
     
Parsec Command Language (PCL)

Main Table of Contents

Syntax
Functions and Procedures
Plotting

Plotting
Axes Setting Axes
Labels Titles and axis titles
Colors Controlling color in plots
Plotters Plot files

AXES

_xaxis is a user defined vector of type integer or double.    It sets the scale for the x-axis of
the plot, and the values at which a labeled tick is to appear on the x axis of the plot box.   
The first value of the vector is at the left edge, the last value is at the right edge, and the
first is allowed to be larger than the last if the direction of increase is desired reversed.    The
rest of the elements can appear in any order, as long as they lie in value between the first
and the last.    If they fall outside the range, then the ticks will fall outside the rectangle, and
the plot will appear strange.    To allow PCL to set the ticks automatically (which is the
default), set _xaxis to a vector of length 1, or a scalar.    This is typically accomplished with
the command _xaxis=0.

_yaxis is similar to _xaxis, but controls the ticks and the scale on the y - axis of the graph.

Labeling the Plot

Every plot needs labeling to make it comprehensible.    PCL provides for a main title, a legend
on each axis, and an automatic date and signature in the corner.
_ti is a character string variable that contains the main title to the graph.    It appears
centered above the top line of the plot box. Its default is the null string (no characters), so
that there is no title unless explicitly set by the user.    For example, to title the plot "Intensity
vs. Wavelength'', use the command
_ti= 'Intensity vs. Wavelength'

_xt and _yt are similar to _ti except that they provide the axis labeling for the x and y axes
respectively.
If the user is generating many plots over a period of time, it is convenient to have a record
on the graph with the users name (or initials) and the date. _autodate and _autoname
provide that.    _autodate is an integer flag.    If it is set to 1 (the default), then the date will
appear in the lower corner of the graph. If it is set to 0, the date will be suppressed.         
_autoname is a string variable with a null default.    If the user inserts his/her name (eg   
_autoname='J. Doe'), then the name will appear with the date in the lower corner.    These
two variables are typically set in the defaults.irt file.

Colors
PCL will support color plots to the screen.    The usual approach to setting the colors is
through the two system parameters _fg and _bg. Each is set to an integer which represents
a color on the screen. _fg controls the foreground color (the colors of the lines), while _bg
controls the background color.

The basic
colors
provided are
those as
defined for an
EGA or VGA
screen. color

number name

black 0 black
blue 1 blue
green 2 green
cyan 3 cyan
red 4 red
magenta 5 magenta
brown 6 brown
light gray 7 lightgray
dark gray 8 darkgray
light blue 9 lightblue
light green 10 lightgreen
light cyan 11 lightcyan
light red 12 lightred
light 13 lightmagenta
yellow 14 yellow
white 15 white

For example,    _fg=4      before a call to plot will cause the box and the lines to be plotted in
red instead of the default white.    PCL defines sixteen parameters with names from the third
column to serve as memory    aids.    For example, there is a parameter called        brown    ,
with an integer value of 6, so a command          _fg=brown      will cause the plot lines and
labels to be brown. BUT, watch out!    Do not inadvertently redefine these variables if you
intend to use them.     
The other way to plot in color is to use the third calling parameter of the PLOT type routines
(PLOT, OPLOT, LINE, POINT).    The third calling parameter is an integer, either scalar or
vector.    If scalar, it plots the points in the color associated with the value of the integer,
while the box and background are set by          _fg     and          _bg     as usual.    If it is a vector,
then the colors will be matched to the ordered pairs one by one, so that multi-colored plots
may be easily made.    If the color vector is shorter than x and y, then the extra x and y
points will be plotted in the color of the last element of the color array.    Double precision
color inputs are OK, they are simply truncated and used as integers.

;plots sixteen radians of the sine function color coded.
x=indices(159)/10.
y=sin(x)
c=fix(x)
plot,x,y,c
end

Plotters
The Edit and command windows can output their text to any printer through the windows
interface by use of the menu command print. The output of graphics is a little more
complicated.    The simplest output is the use of the print command when the graphics
window is selected.    This will perform a bitmap output to the printer.    Some printers are not
well configured to handle the bitmap and may fail.    In such a case, the first thing to try is to
use the save menu feature, which will store the graphic as a device independent bitmap.   
This can be read into more sophisticated graphics programs, such as Paintbrush, which may
then provide the needed interface to your printer.   
The other drawback of printing the bitmaps is the relatively coarse resolution.    IRT provides
a mechanism for creating disk files of graphics commands for HP and PostScript printers.   
These disk files will provide full laser printer quality output, but will not be identical to the
bitmap seen on the screen.

The printers supported are:     

plotter name variable name

Bitmaps 'pc' pc
Post Script 'ps' ps                 
Hewlett Packard LaserJet 'hp' hp         

The input to the plotter command takes a character string variable. PCL initializes
parameters by name, so that    printer,'ps' and printer,ps will generate the same result unless
the user inadvertently redefines the parameter        ps    .
PCL will save the graphics commands for ps and hp in a file of the name stored in the print
file parameter    _pf     . A call from the operating system will then cause the graph to be
printed.       

plotter,ps
_pf='plot.dat'
_ti='Sine Wave'
x=indices(159)/10.
y=sin(x)
plot,x,y
closeplot
plotter,pc
end

The graphics commands are now to be found on disk in a file called plot.dat.    Iconize IRT
and output the file to the printer in normal fashion.    A call to CLOSEGRAPH is necessary to
close the file, thereby indicating that no overplot commands will be forthcoming.

Syntax
Command Files
Directories
Parameters
Statement Types
Operators

Command Files
A series of commands can be stored in a disk file and accessed from the keyboard. The
commands are written in the file exactly as they would be entered from the keyboard.    The
command file is called by a name with a .irt extension (eg example.irt).    The commands are
executed when the user types the name of the file (without extension) and hits return.   
Typing example will cause PCL to find the file called example.irt and execute the commands
therein. It will continue to execute the commands sequentially until it finds a line with the
command end, at which point it will return to the user and await the next command.    A
command file can call another command file, and upon the execution of the second file, PCL
returns to the first and continues execution of the first.   
The command file is read into memory and compiled for use.    If changes are made without
leaving PCL, it must be recompiled with the COMPILE or RUN command.    If a line of the
command file is too long it can be broken into multiple lines.    In a manner similar to UNIX,
any line which terminates in a backslash will append the next line.

Directories
When PCL searches for a command or data file it first searches the current directory.    If it
fails to find the file there, it then searches each of three user identified directories.    They are
called _di, _d2, and _d3. They are set as a string assignment eg: _di= '\irt\test\'    This would
make PCL search for a file called test.dat under the name \irt\test\test.dat.

Parameters
Information is stored by PCL in the form of parameters with names chosen by the user.   
Each parameter is one of five kinds.    It can be integer, double precision, string, file pointer,
or empty.
Empty parameters are those used or called without ever being defined. For example, if one
types    print,param, where    param has never been defined, then the result will be ****.
Integer parameters are long integer variables and follow the rules of integer arithmetic.   
Double precision parameters follow floating point arithmetic rules.    Single precision is not
supported by PCL, just as C emphasizes the use of double precision. String parameters
contain one byte character variables, and are used to carry letters and numbers in ascii
format.    File pointers are used to identify input and output streams.
Each parameter has a dimension and length.    Undefined variables have dimension and
length of zero.    Scalars have dimension zero and length of 1. Vectors have dimension of one
and length equal to the number of elements. PCL also supports two dimensional arrays,
which have dimension two and length equal to the total number of elements in the array.
Examples:

create integer scalar called a a=1
set value to 1

create double precision scalar called b b=1.
set value to 1

create integer vector c c=[1,2,3]
set elements to 1,2,3

create double precision vector d d=[0.,-24.,1.e4]
set elements to 0.,-24.,

create string vector t t='String'
store the word String

create two dimensional double array x x=fltarr(10,10)
fill 100 elements with zeroes

Statement Types

As shown by example in the previous section, an assignment statement stores a value or
values in a parameter.    If the parameter does not yet exist, it is created and its type set
implicitly by the kind of value to be stored. If it already exists, then it is modified to store the
new value.    This includes a change of parameter type, dimension and length if appropriate.

Assignment Statement
An Assignment statement is identified by the use of an equal sign, as is standard in C and
many other languages.    PCL scans the command line for the equal sign.    If found, then the
command is treated as an assignment, otherwise it is assumed to be a procedure.

Procedure Statement
A procedure is similar to a subroutine.    It is a set of commands defined either by PCL, or by
the user that performs some task, but does not return a value for use in an assignment
statement.    For example, the command    print,a is a procedure.    It performs the task of
printing the values stored in a parameter to the screen.   

Functions
A function is a set of commands defined by PCL that returns a parameter for use or storage
in an assignment statement.    This can be a complicated set of instructions, or can be quite
simple. y = sin(x)    is an assignment statement.    sin(x) is a function,    the returned value
of which will be stored in the parameter y.    print,y    is a procedure statement.    It will print
the values stored in y by the previous command.

Label Statement
A label statement is a position marker in the procedure file.    It consists of a line with a
single name, ending with a colon.    Each label should be different from the others in the file.

GOTO Statement
A goto will transfer control to the position in the file identified by the label. Hence goto,lab1
will cause pcl to look for a label statement    lab1: and resume execution with the statement
that follows lab1:

IF Statement
An IF statement provides a logical branch in the procedure.    The word 'if' is followed by an
expression in parentheses.    If the value of the expression is greater than zero, the rest of
the line after the parentheses is executed.    If the value is zero or negative, then the line is
not executed.    A typical use would be in a line like:    if(i == 7) goto,label1    which would
cause control to be moved to the label statement called label1.

Comment Statement
Comments can be inserted in the procedure file.    Any statement that begins with a
semicolon will be ignored during the execution of pcl.    e.g.:
;This is a comment will be ignored.

Pause and Continue Statements
Inserting the statement pause into the command file will cause execution to halt and give
the interactive prompt irt> .    The user can then give commands directly.    When the user
types continue, then execution will continue, and when the command file is completed, the
usual irt>    prompt is seen.    Often in debugging a loop, there may be many pauses.    Just
typing the letter c will suffice instead of the whole word continue.

End Statement
The word end marks the end of the command file.    All text after this will be ignored.    When
an end statement is encountered, control is returned to the level from which it was called.

Compile Statement
Compile, filename will cause PCL to find filename.pcl and compile it, replacing an old version
if necessary.    It does not executes the new command file.    Compile is used when the file is
changed without leaving the PCL environment.

Run Statement
Run, filename will cause PCL to find filename.pcl and compile it, replacing an old version if
necessary.    It then executes the new command file. RUN is used when the file is changed
without leaving the PCL environment.

Exit and Quit Statements
exit (or equivalently quit), wherever encountered will cause PCL to halt and a return to the
operating system.

OPERATORS

Like most languages, PCL allows the user to perform mathematical operations on the
parameters.

Operator Effect
+ add
- subtract
* multiply
/ divide
[... , ...] concatenate
== logical equal
> logical greater than
< logical less than
&& logical and
|| logical or
>= logical greater than or equal to
<= logical less than or equal to

Addition, subtraction, multiplication and division follow the usual rules of computer
arithmetic.    If the parameters involved are both integer, then integer arithmetic is used.    If
both are double precision, then double precision arithmetic is used.    If one is integer and
the other double precision, the contents of the integer parameter are converted to double
precision before the operation.
The logical operators check to see if the statement is true, and return a 1 if true, or 0 if false.
If both of the operands are integer, then the returned value is integer. If they are both
double, or one is double and one integer, then the returned value is double.
Concatenate is used to append one vector or scalar to the end of another to form a new,
longer vector.    For example x = [2.,3.] will create a double vector of length 2 and store it in
x.    Similarly x = [x, 4.] will lengthen x to three elements.    If one element is integer and one
double, then the result will be double.
The only two operators that work on string variables are addition and concatenation.    Both
have the same effect, of appending one string to the end of another.    For example:   

s = 'First'
t = 'Second'
v = s + t

Will place the string 'FirstSecond' into v.   

w = [v, ' third']

will put 'FirstSecond third' into w.   

One of the chief advantages of PCL is its method of operating on vectors and arrays.    Each
element of the vector is operated upon without having to create a do loop to explicitly work
through the array.    For example, x = [1, 2, 3] followed by print, 2*x    will cause 2 4 6    to be
printed on the screen.
When a scalar operates on a vector, then each element operates with the scalar.    When two
vectors are operating, then the operation goes on an element by element basis.    For
example [1, 2, 3] + [4, 5, 6] will yield [5, 7, 9].    If the vectors are not of the same length,
then the longer will be truncated to the length of the shorter.
When a vector is used as the calling parameter of a function, then the function returns a
vector of the same length as the calling parameter.    Each element is operated upon by the
function individually.    This is a very powerful syntax for user manipulation of information.

Functions and Procedures
ABS
ACOS
ASIN
ATAN
ATAN2
AVERAGE
CLOSEPLOT
CONTINUE
COS
DATE
END
ERASE
EXIT
EXP
FABS
FCLOSE
FIX
FLOAT
FLTARR
FOPEN
FPRINTF
HISTOGRAM
INDICES
INTARR
LOG
LOG10
MAX
MIN
LENGTH
OPLOT
PAUSE
PLOT
POW
PRINT
PRINTF
QUIT
READD
READI
READS
SIGMA
SIN
SQRT
STRING
TAN

TOTAL
WHERE

ABS(x)
          x = parameter to be converted to integer type
ABS converts x to the absolute value of x and returns it as an integer parameter. If x is string
or undefined it returns undefined.    It is the same as FABS().

ACOS(x)
      x = vector input
ACOS returns the arc-cosine of a parameter in radians, operating on each element
individually.    If    x is integer, it is converted to double, and the function returns a double
variable.

ASIN(x)
      x = vector input
ASIN returns the arcsine of a parameter in radians, operating on each element individually.   
If    x is integer, it is converted to double, and the function returns a double variable.

ATAN(x)
      x = vector input
ATAN returns the arctangent of a parameter in radians, operating on each element
individually.    If    x is integer, it is converted to double, and the function returns a double
variable.

ATAN2(y, x)
      x = vector input
      y = vector input   
ATAN2 returns the arctangent of an ordered pair in radians, operating on each pair of
elements individually.    If    x or    y is an integer, it is converted to double, and the function
returns a double variable.

AVERAGE(x)
      x = vector input
AVERAGE returns the average of the elements of a parameter.    If    x is integer type it is
converted to double before averaging.

CLOSEPLOT
CLOSEPLOT closes the disk file to which plotting commands were being sent.    Before closing
it inserts any needed printer commands into the file.

CONTINUE
CONTINUE causes continuation of execution of a command file interrupted by PAUSE. The
single letter C can be used as an abbreviation for CONTINUE.

COS(x)
    x = vector input
COS returns the cosine of a parameter, operating on each element individually.    If    x is
integer, it is converted to double, and the function returns a double variable.    COS assumes
the input is in radians.

DATE()
    DATE is a function that returns a character string containing the date from the operating
system.

END   
END is used as the last command of a PCL command file.    It signals PCL that the last
command has been reached.    All text after END in the command file is ignored by PCL.   
During command execution, when END is encountered, then control is returned to user.    In
the case of a procedure, END signals return to the calling routine.

ERASE
ERASE causes the screen to be erased.

EXIT
The EXIT command is the same as the QUIT command.    It is entered by the user when the
PCL session is complete.    It causes the program to terminate and control return to the
operating system.

EXP(x)
      x = vector input
EXP exponentiates a parameter, operating on each element individually.    If    x is integer, it
is converted to double, and the function returns a double variable.

FABS(x)
      x = parameter to be converted to integer type
FABS converts x to the absolute value of x and returns it as an integer parameter. If x is
string or undefined it returns undefined.    It is the same as ABS().

FCLOSE, lun
          lun    = logical unit number of file
This procedure closes the file identified by    lun.

FIX(x)
      x = parameter to be converted to integer type
This function converts to x to integer type and returns it as an integer parameter. If x is
string or undefined it returns undefined.    If x is integer or double it returns integer.   
Conversion follows the rules of ANSI C, so a double is truncated to form a integer (not
rounded).

FLOAT(x)
      x = parameter to be converted to double type
This function converts x to double type and returns it as a double parameter. If x is string or
undefined it returns undefined.    If x is integer or double it returns double.

FLTARR(n)
      n = length of array
FLTARR is a function that returns a double precision vector of length n.    The elements of the
vector are all set to 0.

FPRINTF, lun, x1, x2, ...
      lun    = logical unit number of file
      xn = parameters to be printed
This procedure prints the contents of the parameter to the file identified by the integer
parameter lun.    As many parameters as desired can be listed, and they will be printed in
order.    Attempting to print an undefined parameter will yield asterisks. lun is usually set by
a call to the function FOPEN.

FOPEN(name, rw)
      name = name of file to be opened
      rw = read or write file
This function returns a pointer parameter which is a file identifier.    name is a char string
which identifies the file.      rw is a character string which identifies whether the file is for
reading or writing.    'r' will yield a file for reading; 'w' will give writing. Note, a pointer
parameter can be stored, but not operated upon.

lun=fopen('data.dat','r')
i=readi(lun)
print,i
fclose,lun
end

HISTOGRAM(x, bin, xmin, xmax)
      x = vector of values to be histogrammed
      bin = bin size (1.)
      xmin = lower end of range to be histogrammed (0.)
      xmax = upper end of range to be histogrammed (max value of x)
HISTOGRAM    is a function that returns an integer vector.    The values are the number of
elements of x that fall in each bin.      bin is used to control the size of the bins, while    xmin
and    xmax control the range of operation.    Values of x that do not fall between    xmin and   
xmax are ignored.

;EXAMPLE
a=sqrt(indices(1000))
h=histogram(a,2.5,5.,40.)
nbins=fix((40.-5.)/2.5)+1
b=indices(b)*2.5+5.
plot,b,h
end

INDICES(n)
      n = length of array
INDICES is a function that returns a double precision vector of length n.    The elements of
the vector are all set to the number of the element, i.e. the first element is 0., the second is
1., third 2., etc.    This is very useful for generating functions.

INTARR(n)
      n = length of array
INTARR is a function that returns an integer vector of length n.    The elements of the vector
are all set to 0.

LOG(x)
      x = vector input
LOG returns the natural logarithm of a parameter, operating on each element individually.   
If    x is integer, it is converted to double, and the function returns a double variable.

LOG10(x)
      x = vector input
LOG10 returns the base 10 logarithm of a parameter, operating on each element
individually.    If    x is integer, it is converted to double, and the function returns a double
variable.

MAX(x)
      x = vector to be searched
MAX searches the vector x and returns a scalar parameter of value equal to the largest
element of x.    It functions with integer and double types, and returns a scalar of the same
type as the vector.

MIN(x)
      x = vector to be searched
MIN searches the vector x and returns a scalar parameter of value equal to the smallest
element of x.    It functions with integer and double types, and returns a scalar of the same
type as the vector.

LENGTH(x)
      x = parameter
LENGTH operates on a vector of any type.    It returns an integer scalar whose value is the
length of the vector.    A scalar has length 1, as does a vector of length 1.    An undefined
vector causes a value of 0 to be returned.

;EXAMPLE
 x=[1.,2.,3.]
print,length(x)
3
; y is undefined
print,length(y)
0
end

OPLOT, x, y, color
      x = x values of ordered pairs
      y = y values of ordered pairs
      color = color of each element
OPLOT is the procedure used to plot a second series of points to the screen or hard copy
device.    It is explained in detail in the chapter on plotting.

PAUSE
PAUSE halts the execution of a command file and gives control to the user with the PCL1>
prompt.    User commands can then be given.    When the user types CONTINUE (or simply C),
then execution of the command file continues where it left off.    If the user, during a pause,
runs another routine containing a pause command, then the prompt PCL2>, for the second
level of pause is encountered.    CONTINUE will cause    execution of the second level routine
to continue.    When it is completed control returns to the PCL1> level.

PLOT, x, y, color
      x = x values of ordered pairs
      y = y values of ordered pairs
      color = color of each element
PLOT is the procedure normally used to plot data to the screen or hard copy device.    It is
explained in detail in the chapter on plotting.

POW(x, y)
      x = vector input
      y = vector input
POW returns x raised to the power of y, operating on each element individually.    If    x or    y
is integer, it is converted to double, and the function returns a double variable.

PRINT, x1, x2, ...
      xn = parameters to be printed
This procedure prints the contents of the parameter to the user's screen.    As many
parameters as desired can be listed, and they will be printed in order.    Attempting to print
an undefined parameter will yield asterisks.

PRINTF, x1, x2, ...
      xn = parameters to be printed
This procedure prints the contents of the parameter to the user's screen.    As many
parameters as desired can be listed, and they will be printed in order.    Attempting to print
an undefined parameter will yield asterisks.    It is identical to PRINT.    PRINTF is available to
maintain consistency of notation with C.

QUIT
The QUIT command is the same as the EXIT command.    It is entered by the user when the
PCL session is complete.    It causes the program to terminate and control return to the
operating system.

READD(filenum, nvalues)
      filenum = file pointer parameter
      nvalues = number of numbers to read in (1)
This function allows the user to read values from an ascii disk file into a double precision
parameter.      filenum is the pointer to the file created by the call to FOPEN.      nvalues tells
PCL to read more than one value into the array.    If READD is called with only the file pointer,
then only one value will be read.

READI(filenum, nvalues)
      filenum = file pointer parameter
      nvalues = number of numbers to read in (1)
This function allows the user to read values from an ascii disk file into an integer parameter. 
filenum is the pointer to the file created by the call to FOPEN.      nvalues tells PCL to read
more than one value into the array.    If READI is called with only the file pointer, then only
one value will be read.

READS(filenum)
      filenum = file pointer parameter
This function allows the user to read ascii character strings from a disk file into an character
parameter.      filenum is the pointer to the file created by the call to FOPEN.    The parameter
will take one line at a time; all the characters until an end of line or end of file is
encountered.

SIGMA(x)
      x = vector input
SIGMA returns the standard deviation of the elements of a parameter.    If    x is integer type it
is converted to double before averaging.

SIN(x)
      x = vector input
SIN returns the sine of a parameter, operating on each element individually.    If    x is integer,
it is converted to double, and the function returns a double variable. SIN assumes the input
is in radians.

SQRT(x)
    x = vector input
SQRT returns the square root of a parameter, operating on each element individually.    If    x
is integer, it is converted to double, and the function returns a double variable.

STRING(x)
      x = vector for conversion to character string
STRING converts integer and double vectors and scalars to character strings. This is useful
for printing the values of parameters in user defined formats.    If x is string type, it returns
the value unchanged.    If the vector has a length greater than one, it converts all the
elements and returns them with spaces in between.

TAN(x)
      x = vector input
TAN returns the tangent of a parameter, operating on each element individually.    If    x is
integer, it is converted to double, and the function returns a double variable. TAN assumes
the input is in radians.

TOTAL(x)
      x = vector input
TOTAL returns the sum of the elements of a parameter, operating on each element
individually.

WHERE(x)
      x = data array
WHERE is a function that returns an integer vector.    The elements of the vector are a list of
the indices of x where x is greater than 0. x is often the output of a logic statement.    For
example, WHERE(indices(4) > 1) will return the vector [2,3].

