The Neural Networks ToolKkit

version 2.0

September 1993

pl1o

Southern Scientific

Introduction

What it is The Southern Scientific Neural Networks Toolkit is for
programmers. It is intended to form the basis for NN
designs ranging from the conventional to the bizarre. To
do this, the Toolkit was designed using OOP techniques,
keeping absolute flexibility in mind, containing the basic
objects and methods which are likely to occur in any
architecture, but still providing the freedom to try out new
insights and ideas with a minimum of programming. It is
assumed that the user of this product understands OOP
techniques as implemented in Borland Pascal, is familiar
with basic linear algebra, can produce derivatives of simple
functions and has read basic literature on Backpropagation
Neural Networks.

The Toolkit is independent of Windows and DOS, that
is, you can use it in both environments.

What it contains The Toolkit comes in 4 main parts, implemented as Turbo
Pascal units, and includes some utilities :

@ The basic unit, NNunit, containing the 'grandfather' Neuron and Neuralnet objects, from
which the user produces descendants suitable for a specific design. Source code is available

separately.

@ The dynamic matrices and vectors unit, Dyna2, which contains objects to deal with the
connections between neurons, and provides, as an added bonus, tools for numerical analysis
applications which require dynamic matrix data structures. Source code is available

separately.

€ The Backpropagation unit, BPNet2, implements a standard backpropagation network,
and provides an example of the use of the objects in the first two units. Source is

provided.

@ The Brainmaker unit, Brain, provides access to the structure and weights of a network
trained with Brainmaker, a popular product from California Scientific (no relation). Source

is provided.

@ A working windows Backprop application, SLUG3.EXE, with source, to illustrate the
use of the Toolkit. Use SLUGHLP2.HLP for information on how to use SLUG3. You
should also look at DOSDEMO2.PAS for a quick look at how easy it is to make a backprop

net work with the Toolkit.

@ Several other small utilities. Check your distribution disk

An Overview

It is useful to think of a neural network in the most general
terms, without preconceived notions of connectivity or
function. Very many neural network paradigms exist, and
to use the Toolkit effectively, you should think of a generic
neural network simply as a bag of neurons, each connected
to every other neuron, and use this as a foundation for the
construction of specific architectures.

The Neuralnet object This is how the Neuralnet object (the 'grandfather’ object) is

defined. It provides a starting point when you build a new
architecture. The Neuralnet object is a descendant of
TCollection, an extremely useful object provided by
Borland. Not surprisingly, Neuralnet is a TCollection of
Neuron objects (more about these later). The toolkit
supplies tools to connect and disconnect neurons, and to
group sets of neurons conceptually into what are called
neuron fields. Think of fields as subsets of neurons in the
neural network.

Fields and the fieldlist Fields are pointers to TCollections of neurons, like the

The Weights matrix

neuralnet itself, and a data type definition is provided for
this. The Neuralnet object contains a data member called
fieldlist, a pointer to a TCollection (again!), which
contains all the fields defined in the network. Fields need
not be disjoint, and indeed, the whole network can be a
field in the fieldlist. The Neuralnet object has methods to
deal with fields, and you should use these mechanisms to
provide structures like input, hidden and output layers in a
network. It will be very helpful to understand the
TCollection object, and study the interface sections of the
units before you start. Later on, we'll walk through the
construction of a Backprop network object to illustrate all
this.

All neurons have connections of some sort, usually
specified by a numeric 'weight' which indicates the strength
of connections between neurons. For instance, if neuron 1,

with output O7 is connected to neuron 2, there is a weight
wq2 which scales the total contribution of neuron 1 to
neuron 2 : thus, neuron 2 receives a total contribution of
O1*wq2 from neuron 1. |If you think of any network, like
our basic Neuralnet object, then the calculation of 'what
goes into' each neuron is very simply provided by
multiplication of a weights matrix by a vector containing all
outputs (the vector is a premuiltiplier in our implementation).
Each entry, A;, in the resultant vector is then 'what goes
into' neuron i. This is sometimes called the activation of
the i'th neuron, and is the value upon which the neuron
operates to provide its subsequent output. The figure
illustrates the relation between the weights and the neuron

numbering.

Thus, the Neuralnet object has a data member called
Weights, which is a pointer to a dynamic matrix object,
which can shrink and grow with the network, should this be
necessary. We will discuss the details of this later.

What is important at this point, is to realise that the entries
in the weights matrix completely specify the connectivity of
the network, and has N2 entries for a network with N
neurons. For sparsely connected networks, like backprop
nets, this is not efficient, but it certainly is necessary in the
‘grandfather' Neuralnet object, since we have to cater for all
possible constructions. There has to be a number (even if
it is zero) for the connection from any neuron to every other
neuron.

Fields for input and output Every neural net must be presented with data,
and produces a result. Therefore, it makes sense to

Neuralnet Methods

The Neuron object

include input and output fields of neurons as data members
in the 'grandfather' object. These are defined as type
neuronfield (pointers to Tcollection of neurons).

The Neuralnet object shouldn't 'overspecialise'. In our
judgement, the structures discussed above are the only
ones which all neural nets have in common, so these are
the only ones in the Neuralnet object.

A detailed description of the methods in the neuralnet
object follows below. All of them are concerned with the
manipulation of fields, connections, neurons and general
design concerns, so that it becomes easy to provide
descendants with particular architectures. The Neuralnet
object is streamable.

Every neuron receives data, processes it in some way, and
provides an output, either into other neurons, or to the
outside world. Therefore, a 'grandfather' neuron object
must implement data and methods for these requirements.

Neuron data members The Neuron object has data fields for the signalfunction

Neuron methods

Working together

it applies to its total input, the derivative of this function, a
scalar to scale incoming data, datastuctures to hold its
current state and a history of its associated error.

The 'grandfather neuron does only very simple things : it
can change its signalfunction, set its scalar, calculate and
report its present state, and fire. The fire method presents
its output to the outside world.

The Neuron, Neuralnet, Dynamat (for weigths) and
Dynavec (dynamic vector, for data manipulation) objects
work together to provide the functionality you need to
effectively build efficient neural networks. To work
creatively with these, and to derive the maximum benefit
from the Toolkit, you should understand the TCollection
object well.

It is worthwhile to remember that the Tcollection's entries
can point to any data structure at all (preferably objects,
otherwise you have to override some useful methods in
Tcollection). For instance, if you want to have a
rectangular array of neurons, you could, if you understood
Tcollections, easily modify the Dynamat object to
reference these intuitively - you don't have to use numbers
in a Dynamat or Dynavec. See the following full
description of how these objects were built.

The Dynamic Vectors and Matrices unit.

On your distribution disk you should find the Borland units
DYNA2.TPU, DYNA2.TPP and DYNA2.TPW, for DOS,
DOS protected mode and Windows 3.1 respectively. Both
of these contain the same functionality. You need not
learn two sets of procedure and variable names. The
same source was compiled for DOS and Windows.

THE INTERFACE SECTION

const
dynaErrmsgcount = 10;
DynaErrMsg : array[l..dynaerrmsgcount] of string([80]
=('<<<Index out of range in dynavec.put>>>"',
'<<<Index out of range in dynavec.get>>>"',
'<<<Negative or zero index in
dynavec.expandat>>>",
'<<<Index out of range in
dynavec.contractat>>>",
'<<<Index out of range in
dynamat.deletecol>>>",
'<<<Index out of range in
dynamat.deleterow>>>",
'<<<Row index out of range in
dynamat.get>>>",
'<<<Row index out of range in
dynamat.put>>>",
'<<<Index out of range in
dynamat.getrow>>>",
'<<<Index out of range in dynamat.getcol>>>"'
);
var
DynaError : integer; {flags error conditions}
type
pfloat = ~float;
{=m }
float = object (tobject) { A floating point object }
{=m }
num : double;
constructor init (a: double);
function getnum: double;
procedure putnum(a: double);
constructor load(var s: tstream);
procedure store (var s: tstream); virtual;
end;
const
Rfloat : tstreamrec = (
objtype : 11500;
vmtlink : ofs(typeof (float)”");
load :@float.load;
store :@float.store
) i
type
Pdynavec = “dynavec;

constructor init(alimit,adelta

{ A simple collection of

integer);

double) ;

function get (i: integer): double;
procedure put(i: integer; num
procedure expandat (i integer);

procedure contractat (i

integer) ;

function norm double;
end;
const
Rdynavec tstreamrec = (
objtype 11501;
vmtlink ofs (typeof (dynavec) ™) ;
load :@dynavec.load;
store :@dynavec.store
)i
type

Pdynamat = “dynamat;

nrow integer;
ncol integer;
rows : pcollection;
cols : pcollection;

constructor init (maxrow, maxcol

constructor load(var s: tstream);

procedure store(var s: tstream);
procedure addrow (i integer) ;
procedure addcol (3 integer);
procedure deleterow (i integer);
procedure deletecol (j integer) ;
procedure put (i, J integer; value double) ;
function get (i, integer) double;
procedure getrow (1 integer; var pvec pdynavec) ;
procedure getcol (J integer; var pvec pdynavec) ;
destructor done; wvirtual;
end;
const
Rdynamat tstreamrec = (
objtype 11502;
vmtlink ofs (typeof (dynamat) ") ;
load :@dynamat.load;
store :@dynamat.store
)i
type
Pcroupier = “Croupier;
{mmmmmmm oo)
croupier = object (tobject)
{mmmmmmm e)
index pdynavec;
decksize integer;

constructor init (size integer);
procedure newdeck; virtual;
function deal (deck pcollection)
destructor done; virtual;

end;

function dynadotprod(a,b
procedure printdynaerror;

dynavec)

{of dynavec }
{of dynavec }
integer);

pointer; virtual;

double;

float}

10

THE DYNAMIC VECTOR OBJECT

This is simply a descendant of the Tcollection object
supplied by Borland (i.e. a collection of floating point
objects called Float), with some extra methods to do things
that one would want to do with vectors which can shrink
and grow. Note that indices start at one, not zero, as in the
Tcollection object.

Dynavec Data members

constructor dynavec.init(alimit, adelta : integer);
Initialises the vector by calling the Tcollection init method,
and sets all entries in the vector to zero by constructing the
floats on the heap and inserting them into the collection.
This provides an initialised vector, which can immediately
be manipulated with the get and put methods.

procedure dynavec.put(i: integer; num : double);
Changes the value of the i'th entry to num. Posts an error
in dynaerror if i doesn't make sense.

function dynavec.get(i: integer): double;
Returns the value of the i'th entry if i is OK, else posts an
error in dynaerror.

procedure dynavec.expandat(i : integer);
If i positive, expands the vector at position i. Inserts a zero
at index i and shifts all items one index up. Expands after
the last item if i is too large. If i < O, reports an error in
dynaerror.

.procedure dynavec.contractat(i : integer);
Deletes and disposes the entry with index i and shifts items
with higher indices down. If i doesn't make sense, does
nothing and posts an error in dynaerror.

function dynavec.norm : double; {returns the norm of the object}

Returns the square root of the dotproduct of the vector with
itself.

11

12

THE DYNAMIC MATRIX OBJECT

The dynamat object is a descendant of tobject, and stores
its entries as a matrix in two collections of dynavecs, one
for the rows, and one for the columns. Since a Dynavec is
an array of pointers, entries are, of course, not duplicated.

Dynamat data members

nrow : integer; Count of number of rows in the matrix.

ncol : integer; Count of number of columns in the matrix.

rows : pcollection; {of dynavec }
A pointer to a TCollection which contains the row vectors.
The row vectors are, in turn, Dynavecs.

cols : pcollection; {of dynavec}
A pointer to a TCollection which contains the column
vectors. The column vectors are also Dynavecs.

Dynamat methods

constructor dynamat.init(maxrow,maxcol : integer);
Initialises the matrix on the heap with maxcol columns and
maxrow rows. All entries are zero.

constructor dynamat.load(var s : tstream);
Reads the matrix from the stream s.

procedure dynamat.store(var s : tstream);
Stores the matrix on the stream s by writing nrow, ncol and
then storing the rows from row 1 to row nrow.

procedure dynamat.addrow(i : integer);
Adds a row at rowindex i. Rows with index>i shift up. If
i<1 the row is added before row 1, and if i>nrow the row is
added as the last row. All entries in the new row are zero.
The columns are adjusted to reflect the additional row.

13

procedure dynamat.addcol(j : integer);
Adds a column to the matrix in the same way as described
for addrow.

procedure dynamat.deletecol(j : integer);
Deletes column j from the matrix, and disposes its entries.
Each row is adjusted to reflect the change. If j doesn't
make sense, posts an error in dynaerror.

procedure dynamat.deleterow(i: integer);
Deletes row i from the matrix in the same way as described
for deletecol.

function dynamat.get(i,j : integer): double;
Returns the value at row i, column j. If the indices don't
make sense, posts an error in neuralerror.

procedure dynamat.put(i,j : integer; value : double);
Sets the entry at row i, column j to value.

procedure dynamat.getrow(i : integer; var pvec : pdynavec);
Pvec should be nil on entry - this routine simply sets it to
point to row i. If i doesn't make sense, posts an error in
dynaerror

procedure dynamat.getcol(j : integer; var pvec : pdynavec);
Returns with pvec pointing at column j. If j doesn't make
sense, posts an error in dynaerror

destructor dynamat.done;
Disposes the rows and their entries, then deletes all entries
in the columns and disposes the columns. Calls
tobject.done.

14

THE CROUPIER OBJECT

This object was constructed in order to present training
data to a neural net in random order. Some nets train
better this way. The Croupier deals from a dynavec object
(the deck), but does not change it.

Index is a dynavec, and decksize an integer.

constructor Croupier.Init(size : integer);

Initialises decksize to size (i.e. records the size of the deck
it will deal from) and constructs an index to randomly pick
from.

procedure Croupier.newdeck;

Calls index”.freeall and reconstructs index. It is the users
responsibility to call this method at the correct time during a
long 'dealing’ session, i.e. whenever the deck is exhausted.

function Croupier.Deal(deck : pcollection) : pointer;

Returns a pointer to a randomly selected entry in deck.
The used entry in index is disposed. If index is exhausted,
returns NIL. Deck is a pointer to any non-empty TCollection.
No effort is made to check the compatibilty of index and
deck.

destructor Croupier.Done;

Disposes index and calls tobject.done

UNIT INITIALISATION

begin

end.

registertype
registertype
registertype
registertype

randomize;
dynaerror := 0;

{Stream Registration}
rfloat);
rcollection);
rdynavec) ;
rdynamat) ;

15

The Basic unit

On your distribution disk you should find the Borland units
NNUNIT.TPU, NNUNIT.TPP and NNUNIT.TPW, for DOS,
DOS protected mode and Windows 3.1 respectively. Both
of these contain the same functionality. You need not
learn two sets of procedure and variable names. The
same source was compiled for DOS and Windows. This
unit contains the 'grandfather' objects Neuron and
Neuralnet.

THE INTERFACE SECTION

{ Neural Nets basic unit.
VERSION 2.0 June 1993

}
UNIT NNUNIT2;

{F+}

{
=}

INTERFACE

I~

{$ifdef windows}
uses objects, dyna2, strings,winprocs, wintypes;

{Selse}
uses objects, dyna2;
{Sendif}
CONST
smallnumber = 1.0e-9;
neuralerrmsgcount = 13;
NeuralErrMsg : array[l..neuralerrmsgcount] of string[80]
{1} =('<<- Index zero or negative in addneuron >>>',
{2} '<<- Index out of range in getneuron >>>',
'<<- Neuron not in net in deleteneuron >>>',
{4} '<<- Index out of range in addfield >>>"',
'<<- Field not in fieldlist in deletefield
>>>1,
{6} '<<- Field not in fieldlist in killfield
>>>1,
'<<- Neuron has no inputs above threshold
>>>1,
{8} '<<- Datalength doesn''t match neuronfield
>>>1,
'<<- Field not in fieldlist in connect >>>',
{10} '<<- Field not in fieldlist in connectbetween
>>>1,

'<<- Field not in fieldlist in

setfieldsignal >>>"',

>>>',

{12} '<<- Could not allocate space - net is empty

{13} '<<- Could not make field >>>1
)i

16

VAR

NeuralError integer; {flags error conditions }
TYPE
pnum = “~double;
pNeuronstate = “Neuronstate;
Neuronstate = record
activation double;
output double;
end;
Neuronfield = pcollection; { of neurons }
psignalfunc “signalfunc;
signalfunc = function (a double) : double;
funcname = string[20];
{Signalfunctions}
signaltype = (linear,
arctangent,
tanh,
halfsine,
step,
sigmoid,
gaussian,
one,
zero) ;
{Derivatives of signalfunctions}
dsignaltype = (darctangent,
dtanh,
dhalfsine,
dsigmoid,
dgaussian
)i
CONST
reststate neuronstate = (activation:0;output:0);
signalnames array[signaltype] of funcname =
('linear',
'arctangent',
'tanh',
'halfsine' ,
'step',
'sigmoid' ,
'gaussian' ,
'one',
'zero');
dsignalnames array[dsignaltype] of funcname =
('darctangent',
'dtanhfast',
'dhalfsine' ,
'dsigmoidfast' ,
'dgaussian'
);
TYPE
Pneuron= “Neuron;
{=mm oo)
Neuron = OBJECT (Tobject)
{=mm oo)
sfunctype signaltype;
sfunc signalfunc; { transfer function}
dsfunc signalfunc; { derivative of transfer
function}
scalar double; { scalar for activation}

17

state : Neuronstate; { unfired; for timing purposes}

output : double; { value at output after firing}
error : double; { current error}

lasterror : double; { previous error}

constructor init (xfer : signaltype;

initial: Neuronstate);
constructor load(var s: tstream);
procedure store(var s: tstream);
procedure setsignal (xfer : signaltype);
procedure setscale (s : double);
procedure getstate(var s: Neuronstate);
procedure calcstate (sigma : double);
{sigma = inner prod of weights and network inputs,

normally...}

const

procedure fire; {make output available}
destructor done; virtual;
end;

Rneuron : tstreamrec = (
objtype : 11400;
vmtlink : ofs(typeof (neuron) ™) ;
load : @neuron.load;
store : @neuron.store

) i
pneuralnet = “neuralnet;

Neuralnet = OBJECT (tcollection) { of Neuron's }

{All substructures are referenced through pointers. }

Weights : pdynamat;
fieldlist : pcollection; {each entry points to a
collection of neurons -
}
inputfield : neuronfield; { pointer to input collection }
outputfield: neuronfield; { pointer to output collection }

constructor init(total: integer);
constructor load(var s: tstream);

procedure store (var s: tstream);

procedure addneuron (i : integer; var aneuron : pneuron);

procedure getneuron (i : integer; wvar aneuron : pneuron);

procedure calcallstates; wvirtual;

procedure deleteneuron (var aneuron : pneuron);

procedure addfield (var field : neuronfield;
startat, endat : integer);

procedure deletefield(var field : neuronfield);

procedure fireall;

procedure killfield(var field : neuronfield);

procedure getinputsof (thisone : pneuron;

threshold : double;
var field : neuronfield); virtual;

procedure presentinputto (thefield : neuronfield;
thedata : pdynavec) ;

procedure connect (var f:neuronfield; weight: double);

procedure disconnect (var f:neuronfield);

procedure connectbetween (var from, into: neuronfield;
weight: double);

procedure disconnectbetween (var from,into: neuronfield);

procedure propagate; virtual;

procedure randomweights (alimit : double);

procedure nofeedback;

procedure setfieldsignal (var field : neuronfield;s

signaltype) ;

destructor done; virtual;

end;

18

const

Rneuralnet : tstreamrec = (
objtype : 11401;
vmtlink : ofs(typeof (neuralnet) ™) ;
load : @neuralnet.load;
store : @neuralnet.store
);
{prefix 'f' => signal
function
prefix 'fd' =>
derivative
}
function flinear (a: double): double;

function farctan (a:double): double;

function fdarctan (a:double): double;

function ftanh(a: double): double;

function fdtanhfast (tanhx: double) : double;

function fhalfsine (a: double): double;

function fdhalfsine(a: double): double;

function fstep(a: double): double;

function fsigmoid(a: double): double;

function fdsigmoidfast (sigx: double): double;

function fgaussian(a: double): double;

function fdgaussian(a: double): double;

function fone(a : double) : double; {always one. For offset
neurons}

function fzero(a: double): double;

function findsignalfunc(deriv: boolean; ftype : signaltype): pointer;

procedure printneuralerror;
{ IMPLEMENTATION... }

{ Manage heap alloc errors }
function NeuralHeapError (size : word): integer; far;

{Set it up so that allocation errors do not abort,
but return a nil pointer

begin
Neuralheaperror := 1;
end;
{mmmm UNIT INITIALIZATION
_______________________ }
begin
neuralerror := 0;
randomize;

{Stream registration}
registertype (Rneuron) ;
registertype (Rneuralnet) ;
Heaperror := (@NeuralHeapError;

end.

19

THE NEURON OBJECT

The Neuron object is a descendant of TObject. It
encapsulates the behaviour of a generic neuron.

Neuron data members

Sfunctype : Signaltype Contains the signal funtion type used by the neuron.

Sfunc : Signalfunc

dSfunc : Signalfunc

Scalar : double

State : neuronstate

Output : double

Neuron methods

Signaltype is an enumerated type with possible values
linear, arctangent, halfsine, step, sigmoid and gaussian.

A procedural variable denoting the signalfunction to call.
Sfunc takes one parameter of type double (most often the
activation of the neuron) and returns a double.

A procedural variable denoting the function which returns
the derivative of Sfunc. dSfunc takes one parameter of
type double and returns a double.

Contains a scalar for scaling of the activation before
transformation by sfunc.

A record holding the current state (activation and output) of
the neuron. State.output is the value that appears at
neuron.output after fire is called. This variable is a 'buffer'
for the neuron state, so that it may remain hidden from the
network until the algorithm requires a new output, and the
neuron formally fires. This is useful for timing purposes in
some networks.

The output from the neuron available to the network for
interaction with other neurons. Becomes updated when the
neuron fires.

constructor Neuron.init(xfer : signaltype; initial: neuronstate);

The neuron is initialized by specifying a signalfunction to be
xfer and the initial neuron state to be neuronstate (see the

20

constant 'reststate'). Calls setsignal, sets output, error and
lasterror to zero and sets scalar to 1.0.

procedure Neuron.setsignal(xfer : signaltype);
Sets sfunctype to xfer and calls findsignalfunc to establish
the address of the signalfunction. Sets Sfunc and dSfunc to
the correct functions. After this call, the neuron uses Sfunc
to calculate its output. The user may use dSfunc as
necessary, e.g. in a training algorithm.

procedure Neuron.setscale (s : double);
Simply sets scalar to s.

procedure Neuron.getstate(var s: Neuronstate);
Returns the current state of the neuron in s.

procedure Neuron.calcstate(sigma : double);
Sigma = inner prod of weights and inputs to this neuron.
Sets activation to sigma and calls the signalfunction set by
setsignal with parameter scalar*sigma.

procedure Neuron.fire; Sets neuron.output to the current value in

state.output, thereby making the output of the neuron
available to the outside world

21

THE NEURALNET OBJECT

NEURALNET FIELDS

Weights :

The Neuralnet objects is a descendant of TCollection. It
contains the neurons in the net, and methods for their
manipulation into any specific type of network. This object
is probably not very useful as it stands, and is intended to
provide basic services for descendants.

pdynamat;

Pointer to the weights matrix. See the unit DYNA2.

fieldlist: pcollection;

inputfield
outputfield

Fieldlist points at a collection of neuronfields(each
neuronfield is a pointer to a collection of neurons). These
fields represent collections of neurons that the user
considers to be logical units, such as an input field, hidden
field and output field. Neuralnet methods can access and
manipulate fields in this list. Once fields are inserted into
fieldlist, the neuralnet object assumes responsibility for their
manipulation and disposal. It is wise to use only methods
of the neuralnet object to manipulate a field of neurons after
it becomes the property of the network. Note that it may
sometimes be useful to insert the whole network into
fieldlist.

: neuronfield;

: neuronfield;

Pointers to output and input fields. These are NIL after the
init method is called, and are provided for convenience,
since most nets have them. You need not use them.

NEURALNET METHODS

Constructor Neuralnet.init(total: integer);

The number of neurons specified in total are created on the
heap with the linear signal function and in the reststate.
The neurons are inserted into the collection. The weights

22

matrix is created on the heap with dimensions (fotal,total)
and each entry is set to 1.0. The fieldlist is created on the
heap with space for 3 entries. Inputfield and outputfield
are set to NIL, and are NOT inserted in fieldlist. If an error
occurs with allocation of space, an error is posted in
neuralerror.

constructor neuralnet.load(var s: tstream);

Loads a network from the stream s. Calls Tcollection.load,
then uses get to laod the weights matrix. Subsequently
does the following : Reads the number of neurons, and the
indices in neuralnet, of the neurons in each field,
reconstructs the fields and updates the fieldlist. Reads
indices in fieldlist of the input and output felds and
reconstructs these fields.

procedure neuralnet.store(var s: tstream);
Stores the network on a stream. Performs the following
sequence : Calls the inherited store method and writes the
weights matrix. Writes the number of fields. For each
field, writes the number of neurons in the field, and for each
of these neurons, its index in neuralnet. Writes the indices
in fieldlist of inputfield and outputfield to the stream.

procedure Neuralnet.addneuron(i : integer; var aneuron : pneuron); virtual;
Makes a new neuron, adds it at position i in the net
(neurons with numbers >= i move one up) and fixes the
weights matrix. On exit, aneuron points to the new,
completely disconnected neuron, the i'th in the net
(indexof(aneuron) = i-1). Disposing of the new neuron is
the net's responsibility. Aneuron is NIL on failure. If i
doesn't make sense, an error is posted in neuralerror. The
new neuron doesn't belong to any of the fields in fieldlist.

procedure Neuralnet.getneuron(i : integer; var aneuron : pneuron); virtual;
Returns with aneuron pointing to neuron # i in the net, i.e
neuron with index i-1. Aneuron is NIL if i doesn't make
sense.

23

procedure

procedure

procedure

procedure

procedure

Neuralnet.deleteneuron(var aneuron : pneuron);virtual,;

Deletes and disposes the neuron from the net and deletes it
from any fields in fieldlist. Fixes weights matrix. If the
neuron is not in the net, nothing is done and an error is
posted in neuralerror.

Neuralnet.addfield(var field: neuronfield; startat,endat

integer);virtual;

On entry, field points to nothing. A field is initialized,
neurons are inserted and the new field inserted into the
fieldlist. The new field contains neurons from # startat to #
endat (counting from 1) inclusive, in the network. No
neurons are created. Disposing the field becomes the
responsibility of the network. If startat and endat do not
index neurons in the network, nothing is done and an error
is posted in neuralerror.

Neuralnet.deletefield(var field : neuronfield); virtual;

Removes a field from the fieldlist. The items in field are
deleted from field (not disposed) and the field is disposed
of. Field is NIL on exit if successfull. If field is not in
fieldlist, nothing is done, and an error is posted in
neuralerror.

Neuralnet.killfield(var field : neuronfield); virtual;

Removes field from fieldlist and deletes and disposes
neurons in field from the net by calling deleteneuron (i.e.
weights matrix is corrected, and errors reported). Deletes
all items in field. Disposes field and returns nil in field if
sucessfull. If field is not in fieldlist, nothing is done and an
error is flagged in neuralerror.

Neuralnet.getinputsof(thisone : pneuron;

threshold : double; var field : neuronfield); virtual;

Finds neurons with absolute value of connections (weights)
to thisone greater than threshold. Assumes field is nil on
entry. Makes a new field, returns all neurons that meet this

24

procedure

procedure

procedure

procedure

procedure

criterion in field. Field is inserted into fieldlist. Interprets
2nd index of weights matrix as destination - weights(i,j)
means from neuron i into neuron j. If no neurons meet the
criterion, nothing is done, field is NIL on exit and an error is
posted in neuralerror. May be slow!

Neuralnet.presentinputto(thefield : neuronfield; thedata

pdynavec); virtual;

Presents numeric data in thedata to thefield, and calculates
the new state of each neuron in thefield. Does not fire the
neurons. If the number of items in thefield is not the same
as the number of items in thedata, nothing is done and an
error is posted in neuralerror. See also
neuralnet.propagate.

Neuralnet.connect(var f:neuronfield; weight: double);virtual;

Fully connects a field of neurons by setting the relevant
entries in the weights matrix to weight. If fis not in fieldlist,
does nothing and posts an error in neuralerror.

Neuralnet.disconnect(var f: neuronfield);virtual;

Fully disconnects a field of neurons. Simply calls connect
with a weight parameter of 0.0.

Neuralnet.connectbetween(var from, into: neuronfield; weight:

double); virtual;

Completely connects two neuronfields in one direction only
by placing weight in the relevant positions of the weights
matrix. Thus, every neuron in from now propagates data
to all neurons in into . Does not remove existing
connections in the other direction. If either neuronfield is
not in fieldlist, does nothing and posts an error in
neuralerror.

Neuralnet.disconnectbetween(var from,into: neuronfield);

virtual;
Calls connectbetween with a weight parameter of 0.0;

25

procedure

procedure

procedure

procedure

Neuralnet.propagate; virtual;
Fires all neurons, then calculates all new states. Calls
fireall and calcallstates.

Neuralnet.randomweights(alimit : double); virtual;
Randomizes all entries in the weights matrix to a random
value between -limit...+limit with resolution 1/1000 of this
interval.

Neuralnet.nofeedback; virtual;
Sets all entries on the diagonal of the weights matrix to 0.0,
thus preventing all neurons from feeding directly back into
themselves.

Neuralnet.setfieldsignal(var field : neuronfield; s : signaltype);
virtual;
Sets the signalfunction for all neurons in field to s. If field
is not in fieldlist, does nothing and posts an error in
neuralerror.

procedure Neuralnet.fireall ; virtual,;

Fires all neurons in the net by calling neuron.fire for each
one.

procedure Neuralnet.calcallstates; virtual;

Calculates the new state of each neuron. Calculates
dotproducts of outputs and connected weights for each

neuron - i.e. for neuron j, calculate Sum(over i) of
[output(i)*weights(i,j)] and calculate a new activation for
neuron j. For neurons which do not calculate their

activation by the dotproduct of its inputs and weights, this
method should be overridden.

destructor Neuralnet.done; virtual;

Disposes the weights matrix. Empties fieldlist and all fields
in fieldlist and disposes these. Calls Tcollection.done.

26

The Signalfunction

This is the function applied by the neuron to its activation
value to produce its output. This function is often called by
other names, but we will use signal function or transfer
function throughout. The most commonly used
signalfunction is probably the sigmoid function, shown
below. Many others exist, and you can experiment with

your own.
The sigmoid
; ,/-/
o8
o //
<«
0.2 /
o 4""//‘/

5 4 -3 -2 -1 O 1 2 3 4
Activation (a)

Signoida)=10¢

How the signalfunctions work
The Toolkit makes use of procedural variables to handle the
assignment of signalfunctions to neurons. When you study
the interface section of NNUnit2, you will see that we've
implemented a type called signalfunc, as follows:

TYPE
signalfunc = function(a : double): double;
This allows a series of signalfunctions of this type to be
written, and we define corresponding enumerated types ,
as shown below :
Type
signaltype = (linear,
arctangent,
tanh,
halfsine,
step,
sigmoid,
gaussian,

one,
zero) ;

{Derivatives of signalfunctions}

dsignaltype = (darctangent,
dtanh,
dhalfsine,
dsigmoid,
dgaussian
)

27

The setsignal method This means you can now pass the neuron a variable of
type signaltype, and ask it to change its transfer function to
the indicated type. The Neuron object has a method called
setsignal which does this in conjunction with a function
called findsignalfunc.

They look like this :

procedure neuron.setsignal (xfer : signaltype);

{ Changes the neuron's signal function.

}

begin
sfunctype := xfer;
@sfunc := findsignalfunc(false, xfer);
@dsfunc := findsignalfunc (true, xfer);
end;
{mmm }
function findsignalfunc(deriv : boolean; ftype : signaltype): pointer;
{mmm }
{If deriv is true, returns pointer
to the derivative function
of ftype
NB - See p 55 of programmers guide
TPW
}
begin

if not deriv then
case ftype of

linear : findsignalfunc := (Q@flinear);
arctangent: findsignalfunc := (Q@farctan);
tanh : findsignalfunc := (@ftanh);
halfsine : findsignalfunc := (Q@fhalfsine);
step : findsignalfunc := (Q@fstep);
sigmoid : findsignalfunc := (@fsigmoid);
gaussian : findsignalfunc := (@fgaussian);
one : findsignalfunc := (Q@fone);
zZero : findsignalfunc := (Q@fzero);

end

else

case ftype of
linear : findsignalfunc := (Q@fone);
arctangent: findsignalfunc := (Q@fdarctan);
tanh : findsignalfunc := (@fdtanhfast);
halfsine : findsignalfunc := (Q@fdhalfsine);
step : findsignalfunc := (Q@fzero);
sigmoid : findsignalfunc := (Q@fdsigmoidfast);
gaussian : findsignalfunc := (@fdgaussian);
one : findsignalfunc := (Q@fzero);
zZero : findsignalfunc := (Q@fzero);

end;

end;

This means you can 'ask' the neuron to change its signal
function, and it will look up the address of the function and
its derivative. After this call, the neuron will use these

28

functions to calculate its new state (see Neuron.calcstate).
You can now have your neurons adjust their signalfunctions
while your network runs. You can, of course, also mix
different signal functions in the same network - the neuron
object knows what to do, and you needn't worry about it
after your call to Neuron.setsignal.

Your own signalfunctions

Important !

CONST

If you write your own signal function and derivative, there
are several ways to implement it. For example, you can
simply override Neuron.setsignal and replace it with similar
code, where the call to findsignalfunction is replaced with
a call to your own version.
Some signal functions defined in the Toolkit (the sigmoid
and hyperbolic tangent functions), have derivatives defined
in terms of the function value, not the function argument,
making calculation of the derivative faster if the function
itself is already known. For example, the derivative, Der(x)
of the sigmoid function is defined as :

Der(x) = sigmoid(x){ 1-sigmoid(x) }
so that the parameter passed to the derivative is not x,
but Sigmoid(x). This is useful in situations like backprop
training, where the derivative is called for after the neuron
fires (i.e. Sigmoid(x) is known). Take care to remember
this if you use the provided findsignalfunc function.

The signaltypestypes each have a ascii string associated
with them, in case you need these in a dialog or list box :

reststate : neuronstate = (activation:0;output:0);
signalnames : array[signaltype] of funcname =

('linear',
'arctangent',
'tanh',
'halfsine' ,
'step',
'sigmoid' ,
'gaussian'
'one',

'zero');

dsignalnames : array[dsignaltype] of funcname =

('darctangent',
'dtanhfast',
'dhalfsine' ,
'dsigmoidfast' ,
'dgaussian'

29

Provided Signalfunctions
Here are the signalfunctions provided in NNUnit2 :

function farctan(a: double): double;

farctan := 2.0/pi*arctan(a); { ...limits are -1 and 1 }

var
e,inv : double;
begin
e 1= exp(a);
inv := 1.0/e;
ftanh:= (e-inv)/ (e+inv);
end;

function fdtanhfast (tanhx: double): double; {tanhx is ftanh(x) }

begin
fsigmoid := 1.0/(1.0 + exp(-a));
end;
{mmm }
function fdsigmoidfast (sigx: double): double; {sigx is fsigmoid(x) }
{mmm }
begin
fdsigmoidfast := sigx* (l-sigx);
end;

30

function fhalfsine(a: double): double;

begin
if (a > pi/2.0)
then fhalfsine := 1.0
else
if (a < -pi/2.0)
then fhalfsine := -1.0
else
fhalfsine := sin(a);
end;

function fdhalfsine(a: double): double; {Cheat with derivative}

const
threshold = pi/2;
begin
if (a > threshold)
then fdhalfsine := 1.0
else
if (a < -threshold)
then fdhalfsine := -1.0
else
fdhalfsine := cos(a);
end;

if a<0 then fstep := -1 else fstep := 1;

function fzero(a: double): double;

31

The BPNet2 Unit

On your distribution disk, you should find Borland units
BPNET2.TPU, BPNET2.TPP and BPNET2.TPW, for DOS,
DOS protected mode and Windows 3.1 respectively. You
need not learn two sets of procedure and variable names.
The same source was compiled for DOS and Windows.

In this unit, a simple backpropagation network object
(SimpleBPNet) is implemented. This serves as an
illustration of the Toolkit's use. Source is included on your
distribution disk.

The Interface section

UNIT Bpnet2;
{F+}

{ IMPLEMENTS SOME BACKPROP NETS. REQUIRES THAT SIGNALFUNCTION
DERIVATIVE FUNCTION TAKE FUNCTION ITSELF AS PARAMETER. SEE
UNIT NNunit.

{$SIFDEF WINDOWS}
uses objects,nnunit2,dynaz;

{SELSE}
uses objects,nnunit2,dynaz;
{SENDIF}
TYPE
Psimplebpnet = “simplebpnet;
(=== }
simpleBPnet = OBJECT (neuralnet)
(=== }
{A simple 3 layer Backpropnet with momentum}
learn : double;
momen : double;
deltaw : pdynamat;
offset : neuronfield;
hiddenfield : neuronfield;
countin,
counthidden,
countout : word;

constructor init (incount,hiddencount, outcount : word;

double) ;

lcoeff, momentum

32

constructor load(var s : tstream);
procedure store(var s : tstream);
procedure setconnections;
procedure shake(a : double);
procedure feedforward(datavec : pdynavec);virtual;
procedure calcallstates; virtual;
procedure backprop (var upperfield, lowerfield : neuronfield);
procedure backpropall (errorvec : pdynavec) ;
procedure getdeltaweights (lcoeff, momentum : double);
procedure train(errorvec : pdynavec) ;
destructor done; virtual;

end;

const

RsimpleBPnet : tstreamrec = (
objtype : 11402;
vmtlink : ofs(typeof (simplebpnet)) ;
load : @simplebpnet.load;
store : @simplebpnet.store

type

PFastbpnet = "“Fastbpnet;

{A fast 3 layer Backpropnet with momentum}

modfactor : double;
constructor init (incount,hiddencount,outcount : integer;
lcoeff,momentum, kmod :
double) ;
procedure backpropall (errorvec : pdynavec) ;
procedure getdeltaweights (lcoeff, momentum : double);
end;

begin {Stream registration etc }

registertype (Rsimplebpnet) ;
end.

33

The SimplebpNet object

This object is a descendant of Neuralnet. It overrides
some of Neuralnet's methods, and adds others to
implement backpropagation of errors, changing of weights
and the use of a momentum term. The source code for
this object is provided on your distribution diskette. We
give a detailed description of this construction to illustrate
the use of the base objects.

SimpleBPNet data members

learn : double;

momen : double;

deltaW : pdynamat;

offset : neuronfield;

The learning rate of the network. This parameter
determines the stepsize when adjusting weights.

The momentum term. This gives the net the capability to
'remember' the direction of the step taken during the
previous training step, and prevents the optimization
achieved in the previous step being completely undone in
the current training step.

This is a dynamat which holds the changes to be made to
the weights matrix during the current training step. Also
used to implement momentum, since it holds the previous
change to the weights matrix on entry to any training step.
This is required for the momentum term.

Most backprop nets have an offset neuron. This is a
neuron with a constant output of 1, with trainable weights to
the hidden and output layers.

hiddenfield : neuronfield;

The neuron field holding the hidden layer's neurons.
Remember that the parent object has input and output
fields.

34

countin, counthidden, countout : word;

These simply reflect the number of neurons in each layer.
The sum of these numbers is one less than the total
number of neurons in the network when there is an offset
neuron.

SimpleBPnet Methods

constructor

SimpleBPNet.init (incount, hiddencount, outcount: word;

Icoeff, nomentum : double);

Incount , hiddencount and outcount specify the number of
input,hidden, and output layer neurons respectively. Lcoeff
and momentum are the learning coefficient and the
momentum parameter. Neuralnet.init is called to initialise
the net with one extra neuron (the offset neuron). The
other data members are set , and the four neuron fields are
prepared by calls to addfield (the fourth field contains only
the offset neuron). The first incount neurons are in
inputfield, the next hiddencount neurons in hiddenfield, the
next outcount neurons in outputfield, and the last neuron in
the net is placed in offsetfield. ~The code looks like this :

neuralnet.init (incount+hiddencount+outcount+1) ;

countin := incount;
counthidden := hiddencount;
countout := outcount;
{fully connected...}
{insert fields}
addfield (inputfield, 1, incount) ;
addfield (hiddenfield, incount+1l, incount+hiddencount);
addfield (outputfield, incount+hiddencount+1, count-1) ;
(

addfield (offset, count, count) ;

After this, the signalfunctions for each field are specified
and the structure of the net is provided by a call to the
setconnections method :

setfieldsignal (hiddenfield, sigmoid) ;
setfieldsignal (outputfield, sigmoid) ;
setfieldsignal (offset,one);
setconnections;

Setconnections makes sure the net feeds from inputfield
into hiddenfield into outputfield (i.e. a feedforward net) and
removes feedback and connections within fields. Finally,

35

the output neuron is switched on and the DeltaW matrix is
initialized.

constructor SimpleBPNet.load(var s : tstream);
This constructor reads a SimpleBPNet from a stream by
calling neuralnet.load. Learn and momen are read directly,

followed by the deltaW matrix.
{mmmm)

constructor simplebpnet.load(var s: tstream);

var
i,3 : integer;
begin
neuralnet.load(s);
s.read(learn, sizeof (learn));
s.read (momen, sizeof (momen)) ;
deltaw := pdynamat(s.get);
Remember that fieldlist is now available (from neuralnet).
All that remains is to decide which fields in fieldlist are the
offset and hidden fields (the input and output fields were
sorted out when neuralnet was loaded from the stream).
The next two items on the stream are these indexes,
followed by the neuroncounts in the fields:
s.read(i,sizeof (1))
s.read(j,sizeof (3));
if (1> -1) then offset := fieldlist”™.at(i);
if (j> -1) then hiddenfield := fieldlist”.at(j):;
s.read(countin, sizeof (countin));
s.read (counthidden, sizeof (counthidden));
s.read (countout, sizeof (countout));
end;

procedure SimpleBPNet.store(var s : tstream);
This is simply the previous procedure reversed :
)

procedure simplebpnet.store(var s: tstream);

i,3 : integer;

neuralnet.store (s) ;
.write(learn,sizeof (learn));
.write (momen, sizeof (momen)) ;
.put (deltaw) ;

:= fieldlist”.indexof (offset);

:= fieldlist”.indexof (hiddenfield) ;
.write(i,sizeof (i));
.write(j,sizeof(j));

.write (countin, sizeof (countin));
.write (counthidden, sizeof (counthidden));
.write (countout, sizeof (countout));

n 0 n n nY-Hn o n

end;

36

procedure SimpleBPNet.setconnections;
This procedure illustrates how easy it has become to make

a net do exactly what you want.

procedure simpleBPnet.setconnections; {connect feedforward net}

nofeedback;

disconnectbetween
disconnectbetween
disconnectbetween
disconnectbetween

inputfield, outputfield) ;
outputfield, inputfield);
outputfield,hiddenfield);
hiddenfield, inputfield) ;

offset, inputfield);
inputfield,offset);
hiddenfield, offset);
outputfield,offset);

disconnectbetween
disconnectbetween
disconnectbetween
disconnectbetween

disconnect (inputfield);
disconnect (outputfield) ;
disconnect (hiddenfield) ;

end;

procedure SimpleBPNet.shake(a : double);
Perturbs the current weights by between -a and a away

from their current values.

procedure simpleBPnet.shake (a double) ;
{mmmm }
const
resol = 1000;
var
i,3 : integer;
factor : double;
range : double;
begin
range 1= 2%*a;
factor := range/resol;
for i := 1 to count do
for j := 1 to count do

weights”.put(i,j, weights”.get(i,j) +
random (resol) *factor-a) ;

setconnections;
end;

procedure SimpleBPNet.feedforward(datavec : pdynavec);virtual;

This method allows data to be propagated through the net,
from the input layer until the output layer reflects the result

of the current input:

procedure simpleBPnet.feedforward(datavec : pdynavec);

37

3 : integer;

begin
presentinputto (inputfield, datavec) ;
for j =1 to 3 do
begin
propagate; {call fireall & calcallstates}
end;
end;

procedure SimpleBPNet.calcallstates; virtual;
This procedure 'implements' the weights matrix
connectivity by calculating each neuron's activation by inner
product of only the relevant weights and outputs.

Here, we've overridden the Neuralnet method, since it's too
wasteful - it uses the whole weights matrix.

source, dest,temp ¢ pneuron;
lowerfield, upperfield : neuronfield;

procedure calc;

var
i,3,k,1 : integer;
sum, a : double;
begin
for j := 1 to (upperfield”.count) do { Destination }
begin
dest := upperfield”.at(j-1); {get neuron}
1 := indexof (dest)+1; {number in net}
sum = 0.0; {initialize
dotproduct}
for i := 1 to lowerfield”.count do {calc dotprod}
begin
source := lowerfield”.at(i-1);
k := indexof (source)+1;
a := weights”®.get (k,1);
sum := sum + source”.output * a ;
end;
dest”.calcstate(sum); {new state}
end;
end;
begin
temp := offset”.at(0); {get offset neuron}
lowerfield := inputfield; {do first layer}
lowerfield”.insert (temp) ; {put offset in lowerfield}
upperfield := hiddenfield;
calc;
lowerfield”.delete (temp) ; {remove offset from lower layer}
lowerfield := hiddenfield; {second layer}
lowerfield”.insert (temp) ;
upperfield := outputfield;
calc;

lowerfield”.delete (temp) ;

38

end;

procedure SimpleBPNet.backprop(var upperfield,lowerfield : neuronfield);

This is the key procedure in a backprop net. It propagates
errors form an 'upper field' of neurons (where each neuron's
error is known) to a 'lower field' of neurons (where each
neuron's error is to assigned by this procedure). In this
implementation, derivatives of signal functions of lowerfield
are assumed to have been defined in terms of the
signalfunction itself (see the earlier discussion of
signalfunctions).

procedure simpleBPnet.backprop (var upperfield, lowerfield :

neuronfield);
{mmm }

{Propagates error back from upperfield
to lowerfield. Upperfield errors have
been assigned on entry. Signalfunctions
MUST be sigmoid or tanh.

}

var
i,3,k, 1 integer;
field : neuronfield;
lower, upper : pneuron;
nstate : neuronstate;
thiserror : double;
sum : double;
begin
for i := 1 to lowerfield”.count do
begin
sum := 0.0;
lower := lowerfield”.at (i-1);
thiserror := lower”.dsfunc(lower”.output);
1 := simplebpnet.indexof (lower) + 1;
for j := 1 to upperfield”.count do { ...for every upper
neuron}
begin
upper := upperfield®.at (j-1);
k := simplebpnet.indexof (upper) + 1;
sum := sum + weights”.get (1, k) *upper”.error;
end;
with lower” do

begin

lasterror := error;

error := thiserror*sum;

end;

end;
end;

procedure SimpleBPNet.backpropall(errorvec : pdynavec);

39

This procedure assigns errors to all neurons with input
weights. On entry, errorvec contains the raw errors at the
output layer, calculated somewhere else in the users code.
Take care to pass the correct parameter to the derivative !

If you make a network with more than one hidden layer, you
will probably want to call this method in your new
backpropall method to take care of the last hidden layer.
You would then write a very similar piece of code to
calculate errors for your other hidden layers.

procedure simpleBPnet.backpropall (errorvec : pdynavec) ;
{mm }
var
i : integer;
thisone : pneuron;
thiserror : double;
out : double;
begin
{scale raw errors for each output
neuron}
for i := 1 to outputfield”.count do
begin
thiserror := errorvec”.get (1) ;
thisone := outputfield”®.at(i-1);
out := thisone”.output;
thisone”.error := thisone”.dsfunc (out)*thiserror;
end;

{propagate back to the lower layers}

backprop (outputfield, hiddenfield) ;
end;

procedure SimpleBPNet.getdeltaweights(lcoeff, nomentum : double);
All errors are assigned; thus all changes in weights can be
calculated. For each link, only the error at the destination
neuron is needed. All weights are updated here.

procedure simpleBPnet.getdeltaweights (lcoeff, momentum : double);
{------------— 44— —"————— }
var

i,3 : integer;

source,dest : pneuron;

w, dw : double;

bumpup : double;

hiddenstart,

outstart : word;

procedure getdelta;

begin
getneuron (j,dest) ;
getneuron (i, source) ;

40

dw := deltaW”.get (i,7);

bumpup := lcoeff * (dest”.error) * (source”.output)
+ momentum*dw;

deltaw”.put (i, j,bumpup) ;

Weights”.put (i, j,Weights”.get (i, j) +tbumpup) ;

end;
begin
hiddenstart := countin+l;
outstart := countin+counthidden+1;
for i := 1 to countin do {loop from input
neurons}
for j := hiddenstart to outstart-1 do {to hidden neurons}
getdelta;
for 1 := hiddenstart to outstart-1 do {loop from hidden
neurons}
for j := outstart to count-1 do {to output neurons }
getdelta;
{ Now do weights from offset neuron}
i := count;
for j := countin+l to count-1 do
getdelta;
end;

procedure SimpleBPNet.train(errorvec : pdynavec);
Simply uses the errorvector to get all errors and calculates

all weight changes.
procedure simplebpnet.train (errorvec : pdynavec) ;
backpropall (errorvec) ;

getdeltaweights (learn, momen) ;
end;

destructor SimpleBPNet.done; virtual;
Calls the inherited destructor and disposes of the DeltaW

matrix.

neuralnet.done;
dispose (deltaW,done) ;
end;

41

The Brain unit

On your distributiondisk, you should find the Borland units
BRAIN.TPU, BRAIN.TPP and BRAIN.TPW, for DOS, DOS
protected mode and Windows 3.1 respectively.

This unit provides an interface to the networks written by
California Scientific's Brainmaker program. It contains 3
routines to extract data from Brainmaker .NET files, and
uses them to implement a backprop network which scales
its own input and output data to and from real-world
values. Together, these tools allow you to quickly construct
networks which give the same results as a 3 layer
Brainmaker network with standard transfer functions.

The unit will only work with BP7, which provides the
necessary string manipulation tools.

Source is provided.

The interface section

INTERFACE

uses objects,dyna2, cfmtools, strings, bpnet2, nnunit2;

type

Pscalingbpnet = “scalingbpnet;

scalingbpnet = object (SimpleBPnet)
{-------—-- }
inputscale : pdynavec;
outputscale : pdynavec;
inputbuffer : pdynavec;
inmin, inmax,
outmin, outmax : pdynavec;

constructor init (incount,hiddencount,outcount : word;

lcoeff, momentum

double) ;
constructor load(var s : tstream);
procedure store(var s : tstream);
destructor done;virtual;
procedure getscaledata (var Brainfile : text);
procedure scaleinputs(var inscales : dynavec);virtual;
procedure scaleoutputs(var outscales : dynavec);virtual;

procedure feedforward(datavec : pdynavec);virtual;
procedure runthrough (input, result : pdynavec);

end;

42

const

RScalingBPnet : tstreamrec = (
objtype : 11410;
vmtlink : ofs(typeof (Scalingbpnet) ™) ;
load : @scalingbpnet.load;
store : @scalingbpnet.store
)
function BrainWeights (var thefile : text; mat : pdynamat) : boolean;
function BrainNetSize (var thefile: text;

function

pdynavec)

var inputs, hiddens, outputs : word): boolean;

Brainscales (var thefile: text; inscales,outscales,

inmin, inmax,
outmin, outmax :

: boolean;

The Auxiliary functions

function BrainWeights(var thefile : text; mat : pdynamat) : boolean;

Reads a Brainmaker .NET file and extracts the weights into
a single matrix, mat. The matrix (of type dynamat), must
be the correct size before entry, i.e. NxN, where N is the
number of neurons. A single offset neuron is assumed to be
included in N. False is returned on any error. The file is
already open on entry.

function BrainNetSize(var thefile: text; var inputs, hiddens, outputs : word):

boolean;

Finds the size of a 3 layer Brainmaker net stored in thefile.
Returns number of neurons in the input, hidden and output
layers. Thefile should have been opened before entry to
this routine. Returns true if successful.

function Brainscales (var thefile: text; inscales, outscales, inmin, inmax,

outmin, outmax : pdynavec) : boolean;

Finds, in thefile, minimum and maximum value used for
each input and each output neuron and returns this data in
the last four parameters. Returns the scalefactors to be
used for each input and output in inscales and outscales,
i.e. multiplication of the data range by the scalefactor
produces data in the range [0,1]. All dynavecs must be of
correct size on entry. Note that only the scaling is

43

calculated, not the offset, which is dictated by the particular
neuron's transfer function. Thus, inmin, inmax, outmin,
outmax contain this data on exit.

File thefile is open on entry.

The ScalingBPNet object

This object is derived form the Simple BPNet object, and
implements scaling of data presented to and produced by
the network. A method for extracting scaling data from a
Brainmaker .NET file is provided, but you can also use this
object with scaling data generated elsewhere. The
ScalingBPNet object thus acts on and produces 'real-world’
data directly.

Note that you have to take some care if you want to train a
ScalingBPNet after using the runthrough method - although
this produces 'real-world' ouput in the result parameter,
the output of each neuron is reset to its native value.
When you calculate the error, and plan to use the inherited
train method, take this into account.

ScalingBPNet data members

Inputscale

Outputscale

Inputbuffer

A pointer to a Dynavec which contains the scale factors for
the input data. Thus, the first entry in Inputscale” is the
number by which each 'real-world' input to neuron 1 in the
input field must be multiplied after applying the offset but
before entry into the network.

A pointer to a Dynavec which contains the scale factors for
the output data. Entry i scales the output of the i'th
neuron in the output layer.

A pointer to a Dynavec which buffers the input data (in the
feedforward method) in order to apply an offset .

Inmin, inmax, outmin, outmax

44

Pointers to Dynavecs containing the minimum and
maximum values over the whole training set.

ScalingBPnet methods

constructor scalingbpnet.init(incount, hiddencount, outcount : word; Icoeff,
momentum : double);
Calls the inherited init method and instantiates the other

data members.

begin
inherited init (incount,hiddencount, outcount, lcoeff, momentum) ;
new (inputscale, init (incount, 1));
new (outputscale,init (outcount,1l));
new (inputbuffer,init (incount,1));
new (inmin, init (incount, 1)) ;
new (inmax, init (incount, 1)) ;
new (outmin, init (outcount, 1)) ;
new (outmax, init (outcount, 1)) ;

end;

constructor scalingbpnet.load(var s : tstream); This constructor loads the
network from a stream. Calls the inherited method, then

loads the datamembers in the order they were written.

begin

inherited load(s);

inputscale := pdynavec (s.get);

outputscale := pdynavec(s.get);

inputbuffer := pdynavec(s.get);

inmin := pdynavec (s.get) ;

inmax := pdynavec (s.get);

outmin := pdynavec (s.get) ;

outmax := pdynavec (s.get);
end;

procedure scalingbpnet.store(var s : tstream);
Simply calls the inherited method, then writes the extra

data members to the stream.

begin

inherited store(s);
.put (inputscale) ;
.put (outputscale) ;
.put (inputbuffer);
.put (inmin) ;
.put (inmax) ;
.put (outmin) ;
.put (outmax) ;

n n n n nn n

end;

destructor scalingbpnet.done;
Disposes of the extra data members if necessary and calls

the inherited destructor.
begin

45

if inputscale <> nil then dispose (inputscale,done) ;
if outputscale <> nil then dispose (outputscale,done);
if inputbuffer <> nil then dispose (inputbuffer, done);
if inmin <> nil then dispose (inmin,done);

if inmax <> nil then dispose (inmax,done) ;

if outmin <> nil then dispose (outmin,done);

if outmax <> nil then dispose (outmax,done);

inherited done;

end;

procedure scalingbpnet.getscaledata(var Brainfile : text);

begin

A simple call to the auxilliary routine in this unit to get the
scales and maxmin data from a Brainmaker file. The file

should be open on entry.

Brainscales (Brainfile,
inputscale,outputscale, inmin, inmax, outmin, outmax) ;

end;

procedure scalingbpnet.scaleinputs(var inscales : dynavec);

var

Invec contains the scale factors for the input field. These
are used to set the scalar field of each neuron in the input
field. This routine assumes that the transfer function of
all the input neurons is the linear function (all input layers
should have this). The scaling is then done by the neuron
itself when it calculates its transfer function. If you are
training or running with 'real-world' data, you must call this
routine before you begin.

i : integer;

begin
for i

:= 1 to inputfield”.count do

pneuron (inputfield”.at(i-1))".setscale(inscales.get (1))

end;

procedure scalingbpnet.feedforward(datavec : pdynavec);

var

Applies the offset to the input data in datavec before
feeding forward. Assumes that the input layer has the
linear transfer function,and that scaling will be done by the
neuron scalars, already set. Offsets the data in datavec so
that the entry with lowest value becomes 0.0. Subsequent
scaling when the input layer fires will then propagate data in
the range [0,1] into the net.

i : integer;

begin

for i

:= 1 to datavec”.count do

inputbuffer”.put (i,

46

end;

datavec”.get (i) -inmin”.get (i));

inherited feedforward (inputbuffer);

procedure scalingbpnet.scaleoutputs(var outscales : dynavec);

var

Changes the output of each output neuron to a 'real world'
value by multiplying by the output scale factor and then
adding the offset. Assumes a native output range of [0,1]
for each neuron.The value that the neuron actually
produced is still available in state.output, so firing it will get
the native value back. Also see the runthrough method,
which uses this.

i integer;
aneuron : pneuron;
begin
for i := 1 to outputfield”.count do
begin
aneuron := pneuron (outputfield”.at (i-1));
aneuron”.output := aneuron”.output * outscales.get (i) +
outmin”.get (1) ;
end;
end;

procedure scalingBPnet.runthrough(input, result : pdynavec);

var

begin

end;

Applies 'real-world' data in input to the network, and runs it
through to the outputlayer and places the ‘real-world'
output into result. The outputs of the neurons in the output
layer are restored to their native values by refiring the
neurons in the output layer.

: integer;

feedforward (input) ;
scaleoutputs (outputscale?);

{Get outputs after scaling and offset}

for i := 1 to countout do result”.put (i,

pneuron (outputfield”®.at (i-1)) "~.output) ;
{Get unscaled values back into outputs}

for i := 1 to countout do

pneuron (outputfield”.at (i-1))".fire;

47

