
GETTING STARTED

What is IRT?
The Interactive RayTrace Program (hereafter referred to as IRT) is a

software package specifically written to aid in the design, development and
analysis of complicated optical systems.    It is designed for use in the
infrared, visible, ultraviolet and x-ray bands of the spectrum.

Versions of IRT
IRT comes in a variety of versions, suiting a wide range of hardware needs.

The front end varies depending on the machine and operating system.    The
back end is nearly identical for all the versions. Series 1, 2 and 3 of IRT were
written for use on workstations with VMS and UNIX environments.    Series 4
is written for the DOS environment.    Series 5 is for Windows

Why Use IRT?
IRT is fast, versatile and easy to use.    From its inception IRT has been

designed to be used interactively.    The process of optical design and
evaluation is iterative; the user begins with an idea or plan, evaluates it,
implements indicated changes, and then re-evaluates.    Such a process,
requiring human intervention, is best handled in an interactive mode.

      IRT was originally written in IDL (Interactive Data Language), a
language marketed by Research Systems Inc. (RSI) of Denver, CO.    IDL is a
language specifically tailored to the needs of engineers and scientists.    It
has a versatile and easy-to-use plot package and a structure that handles
vectors and arrays as easily as scalars.     

However, IDL is not available on most machines, and is beyond the scope
of the needs of many designers who could use the capabilities of IRT.    To this
end Parsec Technology has rewritten IRT based in the C language so that it
can be easily transportable to the majority of machines.

How Does IRT Work?
IRT can be run in either an interactive mode whereby each command is

entered by the user and executed immediately, or by creating programs
(referred to as procedures) that are stored on disk and executed sequentially. 

      In IRT the user creates a trace procedure that is run as a program. Each
procedure is composed of a series of calls to special purpose subroutines
that have been incorporated into IRT.    The effect is one of having a
programming language for raytracing.    The user runs a raytrace and, at the
end of a run, the ray information is still available to the user in the
interactive mode.    IRT then provides a variety of routines that can be used
interactively for analyzing the results.    The procedure can be modified for
subsequent runs of the program, or predefined variables can be reset by
hand for changing a parameter on a subsequent run.

      IRT is a geometric optics code that takes all rays through the system

simultaneously, element by element.    Thus it is possible to investigate the
evolution of the light rays as they pass through a system.

How Does IRT Handle Complex Optical Systems?
The code's structure allows the user to develop special purpose routines

which can be accessed on call. Users can develop their own special purpose
libraries of routines.    Entire trace procedures may be turned into subroutine
calls of higher level routines, freeing the user to think only about the
important or new part of the routine.

GETTING STARTED
IRT for windows uses the Windows Multiple Document Interface, so it has

some of the look and feel of the Program Manager and File Manager
programs that come with Windows.    The top bar and menu bar belong to a
frame window.    The active windows are child windows of the frame window.   
IRT supports three varieties of child windows.    When brought up fresh, IRT
presents one of each kind, as above.    In the upper left is an Edit window.   
The upper right is a Graph window, and across the bottom is a Command
window.    At any time, the active window has its title bar highlighted; in this
case it is the Edit window that is active.

For a quick demonstration click on the command window to make it active.
A caret should appear after the irt> prompt.    Type example, and then hit the
enter key.    The screen should now look like this:

Notice that the Command window is now active, so it has the highlighted
title bar, and that a spot diagram has appeared in the Graph window.    Notice
also that the items on the menu bar at the top changed when the focus
moved from an Edit window to a command window.

You can create a new Graph window by choosing Window in the main
menu and then picking New Graphs. (Choose the Window menu item by
clicking on it with the mouse, or by using the alt-w key.)    A new Graph
window will appear in the center of your screen.    One way to arrange the
windows is to choose Window and then choose Tile. This will cause your
screen to appear as four similar size rectangles.

If you type example again in the command window, then another graph
will appear in the Graph 2 window, similar to that in Graph 1.    IRT sends plot
commands to the most recently selected graph window.

Numerous windows of each kind can be created and arranged to suit the
users needs.    They can be stretched and iconized in the usual manner.    In
the following sections we introduce each of the three kinds of windows and
the commands that accompany it.

The Command Window

The Command window is a text interface similar to that used in DOS, UNIX,
and VMS environments.    The user types an IRT command and then sends it
to the program by hitting the enter key.    When the program is ready for

more input it gives the user an irt> prompt.    IRT can be run completely from
the Command window, with text commands, however, a combination of text
commands and mouse selections is, on the whole, more convenient and
more powerful.

When a Command window is selected, three choices appear on the main
Menu:    File, Window and Help.    When File is selected, you are given a choice
of Save,    Save As, Print, and Exit.    Save saves the contents of the command
window to an ASCII text file with the default, or previously set file name.   
Save As does the same thing, but allows the user to change the name of the
file first, through a standard windows dialog box.    Print sends the text output
directly to the printer.    Exit is a route out of IRT: it terminates execution and
returns the user to Windows.    It first, however, checks to be sure that is
what you meant.

File

Save Saves contents of command window as text file
Save As Saves contents, prompts for new file name
Print Outputs contents on printer
Exit Exits IRT after verification

If you select the Window menu item, then you get the following choices of
ways to work with the window selection and arrangement:

Windows

New Command Create new command window
New Graphs Create new graphics window
New Edit Create new edit window
Cascade Arrange windows in cascade
Tile Arrange windows in tiles
Arrange Icons Arrange icons neatly
Close All Close all the windows
Graph 1 Activate Graph window #1
Command Activate Command window
Edit 1 Activate Edit window #1

Help

Help Tells user to use command window for help
About IRT Gives version and copyright information

The Edit Window

The edit window allows the user to bring the raytrace code into a screen
editor and to run and save modifications from the window.   

File

Save Saves contents of edit window as text file
Save As Saves contents, prompts for new file name
Compile Save contents, then compile, but do not run
Run Save, compile, and run the trace file
Print Outputs contents on printer
Exit Exits IRT after verification

Edit

Undo Undo last edit command
Cut Remove selected text to clipboard
Copy Copy selected text to clipboard
Paste Insert text from clipboard
Delete Delete selected text
Select All Select all the text

Search

Find Find text written in popup box
Find Next Find the next instance of the text string
Replace Find a string and replace it

The next menu item is Run.    This is the same as Run under File.    It saves,
compiles, and runs the edited version of the code, overwriting the old version
on disk.    This is in the main menu because it is used heavily.

Windows

New Command Create new command window
New Graphs Create new graphics window
New Edit Create new edit window
Cascade Arrange windows in cascade
Tile Arrange windows in tiles
Arrange Icons Arrange icons neatly
Close All Close all the windows
Graph 1 Activate Graph window #1
Command Activate Command window
Edit 1 Activate Edit window #1

Help

Help Tells user to use command window for help
About IRT Gives version and copyright information

The Graph Window

The graph window is where the graphics output is displayed.    It is not
directly interactive, but has its own menu to support graphics interaction.   
Similarly, graphics can be controlled from the command window, or from .irt
files.

File

Save Saves graph as device independent bitmap into file
irt.bmp

Save As Saves graph as device independent bitmap, queries
file name

Print Outputs graph on printer
Exit Exits IRT after verification

Display

SPOT Spot plot. Same as typing spot in command window
XPROF X profile plot.    Same as typing xprof in command

window.
MTF Modulation transfer function.    Same as MTF

command.
VIEW View elements.    Same as VIEW command.
RAYS Show ray paths.    Same as RAYS command.

Colors

Foreground Set plot foreground color
Background Set plot background color

Windows

New Command Create new command window
New Graphs Create new graphics window
New Edit Create new edit window
Cascade Arrange windows in cascade
Tile Arrange windows in tiles
Arrange Icons Arrange icons neatly
Close All Close all the windows

Graph 1 Activate Graph window #1
Command Activate Command window
Edit 1 Activate Edit window #1

Help

Help Tells user to use command window for help
About IRT Gives version and copyright information

STRUCTURE:

Running IRT requires four steps:               

1. Run IRT.EXE program.             
2. Create a trace procedure using the editor.           
3. Run the trace procedure.             
4. Analyze and output results.

Starting IRT

IRT carries its own initial parameters and defaults as described throughout
this manual, but the user can set personal defaults automatically. When IRT
is invoked it automatically looks for a file called DEFAULTS.IRT and runs it as
a raytrace.    DEFAULTS.IRT contains statements defining parameters and, in
fact, can be an entire raytrace.    IRT searches for this file first in the local
directory, and then in the directory called \IRT.

Procedures

The next commands from the user set any variables and options, and
initiate the TRACE procedure which has been written at an earlier time.    If
the user types the command trace, IRT will search for a file called TRACE.IRT
on disk, and execute the commands it finds therein.    The structure of the
TRACE procedure is discussed extensively in Chapter 2.    Upon completion of
execution the computer returns the IRT> prompt    and waits for further
instructions.    Since the raytracing has presumably been completed, the user
will then display and analyze the results using IRT commands.

If corrections are desired (and they usually are) then the user edits the
TRACE.IRT file as he/she would any source program.    This can be done
without leaving IRT by using the Edit window.    Procedures should, of course,
have names other than TRACE to avoid confusion.

Very sophisticated tracing can be performed. Individual pieces of a trace
procedure can be broken off and turned into subroutines.    Thus a fully
developed part of an optical system can be relegated to a single line of main
program and be easily handled.    Hierarchies of code can be developed by
the user in this way.

Online Help

IRT provides some basic online help to aid in ease of interactive sessions.   
The help is rudimentary and not meant to be a substitute for this manual.   
To access help, type help in response to the IRT> prompt.    For help in a
specific area, type help,topic    (e.g. help,conic).

     
Common Variables

Within IRT are a large number of permanent subroutines, each with a
special function.    They all must access the ray information, so the rays are
kept in common storage in RAM.    The values of the rays can be accessed by
the user using either the    print or    pv command.

x,y,z are each one dimensional vectors of double precision numbers.    The
first element of each vector gives the current x, y or z coordinate of the first
ray. The second element of each give information about the second ray, and
so on.    The qx,qy,qz vectors contain the three direction cosines for each ray;
combined they form the unit vector for direction.    lam contains the
wavelength of each ray.    nind contains the index of refraction for the ray in
the current material.    ux, uy, and uz are the direction cosines of the unit
normal vector for the last surface at the position where the ray struck.   
status is a long integer status flag for each ray.    It is 1 if the ray is active, 0 if
the ray has been vignetted.

      IRT also stores the information detailing the way the rays were prior to
the most recent surface. They serve a number of useful purposes including
checking that the rays are traveling forward.

    Other common variables exist that carry basic information such as the
relation of the current coordinate system to the initial system, and system
variables such as the flags that turn on and off the various options.

CREATING A TRACE PROCEDURE

Structure Of A Trace Procedure
The series of commands defining the system to be traced is stored in a

text file    on disk.    The name of the procedure is arbitrary, but it must have a
.irt extension. We shall assume it is called TRACE.IRT.    The tracing is started
by the command    TRACE.    If trace.irt is anew file (i.e. one that has not been
used since IRT was initiated) then the file will be read into RAM , stored, and
executed.    Subsequent calls will use this version stored in memory.

The TRACE procedure will always have the same sequence of types of
commands.

OBJECTS One or more object routines which define the starting    positions
and

wavelengths of the rays to be traced.    The OBJECT call simulates

the light
source.

PUPIL A single routine which defines the entrance pupil of the system
to be.

The PUPIL call moves the rays to their starting positions and
defines their

directions.
ELEMENTS A series of calls to subroutines defining the optical system.
ANALYSIS Routines which are used for analyzing the results of the trace.   
These are often called by the user in an interactive mode.
DISPLAY Routines for graphic representation of the results of trace.   
These are usually called by the user in an interactive mode.

In the remainder of this chapter we take the user through the steps which
define a simple raytrace, showing by way of example how a TRACE is created
and used. The example will be to raytrace a simple parabolic mirror.

CREATING RAYS

OBJECT and PUPIL    Before rays can be traced through an optical    system
they must be defined as to position, direction, wavelength etc.      In IRT this is
usually accomplished by a pair of procedure calls.    The    first call is to define
an OBJECT, the actual source of the rays.    The position, shape and
wavelength of the origin of the rays are defined in this call.    Multiple objects
can be called to superimpose the ray sources.    The IRT supported OBJECT
routines are all called by names that start with the three letters OBJ.

        The OBJECT(s) must be followed by a single call to an entrance PUPIL
routine.    These routines are all called by names that start with PUP. They
define the entrance aperture to the optical system.    By defining the
positions where the rays strike the entrance pupil, and comparing to the
positions where the rays originated in the object, the directions of the rays
are defined.    After the pupil call the vectors in common are fully defined and
the program is ready to proceed to the optical elements.

The choices for OBJECT routines are:
OBJCA circular shape, area weighted array
OBJCR annular shape, uniform random distribution
OBJFAN cross or line object
OBJGR normally distributed random distribution
OBJP single point
OBJSA rectangular shape, area weighted array
OBJSR rectangular shape, uniform random distribution

We will choose OBJP as we wish to investigate the aberrations introduced
by a mirror. OBJP simulates an ideal point source of light.    Its calling
parameters are:

XC x position of object
YC y position of object
OBD z position of object (object distance)
NR number of rays to be generated at each wavelength
LAM wavelength of rays (floating point scalar or vector)

For XC we start by choosing on-axis rays.    Since the pupil will be centered
at the origin and lie in the Z=0 plane, we choose XC=0. and YC=0.    To
investigate parallel light from infinity we would like OBD to be infinite, but as
computers have a difficult time with the concept of infinity we instead
choose a very large number.    OBD=1.E12 is a good choice, being far enough
away to effectively be infinity, but not so large that the computer is likely to
overflow or underflow.    NR is a matter of choice. The larger the number, the
slower the system will run.    A typical trace    contains about 100 rays.    Let
NR be 100.    Let LAM be 5000.

The first line of the procedure will thus be:

objp,0.,0.,1.e12,100,5000.

Type this line into the edit window.    After the object we must define a
pupil.    The choices of pupil type are:

PUPCA annular shape, weighted array of points
PUPCR annular shape, uniform random distribution of points
PUPFAN cross or line pupil
PUPP single point
PUPSA rectangular shape, array of points
PUPSR rectangular shape, uniform random distribution

For our purposes any of the above (except PUPP) will do.    To simulate
random distribution of light on a circular mirror use PUPCR.    Its calling
parameters are RI and RO, which are the inner and outer radii of the annulus.
For a full circle RI is 0.    Let us investigate a 100mm diameter mirror.    Then
RO will be 50.    The pupil will lie in the z=0 plane centered on the origin. Add
an end statement to mark the last line of the program.

Our routine now looks like:

objp,0.,0.,1.e12,100,5000.
pupcr,0.,50.

end

This is now a fully executable trace procedure.

TRACE ELEMENTS

Once the rays have been defined we proceed into the main body of the
trace.    The main body typically consists of two types of commands;    optical 
element procedures that define the surfaces, and coordinate    procedures
that define the spatial relationships of the optical surfaces.

Coordinate Routines
The relative position and orientation of    the optical elements are

controlled primarily through the use of two IRT procedures: DISP and ROT.   
DISP moves the position of the origin from its current position to another,
thereby changing the position values of the rays.    ROT rotates the
coordinate system about the origin, thereby modifying the direction and
position of the rays.    With this combination of routines it is easy to move
from the coordinate system of one element to that of another.

For our example it is now necessary to decide where the mirror rests with
respect to the entrance pupil.    Let us assume that it is 500mm behind the
pupil.    Since the rays were generated at Z=1.E12 and traveled to Z=0 at   
the pupil, they are traveling in the negative z direction.    Thus the mirror
should be placed at Z=-500.    Because mirrors are defined to have their
vertices at the origin, we must move the origin to the place which is
currently [0.,0.,-500.].    This is accomplished by using DISP.    The call is
DISP,0.,0.,-500.    After this call is executed all the rays will still be at the
pupil, but their Z values will all be 500.

Optical Elements
These are the routines that actually simulate the physical elements of a

system.    They include mirrors, gratings and lenses.    Each class of element
is given its own procedure.    Most commercially available element designs
are included in the basic IRT procedures.

All routines have certain assumptions in common.    They all have the Z-
axis as their axis of symmetry, and (where appropriate) they have their
vertex tangent to the X-Y (Z=0) plane at the origin.    One-dimensional optics
have curvature as a function of x only.    Gratings have grooves that project
onto the X-Y plane as straight lines parallel to the Y-axis.

Our example requires a parabolic mirror.    Conic sections of rotation are
supported by the routine CONIC.    It has two parameters: e and    rad.    e is
the eccentricity, which is 1 for a parabola.    rad is the radius of curvature at
the vertex.    If we wish to investigate an f/10 parabola then rad should be 20
times the diameter of the mirror.    Thus we wish rad to be 2000.    We call
MIRROR afterwards to communicate that the element is a mirror (as opposed
to a lens, grating, etc.).

Our routine now looks like:

objp,0.,0.,1.e12,100,5000.
pupcr,0.,50.
disp,0.,0.,-500.

conic,1.,2000.
mirror
end

After CONIC the rays will have traveled to their intersection with the
surface of the parabola.    They are left on the surface with their directions
unchanged.    The call to MIRROR leaves the positions unchanged but
changes the directions to those they will be going after reflection. Since
optical element routines leave the rays at the optical surface we must move
the rays to the focal plane before we are finished. This can be accomplished
by moving the origin to the focal plane and then calling FLAT.    The
coordinate change is achieved by the call DISP,0.,0.,1000.

Thus our final, ready to run routine, looks like:

objp,0.,0.,1.e12,100,5000.
pupcr,0.,50.
disp,0.,0.,-500.
conic,1.,2000.
mirror
disp,0.,0.,1000.
flat
end

We now leave the editor.    Use the save as feature under File to save this
text in a file called trace.irt. We are ready to run the program.    This can be
simply performed by clicking RUN in the menu, or by switching focus to the
command window and typing trace.

In the command window type the following.

IRT>pri=1
IRT>trace
Point Object of 100 rays      at x = 0.000000e+00, y = 0.000000e+00, z =
1.000000e+12      wavelength = 5.000000e+03
Circular Random Entrance Pupil        radii, inner=0 , outer= 50       
at x=0.000000e+00 , y=0.000000e+00
Origin Moved to 0.000000e+00, 0.000000e+00, -5.000000e+02
Surface Number 1
Conic Section of Rotation         
eccentricity = 1.000000          rad                    = 2000.000000          sol                    =
0
Mirrored Surface
Origin Moved to 0.000000e+00, 0.000000e+00, 1.000000e+03
Surface Number 2
Flat Surface in the z=0 Plane
IRT>

In this example the commands that follow the IRT> prompt are typed by
the user.      At the end of execution the user is returned to the interactive
environment, and the information about the rays is available for inspection
directly or for continued tracing. For example, typing pv will result in a screen
listing of the status of ray 0.

DISPLAY ROUTINES

After the execution of TRACE is complete, the user typically wishes to view
the results of the computation.    With a graphics terminal a number of
different IRT routines can be used to display the results.    This is
accomplished by typing the command interactively, but it is equally valid for
including a display procedure in the TRACE routine.

The most typical thing to do after the IRT> prompt at the end of a trace is
to respond: IRT>spot This command will generate a diagram similar to that
in the next figure. As parabolas focus on-axis rays perfectly, what one is
seeing in the figure is machine error.

 

ANALYSIS ROUTINES

Analysis of the results in some quantitative way is equally important to the
process of raytracing.    Thus IRT supports some basic analytic tools. For
example, the command print,rms(0) will yield the root mean square size of
the photon distribution.

CHANGE AND TRY AGAIN

After running TRACE and looking at the result, one typically answers the

first question and generates another.    The result is that the code should be
modified and run again.

Continuing with our example let us imagine that we now wish to examine
the off-axis performance of the parabola.    Enter the edit window and change
the first line so that it reads:

objp,ox,0.,1.e12,100,5000.

To run this new version of TRACE one must first define the variable ox
which now appears in the first line.    ox represents the distance off-axis of
the source.    Thus to investigate the parabola one arcminute off-axis do the
following in the command window:

IRT>ox=3.e8
IRT>trace
IRT>spot

This results in something that looks like:

                                     
      To check it 2 arcminutes off-axis it is only necessary to type:

IRT>ox=6.e8
IRT>trace

This completes our simple example.

As another simple example suppose that we now wish to establish the
position of the best focus for the same parabola if the source of light is a
point ten meters from the mirror.    Enter the edit window and type the
following lines:

pri=1
objp,0.,0.,1.e4,100,5000.
pupcr,0.,50.
conic,1.,2000.
mirror
focus,0
end

Use the save-as command to save this procedure as trace2.irt.

IRT>trace2
Point Object of 100 rays      at x = 0.000000e+00, y = 0.000000e+00, z =
1.000000e+04
  wavelength = 5.000000e+03
Circular Random Entrance Pupil        radii, inner=0 , outer= 50        at
x=0.000000e+00 , y=0.000000e+00
Origin Moved to 0.000000e+00, 0.000000e+00, -5.000000e+02
Surface Number 1
Conic Section of Rotation          eccentricity = 1.000000          rad =
2000.000000          sol = 0
Mirrored Surface
Focus Found     
Origin Moved to -2.083626e-04, -9.164620e-05, 1.105255e+03
IRT>

The goal has been accomplished.    The focus lies 1105.2mm above the
vertex of the parabola. To leave IRT respond to the prompt with exit, or
double click on the button in the extreme upper left.

