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Options
Pri Print Diagnostics Flag
Halt Stop Execution Part Way
PV Print Rays at each Surface
Sunits Change Size Units
Wunits Change Wavelength Units



PRINT DIAGNOSTICS

If pri is set to 1, then a running account of what has happened in the trace will be printed on 
the screen.    Simply type pri=1 before or during the trace to get the diagnostics.    To turn off 
the diagnostics type pri=0 and continue. 

;EXAMPLE OF PRI OPTION 
pri=1
objp,0.,0.,1.e12,20,5000. 
pupcr,0.,1. 
disp,0.,0.,-1000. 
flat 
grating,1,10000. 
disp,0.,0.,1000. 
flat 
print,'Rms in radial direction = ',rms(0)
end

Which will yield a screen printout that looks like:

Point Object of 20 rays      at x = 0.000000e+00, y = 0.000000e+00, z = 1.000000e+12
                                                                                wavelength = 5.000000e+03 
Circular Random Entrance Pupil        radii, inner=0 , outer= 1    at x=0.000000e+00
                                                                                                            y=0.000000e+00 
Origin Moved to 0.000000e+00, 0.000000e+00, -1.000000e+03 
Surface Number 1 
Flat Surface in the z=0 Plane 
Reflection Grating Surface      order = 1, d = 10000, psi = 10 
Origin Moved to 0.000000e+00, 0.000000e+00, 1.000000e+03 
Surface Number 2 
Flat Surface in the z=0 Plane 
Rms in radial direction = 0.491219 
IRT> 



AUTOMATIC HALT

If halt is set to 0 then the program automatically halts at the end of each optical element so 
that the current status of the rays can be studied.    To continue type continue (or just c).    If 
HALT is set to a positive integer, then IRT will automatically stop at the surface which has 
nsurf equal to the chosen integer.    To return to tracing without halting set halt=-1.    
The halt option allows a certain amount of freedom for analysis.    For example, if halt=3, 
then IRT will stop at the third optical surface. A call to SPOT displays the rays at that point, 
and can often be very useful in debugging a TRACE procedure.



AUTOMATIC PRINT VECTOR

If pv is set to a non-negative integer then at the end of each procedure the ray values 
associated with ray number pv will be printed as a    diagnostic.    Thus, usually pv is set to 0 
to print the values of the first ray.    pv=-1 turns the option off. 
Since pv can be called directly by the user, the automatic pv is usually used in the context of
debugging or checking the TRACE.    The automatic pv prints the ray values after each IRT 
procedure call, thereby allowing the user to follow the logic of the tracing and identify where 
it is having problems.

;EXAMPLE OF PV OPTION 
pv=0 
pri=1 
objp,0.,0.,1.e12,20,5000. 
pupcr,0.,1. 
disp,0.,0.,-1000. 
flat 
grating,1,10000. 
disp,0.,0.,1000. 
print,'Rms in radial direction = ',rms(0)
end

Which creates and prints on the screen the following diagnostics:

Point Object of 20 rays      at x = 0.000000e+00, y = 0.000000e+00, z = 1.000000e+12
                      wavelength = 5.000000e+03 
Circular Random Entrance Pupil        radii, inner=0 , outer= 1        at x=0.000000e+00 , 
y=0.000000e+00    
num = 0    x = -2.953049e-01    qx = -2.953049e-13    lam = 5.000000e+03
                            y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                            z = 0.000000e+00      qz = -1.000000e+00 
Origin Moved to 0.000000e+00, 0.000000e+00, -1.000000e+03
num = 0 x = -2.953049e-01    qx = -2.953049e-13    lam = 5.000000e+03
                          y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                          z = 1.000000e+03      qz = -1.000000e+00 
Surface Number 1 
Flat Surface in the z=0 Plane
num = 0    x = -2.953049e-01    qx = -2.953049e-13    lam = 5.000000e+03
                            y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                            z = 0.000000e+00      qz = -1.000000e+00 
Reflection Grating Surface      order = 1, d = 10000, psi = 10
    num = 0    x = -2.953049e-01    qx = 5.000000e-01      lam = 5.000000e+03
                                y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                                z = 0.000000e+00      qz = 8.660254e-01 
Origin Moved to 0.000000e+00, 0.000000e+00, 1.000000e+03
num = 0 x = -2.953049e-01    qx = 5.000000e-01      lam = 5.000000e+03
                          y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                          z = -1.000000e+03    qz = 8.660254e-01 
Surface Number 2 Flat Surface in the z=0 Plane
num = 0 x = 5.770550e+02    qx = 5.000000e-01        lam = 5.000000e+03 
                          y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                          z = 0.000000e+00      qz = 8.660254e-01 
Rms in radial direction = 0.491219 
IRT>





SIZE UNITS 

The common variable sunits contains a string variable denoting the size units being used for 
the trace.      The options available are: MILLIMETERS, CENTIMETERS, METERS, INCHES.    To 
change to meters (for example) type sunits='METERS' prior to running the trace. The 
standard default is 'MILLIMETERS'.    It is used primarily because it is usually near the 
geometric mean of the size of the entire optical system and the size of the focal spots 
generated.    Thus it generates reasonable size numbers for both. 
The size units are used in several ways.    First, it is used in the axis labels of the display 
routines.    Second, for physical optics effects it is necessary to know the scaling factor 
between the optics scale and the wavelength scale.    Appropriate factors based on sunits are
used when diffraction effects are being calculated. 



WAVELENGTH UNITS

The variable wunits contains a string variable denoting the wavelength units one is using in 
the trace.    The options available are: ANGSTROMS, NANOMETERS, MICRONS, MILLIMETERS, 
CENTIMETERS.    To change to microns (for example) simply type wunits='MICRONS' prior to 
running the trace.    The standard default is 'ANGSTROMS'. 
The wavelength units are used primarily for two purposes.    First, when indices are retrieved 
using GLASS, the wavelength units must be known.    Second, the wavelength units are 
essential in calculating diffraction effects. 





Objects
Objca Circular Array
Objcr Circular Random
Objfan Fan Array (Cross Shape)
Objgr Gaussian Random
Objp Point
Objsa Rectangualr Array
Objsr Rectangular Random



OBJCA, ro, nrad, nsec, xc, yc, obd, lamt 

        ro = outer radius of object circle (5.e10)
        nrad = number of radii in array    (5)
       nsec = number of sectors in array (5)
       xc = x position of the center of the object (0.)
        yc = y position of the center of the object (0.)
        obd = z position of the object (1.e12)
       lamt = wavelength of the rays (6328.) 

OBJCA sets up a circular object centered at the position [xc,yc,obd] and lying in the z=obd 
plane. 

It generates a geometrically weighted distribution of x,y pairs in a circle of radius ro.    It thus
simulates photons emerging from an annular disk of uniform brightness.    It is particularly 
convenient for performing raytraces that allow the user to understand the origin of 
aberrations. OBJCA creates a nrad times nsec plus one source points.    The extra is the first 
ray, and lies at the center.

;Circular Array object with 8 arms and 6 points on each radius
;created for an f/10 beam. 
_ti='OBJCA'
objca,5.e10,6,8,0.,0.,1.e12,6328.
pupp,0.,0.
disp,0,0,100.
flat
spot
end

                                                                                                                      



OBJCR, ri, ro, xc, yc, obd, nr, lamt
    
        ri = inner radius of object annulus (0.)
        ro = outer radius of object annulus (5.e10)
        xc = x position of the center of the object (0.)
        yc = y position of the center of the object (0.)
        obd = z position of the object    (1.e12)
        nr = number of ray positions in object (100)
        lamt = wavelength of the rays (6328.)

        OBJCR sets up an annular object centered at the position [xc,yc,obd] and lying in the 
z=obd plane. 

It generates a    uniform random distribution of x,y pairs between the radii of ri and ro.    It 
thus simulates photons emerging from an annular disk of uniform brightness.    Of course, 
setting    ri to 0 creates a circular object.

;Circular object with small hole in the center. 
;1mm in diameter, 300m from pupil. 
;500 uniformly distributed random rays. 
_ti='OBJCR' 
objcr,.1,.5,0.,0.,3.e5,500,6328. 
pupcr,0.,500. 
disp,0.,0.,3.e5
flat
; N.B. This call forces the rays back to the source for display 
; purposes.    As such it will generate a warning that the rays    
; moved backward.    Warning is printed only if pri is 1. 
spot 
end

                                                                                                                     



OBJFAN, sx, nx, sy, ny, xc, yc, obd, lamt

        sx = distance from first to last point of x line (5.e10)
        nx = number of points in x line (9)
        sy = distance from first to last point of y line (5.e10)
        ny = number of points in y line (0)
        xc = x position of the center of the object (0.)
        yc = y position of the center of the object (0.)
        obd = z position of the object    (1.e12)
        lamt = wavelength of the rays (6328.) 

OBJFAN creates a cross pattern of light or a line pattern.    

It creates    nx+ny points.      nx evenly spaced parallel to the x-axis, with a distance sx from 
the first to the last.    Similarly, ny points are evenly spaced along a distance of sy.    The 
center of the cross or the line is at [xc,yc,obd].    A value of nx of 0 will give a line object in 
the y direction, and    ny of 0 gives a line object in x.

;OBJFAN EXAMPLE: A 10 by 7 cross at infinity 
_ti='OBJFAN' 
objfan,5.e10,10,3.e10,7,0.,0.,1.e12,6328. 
pupp,0.,0. 
disp,0,0,100.
flat
spot 
end

                                                                                                                      



OBJGR, sig, xc, yc, obd, nr, lamt
 
        sig = Standard deviation of object distribution (5.e10)
        xc = x position of the center of the object (0.)
        yc = y position of the center of the object (0.)
        obd = z position of the object    (1.e12)
        nr = number of ray positions in object (100)
        lamt = wavelength of the rays (6328.) 

OBJGR sets up an object with circular symmetry    centered at the position [xc,yc,obd] and 
lying in the z=obd plane. 

It simulates a normally blurred source by generating nr pairs of x,y coordinates with a 
gaussian distribution.    sig is given in the same    distance units as are used elsewhere. 

;OBJGR Example:    
;Gaussian distribution of one arcsec diameter at infinity
;500 normally distributed random rays. 
_ti='OBJGR' 
objgr,2.5e6,0.,0.,1.e12,500,6328. 
pupp,0.,0. 
disp,0,0,10000.
flat
; N.B. 
; This call forces the rays back to the source for display
; purposes. As such it will generate a warning that the rays
; moved backward.    Warning is printed only if  pri is 1. 
spot 
end 

                                                                                                                      



OBJP, xc, yc, obd, nr, lamt
 
        xc = x position of the object (0.)
        yc = y position of the object (0.)
        obd = z position of the object    (1.e12)
        nr = number of rays starting at point (100)
        lamt = wavelength of the rays (6328.)

OBJP simulates an ideal point source at the position [xc,yc,obd]. 

It creates    nr rays, all of which start at the same point.

;OBJP Example: Point sources 0 and 30 arcseconds off axis 
;500 rays each 
_ti='OBJP' 
offax=1.5e8 
objp,0.,0.,1.e12,500,6328. 
objp,offax,0.,1.e12,500,6328. 
pupcr,0.,50. 
disp,0,0,1.e12
flat
; N.B. This call forces the rays back to the source for display 
; purposes.    As such it will generate a warning that the rays    
; moved backward.    Warning is printed only if pri is 1. 
spot 
end 

                                                                                                                     



OBJSA, sx, nx, sy, ny, xc, yc, obd, lamt
 
        sx = length of x side of array (5.e10)
        nx = number of points along x side of array (5)
        sy = length of y side of array (5.e10)
        ny = number of points along y side of array (5)
        xc = x position of the center of the object (0.)
        yc = y position of the center of the object (0.)
        obd = z position of the object (1.e12)
        lamt = wavelength of the rays (6328.) 

OBJSA sets up a rectangular object centered at the position [xc,yc,obd] and lying in the 
z=obd plane. 

It generates a geometrically weighted distribution of x,y pairs in a rectangle of size sx by sy. 
It thus simulates photons emerging from a rectangular source of uniform brightness.    It is 
particularly convenient for performing raytraces that allow the user to understand the origin 
of    aberrations. 

 ;OBJSA Example: Rectangular Array object with 9 (x) by 7 (y) format 
_ti='OBJSA' 
objsa,8.e10,9,6.e10,7,0.,0.,1.e12,6328. 
pupp,0.,0. 
disp,0,0,100.
flat
spot 
end 

                                                                                                                     



OBJSR, xl, yl, xc, yc, obd, nr, lamt
 
        xl = x length of object (5.e10)
        yl = y length of object (5.e10)
        xc = x position of the center of the object (0.)
        yc = y position of the center of the object (0.)
        obd = z position of the object    (1.e12)
        nr = number of ray positions in object (100)
        lamt = wavelength of the rays (6328.) 

OBJSR sets up a rectangular object centered at the position [xc,yc,obd] and lying in the 
z=obd plane. 

It generates a    uniform random distribution of x,y pairs in a rectangle of size xl by yl.  It thus
simulates photons emerging from    rectangle of uniform brightness.

;OBJSR Example: Rectangular Array object with random format. 
_ti='OBJSR' 
objsr,8.e10,6.e10,0.,0.,1.e12,500,6328. 
pupp,0.,0. 
disp,0,0,100.
flat
; N.B. This call forces the rays back to the source for display 
; purposes.    As such it will generate a warning that the rays    
; moved backward.    Warning is printed only if  pri is 1. 
spot 
end 



Pupils
Pupca Circular Array
Pupcr Circular Random
Pupfan Fan Array
Pupp Point
Pupsa Rectangular Array
Pupsr Rectangular Random



PUPCA, ro, nrad, nsec, xc, yc, zc
 
        ro      = radius of entrance pupil (50.) 
        nrad = number of radii (5)
        nsec = number of angles (5)
        xc      = x center of pupil (0.)
        yc      = y center of pupil (0.)
        zc      = z center of pupil (0.) 

        PUPCA creates a circular array of entrance pupil points.    

The points lie in concentric circles, the number of circles controlled by nrad, and the number 
of points in each circle controlled by nsec.    The separation between the circles varies to 
achieve correct weighting of the point distribution so that it approximates uniform 
illumination.    From each point in the object a ray is drawn to each point in the pupil.    This is
in sharp distinction to the random pupil arrays which draw one ray from each object point.    
Thus the total number of rays to be traced will be the product of the number of object points
and the number of pupil points. It is very easy to make the number of rays very large.    In 
practice, however, this pupil is usually used with OBJP which creates only a single object 
point. 
PUPCA creates nrad times nsec plus one points.    The extra point is first and lies at the 
center.

;PUPCA EXAMPLE: pupil with 50mm radius aperture. Points in a 
; circular array with 6 spokes containing 10 points each. 
_ti='PUPCA' 
objp,0.,0.,1.e12,1,6328. 
pupca,50.,10,6,25.,10. 
spot 
end 

                                                                                                                     



PUPCR, ri, ro, xc, yc, zc
    
      ri = inner radius of annulus (0.)
      ro = outer radius of annulus (50.)
      xc = x center of pupil (0.)
        yc      = y center of pupil (0.)
        zc      = z center of pupil (0.) 

        PUPCR generates an annular (circular) entrance pupil lying in the x-y plane and centered
at the origin.    

Each ray generated by the object calls is given a position on the entrance pupil.    The 
distribution of points is uniform with area and random.

;PUPCR EXAMPLE: pupil with 50mm radius aperture. Points in a 
; circular array with uniform random distribution. 10mm radius 
; hole in center. 
_ti='PUPCR' 
objp,0.,0.,1.e12,500,6328. 
pupcr,10.,50.,100.,200. 
spot 
end    

                                                                                                                      



PUPFAN, xo, nx, yo, ny, xc, yc, zc
 
    xo = length of x side of cross (100.)
    nx = number of points on x bar (10)
    yo = length of y side of cross (100.)
    ny = number of points on y bar (0)
    xc      = x center of pupil (0.)
    yc      = y center of pupil (0.)
    zc      = z center of pupil (0.)          

PUPFAN creates a cross of entrance pupil points.    

The points lie on two orthogonal lines, with    nx points along the x direction and    ny points 
along y.    The lines of points are centered at the origin, and are    xo from one end of the x 
line to the other and    yo long in y. From each point in the object a ray is drawn to each point
in the pupil.    This is in sharp distinction to the random pupil arrays which draw one ray from 
each object point.    Thus the total number of rays to be traced will be the product of the 
number of object points and the number of pupil points. It is very easy to make the number 
of rays very large.    In practice, however, this pupil is usually used with OBJP which creates 
only a single object point. 

;PUPFAN EXAMPLE: pupil in the shape of a cross.      
; 11 points along a length of 100mm in the x direction.      
; 7 points along a length of 50mm in the y    direction. 
_ti='PUPFAN' 
objp,0.,0.,1.e12,1,6328. 
pupfan,100.,11,50.,7,-200.,100. 
spot 
end 

                                                                                                                     



PUPP, xo, yo, zo
    
      xo = x position of entrance point (0.)
        yo = y position of entrance point (0.)
        zo      = z center of pupil (0.)          

PUPP creates a point-like entrance pupil.    

It has many practical uses. It forces all rays from the object to pass through the point    xo,yo.
This allows one to create a "chief ray" trace when coupled to OBJP or simulate light diverging
from a point source at xo,yo. 
      If PUPP is used with a random OBJ then a single ray is drawn from each object point to the
point xo,yo.    If used with an array of object points the same thing happens.    Since there is 
only one pupil point no multiplier effect is encountered. 

;PUPP EXAMPLE: Point pupil at the position [10.,0.,0.] 
_ti='PUPP' 
objfan,1.e11,5, , ,0.,0.,1.e12,6328. 
pupp,10.,0.
disp,0.,0.,-100. 
flat 
surfaces 
end 

                                                                                                                      



PUPSA, xo, nx, yo, ny, xc, yc, zc
    
      xo = x length of entrance pupil (100.)
        nx = number of points along x (3)
        yo = y length of entrance pupil (100.)
        ny = number of points along y (3)
        xc      = x center of pupil (0.)
        yc      = y center of pupil (0.)
        zc      = z center of pupil (0.)          

PUPSA creates a rectangular array of entrance pupil points.    

The number of points along the x side is given by    nx, the number along y is given by ny.    
xo and yo specify the dimensions of the pupil.    From each point in the object a ray is drawn 
to each point in the pupil.    This is in sharp distinction to the random pupil arrays which draw
one ray from each object point.    Thus the total number of rays to be traced will be the 
product of the number of object points and the number of pupil points. It is very easy to 
make the number of rays very large.    In practice, however, this pupil is nearly always used 
with OBJP which creates only a single object point.

;PUPSA EXAMPLE: pupil with 50mm by 10mm aperture. Points    
; separated by 1 mm. 
_ti='PUPSA' 
objp,0.,0.,1.e12,1,6328. 
pupsa,50.,51,10.,11,-150.,-50. 
spot 
end 

                                                                                                                      



PUPSR, xo, yo, xc, yc, zc
    
        xo    = x length of object (100.)
        yo    = y length of object (100.)
        xc    = x center of pupil (0.)
        yc    = y center of pupil (0.)
        zc    = z center of pupil (0.)          

PUPSR generates a rectangular (square) entrance pupil lying in the x-y plane and centered 
at the origin.    

Each ray which was generated by the object calls is given a position on the entrance pupil.    
The distribution of points is uniform with area and random.

;PUPSR EXAMPLE: pupil with 50mm by 10mm aperture. 500 points    
; in random uniform distribution. 
_ti='PUPSR' 
objp,0.,0.,1.e12,500,6328. 
pupsr,50.,10.,100.,200. 
spot 
end



Coordinate Routines
Disp Move the Coordinate Origin
New_Coord Set Specific Coordinate System
Retrace Return to former coordinates
Rot Rotate Coordinate System
Untrace Return to Pupil Coordinates



DISP, dx, dy, dz
 
        dx = displacement in the x direction (0.)
        dy = displacement in the y direction (0.)
        dz = displacement in the z direction (0.)    

This routine changes the coordinate system.    

The origin is redefined to be at the point which was called [dx,dy,dz] in the old coordinate 
system.    No rotation is performed.    dmat matrix is automatically updated. 
 
;example disp 
_ti='DISP'
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,1. 
disp,10.,50.,0. 
spot 
end    

                                                                                                                      



NEW_COORD,d0,d1,d2,r0,r1,r2,r3,r4,r5,r6,r7,r8

        d0 = first element of new dmat (0.)
        d1 = second element of new dmat (0.)
        d2 = third element of new dmat (0.)
        ro = element of new rmat (1.)
        r1 = element of new rmat (0.)
        r2 = element of new rmat (0.)
        r3 = element of new rmat (0.)
        r4 = element of new rmat (1.)
        r5 = element of new rmat (0.)
        r6 = element of new rmat (0.)
        r7 = element of new rmat (0.)
        r8 = element of new rmat (1.) 

This routine may be used to move the rays to a coordinate system defined in an absolute 
sense by rmat and dmat.

Although one can, in principle, derive the input parameters from scratch, in practice, the 
input values are printed out in a prior run of the code.    Thus, when one wishes to save an 
absolute coordinate system at the end of a run, use the commands print,dmat and    
print,rmat.    The numbers are entered into NEW_COORD in the same order that IRT prints 
them out. 
One use of this routine is to freeze each element of the optical system in absolute space, so 
that changes in the position of other elements will not affect it.    This is usually not done 
unless the system is complicated and is to be studied in great detail.    Another use is to 
allow multiple paths to impinge on the same element.      

;EXAMPLE ROT 
;ANOTHER WAY TO RETURN TO THE PUPIL COORDINATE SYSTEM 
_ti='NEW_COORD' 
objp,0.,0.,1.e12,1,6328. 
pupfan,2.,0,2.,3 
disp,0.,0.,-50. 
rot,10.,0.,0. 
flat 
mirror 
disp,0.,0.,50. 
new_coord,0.,0.,0.,1.,0.,0.,0.,1.,0.,0.,0.,1. 
flat 
end    



RETRACE
    
      This routine undoes the effects of UNTRACE. It is typically used to restore the rays to the 
TRACE coordinate system after using UNTRACE to examine where the rays are relative to the
pupil.
        
;EXAMPLE RETRACE: 
_ti='RETRACE' 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,1. 
disp,0.,0.,-500. 
flat
pv 
untrace 
pv 
retrace 
pv 
end 
    
The output will be: 

Point Object of 100 rays      at x = 0.000000e+00, y = 0.000000e+00, z = 1.000000e+12
                                                                                wavelength = 6.328000e+03 
Circular Random Entrance Pupil        radii, inner=0 , outer= 1
                                                                                at x=0.000000e+00 , y=0.000000e+00 
Origin Moved to 0.000000e+00, 0.000000e+00, -5.000000e+02 
Rays Traveled to the z = 0.000000e+00 Plane
    num = 0 x = -2.953049e-01    qx = -2.953049e-13      lam = 6.328000e+03
                              y = -2.580074e-02      qy = -2.580074e-14      nind= 1.000000e+00
                              z = 0.000000e+00        qz = -1.000000e+00 
Rays Returned to the Pupil Coordinate System
      from dmat = 0 0 500
                rmat = 1 0 0
                                      0 1 0
                                      0 0 1
    num = 0    x = -2.953049e-01    qx = -2.953049e-13    lam = 6.328000e+03
                                  y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                                  z = -5.000000e+02    qz = -1.000000e+00 
Rays Returned to Saved Coordinate System
    num = 0 x = -2.953049e-01    qx = -2.953049e-13    lam = 6.328000e+03
                              y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                              z = 0.000000e+00      qz = -1.000000e+00      



ROT, dx, dy, dz    

        dx = degrees of rotation about the x-axis (0.)
        dy = degrees of rotation about the y-axis (0.)
        dz = degrees of rotation about the z-axis (0.)

 ROT performs the coordinate rotations that allow the rays to approach the optical elements 
at the correct orientation. 

ROT performs rotations about the current axes in the order x then y then z.    It accepts the 
angles in units of degrees. Rotations are performed in a right hand positive sense.    If the 
rays are considered fixed then the coordinate axes move counterclockwise in response to a 
positive angle. Alternatively, if one wishes to consider the axes fixed, the positions and 
directions of the rays are rotated clockwise.      

;EXAMPLE ROT 
_ti='ROT' 
objp,0.,0.,1.e12,1,6328. 
pupfan,2.,0,2.,3 
disp,0.,0.,-50. 
rot,10.,0.,0. 
flat 
mirror 
disp,0.,0.,50. 
flat 
rays,90.,0.
end    

                                                                                                                      



UNTRACE
 
      UNTRACE returns the ray positions and angles to the coordinate system of the entrance 
pupil.    

This is particularly useful in debugging complicated raytraces.    By calling untrace, one can 
see where the rays are in an absolute sense.    This can be very useful in determining mirror 
images, and the direction of rotations in the code.    It is also useful in interfacing a design 
with mechanical engineers.    By calling UNTRACE,    the positions of the rays on each 
element of the system can be obtained in a consistent coordinate system. 
      Furthermore, if UNTRACE is called twice in a row it will return nonsense on the second call
because the rotation and displacement matrices were not updated.    Not updating is 
convenient because then RETRACE allows return to the trace coordinate system.    If 
however, one wishes to remain in the pupil system and continue tracing, one should use 
NEW_COORD with the default values.

;EXAMPLE UNTRACE: 
_ti='UNTRACE' 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,1. 
disp,0.,0.,-500. 
flat
pv 
untrace 
pv 
end      

The printout is:    
Point Object of 100 rays      at x = 0.000000e+00, y = 0.000000e+00, z = 1.000000e+12
                                                                                  wavelength = 6.328000e+03 
Circular Random Entrance Pupil        radii, inner=0 , outer= 1
                                                                                  at x=0.000000e+00 , y=0.000000e+00 
Origin Moved to 0.000000e+00, 0.000000e+00, -5.000000e+02 
Rays Traveled to the z = 0.000000e+00 Plane
    num = 0 x = -2.953049e-01    qx = -2.953049e-13      lam = 6.328000e+03
                                y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                                z = 0.000000e+00      qz = -1.000000e+00 
Rays Returned to the Pupil Coordinate System
      from dmat = 0 0 500
                rmat = 1 0 0
                                      0 1 0
                                      0 0 1
    num = 0 x = -2.953049e-01    qx = -2.953049e-13    lam = 6.328000e+03
                              y = -2.580074e-02    qy = -2.580074e-14    nind= 1.000000e+00
                              z = -5.000000e+02    qz = -1.000000e+00



Housekeeping Routines
Compact Remove vignetted rays 
Addrays Add rays saved on disk
Getrays Get rays saved on disk
Saverays Save rays on disk



ADDRAYS, name
    
      name = name of disk file from which ray information is to be read. ('irt')

This routine is valuable for combining the results of a number of runs of TRACE.    Each run 
stores its rays in a separate disk file.    ADDRAYS retrieves the information from disk and 
appends the new rays to the already existing ones.    It requires that there already be rays in 
the common blocks.    If one is pulling all the information freshly from disk a call to GETRAYS 
is required before a call to ADDRAYS.      

;ADDRAYS EXAMPLE 
_ti='ADDRAYS' 
objp,0.,0.,1.e12,10,6328. 
pupp,0.,0. 
saverays,'test0' 
objp,0.,0.,1.e12,10,6328. 
pupp,1.,0. 
saverays,'test1' 
objp,0.,0.,1.e12,10,6328. 
pupp,2.,0. 
saverays,'test2' 
objp,0.,0.,1.e12,10,6328. 
pupp,3.,0. 
saverays,'test3' 
addrays,'test0' 
addrays,'test1' 
addrays,'test2' 
spot 
end    



COMPACT
    

COMPACT is used to remove vignetted rays from the vectors.    During tracing, when a ray is 
vignetted, the value of status is set to zero for that ray, and from that point onward all IRT 
routines will ignore the ray.    If, however, one wishes to apply PCL routines to the ray vector 
information that contains vignetted rays, the presence of the vignetted ray information will 
affect the outcome.    To remove the vignetted rays and thereby decrease the length of the 
ray vectors, call compact.    Then all remaining rays will be unvignetted.

;COMPACT EXAMPLE 
objp,0.,0.,1.e12,1,6328.
pupsa,5.,2,5.,2
knife
print,'x before = 'x
compact
print,'x after =',x
end

will yield:

x before = -2.5    -2.5    2.5    2.5
x after = 2.5    2.5



GETRAYS, name
    
name = name of storage file ('irt')            

This routine retrieves the ray information from disk where it was previously stored by 
SAVERAYS.    name is a string variable specifying the name of the storage file on disk.    If 
name is not specified then the routine searches for the default name irt.sav.    Any rays 
currently held in common are lost.      

;GETRAYS EXAMPLE 
_ti='GETRAYS' 
objp,0,0,1.e12,50,6328.
pupcr,4.,5.
saverays,'test1'
objp,0,0,1.e12,10,6328.
pupp,0.,1.
getrays,'test1'
spot
end



SAVERAYS,    name

      name = name of disk file on which ray information is to be stored.        ('irt')          

This routine saves the results of a TRACE on disk for future use. It saves the entire contents 
of the common blocks. It is thus possible to save a set of rays as they exist in the middle of a
complicated system.    Instead of tracing the whole system repeatedly while designing the 
latter part of the system, use SAVERAYS once, and use GETRAYS as the starting point from 
then on.      Be warned that a large ray vector can chew up quite a bit of disk space.    Use this
option sparingly.    The rays are saved in a file with a .sav extension.    The default save file 
name is irt.sav.    The first call to saverays in the example will create a file called test1.sav.     

;SAVERAYS EXAMPLE 
_ti='SAVERAYS' 
objp,0.,0.,1.e12,50,6328. 
pupcr,4.,5. 
saverays,'test1' 
objp,0.,0.,1.e12,10,6328. 
pupp,0.,1. 
getrays,'test1' 
spot 
end



Surface Routines
Cone Cone
Conic Conic Section of Rotation
Conicx Conic Section - One Dimensional
Ellipsoid Ellipsoidal Surface
Flat Flat Surface
Focus Find the best focus
Knife Knife Edge Vignette
Mask Mask Vignetting
Torus Toroidal Surface
Travel Move Rays to Plane



CONE, halfang
 
 halfang = half angle of cone in degrees (45.)    

CONE raytraces a conical surface.    The vertex of the cone lies at the origin and the z-axis is 
its axis of symmetry.    CONE finds the intersections of the rays with the cone.    It chooses the
intersection that is closest to the origin and on the positive side if possible.    

;EXAMPLE CONE 
_ti='CONE' 
objp,0.,0.,1.e12,100,6328. 
pupcr,51.365,52.365 
disp,0.,0.,-3000. 
cone,1. 
mirror 
focus,0 
spot 
end    

                                                                                                                      



CONIC, e, rad, sol, pol
 
        e = eccentricity (0.)
        rad = radius of curvature at vertex (1000.)
        sol = intersection solution (0)
        pol = polynomial deformation of surface (0) 

    This routine assumes that there is a surface which is formed from a conic section of 
rotation about the z-axis.    Both the vertex and focus of the conic lie on the z-axis.    The 
vertex lies at the origin. This routine thus covers spheres, ellipsoids, paraboloids, and 
hyperboloids.    A positive radius of curvature gives a surface which curves upward and lies 
on the positive side of the x-y plane.    A negative curvature bends downwards. 
    The intersection of a line with a conic section can have zero, one or two solutions.    An 
example of no solutions is a ray that completely misses intersecting a sphere.    In CONIC 
rays with no solutions are vignetted.    An example of one solution is an on-axis ray striking a 
paraboloid.    An example of two solutions is an off-axis ray and a paraboloid; one 
intersection point may be near the focus and the other at grazing incidence.    CONIC uses 
the solution closest to the vertex unless the parameter sol is set to 1, in which case it uses 
the other solution. 
    pol is a polynomial deformation of the conic surface.    pol is a vector with each element 
containing a coefficient of the deformation. The first element is the coefficient for r0, the 
second element is for r1, the third for r2, etc.    This deviates from standard practice in optics
where only even powers are included to avoid a    mathematical cusp at r=0.    We include 
the odd powers because they can come in handy in simulating grazing optics where the 
mirror surfaces do not cover r=0, and many high power terms are needed.    There is no limit
on how high the powers can go.    The routine starts where the ray intersects the conic and 
performs a Newton's loop convergence from there. 

;EXAMPLE CONIC 
; A ROWLAND CIRCLE MOUNT WITH CURVED FOCAL PLANE 
_ti='CONIC' 
d=8771.4 
lamt=[5000.,6000.,7000.] 
objcr,0.,5.e10,0.,0.,1.e12,100,lamt 
pupp,0.,0. 
disp,0.,0.,-375.88 
rot,0.,-20.,0. 
conic,0.,400. 
grating,1,d 
rot,0.,180.,0. 
disp,0.,0.,-200. 
rot,0.,40.,0. 
disp,0.,0.,-200. 
conic,0.,200. 
spot 
end    



                                                                                                                      



CONICX, e, rad, sol
 
        e = eccentricity (0.)
        rad = radius of curvature at vertex (1000.)
        sol = intersection solution (0)    

This routine is identical to CONIC except that it traces one dimensional conics which have 
curvature in the x direction only. Thus they lie with their axis of symmetry being the X=0 
plane, and their vertices lie along the Y-axis.          

;EXAMPLE CONICX 
; TRACE A CYLINDER 
_ti='CONICX' 
objp,0.,0.,1.e12,100,6328. 
pupsr,50.,50. 
disp,0.,0.,-1000. 
conicx,0.,2000. 
mirror 
disp,0.,0.,1000. 
flat 
spot 
end

                                                                                                                      



ELLIPSOID, a, b ,c , sol
    
      a = radius of curvature in x direction (1000.)
      b = radius of curvature in y direction (1000.)
      c = radius of curvature in z direction (1000.)
      sol = intersection solution (0) 

ELLIPSOID creates an ellipsoidal surface defined by the equation 

In most cases    c is the same as either    a or b.      

;EXAMPLE ELLIPSOID 
_ti='ELLIPSOID' 
objfan,1.e10,10,1.e10,10,0.,0.,1.e12,6328. 
pupp,0.,0. 
rot,-80.,0.,0. 
disp,0.,171.01,-30.154 
ellipsoid,173.65,1000.,1000. 
mirror 
rot,100.,0.,0. 
disp,0.,0.,-173.65 
flat 
spot 
end    

                                                                                                                      



FLAT

FLAT creates a flat surface.    Rays are moved to the z=0 plane. Ray directions are not 
changed.      

;EXAMPLE FLAT SURFACE 
_ti='FLAT' 
objp,0.,0.,1.e12,1,6328. 
pupfan,0.,100.,0,5 
disp,0.,0.,-1000. 
rot,10.,0.,0. 
flat 
mirror 
rot,10.,0.,0. 
disp,0.,0.,500. 
rot,10.,0.,0. 
flat 
mirror 
rot,10.,0.,0. 
disp,0.,0.,-500. 
flat 
rays,0,90 
end    

                                                                                                                      



FOCUS, ax
 
      ax = axis for focus: 0=radial, 1=x, 2=y    (0)          

FOCUS finds the best (i.e. minimum rms) focus position of the rays and moves the rays to 
that plane.    It then redefines the best focus position as the origin.          

;EXAMPLE FOCUS 
; A ROWLAND CIRCLE MOUNT 
_ti='FOCUS' 
objcr,0.,5.e10,0.,0.,1.e12,100,7000. 
pupp,0.,0. 
disp,0.,0.,-396.11 
rot,0.,-8.,0. 
conic,0.,400. 
grating,1,21556. 
focus,1 
spot 
end    

                                                                                                                          



KNIFE, edge

edge = x position of knife edge (0.)    

KNIFE is a convenient means of simulating an optical knife-edge test.    KNIFE vignettes all 
the rays with an x position less than edge.      A typical use of KNIFE to move to a system 
focus, cut the rays and then return back to the surface where the rays originated.    The 
distribution of rays at the surface will then tell the user a great deal about the sources of 
blur in the design.      

_ti='Knife Test' 
objp,0.,0.,1.e12,800,6328. 
pupcr,0.,50. 
disp,0,0,-1000. 
conic,0.,2000. 
mirror 
disp,0,0,1000. 
flat 
focus 
knife,0. 
disp,0,0,-1000. 
conic,0.,2000. 
spot 
end    

                                                                                                                      



MASK, shape, a, b, xc, yc

      shape = shape of mask: 1=annular, 2=rectangular (1)
      a          = inner radius for annular (1.)
                    = x length for rectangular
      b          = outer radius for annular (10.)
                    = y length for rectangular          
      xc        = x center of mask (0.)
      yc        = y center of mask (0.)

This routine simulates stops and masks in an optical system.    When a ray encounters a 
mask it either proceeds freely or is vignetted. MASK does not move the rays at all.    It merely
tests the current values of x and y to determine whether they satisfy the mask criteria. Thus,
if the routine is to be properly used, one must be sure that the rays are at the position of the
mask.    This may seem like an unnecessary complexity, but it actually can be very useful.    
For example, to simulate the finite extent of a concave mirror, call CONIC and follow it 
immediately by MASK.    The projection of the rays onto the z=0 plane will not be performed, 
and instead will test for position on the mirror. 
      MASK assumes that the stop is symmetric about the point xc,yc.    Two shapes are 
available: annular and rectangular.    An annular mask will stop all rays out to a radius a, then
allow all rays out to radius b to pass, and vignette all rays outside b.    A rectangular mask 
will pass only those rays which have x within a/2. of xc    and y within b/2. of yc. Choosing 
annular versus rectangular is set by shape. 
      To form an inverse mask set shape to the negative of the value that would be chosen 
otherwise.    An inverse mask stops where the regular mask    passes and passes where the 
regular mask stops.    
_ti='MASK' 
objp,0.,0.,1.e12,1000,6328. 
pupcr,0.,50. 
mask,2,200.,50. 
end



TORUS, rx, ry
    
      rx = radius of curvature in x direction (1000.)
      ry = radius of curvature in y direction (1000.)          

This routine raytraces toroidal surfaces.    The two radii of curvature in the torus are defined 
by rx and ry.    The intersection of the y=0 plane with the mirror is a circle of radius    rx.    The
intersection of the x=0 plane is a circle of radius    ry.    The toroid is tangent to the z=0 plane
at the origin.    Rays are moved to the surface, their reflected directions calculated and then 
left there. 
      Since a ray can intersect a toroid at up to four places, it is important to understand that 
this routine calculates only the intersection which is closest to the origin. A positive radius of
curvature gives a surface curves upward and lies on the positive side of the x-y plane.    A 
negative curvature bends downward. 
      TORUS treats rays as though the surface were infinitely thin. Thus, a positive curvature 
conic and rays moving in the positive z direction will act like a convex lens; a positive 
curvature and rays moving in the negative z direction will produce a concave lens.      

;EXAMPLE TORUS 
_ti='TORUS' 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
torus,500.,1000. 
mirror 
disp,0.,0.,250. 
flat 
spot 
end    

 



TRAVEL, ax, dis
 
ax = axis for direction of travel. 1=x, 2=y, 3=z. (3)
dis = value of plane to travel to.    (0.)      

TRAVEL is used to cause the rays to travel to a specified plane. Usually ax is 3 so that the 
rays travel to a specified value of z (dis}.        

;EXAMPLE TRAVEL 
_ti='TRAVEL' 
objfan,1.e11,10,1.e11,10,0.,0.,1.e12,6328. 
pupca,50.,5,5 
thin,1000. 
disp,0.,0.,-1000. 
travel,3,0. 
spot 
end    



Element Routines
Detector Detector at this Surface
Grating Reflection Grating
Holograt Holographic Reflection Grating
Lens Spherical Surface Lens
Mirror Mirrored Surface
Refract Refracting Surface
Thin Thin Lens Simulator
Trangrat Transmission Grating



DETECTOR

DETECTOR does not manipulate the ray information in any way.    It merely marks the 
preceeding surface as the detector for purposes of display with post-trace routines.

;example flat surface
title='DETECTOR'
objp,0.,0.,1.e12,1,6328.
pupfan,100.,5,1.,0
disp,0.,0.,-1000.
rot,0.,10.,0.
flat
mirror
rot,0.,10.,0.
disp,0.,0.,500.
rot,0.,10.,0.
flat
mirror
rot,0.,10.,0.
disp,0.,0.,-500.
flat
detector
view
end

                                                                                                                      



GRATING, nord, d 

        nord = order number for rays (1)
        d      = groove spacing in wavelength units (3.333e4)

This is a generalized reflection grating routine that can be used with any kind of surface.    
GRATING is called immediately after the call to the surface routine.    GRATING    adjusts the 
ray directions as if there    were a reflection grating ruled on the surface.    The rulings are 
lines that are the intersection of the surface with planes perpendicular to the x-axis.    Calls 
to ROT and DISP are allowed to occur between the surface routine and GRATING allowing 
investigation of some unusual geometries. This routine uses nord for the order number. Rays
which cannot satisfy the grating equation are vignetted. 

;EXAMPLE GRATING 
; A ROWLAND CIRCLE MOUNT WITH PARABOLOID GRATING
_ti='GRATING' 
d=2.155e4
lamt=[5000.,6000.,7000.] 
objcr,0.,5.e10,0.,0.,1.e12,100,lamt 
pupp,0.,0. 
disp,0.,0.,-399.01 
rot,0.,-8.,0. 
conic,1.,400. 
grating,1,d 
rot,0.,188.,0. 
disp,0.,0.,-399.01 
flat 
spot 
end

                                                                                                                      



HOLOGRAT, nord, x1, y1, z1, x2, y2, z2, laser

        nord = order number for rays (1)
        x1 = x position of source 1 (0.)
        y1 = y position of source 1 (0.)
        z1 = z position of source 1 (1.e12)
        x2 = x position of source 2 (1.e12)
        y2 = y position of source 2 (0.)
        z2 = z position of source 2 (1.e12)
        laser = wavelength of recording laser (6328.)

This is a generalized reflection grating routine that can be used with any kind of surface.    
HOLOGRAT is called immediately after the call to the surface routine.    HOLOGRAT    adjusts 
the ray directions as if there were a reflection grating ruled on the surface.    Calls to ROT 
and DISP are allowed to occur between the surface routine and HOLOGRAT allowing 
investigation of some unusual geometries. This routine uses nord for the order number. Rays
which cannot satisfy the grating equation are vignetted. 
HOLOGRAT supports all first generation holographic gratings, i.e., those with parallel or 
spherically diverging wavefronts from two coherent sources. The actual recording geometry 
used to fabricate the grating is input to the routine.    After specifying the order number for 
diffraction, just as in GRATING, the next six parameters are the spatial coordinates of the two
coherent point sources.    The last calling parameter is the wavelength of the laser used, in 
the same units as the wavelengths used in the object call.

The geometry as shown first assumes two diverging beams.    If a parallel beam is desired, 
place the source position at a distance on the order of 1012mm.    If a converging beam is 
desired, place the source at its virtual focus.    IRT will notice that the source is below the 
surface, and assume a beam converging to the virtual focus.

; Holographic Spherical Grating test routine
; As per Grange, Applied Optics 1993
;
if( n_elements( wav ) == 0 ) wav = 970.
objcr,0.,6.25e10,0.,0.,1.e12,1000,wav
pupp
flat



disp,0,0,-1692.016
rot,0.,-22.953,0
conic,0.,1837.5
rot,0,0,180.
a1=-72.49
r1=5164.626
a2=75.738-180.
r2=4985.934
dr=3.1415927/180.
holograt,1.,r1*sin(a1*dr),0.,r1*cos(a1*dr),r2*sin(a2*dr),0.,r2*cos(a2*dr),3336.
rot,0.,180.,0.
disp,0,0,-1837.5
conicx,0.,1837.5/2.
end



LENS, index, r1, thick, r2 

index = index of refraction of material being entered (1.)    
r1 = radius of curvature of front surface (0.)
thick = thickness of lens at center (0.)
r2 = radius of curvature of back surface (0.)

LENS is a routine that calculates the behavior of standard lenses. The lens should have 
spherical or planar surfaces, and the spheres must be coaligned.    r1 and r2 are the radii of 
curvature of the front and back surfaces, just as defined in CONIC.    thick is the thickness of 
the lens at the center.    LENS assumes that the rays are going from vacuum downward 
(negative z direction) into the lens and back into vacuum afterwards.    LENS displaces the 
coordinate system downward along the z-axis by the amount thick, and leaves the rays on 
the rear surface.    If the back surface is actually a different glass it is OK to call LENS twice in
a row.    This is less efficient than calling REFRACT, but is accurate.
If r1 is positive, then the front surface will be curved upward, forming a concave front 
surface.    If r1 is 0., then it is a flat surface.    If r1 is negative, then the front surface is 
convex.    If r2 is positive, then the back surface will be curved upward, forming a convex 
surface.    If r2 is 0., then it is a flat surface.    If r2 is negative, the back surface is concave.
If index is a scalar, or a vector of length one, then that value of index is used for all the rays. 
If index is a vector of length equal to the number of rays, then the values are assigned one 
to one. If the length of index exceeds the number of rays, the extra indices are ignored.    If 
the number of rays exceeds the number of indices, the excess rays are all assigned the 
value of the last index. 
The values in index are often set with a call to the function GLASS (see the manual entry for 
GLASS to see an example).    The example below shows how to evaluate a lens based solely 
on the input index of refraction.          

;from Laikin "Lens Design" p 39
_ti='LENS'
if( length( wav ) == 0 ) wav=5000.
if( length( xoff ) == 0 ) xoff=0.
if( length( yoff ) == 0 ) yoff=0.
objp,xoff*5.e6,yoff*5.e6,1.e12,100.,wav
pupcr,0.,3.
i1=glass('BK7', lam)
lens,i1,-29.2097,.655,19.9047
disp,0,0,-.032
i2=glass('SF2',lam)
lens,i2,19.8979,.578,66.3937
disp,0,0,.578+.032+.655-48.646
flat
spots
end



                                                                                                                      



MIRROR

MIRROR follows a surface routine such as CONIC, TORUS, or CONICX to convert it to a mirror. 
MIRROR uses the normal vector components ux,uy and uz defined in the surface routine to 
reflect the rays.      

;EXAMPLE MIRROR 
; TRACE A CYLINDRICAL MIRROR 
_ti='MIRROR' 
objp,0.,0.,1.e12,100,6328. 
pupsr,50.,50. 
disp,0.,0.,-1000. 
conicx,0.,2000. 
mirror 
disp,0.,0.,1000. 
flat 
spot 
end    

                                                                                                                      



REFRACT, index

index = index of refraction of material being entered (1.)    

REFRACT is a general routine that calculates the behavior of a lens of arbitrary surface 
shape.    REFRACT should follow the surface call immediately, with only calls to DISP and ROT
in between.    The surface routine returns a ux,uy,uz vector of normals at the ray 
intersections.    REFRACT performs the calculations of new directions using Snell's Law.    
If index is a scalar, or a vector of length one, then that value of index is used for all the rays. 
If index is a vector of length equal to the number of rays, then the values are assigned one 
to one. If the length of index exceeds the number of rays, the extra indices are ignored.    If 
the number of rays exceeds the number of indices, the excess rays are all assigned the 
value of the last index. 
The values in index are often set with a call to the function GLASS (see the manual entry for 
GLASS to see an example).    The example below shows how to evaluate a lens based solely 
on the input index of refraction.          

;_ti='REFRACT' 
objp,0.,0.,1.e12,1,6328. 
pupfan,0.,0,25.,10 
disp,0.,0.,-10. 
conic,0.,-100. 
refract,1.6 
disp,0.,0.,-10. 
conic,0.,100. 
refract,1. 
focus 
flat 
rays,90.,0.
end

                                                                                                                          



THIN, f
 
f = focal length of thin lens (1000.)    

THIN simulates an ideal thin lens of focal length f.    It moves the rays to the z=0 plane where
it focuses them according to the thin lens law.    Of course, this is not a true optical element, 
but    suffices quite well when the details of a lens are not required.      

;EXAMPLE THIN 
_ti='THIN' 
objfan,1.e11,10,1.e11,10,0.,0.,1.e12,6328. 
pupca,50.,5,5 
thin,1000. 
disp,0.,0.,-1000. 
flat 
spot 
end    

                                                                                                                      



TRANGRAT, nord, d
 
nord = diffraction order number (1) 
d = groove spacing in wavelengths (3.333e4) 

TRANGRAT raytraces a transmission grating laid on the previous surface. Just as in grating 
the rulings as projected onto the z=0 plane are uniformly spaced d apart, running parallel to 
the x=0 line. TRANGRAT functions properly inside a material with an index of refraction other
than 1, so can be used after a call to REFRACT to simulate a transmission grating ruled on a 
glass surface.      
To simulate a thin transmission grating such as used in x-ray astronomy call a surface 
routine and then follow it with TRANGRAT.      

;EXAMPLE TRANGRAT 
_ti='TRANGRAT' 
wav=[10.,20.,30.,40.,50.,60.,70.,80.,90.] 
objp,0.,0.,1.e12,10,wav 
pupcr,0.,600. 
thin,9000. 
trangrat,1,20000. 
disp,0.,0.,-9000. 
flat 
spot 
end



Display Routines
Layout Surface Orientation Display
MTF Modulation Transfer Function
Oprof Overplot ray histogram
Rays Ray Paths
Rprof Radial ray distribution
Rspot Spot plots of remembered surfaces
Spot Spot Plots
Spots Spots from all the surfaces
View Element Display
Xprof Histogram of x values of rays



LAYOUT, theta, phi, nf, nl
 
        theta = altitude of view angle wrt z-axis in degrees (90.)
        phi    = azimuth of view angle wrt to z-axis in degrees (90.)
        nf      = first surface number in plot (pupil = 0)
        nl      = last    surface number in plot (nsurf = last surface)    

This routine will create screen plots of the surfaces in the optical system.    This can be a 
very effective way to determine if the TRACE is doing what you think it is doing.    Obviously, 
if large numbers of surfaces are traced, the plot can become confused.      Surfaces are 
shown as squares of the correct orientation and size to represent the optical surface.    The 
line joining the origin of each surface to the next is shown to guide the eye.
theta and phi control the angle of viewing for the system. The default shows a plot of x vs. z 
as defined at the pupil. nf and nl allow the user to pick some subset of the whole trace for 
examination.    During the trace the print diagnostics will indicate the surface number 
associated with each optical element.    thet and phi allow the system to be viewed from a 
chosen direction.      This routine will fail if recap was set to 0, because the information 
needed will not have been stored during the tracing.

objp,0.,0.,1.e12,1,6328.
pupfan,160.,5,160.,5
disp,0.,0.,-1000.
rot,10.,0.,0.
flat
mirror
rot,10.,0.,0.
disp,0.,0.,500.
rot,10.,0.,0.
rot,0.,180.,0.
flat
rot,0.,180.,0.
mirror
rot,10.,0.,0.
disp,0.,0.,-500.
flat
;rays,90,0
layout,45.,0.
end



MTF, freqmax, nbins

      freqmax = maximum frequency in mtf plot    (auto scaling)
      nbins = number of bins    (32)          

MTF calculates the modulation transfer function of the geometric ray distribution.    The MTF 
is the discrete fourier transform of the ray distribution and gives specific information about 
resolving power of the image.    The MTF is actually the modulus of the FFT as a function of 
frequency.    The phase information, which is included in the OTF (optical transfer function) is 
not given.    MTF creates a plot of the modulation up to Nyquist frequency, beyond which 
there is no useful additional information. 
      freqmax sets the frequency at the right of the mtf plot.    Use it to investigate very high 
frequency response, which may not be properly covered by the automatic scaling.
      nbins controls the number of bins in the FFT.    The default is 32 bins, which yields a plot 
only 16 points long, but is usually adequate.    N.B. nbins must be a power of 2 for use in the 
FFT, or the procedure will fail. There is one exception.    Because of the limited plotting power
of the ascii plots, if plotter is set to 'ascii', the calling value of nbins is ignored and the 
default is set to 128. 
    Note, that it is a good idea to trace a large number of rays (i.e. around a thousand or 
more) if MTF is to be used.    The FFT will be very noisy if the number of rays is small.      

;EXAMPLE MTF 
_ti='MTF' 
objp,0,0,200.,1000,7000. 
pupcr,0.,18. 
conic,0.,-105.674 
refract,1.903566 
disp,0,0,-22. 
conic,0.,-59.654 
refract,1.599812 
disp,0,0,-36. 
conic,0.,206.969 
refract,1. 
disp,0,0,-28.06 
conic,0.,-333.879 
refract,1.782476 
disp,0,0,-22. 
conic,0.,328.771 
refract,1. 
disp,0,0,-1. 
conic,0.,-169.781 
refract,1.708303 
disp,0,0,-45. 
conic,0.,150. 
refract,1.641188 
disp,0,0,-7. 
conic,0.,3608.069 
refract,1. 
disp,0,0,-58.472 
flat 
mtf 
end    



                                                                                                                      



OPROF, xbin

      xbin = size of bins    (extent/60.)

OPROF causes a histogram of the spot distribution to be plotted across the lower part of a 
previously plotted SPOT plot.    The purpose of this is to aid the eye in projecting a two 
dimensional image into a one dimensional linear response function.    It does not, however, 
provide an axis scale for interpretation of the histogram.

;EXAMPLE SPOT 
_ti='OPROF' 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
torus,500.,1000. 
mirror 
disp,0.,0.,250. 
flat 
spot,1
oprof,.005
end    

                                                                                                              



RAYS, theta, phi, nf, nl
 
        theta = altitude of view angle wrt z-axis in degrees (90.)
        phi    = azimuth of view angle wrt to z-axis in degrees (90.)
        nf      = first surface number in plot (pupil = 0)
        nl      = last    surface number in plot (nsurf = last surface)    

This routine will create screen plots of the paths of the rays through the optical system.    
This can be a very effective way to determine if the TRACE is doing what you think it is 
doing.    Obviously, if large numbers of rays are traced, the plot can become confused.      This
routine is similar to SPOTS, but differs in that it draws the ray paths, and not the spots. 
theta and phi control the angle of viewing for the system. The default shows a plot of x vs. z 
as defined at the pupil. nf and nl allow the user to pick some subset of the whole trace for 
examination.    During the trace the print diagnostics will indicate the surface number 
associated with each optical element.    thet and phi allow the system to be viewed from a 
chosen direction.      This routine will fail if recap was set to 0, because the information 
needed will not have been stored during the tracing.

_ti='RAYS' 
objp,0.,0.,1.e12,1,6328. 
pupfan,100.,11 
disp,0.,0.,-1000. 
conic,0.,2000. 
mirror 
disp,0.,0.,300. 
rot,0,45.,0 
flat 
mirror 
rot,0,45.,0. 
disp,0,0,-700. 
flat 
rays 
end    



RPROF, rbin, xc, yc

      rbin = size of bins    (default: rmax/60.)
        xc      = x position of radial center    (0.)
        yc      = y position of radial center    (0.)          

RPROF creates histograms of the spot density as a function of radius about the point [xc,yc]. 
If bin size is undefined IRT will calculate the ray with the maximum radius and make the bin 
size one sixtieth of that radius.      

;EXAMPLE RFOC 
_ti='RFOC' 
objp,0.,0.,1.e12,100,6328. 
pupcr,0,50. 
disp,0.,0.,-1000. 
conic,0.,1000. 
mirror 
disp,0.,0.,500.
flat
rprof,.005
end    

                                                                                                                      



RSPOT, nel
    
        nel = surface number to be plotted (0)

      RSPOT makes spot plots of the remembered surfaces.    It plots the x and y positions of 
the rays with equal scales on both axes if scale is 0.    It independently scales the two axes if 
scale is set to 1.    If recap has been 1 during the trace, then all the ray positions have been 
saved, and a spot plot can be created for any of the surfaces in the raytrace by using RSPOT 
and calling its surface number.    RSPOT plots the ray positions in the coordinate system of 
the surface being recalled.
    This routine will fail if recap was set to 0, because the information needed will not have 
been stored during the tracing. 

;EXAMPLE RSPOT 
_ti='RSPOT' 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
torus,500.,1000. 
mirror 
disp,0.,0.,250. 
flat 
rspot,1 
;plots the rays at the torus 
end    

                                                                                                                      



SPOT, scale
    
      scale = stretched or square scale.. 0=square, 1=stretched (0) 

      SPOT is the basic routine for displaying the results of a TRACE.    It plots the x and y 
positions of the rays with equal scales on both axes if scale is 0.    It independently scales the
two axes if scale is set to 1.      

;EXAMPLE SPOT 
_ti='SPOT' 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
torus,500.,1000. 
mirror 
disp,0.,0.,250. 
flat 
spot,1 
end    

                                                                                                                      



SPOTS, theta, phi, nf, nl
    
      theta = altitude of view angle wrt z-axis in degrees (90.)
        phi    = azimuth of view angle wrt to z-axis in degrees (90.)
        nf      = first surface number in plot (pupil = 0)
        nl      = last    surface number in plot (nsurf = last surface)    

This routine will create screen plots of the positions of the rays at each element surfaces 
through the optical system.    This can be a very effective way to determine if the TRACE is 
doing what you think it is doing.    Obviously, if large numbers of rays are traced, the plot can
become confused.    This routine differs from SPOT in that it shows all the spot plots at once, 
in their proper relative positions.    It differs from rays in that it draws the spots, and not the 
paths from one to the next. 
theta and phi control the angle of viewing for the system. The default shows a plot of x vs. z 
as defined at the pupil.    nf and nl allow the user to pick some subset of the whole trace for 
examination.    During the trace the print diagnostics will indicate the surface number 
associated with each optical element.    theta and phi allow the system to be viewed from a 
chosen direction. 
    This routine will fail if recap was set to 0, because the information needed will not have 
been stored during the tracing. 

_ti='SPOTS' 
objp,0.,0.,1.e12,1,6328. 
pupfan,100.,11 
disp,0.,0.,-1000. 
conic,0.,2000. 
mirror 
disp,0.,0.,300. 
rot,0,45.,0 
flat 
mirror 
rot,0,45.,0. 
disp,0,0,-700. 
flat 
spots 



end    



VIEW, theta, phi, nf, nl
 
        theta = altitude of view angle wrt z-axis in degrees (90.)
        phi    = azimuth of view angle wrt to z-axis in degrees (90.)
        nf      = first surface number in plot (pupil = 0)
        nl      = last    surface number in plot (nsurf = last surface)    

This routine will create screen plots of the elements through the optical system.    This can be
a very effective way to determine if the TRACE is doing what you think it is doing. This 
routine is similar to SPOTS, but differs in that it draws the element surfaces, and not the 
spots or rays.
theta and phi control the angle of viewing for the system. The default shows a plot of x vs. z 
as defined at the pupil. nf and nl allow the user to pick some subset of the whole trace for 
examination.    During the trace the print diagnostics will indicate the surface number 
associated with each optical element.    thet and phi allow the system to be viewed from a 
chosen direction. 
This routine will fail if recap was set to 0, because the information needed will not have been
stored during the tracing.
VIEW is limited in its ability to show three dimensional objects.    It shows only the cross 
section of the elements in the x-z plane of the element itself.    Thus it serves well for axi-
symmetric systems like a series of lenses, but for fully three dimensional systems it may 
provide inadequate representation.

;from Laikin p 233
;
if(n_elements(wav)==0)wav=6328.
if(n_elements(xoff)==0)xoff=0.
if(n_elements(yoff)==0)yoff=0.
objp,xoff*5.e6,yoff*5.e6,1.e12,100.,wav
pupcr,0.,.1
i1=glass('SF6',lam)
lens,i1,-.4605,.075,1.1942
disp,0,0,-.024
i2=glass('BK7',lam)
lens,i2,.2759,.022,.5778
disp,0,0,-.069
lens,i1,-.1488,.109,-.5985
disp,0,0,.075+.024+.022+.069+.109-.384
flat



end



XPROF, xbin, xc
 
        xbin = size of bins    (extent/60.)
        xc      = x center for the histogram          

XPROF creates histograms of the spot density as a function of x.    Because of its one 
dimensional nature it is particularly suited to displaying resolution of spectrographs.    If bin 
size is undefined then IRT calculates the full extent of the ray positions and divides it by 
sixty to form the bin size.      

;EXAMPLE XPROF 
_ti='XPROF' 
objp,0.,0.,1.e12,1000,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
conic,0.,1000. 
mirror 
disp,0.,0.,500. 
flat 
xprof,.005 
end    

                                                                                                                      



Analysis Routines
PV Print a Vector (ray)
QRMS RMS of ray cosines
RFOC Show Radial Focus vs Z axis
RMS RMS of ray x and y values
XFOC Show X Focus vs Z axis



PV, n
 
 n = ray number to be printed (0)      

PV creates a brief printout of the status of one ray.    It prints ray 0 unless otherwise 
specified.    PV is called automatically by each routine through use of the PV user option, but 
can also be called directly by the user.        

;EXAMPLE PV 
pri=1 
objp,0.,0.,1.e12,10,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
rot,20.,30.,0. 
pv,1 
end      

Which creates the screen printout:      

Point Object of 10 rays      at x = 0.000000e+00, y = 0.000000e+00, z = 1.000000e+12      
wavelength = 6.328000e+03 
Circular Random Entrance Pupil        radii, inner=0 , outer= 50
                                                            at x=0.000000e+00 , y=0.000000e+00 
Origin Moved to 0.000000e+00, 0.000000e+00, -1.000000e+03 
Coordinate Rotation of 20.000000 about X-axis 
Coordinate Rotation of 30.000000 about Y-axis
    num = 1    x = -4.795497e+02    qx = 4.698463e-01    lam = 6.328000e+03
    status=1    y = -3.552379e+02    qy = 3.420201e-01    nind= 1.000000e+00
                                  z = 8.026403e+02        qz = -8.137977e-01



QRMS( ax )

      ax = rms axis: 0=r, 1=x, 2=y (0)          

QRMS is a function which returns as its value the root mean square of the ray direction 
cosines about the center of mass.    If ax is 1 it returns the rms of the qx values, if ax is 2 it 
returns the rms of the qy values.    If ax is 0 it returns the blur which is the square root of the 
sum of the squares of all the qx and qy values.    In all cases the average value is subtracted 
so that the result is independent of direction.      

;example qrms 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
torus,1000.,500. 
mirror 
disp,0.,0.,500. 
flat 
print,'qrms in radial direction = ',qrms(0) 
print,'qrms in x direction = ',qrms(0) 
print,'qrms in y direction = ',qrms(0) 
end        

Which creates the following printout:

QRMS in radial direction = 1.15291e-01 
QRMS in X direction = 4.63602e-02 
QRMS in Y direction = 1.05560e-01 



RFOC, zmin, zmax

      zmin = minimum z to be considered (-1.) 
      zmax = maximum z to be considered (1.)            

This routine is primarily for use after the raytrace is complete, and analysis of the result is 
desired.    RFOC assumes that the rays are traveling more or less parallel to the z-axis.    It 
splits the interval between zmin and zmax into 60 points and for each of these points it 
calculates the rms blur of the rays in the radial direction.    It automatically plots the blur as a
function of z over the zmin to zmax interval.    It also prints the value of z at which the rms is 
a minimum, and the value of the minimum. 
      A typical application of this routine is for finding the best focal plane for an optical 
system.    One or two runs of RFOC will rapidly yield information on the best focus.      

;example rfoc 
_ti='rfoc' 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
conic,0.,1000. 
mirror 
rfoc,0.,1000. 
end    

                                                                                                                      



RMS( ax )

      ax = rms axis: 0=r, 1=x, 2=y (0)          

RMS is a function which returns as its value the root mean square of the ray positions about 
the center of mass.    If ax is 1 it returns the rms of the x positions, if ax is 2 it returns the 
rms of the y positions.    If ax is 0 it returns the rms blur which is the square root of the sum 
of the squares of all the x and y positions.    In all cases the average position is subtracted so 
that the result is independent of position.      

;example rms 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
torus,1000.,500. 
mirror 
disp,0.,0.,500. 
flat 
print,'RMS in radial direction = ',rms(0) 
print,'RMS in X direction = ',rms(0) 
print,'RMS in Y direction = ',rms(0) 
end        

Which creates the following printout:

RMS in radial direction = 2.68369e+01 
RMS in X direction = 4.67547e-02 
RMS in Y direction = 2.68368e+01 



XFOC, zmin, zmax
 
      zmin = minimum z to be considered (-1.) 
      zmax = maximum z to be considered (1.)            

This routine is primarily for use after the raytrace is complete, and analysis of the result is 
desired.    XFOC assumes that the rays are traveling more or less parallel to the z-axis.    It 
splits the interval between zmin and zmax into 60 points and for each of these points it 
calculates the rms blur of the rays in the x direction.    It automatically plots the blur as a 
function of z over the zmin to zmax interval.    It also prints the value of z at which the rms is 
a minimum, and the value of the minimum. 
      A typical application of this routine is for finding the best focal plane for an optical 
system.    One or two runs of XFOC will rapidly yield information on the best place to put the 
detector.      

;example xfoc 
_ti='xfoc' 
objp,0.,0.,1.e12,100,6328. 
pupcr,0.,50. 
disp,0.,0.,-1000. 
conic,0.,1000.
mirror 
xfoc,0.,1000. 
end



The IRT routine LENS needs index of refraction information to operate. This must be provided
by the user.    A single index can be used for all the rays in a call to    LENS, or the user can 
explicitly provide    a vector of indices. This vector can be calculated in a user-written routine 
for any special application.    However, the most common use of the lens routine involves 
visible light and standard kinds of glass.    IRT makes the indices of refraction for over 200 
glasses from Schott Inc. easily available.    They are stored in the ascii file glass.dat, and can 
be read directly. 

GLASS( mat, lam)

mat = name of    glass to be used    ('BK7')    
lam = wavelength array (6328.)    

The index of refraction for each ray is calculated by GLASS and is returned as a double 
precision vector.    The    vector is stored in a user-defined parameter, which is then used as 
the calling parameter to LENS. 
GLASS first opens the disk file called glass.dat, searching the three default directories.    
Within glass.dat it searches for a glass with the same name as mat.    When it finds the file it 
uses the parameters associated with the glass and plugs them into an equation which gives 
the index as a function of wavelength.    Hence, one must be careful that the wavelengths 
and wavelength units are consistent. The default units are angstroms, but will automatically 
convert it to the system parameter wunits if it has been set to one of the other standard 
options.    If GLASS fails to find the glass it prints a warning message and returns all ones.      

;EXAMPLE GLASS
pri=1 
pv=0 
_ti='GLASS TEST' 
objp,0.,0.,1.E12,1,[4047.,6328.,10140.] 
pupca,10.,10,10 
disp,0.,0.,-10. 
conic,0.,-100. 
inds = glass( 'BK7', lam)    
lens,inds, -100.,10.,100.
disp,0.,0.,-91.6134 
flat 
spot
end    





Optimization Routines
Optimize Old Optimizer 
Simplex Simplex Optimizer

The optimization routines in IRT have been written to be very general in nature.    
The user creates a raytrace which uses parameters to define the aspect of the design that 
needs optimization.    Included in the .irt file the user defines a parameter called merit, which
measures quantitatively the goodness of the raytrace. The smaller the value of merit, the 
better the design.    Then, the user defines the parameters to be optimized and calls 
OPTIMIZE or SIMPLEX.    The process is best understood by example. 
As a rule, SIMPLEX is superior to OPTIMIZE.    It will find the optimum faster, and will be less 
likely to give up the search before finding the true optimum.    OPTIMIZE uses a linear 
parameter search along each axis independently.    If the optimizing parameters are 
correlated, this can lead to very lengthy runs.    SIMPLEX, using the simplex optimization 
mathematics, identifies the optimum direction for improvement and moves that way.
These routines have been written to give complete generality in approach to parameter 
optimization, but without sacrificing ease of use for the operator.



OPTIMIZE, file, par0, par1, -- ,par9 

file = name of .irt file to be optimized 
par = names of parameters to be optimized    

Optimize will change the value of the parameter as the search proceeds.    When the search 
stalls, the user can reduce the step size and continue.    It is better to use the array versions 
of pupil and objects, otherwise the random errors will interfere with the smooth convergence
of the optimization.
An Example: Create a file called OPT2.IRT that contains the following commands:      

objp,0.,0.,1.e12,1,6328. 
pupca,50.,5,5 
disp,0.,0.,-300. 
conic,e,rad 
mirror 
disp,0,0,300. 
flat 
merit=rms(0) 
end    

Then type the following commands:    

rad=650. 
e=1.1 
optimize,opt2,rad,e

Here we have a trace where the parameters to be optimized are the radius of curvature and 
eccentricity of a conic section mirror.    The figure of merit is simply the rms spot size on-axis.
The optimum solution is, of course, a parabola (e=1) with a radius of curvature of 600 that 
will focus on the defined focal plane.    OPTIMIZE will find this solution.    However the closer 
one starts to the solution, the faster IRT will converge. 
For a more sophisticated example consider a design which optimizes the eccentricity and 
radius of curvature so that the on-axis and two degrees off-axis response are at the best 
balance.    Change OPT2.IRT to be:        

objp,0.,0.,1.e12,1,6328. 
pupca,50.,5,5 
disp,0.,0.,-300. 
conic,e,rad 
mirror 
disp,0,0,300. 
flat 
merit=rms(0) 
objp,6.e10,0.,1.e12,1,6328. 
pupca,50.,5,5 
disp,0.,0.,-300. 
conic,e,rad 
mirror 
disp,0,0,300. 
flat 
merit=merit+rms(0) 
end    



Then type:      

rad=600. 
e=1. 
optimize,opt2,rad,e

The optimization search then starts forcing the eccentricity lower, toward spherical, and 
slightly increasing the radius of curvature. In fact, IRT forces the value of e negative, which is
a non-physical solution.    In such a case, the user should intervene and set the value of e to 
its minimum acceptable value, then optimize the remaining parameters.    With e set to 0. 
the best radius of curvature is 601.354. 
Optimization makes use of two system parameters.    First, is merit, which IRT uses as the 
definition of the measure of the optimization of the solution. If merit is not defined in the .irt 
file, then optimization cannot proceed.    The second parameter is stepsize.    This parameter  
is used to let the algorithm estimate how accurately the parameters must be specified.    The
default for stepsize is .0001, which    suffices    for many applications.    However, if precision 
does not need to be so good, an increase is advised, simply by setting the parameter (eg    
stepsize=.1 ).    If precision is needed in excess of .0001, then stepsize should be reduced. 
Sometimes in an optimization, the precision required of the multiple parameters to be 
simultaneously optimized varies widely.    For example, if one parameter specifies the focal 
length, then precision of .01 is ample, while another parameter may specify a deformation 
and require precision of 1.e-14.    In such a case, one can set stepsize to 1.e-14, and proceed.
This will slow it greatly, and in some cases cause a failure to properly converge.    Two 
solutions are available. First, one can proceed to optimize independently.    This works if the 
parameters are not closely coupled.    An alternative is to optimize a dummy parameter that 
needs the same stepsize, and then is modified before being used in the .irt file.    For 
example, a parameter called delta may require precision of 1.e-14.    Instead, optimize a 
parameter called delta2, and include a line    delta=delta2*1.e-10 in the .irt file before delta 
is used. 



SIMPLEX, file, par0, par1, -- ,par9 

file = name of .irt file to be optimized 
par = names of parameters to be optimized    

SIMPLEX will change the value of the parameter as the search proceeds.    It is better to use 
the array versions of pupil and objects, otherwise the random statistical errors will interfere 
with the smooth convergence of the optimization.
An Example: 
Create a file called OPT2.IRT that contains the following commands:      

objp,0.,0.,1.e12,1,6328. 
pupca,50.,5,5 
disp,0.,0.,-300. 
conic,e,rad 
mirror 
disp,0,0,300. 
flat 
merit=rms(0) 
end    

Then type the following commands:    

rad=650. 
e=1.1 
simplex,opt2,rad,e

Here we have a trace where the parameters to be optimized are the radius of curvature and 
eccentricity of a conic section mirror.    The figure of merit is simply the rms spot size on-axis.
The optimum solution is, of course, a parabola (e=1) with a radius of curvature of 600 that 
will focus on the defined focal plane.    SIMPLEX will find this solution.    However the closer 
one starts to the solution, the faster IRT will converge. 
For a more sophisticated example consider a design which optimizes the eccentricity and 
radius of curvature so that the on-axis and two degrees off-axis response are at the best 
balance.    Change OPT2.IRT to be:        

objp,0.,0.,1.e12,1,6328. 
pupca,50.,5,5 
disp,0.,0.,-300. 
conic,e,rad 
mirror 
disp,0,0,300. 
flat 
merit=rms(0) 
objp,6.e10,0.,1.e12,1,6328. 
pupca,50.,5,5 
disp,0.,0.,-300. 
conic,e,rad 
mirror 
disp,0,0,300. 
flat 
merit=merit+rms(0) 
end    



Then type:      

rad=600. 
e=1. 
simplex,opt2,rad,e

The optimization search then starts forcing the eccentricity lower, toward spherical, and 
slightly increasing the radius of curvature. In fact, IRT forces the value of e negative, which is
a non-physical solution.    In such a case, the user should intervene and set the value of e to 
its minimum acceptable value, then optimize the remaining parameters.    With e set to 0. 
the best radius of curvature is 601.354. 
SIMPLEX makes use of four system parameters.    First, is merit, which IRT uses as the 
definition of the measure of the optimization of the solution. If merit is not defined in the .irt 
file, then optimization cannot proceed.    The second parameter is verbose.    If it is set to 
one, then IRT will provide a printout of the value of merit at the end of each iteration, 
otherwise, it will not report back until the end of the session, which may make you feel 
abandoned and tempted to reboot the system. 
The parameter stepsize is used to let the algorithm estimate how accurately the parameters 
must be specified.    The default for stepsize is .001, which suffices for many applications. 
However, if precision does not need to be so good, an increase is advised, simply by setting 
the parameter (eg    stepsize=.1 ).    If precision is needed in excess of .001, then stepsize 
should be reduced.
The fourth parameter is scale.    It is initialized to 1, and that is usually sufficient.    scale sets 
how far outward in parameter space the algorithm tests the value of merit.    If you 
encounter difficulties with SIMPLEX converging in a locally correct, but globally wrong 
direction, you can try increasing or decreasing scale.
Sometimes in an optimization, the precision required of the multiple parameters to be 
simultaneously optimized varies widely.    For example, if one parameter specifies the focal 
length, then precision of .01 is ample, while another parameter may specify a deformation 
and require precision of 1.e-14.    In such a case, one can set stepsize to 1.e-14, and proceed.
This will slow it greatly, and in some cases cause a failure to properly converge.    Two 
solutions are available. First, one can proceed to optimize independently.    This works if the 
parameters are not closely coupled.    An alternative is to optimize a dummy parameter that 
needs the same stepsize, and then is modified before being used in the .irt file.    For 
example, a parameter called delta may require precision of 1.e-14.    Instead, optimize a 
parameter called delta2, and include a line    delta=delta2*1.e-10 in the .irt file before delta 
is used. 



MULTIPATH SYSTEMS
The procedures described in this chapter have several purposes.    First, they greatly simplify 
the tracing of nested optical systems such as are frequently encountered in grazing 
incidence systems.    Second, they allow beams to be split and recombined after traveling 
different optical paths such as in interferometers.    Third, they allow entirely separate traces 
to be easily combined. 
The structure of a basic multipath system looks like the following:      

object 
pupil 
tracing 
multipath    
group      
tracing      
groupend      
group      
tracing    
groupend      etc.      
multiend    
tracing    
end        

The way this works is that MULTIPATH establishes that the beam is about to be split.    It 
stores the information about the present state of the rays in a disk file that the user does not
see.    GROUP identifies that a subpath is being started. Tracing of that particular subpath 
then proceeds until GROUPEND is encountered.    GROUPEND stores the traced subpath rays 
in yet another file, or if this is not the first subpath appends them to the rays already there. 
GROUPEND then restores the rays in the state they were stored by MULTIPATH.    Another 
GROUP is then started. This continues with rays being accumulated until MULTIEND is 
encountered. MULTIEND puts the accumulated rays in the normal common block so that 
raytracing can continue from there as normal.    The MULTIPATH environment deletes all files 
with a .tem extension.    Therefore, the user should not keep files by that name in the 
directory being used for tracing. 
Note that each group may have a different set of coordinate changes, and thus rays cannot 
be simply put back together.    To handle this GROUPEND moves the rays to the PUPIL 
coordinates via UNTRACE before storing them.    MULTIEND returns the rays to the coordinate
system that was in place when MULTIPATH was called. 

MULTIPATH    

MULTIPATH sets up the splitting of the beam by storing the rays information as described 
above.      

GROUP

GROUP starts a subgroup to be traced through a subpath that follows.          

GROUPEND



GROUPEND closes out and saves the group being traced and restores the original ray set.      

MULTIEND    MULTIEND closes out the splitting of the beam and return all rays to the 
coordinates used when MULTIPATH was encountered. 

;example of multipath 
;four co-aligned spherical mirrors 
_ti='multipath' 
objp,0.,0.,1.e12,500,6328. 
pupcr,0.,1000. 
disp,0.,0.,-1000. 
; 
multipath 
; 
group 
disp,-70.,0.,0. 
mask,1,0.,300. 
conic,0.,2000. 
mirror 
groupend 
; 
group 
disp,70.,0.,0. 
mask,1,0.,300. 
conic,0.,2000. 
mirror 
groupend 
; 
group 
disp,0.,-70.,0. 
mask,1,0.,300. 
conic,0.,2000. 
mirror 
groupend 
; 
group 
disp,0.,70.,0. 
mask,1,0.,300. 
conic,0.,2000. 
mirror 
groupend 
; 
multiend 
disp,0.,-70.,1000. 
flat 
spot 
end



TOLERANCE ANALYSIS
The simulation of tolerance errors is initiated by setting tolon to 1.    The default is 0, and 
causes no tolerance adjustments to be made.    The values of the various tolerances can be 
set at any time and are used only when tolon is 1. 

Position and Orientation

To simulate an error in position or orientation IRT internally calls DISP and ROT, calls the 
optical element, and then calls ROT and DISP to reverse the misplacement.      The 
displacement is called first, with a call DISP,tolx,toly,tolz followed by ROT,tolqx,tolqy,tolqz.    
These statements are called automatically at the beginning and end of each surface.    
Diagnostics listing the coordinate changes are given if the print diagnostics are turned on.      

;example position tolerance 
; a rowland circle mount 
_ti='conicgrat' 
tolx=10. 
toly=.1 
tolz=.1 
tolqx=.01 
tolqy=.01 
tolqz=.01 
d=2156. 
objcr,0.,5.e10,0.,0.,1.e12,100,6000. 
pupp,0.,0. 
disp,0.,0.,-396.11 
rot,0.,-8.,0. 
tolon=1 
conic,0.,400. 
grating,1,d 
tolon=0 
rot,0.,188.,0. 
disp,0.,0.,-396.11 
flat 
spot 
end 






