmation. If a numeric argument is specified,
the command terminates MicroEMACS unconditionally.

fill-paragraph
Default binding: M-Q
This command reformats the current paragraph, causing all of its text to be filled out to the
current fill column (Which is 72 by default and is set with the set-fill-column command or the
$fillcol variable).
This command is unaffected by numeric arguments.

filter-buffer
Default binding: ^X#
Syntax:

filter-buffer    program
This command spawns the external filter program (for instance: SORT or FIND) and feeds it
the contents of the current buffer. The results replace the original text in the buffer.
Under Microsoft Windows, this command creates a DOS box and synchronizes with it.
This command is unaffected by numeric arguments.

find-file
Default binding: ^X^F
Syntax:

find-file    file name
If the named file is already loaded somewhere in the editor, this command brings its buffer
up in the current window. Otherwise, the file is searched for on disk. If it is found, a new
buffer is created and the contents of the file are read into it. If the file does not exist, a new
empty buffer is created. In all cases, the buffer is brought up in the current window.
This command is unaffected by numeric arguments.

find-screen
Default binding: A-F
Syntax:

find-screen    screen name
This command brings up the named screen. If the screen name does not exist, a new screen
is created. On text systems, this screen is displayed on top of the others. On graphic
systems, the OS window containing this screen is brought to the foreground.
This command is unaffected by numeric arguments.

forward-character
Default binding: ^F and FNF (right arrow)
Syntax:

n    forward-character
This command moves the point forward by n characters. If n is a negative number, the point
is moved backward. If no numeric arguments is specified, the point is moved forward by one
character.
Note: end of lines count as one character.
If the move would take the point beyond the boundaries of the buffer, this command fails
and the point is left at said boundary.

goto-line
Default binding: M-G
Syntax:

n    goto-line
or
goto-line    n

This command moves the point to the first character of line number n in the current buffer.
The command fails if n is lower than 1 or if the buffer is empty. If n is greater than the
number of lines in the buffer, the point is simply positioned at the end of the buffer.

goto-mark
Default binding: M-^G
Syntax:

n    goto-mark
This command moves the point to the location of the mark number n.
If no numeric arguments is specified, the mark number 0 is used.
If n is greater than 9, it is treated as the remainder of the division of n by 10.

goto-matching-fence
Default binding: M-^F
When the point is located on a fence character (curly brace, bracket, or parenthesis), this
command will make it jump to the matching fence character.
If the point is not located on a fence character or there is no matching fence, a beep sounds
and the command fails.
This command is unaffected by numeric arguments.

grow-window
Default binding: ^X^ and ^XZ
Syntax:

n    grow-window
If n is a positive number, this command increases the height of the current window by n
lines. The window located immediately below the current window (or, if the current window
is at the bottom of the screen, the window located immediately above it) shrinks by n lines.
If that would cause the shrinking window to become too small to display any text, the
command fails.
If the current screen contains only one window, the command fails.
If n is a negative number, this command acts as if the shrink-window command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, the height of the window is increased by one line.
To change the size of the current window by specifying an absolute value, use the resize-
window command.

handle-tab
Default binding: ^I (Tab key)
Syntax:

n    handle-tab
or:

handle-tab
The behavior of this command depends on the numeric argument (n) that is supplied to it:

With no argument, it simply inserts a single tab character or enough space characters
(depending on its configuration...) to get to the next tab stop.
With an non-zero argument n, tabs stops are reset to every nth column and handle-tab
is reconfigured to insert space characters in sufficient number to get to the next tab
stop. This also sets the $softtab variable to n.
With an argument n of zero, handle-tab is reconfigured so that it inserts true tab
characters (its default behavior) and the tab stop interval is reset to its default value of
8.

The distance which a true tab character moves the cursor is reflected by the value of the
$hardtab variable. Initially set to 8, this determines how far each tab stop is placed from the
previous one.

help
Default binding: M-?
This command brings up a window to display the contents of a text file named EMACS.HLP
located on the path. This file usually contains a summary of the MicroEMACS commands and
default key bindings.
The command fails if the EMACS.HLP file cannot be found.
This command is unaffected by numeric arguments.

help-engine
No default binding.
Syntax:

help-engine    file    key
or:

help-engine    file
This command invokes the MS Windows WinHelp application to display the specified help
file. If a key is specified, the WinHelp application is instructed to search and display the first
topic that matches that key. Otherwise, the first topic displayed is the help file's table of
content.
This command is unaffected by numeric arguments.
This command is available only under the MS Windows version of MicroEMACS.

hunt-backward
Default binding: A-R
Syntax:

n    hunt-backward
If n is a positive number, this command searches backwards for the nth occurrence of the
search string. That search string is the one that was used the last time a search-forward or
search-reverse command was issued. The interpretation of the search string is dependant on
whether MAGIC mode is set or not in the current buffer.
If a matching text is found in the buffer, the point is moved to the first character of that text.
Otherwise, the command fails. The command also fails if there is no search string.
If n is a negative number, this command acts as if the hunt-forward command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, or if the numeric argument is null, it is equivalent to n
= 1.

hunt-forward
Default binding: A-S
Syntax:

n    hunt-forward
If n is a positive number, this command searches forward for the nth occurrence of the
search string. That search string is the one that was used the last time a search-forward or
search-reverse command was issued. The interpretation of the search string is dependant on
whether MAGIC mode is set or not in the current buffer.
If a matching text is found in the buffer, the point is moved to the first character following
that text. Otherwise, the command fails. The command also fails if there is no search string.
If n is a negative number, this command acts as if the hunt-backward command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, or if the numeric argument is null, it is equivalent to n
= 1.

i-shell
Default binding: ^XC
This command spawns a command line shell.
Under MS Windows, this command launches a DOS box (a "shell box" under Windows NT).
The current working directory where the shell starts is set to the directory of the file in the
current window (or, if that window is not associated to a filename, to the last visited
directory).
This command is unaffected by numeric arguments.

incremental-search
Default binding: ^XS
This command is always interactive. It prompts the user for    a search string but, unlike what
happens with the search-forward command, the search happens and the display is updated
as each new search character is typed.
While searching towards the end of the buffer, each successive character leaves the point at
the end of the entire matched string. Typing a ^S causes the next occurrence of the string to
be searched for (where the next occurrence does not overlap the current occurrence). A ^R
changes the direction to a backwards search (as performed by a reverse-incremental-search
command), pressing the meta key terminates the search and ^G aborts the operation.
Pressing the Backspace key (or using ^H) backs up to the previous match of the string or, if
the starting point is reached, it deletes the last character from the search string.
The characters composing the search string are always interpreted literally. MAGIC mode has
no effect on incremental searches.
If the search fails, a beep sounds and the search stalls until the search string is edited back
into something that exists (or until the operation is aborted).
This command is unaffected by numeric arguments.

indent-region
Default binding: M-)
Syntax:

n    indent-region
This command inserts n tab characters in front of each line within the current region.
If the numeric argument n is not specified, one tab is inserted per line.
If CMODE is set in the current buffer, lines that begin by a pound sign "#" are not modified
(this is to keep C preprocessor directives flush to the left).
Note: the undent-region command can be used to undo the effect of this command.

insert-clip
Default binding: S-FNC (Shift + Insert)
Syntax:

n    insert-clip
This command is only available under MS Windows. It inserts the contents of the Windows
clipboard at the point.
If the numeric argument n is specified, n copies of the clipboard's contents are inserted.

insert-file
Default binding: ^X^I
Syntax:

insert-file    file
This command inserts the contents of the specified file into the current buffer, at the point.
After the insertion, the point remains at its original place if the $yankflag variable is TRUE.
Otherwise, the point is moved to the end of the inserted text.
This command is unaffected by numeric arguments.

insert-space
Default binding: ^C
Syntax:

n    insert-space
This command inserts n space characters at the point. After the insertion, the point remains
at its original place.
If the numeric argument n is not specified, a single space character is inserted.

insert-string
No default binding.
Syntax:

n    insert-string    string
This command inserts the specified string at the point. After the insertion, the point is
moved to the end of the inserted text.
If the numeric argument n is specified, n copies of the specified string are inserted (if n is
negative, it is taken as -n). If n is 0, nothing happens.

kill-paragraph
Default binding: M-^W
Syntax:

n    kill-paragraph
This command deletes the current paragraph, leaving a copy of it in the kill buffer.
If a positive numeric argument n is specified, n paragraphs, starting with the current one,
are deleted. If n is negative or null, nothing happens.

kill-region
Default binding: ^W
This command deletes the characters belonging to the current region, leaving a copy of the
deleted text in the kill buffer.
This command is unaffected by numeric arguments.

kill-to-end-of-line
Default binding: ^K
Syntax:

n    kill-to-end-of-line
This command's deletes text, leaving a copy of it in the kill buffer. The text affected depends
on the numeric arguments applied to the command:

If it is used without a numeric argument, kill-to-end-of-line truly behaves as its name
indicates, deleting the text from the point to the end of the current line, but preserving
the newline character, unless the point is located at the end of a line in which case the
command just deletes the newline character.
If the numeric argument is 0, the command deletes the text from the start of the current
line up to the point.
If the numeric argument n is positive, the command deletes text from the point forward
until n newlines have been removed.
If the numeric argument n is negative, the command deletes text from the point
backwards until n newlines have been removed and the beginning of a line has been
reached.

list-buffers
Default binding: ^X^B
Syntax:

list-buffers
or:

n    list-buffers
This command creates a list of all the buffer with, for each buffer, the file it was read from,
its size, and the active modes. The list is stored in a buffer named "[Buffers]" and is
displayed in either a popup buffer
or a regular window, depending on the value of the $popflag variable.
Within the list, an at sign "@" in column one shows that a file has already been read into a
buffer. A star "*" in column two means that the contents of the buffer have been modified
since the last time they were written to disk. A pound sign "#" in column three indicates the
file was to large to read into memory and was truncated.
The modes are shown in columns 5 through 14, using a single letter code for each active
mode:

Code Corresponding mode:
W WRAP
C CMODE
E EXACT
V VIEW
O OVER
M MAGIC
Y CRYPT
A ASAVE
R REP

Used without a numeric argument, list-buffers does not list invisible buffers. If a numeric
argument is given, this command lists all buffers, including those hidden buffers used by
MicroEMACS for internal data and macros storage.

list-screens
Default binding: A-B
This command creates a list of all the screens with, for each screen, the names of the buffers
visible in windows on that screen. The list is stored in a buffer named "[Screens]" and is
displayed in either a popup buffer
or a regular window, depending on the value of the $popflag variable.
This command is unaffected by numeric arguments.

macro-to-key
Default binding: ^X^K
Syntax:

macro-to-key    macro name    keystroke
This command associates a macro with a keystroke, thus creating a binding. A keystroke can
be bound only to one command or macro at a time, so when you rebind it, the previous
binding is forgotten. On the other hand, a macro can have more than one keystroke bound
to it.
This command cannot be used to specify the key binding for a command. That is performed
by the bind-to-key command.
The keystroke is specified using the keystroke syntax or the mouse syntax.
This command is unaffected by numeric arguments.

macro-to-menu
No default binding
Syntax:

macro-to-menu    macro name    menu name
This command is available only under Microsoft Windows. It creates a menu item associated
with the specified macro. The menu name is specified using the menu name syntax.
If the menu name designates a menu item that already exists, the command fails.
If the menu name specifies menus that do not exist yet, they are created as part of the
creation of the menu item.
This command cannot be used to bind a command to a menu. That is performed by the
bind-to-menu command.
This command is unaffected by numeric arguments.

maximize-screen
No default binding.
This command is available only under Microsoft Windows. It causes the current screen to be
enlarged so that it occupies all the available space on MicroEMACS's frame window. If the
current screen is already maximized at the time this command is invoked, nothing happens.
This command is unaffected by numeric arguments.
To restore the current screen to the size and position it had before invoking this command,
use the restore-screen command.

meta-prefix
Default binding: ^[(Escape key)
This is a dummy command meant to be used in combination with the bind-to-key command
in order to redefine the meta key.
For example, to define the F1 function key as being the meta key:

unbind-key    ^[
bind-to-key    meta-prefix    FN1

minimize-screen
No default binding.
This command is available only under Microsoft Windows. It causes the current screen to be
reduced to an icon. Unless there exists only one screen at the time this command is invoked
another screen becomes the current one. If the screen being minimized was maximized (see
maximize-screen), the screen becoming current is also maximized.
This command is unaffected by numeric arguments.
To restore the current screen to the size and position it had before invoking this command,
use the restore-screen command.

mouse-move-down
Default binding: MSa (Press on left mouse button)
This command is meant to be associated with a mouse action. It depends on the $xpos and
$ypos variables to contain the coordinates of the mouse pointer. It makes the screen and
window where the mouse was clicked the current ones. If the mouse pointer is within the
text part of a window (as opposed to the mode line) the point is placed at that position in the
text (or at the end of the line if the mouse pointer lies beyond the end of a line).
This command is unaffected by numeric arguments.
Note: Under the MS-Windows version of MicroEMACS, the selection of the current screen is

performed by the press on the left mouse button, regardless of the button's binding.
Mouse commands themselves cannot select the current screen.

See also: mouse-move-up

mouse-move-up
Default binding: MSb (Release of left mouse button)
This command is meant to be associated with a mouse action. It depends on the $xpos and
$ypos variables to contain the coordinates of the mouse pointer. The actions performed by
this command depend of where the previous mouse-move-down command was invoked:

If the mouse pointer was in the mode line part of a window and still is within that mode
line, or if it was in the text part of the window and still is, the text in the window is
scrolled as if it had been dragged by the mouse. Note that diagonal dragging is possible
only if the $diagflag variable is set to TRUE.
If the mouse pointer was on a mode line (except the bottom one), but has moved above
or under it, the mode line is moved up or down as if it had been dragged by the mouse,
thus resizing the affected windows.
Other cases produce no effect.

The command fails (putting FALSE in the $status variable) if the position of the mouse
pointer is the same as that for the last mouse-move-down command. This allows easy
detection of lack of mouse movement when the command is used in a macro.
This command is unaffected by numeric arguments.
Note: Under the MS-Windows version of MicroEMACS, the top left and bottom right corners

of a screen have no special meaning. Under other versions, mouse-move-up will
move the screen if the mouse-move-down was done in the top left corner and resize
the screen if mouse-move-down was done in the bottom right corner.

mouse-region-down and mouse-region-up
Default binding: MSe (Press on right mouse button)

and: MSf (Release of right mouse button)
These commands are meant to be associated with the two parts of a mouse click. Their
rather complex behavior is dependant on where the last mouse action took place and is best
described by the following topics:

Copying a Region
Killing a Region
Pasting Text

These commands are unaffected by numeric arguments.

mouse-resize-screen
No default binding
This command is meant to be associated with a mouse action. It depends on the $xpos and
$ypos variables to contain the coordinates of the mouse pointer. It modifies the size of the
current screen, bringing its lower right corner to where the mouse was clicked.
This command is unaffected by numeric arguments.

move-window-down
Default binding: ^X^N
Syntax:

n    move-window-down
This command moves the window's view into it's buffer down by n lines, causing the text
visible in the window to scroll up. If the point scrolls out of view, it is repositioned on the first
character of the line located at the center of the window.
If no numeric argument is specified, the text is scrolled by one line.

move-window-up
Default binding: ^X^P
Syntax:

n    move-window-up
This command moves the window's view into it's buffer up by n lines, causing the text visible
in the window to scroll down. If the point scrolls out of view, it is repositioned on the first
character of the line located at the center of the window.
If no numeric argument is specified, the text is scrolled by one line.

name-buffer
Default binding: M-^N
Syntax:

name-buffer    name
This command renames the current buffer, giving it the specified name. Note that when a
buffer is associated with a file, changing the buffer's name has no effect on the file's name.
If a buffer bearing the specified name already exists, another argument is required, and so
on until a unique name is supplied.
This command is unaffected by numeric arguments.

narrow-to-region
Default binding: ^X<
This command causes the text that does not belong to the current region to become
inaccessible until the widen-from-region command is invoked. The mode line displays the
symbol "<>" to indicate that the current window is associated with a narrowed buffer.
This command is unaffected by numeric arguments.

newline
Default binding: ^M (Return key)
Syntax:

n    newline
This command inserts n newline characters at the point. If the numeric arguments is absent,
it is taken as 1.
If n is equal to 1 and the buffer is in CMODE mode, C language indentation is performed:

If the new line is not empty (i.e. the point was not at the end of a line), no other action
takes place.
The new line is indented at the same level as the closest preceding non blank line
If the newline was inserted right after an opening brace "{", the new line is further
indented by one tab stop (as if the handle-tab command had been used).

If the buffer is in WRAP mode and the point is past the fill column, wrapping is performed on
the last word of the current line before the newline character is inserted.
The command fails if n is negative.

newline-and-indent
Default binding: ^J
Syntax:

n    newline-and-indent
This command inserts n newline characters at the point. If the numeric arguments n is
absent, it is taken as 1.
The new line is indented with enough tab and space characters to match the indentation of
the preceding line (the one where the point was when newline-and-indent was invoked).
The command fails if n is negative.

next-buffer
Default binding: ^XX
Syntax:

n    next-buffer
This command causes the current window to display the nth next buffer in the circular list of
buffers kept by MicroEMACS. If the numeric arguments n is absent, it is taken as 1.
The command fails if n is not positive.

next-line
Default binding: ^N
Syntax:

n    next-line
This command moves the point to the nth next line. If the numeric arguments n is absent, it
is taken as 1.
If n is negative, the point is moved to the nth previous line. If n is 0, nothing happens.
When line move commands (next-line or previous-line) are used in a row, the point is kept
at the same column it was at before the first of the line moves. If that column lies beyond
the end of the current line the point is temporarily brought back to the end of that line.
The command fails if the point is already at the end of the buffer (or the beginning if n is
negative).

next-page
Default bindings: ^V and FNV (Page Down key)
Syntax:

next-page
or:

n    next-page
This command has two different behaviors, depending on the presence or absence of a
numeric arguments:
If no numeric argument is specified, the window's view into it's buffer is paged down. If the
window contains more than 2 lines of text, the new view overlaps the previous one by two
lines: the last two lines of text in the initial view are displayed at the top of the window.
If a positive numeric argument n is specified, the window's view into it's buffer is moved
down by n lines, causing the text visible in the window to scroll up.
If a negative numeric argument n is specified, the window's view into it's buffer is moved up
by n lines, causing the text visible in the window to scroll down, as if the previous-page
command had been invoked, with a numeric argument of -n.
In all cases, even if a numeric argument of 0 is given, the point is moved to the first
character at the top of the window.

next-paragraph
Default binding: M-N
Syntax:

n    next-paragraph
If used without a numeric arguments, this command moves the point just past the last
character of the current paragraph or, if outside a paragraph, to the end of the next
paragraph.
If this command is used with a positive numeric argument n, the point is moved to the nth
next end of paragraph.
If n is negative, next-paragraph behaves as if the previous-paragraph command had been
invoked with an argument of -n.

next-window
Default binding: ^XO
Syntax:

n    next-window
If used without a numeric arguments, this command makes the next window immediately
below the current one the new current window. MicroEMACS updates the highlight of the
mode line to indicate the new current window, and places the blinking cursor at the point
within that window.
If this command is used with a positive numeric argument n, the nth window from the top of
the screen is made the current one (window numbering starts at 1).
If n is negative, the -nth window from the bottom of the screen is made the current one.
The command fails if n (or -n) is greater than the number of windows in the screen.

next-word
Default bindings: M-F and FN^F (Ctrl + Right arrow)
Syntax:

n    next-word
This command moves the point to the first character of the nth next word. If an attempt is
made to move past the buffer's end, the command fails but the point is still moved to the
end of the buffer.
If no numeric argument is specified, it is equivalent to n = 1.
If n is null, the command has no effect.
If n is negative, it causes the command to behave like previous-word (invoked with the
numeric argument -n).

nop
No default binding.
This command has no effect and is unaffected by numeric arguments. Its main purpose is to
be the command pointed to by the $bufhook, $cmdhook, $exbhook, $readhook and
$writehook variables.

open-line
Default binding: ^O
Syntax:

n    open-line
This command adds n newline characters after the point. If the numeric arguments is
absent, it is taken as 1.
The command fails if n is negative.

overwrite-string
No default binding.
Syntax:

overwrite-string    string
This command replaces the characters from the point on with the characters from the
specified string. If the overwriting would extend past the end of the line, the remaining
characters from the string are simply added at the end of the line (the newline character is
not overwritten).
This command is unaffected by numeric arguments.

pipe-command
Default binding: ^X@
Syntax:

pipe-command    program
This command uses the shell to execute a program, but rather than displaying what the
program prints, it attempts to place it in a buffer named "command" to let you edit it and/or
save it.
The program argument is a string. Note that if it contains spaces (as would be necessary to
specify command line options), the string should be quoted.
The VIEW mode is set on the "command" buffer at completion of this command.
Under Microsoft Windows, this command launches the program within a DOS box and
synchronizes with it. The current working directory where the program executes is set to the
directory of the file in the current window (or, if that window is not associated to a filename,
to the last visited directory).
This command is unaffected by numeric arguments.

pop-buffer
No default binding.
Syntax:

pop-buffer    buffer
or:

n    pop-buffer    buffer
This command causes the specified buffer to be displayed as a popup in the current screen.
If a numeric arguments is present, the buffer is marked as being invisible (hidden from the
next-buffer command).

previous-line
Default binding: ^P
Syntax:

n    previous-line
This command moves the point to the nth previous line. If the numeric arguments n is
absent, it is taken as 1.
If n is negative, the point is moved to the nth next line. If n is 0, nothing happens.
When line move commands (next-line or previous-line) are used in a row, the point is kept
at the same column it was at before the first of the line moves. If that column lies beyond
the end of the current line the point is temporarily brought back to the end of that line.
The command fails if the point is already at the beginning of the buffer (or the end if n is
negative)

previous-page
Default bindings: M-V and FNZ (Page Up key)
Syntax:

previous-page
or:

n    previous-page
This command has two different behaviors, depending on the presence or absence of a
numeric arguments:
If no numeric argument is specified, the window's view into it's buffer is paged up. If the
window contains more than 2 lines of text, the new view overlaps the previous one by two
lines: the top two lines of text in the initial view are displayed at the bottom of the window.
If a positive numeric argument n is specified, the window's view into it's buffer is moved up
by n lines, causing the text visible in the window to scroll down.
If a negative numeric argument n is specified, the window's view into it's buffer is moved
down by n lines, causing the text visible in the window to scroll up, as if the next-page
command had been invoked, with a numeric argument of -n.
In all cases, even if a numeric argument of 0 is given, the point is moved to the first
character at the top of the window.

previous-paragraph
Default binding: M-P
Syntax:

n    previous-paragraph
If used without a numeric arguments, this command moves the point to the first character of
the current paragraph or, if outside a paragraph, to the beginning of the previous paragraph.
If this command is used with a positive numeric argument n, the point is moved back to the
nth beginning of paragraph.
If n is negative, next-paragraph behaves as if the next-paragraph command had been
invoked with an argument of -n.

previous-window
Default binding: ^XP
Syntax:

n    previous-window
If used without a numeric arguments, this command makes the window immediately above
the current one the new current window. MicroEMACS updates the highlight of the mode line
to indicate the new current window, and places the blinking cursor at the point within that
window.
If this command is used with a positive numeric argument n, the nth window from the
bottom of the screen is made the current one (window numbering starts at 1).
If n is negative, the -nth window from the top of the screen is made the current one.
The command fails if n (or -n) is greater than the number of windows in the screen.

previous-word
Default bindings: M-B and FN^B (Ctrl + Left arrow)
Syntax:

n    previous-word
This command moves the point to the beginning character of the nth preceding word. If the
point was located within a word before invoking the command, that word counts as the first
one (thus, if n is 1, the point moves to the first character of the current word). If an attempt
is made to move beyond the buffer's beginning, the command fails but the point is still
moved to the beginning of the buffer.
If no numeric argument is specified, it is equivalent to n = 1.
If n is null, the command has no effect.
If n is negative, it causes the command to behave like next-word (invoked with the numeric
argument -n).

query-replace-string
Default binding: M-^R
Syntax:

n    query-replace-string    pattern    replacement
This command attempts to replace, from the point onward, each piece of text that matches
the pattern string by the replacement string. The pattern string is interpreted literally,
unless MAGIC mode is enabled in the current buffer.
Each time a match is found, you are queried and can answer by one of the following
keystrokes:

Y replaces the current matching text
N skips the current match
! replaces the current matching text and all following matches without anymore

queries.
U jumps back to the last performed replacement and undoes it
^G aborts the command, leaving the point at its current position
. (dot) aborts and moves the point back to where the command was originally issued
? lists the above options

If no numeric arguments is specified, all the matching pieces of text are processed until the
end of the buffer is reached. If a positive numeric argument is used, only the first n matches
are taken into account. If n is negative, the command fails.
When this command is invoked interactively, the keystroke used to signal the end of the
pattern or replacement string is specified by the $sterm variable (it is usually the Meta key).
Also, both strings may have default values (which are stored in the $search and $replace
variables). If you want to replace a string with nothing, and there is a non-empty default for
the replacement string, striking ^K will override that default and enter an empty string
instead.
Note: to perform global string replacements without interactive involvement, use the

replace-string command.

quick-exit
Default binding: M-Z
This command causes MicroEMACS to terminate, but only after having written all the
changed buffers into their respective files.
This command is unaffected by numeric arguments.
Note: to terminate MicroEMACS without saving the changed buffers, use the exit-emacs

command.

quote-character
Default binding: ^Q
Syntax:

n    quote
This command inserts literally the next character typed by the user at the point. Even the
newline character can be inserted this way, but this causes it to loose its line-splitting
meaning.
If a positive numeric arguments is specified, the quoted character is inserted n times. If n is
negative, the command fails. If n is null, nothing is inserted, but the typing of a character is
still required.

read-file
Default binding: ^X^R
Syntax:

read-file    file name
This command reads the named file into the current buffer, replacing the buffer's contents
with the text from the file. The file name associated to the buffer is not changed, so you
must make sure that replacing the text in the original file with that from the read one is what
you are intending when you use this command.
This command is unaffected by numeric arguments.

redraw-display
Default bindings: M-^L and M-!
Syntax:

n    redraw-display
If a non zero numeric argument is specified, this command scrolls the text in the current
window so that the current line is displayed as the nth line from the top of the window if n is
positive, or as the -nth line from the bottom of the window if n is negative.
If no numeric argument is specified, or if n is zero, the current line is displayed at the center
of the window.

remove-mark
Default binding: ^X    (Ctrl+X Spacebar)
Syntax:

n    remove-mark
This command eliminates the mark number n.
If no numeric argument is specified, it is equivalent to n = 0.
If markn does not exist, nothing happens.

rename-screen
No default binding.
Syntax:

rename-screen    new name
This command changes the name of the current screen to the specified new name. If the
new name is already in use, the command fails.
This command is unaffected by numeric arguments.

replace-string
Default binding: M-R
Syntax:

n    replace-string    pattern    replacement
This command replaces, from the point onward, each piece of text that matches the pattern
string by the replacement string. The pattern string is interpreted literally, unless MAGIC
mode is enabled in the current buffer.
If no numeric arguments is specified, all the matching pieces of text are processed until the
end of the buffer is reached. If a positive numeric argument is used, only the first n matches
are processed. If n is negative, the command fails.
When this command is used interactively, the keystroke used to signal the end of the
pattern or replacement string is specified by the $sterm variable (it is usually the Meta key).
Also, both strings may have default values (which are stored in the $search and $replace
variables). If you want to replace a string with nothing, and there is a non-empty default for
the replacement string, striking ^K will override that default and enter an empty string
instead.
Note: to have more interactive control over the replacement process, use the query-

replace-string command.

resize-window
Default binding: ^XW
Syntax:

n    resize-window
If n is a positive number, this command changes the height of the current window so that it
displays n lines of text. The window located immediately below the current window (or, if the
current window is at the bottom of the screen, the window located immediately above it)
shrinks accordingly. If that would cause the shrinking window to become too small to display
any text, the command fails.
If the current screen contains only one window, or if n is a negative number, the command
fails.
If no numeric arguments is specified, nothing happens.
To change the size of the current window by specifying a relative value, use the grow-
window or the shrink-window command.

restore-screen
No default binding.
This command is available only under Microsoft Windows. It causes the current screen to be
restored to the size and position it had before it was maximized (see maximize-screen) or
iconized.(see minimize-screen). If the current screen is neither maximized nor iconized this
command has no effect.
This command is unaffected by numeric arguments.

restore-window
No default binding.
This command is only useful when there are multiple windows displayed on the current
screen. It causes the window that was current the last time the save-window command was
invoked to become the current window again.
If the window that was current the last time save-window was invoked no longer exists, or
if the screen is not the same, this command fails.
This command is unaffected by numeric arguments.

reverse-incremental-search
Default binding: ^XR
This command is always interactive. It prompts the user for    a search string but, unlike what
happens with the search-reverse command, the search happens and the display is updated
as each new search character is typed.
While searching towards the beginning of the buffer, each successive character leaves the
point at the beginning of the matched string. Typing a ^R causes the next occurrence of the
string to be searched for (where the next occurrence does not overlap the current
occurrence). A ^S changes the direction to a forward search (as performed by an
incremental-search command), pressing the meta key terminates the search and ^G aborts
the operation. Pressing the Backspace key (or using ^H) returns to the previous match of
the string or, if the starting point is reached, it deletes the last character from the search
string.
The characters composing the search string are always interpreted literally. MAGIC mode has
no effect on incremental searches.
If the search fails, a beep sounds and the search stalls until the search string is edited back
into something that exists (or until the operation is aborted).
This command is unaffected by numeric arguments.

save-file
Default binding: ^X^S
This command writes the contents of the current buffer to disk, if the buffer's contents have
been changed since the last read or write operation or the last invocation of the unmark-
buffer command.
If the current buffer does not have a file name associated to it (for instance if the buffer has
never been subjected to a find-file, read-file, write-file or change-file-name command), the
save-file command fails.
If the current buffer is narrowed, a confirmation is requested before writing the text to the
file.
This command is unaffected by numeric arguments.

save-window
No default binding.
This command saves a reference to the current window, so that the next time the restore-
window command is invoked, that window becomes the current window again.
This command is unaffected by numeric arguments.

scroll-next-down
Default binding: M-^V
Syntax:

scroll-next-down
or:

n    scroll-next-down
This command causes the equivalent of a next-page command to be performed on the
window located just below the current one (or the top window if the current one is at the
bottom of the screen).
If there is only one window displayed in the current screen, this command is equivalent to
the next-page command.

scroll-next-up
Default binding:
Syntax:

scroll-next-up
or:

n    scroll-next-up
This command causes the equivalent of a previous-page command to be performed on the
window located just below the current one (or the top window if the current one is at the
bottom of the screen).
If there is only one window displayed in the current screen, this command is equivalent to
the previous-page command.

search-forward
Default binding: ^S
Syntax:

n    search-forward    search string
If n is a positive number, this command searches forward for the nth occurrence of the
search string. The interpretation of the search string is dependant on whether MAGIC mode
is set or not in the current buffer.
If a matching text is found in the buffer, the point is moved to the first character following
that text. Otherwise, the command fails.
If n is a negative number, this command acts as if the search-reverse command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, or if the numeric argument is null, it is equivalent to n
= 1.
Note: the search string becomes the value of the $search variable

search-reverse
Default binding: ^R
Syntax:

n    search-reverse    search string
If n is a positive number, this command searches backwards for the nth occurrence of the
search string. The interpretation of the search string is dependant on whether MAGIC mode
is set or not in the current buffer.
If a matching text is found in the buffer, the point is moved to the first character of that text.
Otherwise, the command fails.
If n is a negative number, this command acts as if the search-forward command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, or if the numeric argument is null, it is equivalent to n
= 1.
Note: the search string becomes the value of the $search variable

select-buffer
Default binding: ^XB
Syntax:

select-buffer    buffer
or:

n    select-buffer    buffer
This command displays the named buffer in the current window. If that buffer does not yet
exist, it is created.
If a numeric arguments is present, the buffer is marked as being invisible (hidden from the
next-buffer command).

set
Default binding: ^X^A
Syntax:

set    variable    value
or:

n    set    variable
This command sets the value of the specified variable to n if a numeric arguments is present
and to value otherwise.
The variable must be a user variable or an environmental variable . In the latter case, if the
environmental variable does not exist, the command fails.

set-encryption-key
Default binding: M-E
Syntax:

set-encryption-key    key
This command sets the current buffer's encryption key (used when the buffer is in CRYPT
mode). The specified key can be up to 128 characters long. A length of at least 5 characters
is recommended.
This command is unaffected by numeric arguments.

set-fill-column
Default binding: ^XF
Syntax:

n    set-fill-column
This command sets the fill column, (used by the fill-paragraph command) to n.
Note that this also sets the $fillcol variable to n.

set-mark
Default bindings: M-    (Ctrl+X Spacebar) and M-.
Syntax:

n    set-mark
This command sets the mark number n at the point.
If no numeric argument is specified, it is equivalent to n = 0.

shell-command
Default binding: ^X!
Syntax:

shell-command    program
or:

n    shell-command    program
This command uses the shell to execute the named program.
The program argument is a string. Note that if it contains spaces (as would be necessary to
specify command line options), the string should be quoted.
Under MS-Windows:

This command launches the program within a DOS box. The current working directory
where the program executes is set to the directory of the file in the current window
(or, if that window is not associated to a filename, to the last visited directory).
If no numeric argument is specified, MicroEMACS and the launched program run
independently. If a numeric argument is specified, MicroEMACS synchronizes with the
program.

Note: Under MS-Windows 3.x, you cannot use this command to launch a Windows
application. Use execute-program instead.

show-files
No default binding
Syntax:

show-files    starname
This command creates a list of all the files matching the specified starname. The starname
can contain a directory specification.
For instance, under MS-Windows, the command:

show-files    "C:\WINDOWS*.INI"
will create a list of all the files ending by ".INI" in the directory "C:\WINDOWS".

MicroEMACS appends a star "*" to the end of the specified starname, and appends a dot-star
".*" if the starname does not contain a dot character. Thus:

show-files    "C:\WINDOWS\A"
is equivalent to specifying:
show-files    "C:\WINDOWS\A*.*"

This command is unaffected by numeric arguments.
Note: The list is actually built in a special buffer named "File List". It is displayed as a

popup buffer or in a normal window, depending on the value of the $popflag variable.

shrink-window
Default binding: ^X^Z
Syntax:

n    shrink-window
If n is a positive number, this command decreases the height of the current window by n
lines. The window located immediately below the current window (or, if the current window
is at the bottom of the screen, the window located immediately above it) grows by n lines. If
the decrease of height would cause the current window to become too small to display any
text, the command fails.
If the current screen contains only one window, the command fails.
If n is a negative number, this command acts as if the grow-window command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, the height of the window is decreased by one line.
To change the size of the current window by specifying an absolute value, use the resize-
window command.

split-current-window
Default binding: ^X2
Syntax:

n    split-current-window
This command splits the current window into two windows. Both windows view the current
buffer at the current point.
If a numeric arguments is present and not equal to 1, the lower of the two windows becomes
current. If n = 1, the upper window becomes current.
If no numeric argument is present, the upper window is selected as current if the point was
in the upper half of the split window, otherwise, the lower window is selected.
The command fails if it would result in a window too small to display any line of text.
To rid the screen of extraneous windows, use the delete-window or the delete-other-windows
commands.

store-macro
No default binding
Syntax:

n    store-macro
      contents
          of
      macro
!endm

This command stores the commands and directives that follow it, up to the next !ENDM
directive, into a "numbered macro". That macro can be invoked later by the execute-macro-
n command.
A numeric arguments must be specified and it must be a number from 1 to 40. Otherwise,
the command fails.

store-procedure
No default binding
Syntax:

store-procedure    name
      contents
          of
      macro
!endm

or:
n    store-procedure
      contents
          of
      macro
!endm

If no numeric arguments is specified, this command stores the commands and directives
that follow it, up to the next !ENDM directive, into a "named macro" or "procedure". That
procedure can be invoked later by the run or execute-procedure command, with the
argument name.
If a numeric argument is specified, this command is equivalent to store-macro.

tile-screens
No default binding
Syntax:

n    tile-screens
This command is available only under Microsoft Windows. It causes all non-iconic screens to
be rearranged in a tiled scheme. If the current screen is maximized (see maximize-screen) at
the time this command is invoked, it is restored to its non-maximized size first.
If a numeric arguments is present and equals 1, the screens are tiled vertically (i.e. on top of
each other). Otherwise, the screens are tiled horizontally (i.e. side by side). However, if there
are too many screens to tile (more than 3), the argument is ignored and a mix of vertical
and horizontal tiling is used.

transpose-characters
Default binding: ^T
This command swaps the character that is before the point and the character that is at the
point, unless the point is at the end of a line, in which case the two last characters of the line
are swapped around.
This command fails if the point is located at the beginning of a line.
This command is unaffected by numeric arguments.

trim-region or trim-lines
Default binding: ^X^T
Syntax:

trim-region
or:

n    trim-lines
These two command are synonymous. They cause all the trailing space and tab characters
between the column position of the point and the end of the processed lines to be deleted.
If a numeric arguments is present, n lines, starting from the current one, are processed.
If no numeric argument is present, the lines processed are the ones that belong to the
current region.

unbind-key
Default binding: M-^K
Syntax:

unbind-key    keystroke
This command removes the association between a keystroke and a macro or a command,
thus destroying a binding.
The keystroke is specified using the keystroke syntax or the mouse syntax.
This command is unaffected by numeric arguments.

unbind-menu
No default binding
Syntax:

unbind-menu    menu name
This command is available only under Microsoft Windows. It destroys a menu item. The
menu name is specified using the menu name syntax.
If the menu name designates a menu item that does not exist, the command fails.
If the menu name specifies a menu (that itself contains menu items), all the menu hierarchy
under it is destroyed.
This command is unaffected by numeric arguments.

undent-region
Default binding: M-(
Syntax:

n    undent-region
This command deletes the first n tab characters in front of each line within the current
region.
If the numeric argument n is not specified, the first tab of each line is deleted.
Note: this command is often used to undo the effect of an indent-region command.

universal-argument
Default binding: ^U
This is a dummy command meant to be used in combination with the bind-to-key command
in order to redefine the universal argument key.
To define the F1 function key as being the universal argument key:

bind-to-key    universal-argument    FN1
Pressing the universal argument key causes a numeric argument of 4 to be generated. If
digits (and the minus sign) are entered following the universal argument, they are
interpreted to compose a numeric argument, much as if the meta key had been pressed.
Also, each further action on the universal argument key multiplies the existing numeric
argument by 4.

unmark-buffer
Default binding: M-~
This command clears the change flag of the current buffer. This causes MicroEMACS to
forget that the buffer's contents have changed since they were last made equivalent to the
contents of a disk file (by append-file, find-file, read-file, save-file, view-file or write-file).
This command is unaffected by numeric arguments.
Note: the change flag of the current buffer can also be accessed via the $cbflags variable.

update-screen
No default binding
This command immediately updates all elements of the MicroEMACS display during the
execution of a macro. It has no visible effect when used interactively.
This command is unaffected by numeric arguments.

view-file
Default binding:
Syntax:

find-file    file name
If the named file is already loaded somewhere in the editor, this command brings its buffer
up in the current window. Otherwise, the file is searched for on disk. If it is found, a new
buffer is created and the contents of the file are read into it. If the file does not exist, a new
empty buffer is created. In all cases, the buffer is brought up in the current window, in VIEW
mode.
This command is unaffected by numeric arguments.

widen-from-region
Default binding: ^X>
This command causes all the invisible text in the narrowed buffer becomes accessible and
visible again.
This command is unaffected by numeric arguments.

wrap-word
No default binding
This command replaces by a newline the first group of space or tab characters preceding the
point on the current line. The point is left where it was when the command was invoked.
If no space or tab character is found before the point, a new line is created after the current
one and the point is moved to it.
This command is unaffected by numeric arguments.
Note: the $wraphook variable (which points to the command or macro use to perform line

wrapping in WRAP mode) is set to wrap-word by default.

write-file
Default binding: ^X^W
Syntax:

write-file    file name
This command writes the contents of the current buffer to disk, using the specified file
name. This file name becomes the one associated with the buffer (indicated by the $cfname
variable).
This command is unaffected by numeric arguments.

write-message or print
No default binding
Syntax:

print    message
or:

write-message    message
This command causes the specified message to appear on the message line.
This command is unaffected by numeric arguments.

yank
Default binding: ^Y
Syntax:

n    yank
This command inserts the contents of the kill buffer at the point. If a numeric arguments is
present, the command is repeated n times.
If n is negative, the command fails.
The placement of the point after the execution of this command is determined by the value
of the $yankflag variable.

yank-pop
Default binding: M-Y
Syntax:

n    yank-pop
This command cycles the kill ring n times (as done by the cycle-ring command) and inserts
the contents of the kill buffer at the point. If the previous command was yank or yank-pop,
the text inserted by that command is deleted before the new text is inserted.
If no numeric argument is specified, it is equivalent to n = 1.
The placement of the point after the execution of this command is determined by the value
of the $yankflag variable.

