
VBossAPI v1.0 rev 2.00 Reference Manual
Copyright © 1995, Greg Truesdell

CIS ID : 74131,2175
Internet : 74131.2175@compuserve.com

VBossAPI.DLL is a Visual Basic language extension module providing capabilities useful when
building script and language compilers and interpreters. This library is in use by companies and
individuals in Canada, Europe and The United States.

This DLL is designed for, and requires, Visual Basic for Windows.

Help File Updated: 95.04.23

Contents

Getting Started - Read this First!
Constants
Copyright
History of Changes
Introduction
Limitations
Registration
Support and Utility Functions
Token Related Functions
Variable Data Types
Word Related Functions

Reference

Glossary
Index

Getting Started
With Release 2.00, you need to handle a few extra steps to insure proper operation of VBossAPI.
This section describes the three special calls required to initialize and exit the library.

The Very FIRST Step
To begin, you must call CreateScrObject(). This function initializes the library to support the current
instance of the program you are running. It returns an integer handle that you must use when
exiting your program.

'
' First Step
'

Global Script%
...
...

Form_Load ()

 Script% = CreateScrObject()

 If Script% = -1 Then
 Print "Sorry, No enough memory to continue"
 End

 End If
End Sub

Registering the Library with your Registration Key
When you register the library you receive a personal registration key. The next step would be to use
the RegisterVBossAPI function to disable the shareware panel(s).

'
' Register the Library
'

If Not RegisterVBossAPI(Name$, Key$) Then
 Print "Sorry, Incorrect Registration Information"
End If
'
' The program continues anyway
'

Final Step - Usually in the main form's UnLoad event.
Finally, you must destroy the script object created in Step 1. You must use the integer handle
returned above (Script%) as the argument to the DestroyScrObject procedure:

'
' All Done
'
Form_UnLoad ()
 DestroyScrObject Script%

End Sub

Constants
These constants can be found in VBossAPI.BAS. Check that file for lastest additions as well.

· AddKeyword() and related functions:
'
' AddKeyword() Return Codes
'
Global Const AKW_NO_MORE_ROOM = -1 'no more keyword space
Global Const AKW_INVALID_CHAR = -2 'invalid character in keyword
Global Const AKW_DUPLICATE_KEYWORD = -3 'duplicate keyword
Global Const AKW_KEYWORD_TOO_LONG = -4 'keyword too long
Global Const AKW_INVALID_TOKEN = -5 'invalid token (keycode) value
 '- negative numbers not allowed
Global Const AKW_TYPE_MISMATCH = -6 'AddVariable() type mismatch
Global Const AKW_OVERFLOW = -7 'AddVariable() overflow
'
' AddKeyword() Limits
'
Global Const AKW_MAX_KEYWORD_LEN = 16 'maximum keyword length
Global Const AKW_MAX_KEYWORDS = 256 'maximum number of keywords

· AddVariable() and related functions:
'
' Variable Type Constants
'
Global Const VTNONE = 0
Global Const VTSTRING = 1
Global Const VTINTEGER = 2
Global Const VTFLOAT = 3
Global Const VTPROCEDURE = 4 ' defined to help implement procedures by
name
Global Const VTFUNCTION = 5 ' defined to help implement functions by
name
Global Const VTLABEL = 6 ' defined to help implement labels

· General Constants used with VBossAPI.DLL
Global Const OSS_MAX_WORD_LEN = 255 ' maximum word length

· NextToken() and related functions:

'
' NextToken Return Codes (in <token>)
'
'
Global Const NT_MAX_OPERATORS = 32 ' reserved operator tokens
' Note: Positive numbers >= NT_MAX_OPERATORS are valid tokens

Global Const NT_PAST_EOL = -1 ' end of the line or string
Global Const NT_NO_KEYWORDS = -2 ' no keywords in keyword DB
Global Const NT_TOKEN_NOTFOUND = -3 ' next word can not be tokenized
Global Const NT_NO_FREE_MEMORY = -4 ' no heap available for buffer
Global Const NT_VARIABLE_FOUND = -5 ' keyword found was a variable
Global Const NT_LABEL_FOUND = -6 ' keyword parsed was a label name
Global Const NT_FUNCTION = -7 ' keyword parsed was a function
name
Global Const NT_PROCEDURE = -8 ' keyword parsed was a procedure
name

Global Const NT_USER_ERROR = -99 ' added as a convience, not used
internally

'
' Operator Constants - Tokens returned by NextToken() for operators
'
' + - * / " ' ; : [] { } () ! @ # $ % ^ & = < > ,
'
Global Const NT_PLUS = 1
Global Const NT_MINUS = 2
Global Const NT_TIMES = 3
Global Const NT_DIVIDE = 4
Global Const NT_DBL_QUOTE = 5
Global Const NT_SNG_QUOTE = 6
Global Const NT_SEMICOLON = 7
Global Const NT_COLON = 8
Global Const NT_LEFTBRACKET = 9
Global Const NT_RIGHTBRACKET = 10
Global Const NT_LEFTBRACE = 11
Global Const NT_RIGHTBRACE = 12
Global Const NT_LEFTPAREN = 13
Global Const NT_RIGHTPAREN = 14
Global Const NT_EXCLAMATION = 15
Global Const NT_AT = 16
Global Const NT_POUND = 17
Global Const NT_DOLLAR = 18
Global Const NT_PERCENT = 19
Global Const NT_CARET = 20
Global Const NT_AMPERSAND = 21
Global Const NT_EQUAL = 22
Global Const NT_LESSTHAN = 23
Global Const NT_GREATERTHAN = 24
Global Const NT_COMMA = 25

· EvalErrorString() Returned Error codes:

'
' EvalExpression Error Codes (returned via EvalErrorString())
'
Global Const EXPR_SYNTAX_ERROR = 1
Global Const EXPR_PARAMETER_MISSING = 2
Global Const EXPR_PARAMETER_COUNT_ERROR = 3
Global Const EXPR_INVALID_PARAMETER = 4
Global Const EXPR_OVERFLOW = 5
Global Const EXPR_COMMA_MISSING = 6
Global Const EXPR_MISSING_RPAREN = 7
Global Const EXPR_TYPE_MISMATCH = 8
Global Const EXPR_INVALID_IDENTIFIER = 9
Global Const EXPR_PARAMETERS_NOT_ALLOWED = 10
Global Const EXPR_EXPECTED_FACTOR = 11
Global Const EXPR_EXPECTED_TERM = 12
Global Const EXPR_EXPECTED_EXPRESSION = 13
Global Const EXPR_ZERO_DIVIDE = 14
Global Const EXPR_OUT_OF_MEMORY = 15
Global Const EXPR_GARBAGE_FOLLOWS = 16
Global Const EXPR_VARIABLE_EQUATE_ERROR = 17
Global Const EXPR_INVALID_FUNCTION = 18

Copyright
VBossAPI.DLL and Documentation are Copyright (c) 1994,1995 by Greg
Truesdell.    Use of the Shareware version of this DLL is permitted for an
evaluation period not to exceed 30 days.    After 30 days you must either
discontinue using VBossAPI.DLL, or register it.

Your use of VBossAPI.DLL indicates your acceptance of the following terms
and conditions:

VBossAPI.DLL ("the Software") is a Windows/Visual Basic DLL licensed by Greg L. Truesdell
("GLT").

Shareware license.

You are free to distribute the entire unmodified contents of the distribution package to anyone you
wish. You may NOT distribute any other programs that utilizes the Software without obtaining a
Registered User License for the Software from GLT. For a period of no more than 30 days, you may
use, test and duplicate the enclosed version of the Software. Thereafter if you wish to continue
using the Software you must register the Software with GLT, or else you must cease all use of the
Software. You will be an infringer if you do not pay the registration fee and continue to use this
version of the Software for more than 30 days.

Registered User License.

If you pay the registration fee for the Software to GLT, GLT will grant a non-exclusive development
license for one natural person to use one copy of the software regardless if the owner of the license
is a person or a business ("the Licensee"). In addition the Licensee may distribute the VBossAPI.DLL
("the DLL") with any or all products that use the DLL with the exceptions that (a) the recipients of any
such program ("the Recipients") are not licensed to use the DLL or the Software except with the
products produced by Licensees, and (b) the Recipients may not further redistribute the DLL, and (c)
the product using the DLL cannot enable the user to produce other programs using the DLL or other
parts of the supplied distribution package. No purported transfer of the license shall be effective
until the licensee notifies GLT of the name and address of the person receiving the license ("the
Transferee"), and transfers all copies of the Software to the Transferee, and removes or destroys any
other copies of the Software in the possession of, or under the control of the Licensee.

Disclaimer of Warranties.

GLT makes no claims as to the suitability of the software for any specific purpose. GLT DISCLAIMS
ANY AND ALL WARRANTIES EXPRESS OR IMPLIED, WRITTEN OR ORAL, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY SPECIFIC PURPOSE. The 45 day
evaluation period is concidered liberal enough for you to determine the fitness of this product to your
application.

Limitation of Liability.

In no event shall GLT be liable for any damages whatsoever arising out of the use of the Software,
including without limitation any direct, indirect or consequential damages or any damages for
business interruption, loss of profits, loss of information, or any pecuniary loss even if GLT has been
notified of the possibility of such damages. The limitation or exclusion of liability for incidental or
consequential damages may not be allowed in some states, and in these states those particular
prohibited limitations do not apply.

Copyright Information

The Software is protected by the copyright laws of Canada and the United States, and by the
copyright laws of many other countries pursuant to international treaties. The DLL and all other
materials provided in the distribution package are Copyright (c) 1994,95 by Greg Truesdell. All
Rights reserved. No portion of the Software, documentation or examples may be copied, stored, or
transmitted except as provided by the license.

Other brand and product names are trademarks or registered trademarks of their respective holders.

History of Changes
The following summarizes changes to VBossAPI.DLL in each SHAREWARE release.

Version 1.0 rev 2.01
· Squashed VTSTRING variable declaration bug that damaged the keyword database when the

65th variable was created. Now properly supports 128 VTSTRING variables.

Version 1.0 rev 2.00
· The library now supports multiple instances (separate programs accessing the library

concurrently.)
· Enhanced the demonstration program to demonstrate a two-pass method of execution: Pass

One: Locate and define Labels. Pass Two: Normal execution.
· Documentation Update

Version 1.0 rev 1.72
· Increased DLL code execution speed by optimizing iterative blocks.
· Documentation Update

Version 1.0 rev 1.71
· Modified temprary string creation logic.
· Several minor efficiency modifications.

Version 1.0 rev 1.62
· Fixed a parsing bug encountered when the first few characters to be parsed were operators.

This effected NextToken() and PeekNextToken().
· Added ParseUntil() function.
· NextToken() and PeekNextToken() now recognize Labels, Procedures and Functions.
· Added TestNumExpr() function.
· Removed resource reference to BWCC.DLL

My thanks to Richard Miller on CompuServe for catching this one.
· Sample application SweetPEA updated to include IF..THEN GOTO and improved comments in

the sample source code.

Version 1.0 rev. 1.61b
· Maintenance Release
· COMMA character added to the reserved token list.

Version 1.0 rev 1.61
· Added VARIABLE EXPRESSION EVALUATOR module.

Version 1.0 rev 1.52
· First SHAREWARE Release.

Introduction to VBossAPI.DLL
The VBoss (Visual Basic Optimized Script Support) API is a Windows DLL designed to help the
Visual Basic application programmer define a script language. There are, however, a number of
related functions provided for completeness and utility.

Getting Started

The library is divided into three major functional groups:

· Word Related Functions
· Token Related Functions
· Support and Utility Functions
Word Related Functions
· These functions operate on a string of characters, and are designed to help the programmer

parse words and characters within the string. Functions are provided for parsing, counting,
locating and collecting words.

Token Related Functions
· These functions also operate on a string of characters, and are designed to support token

(representitive) values, keyword lists, variable lists and operators.
Support and Utility Functions
· These functions are not strictly required in a Script Support DLL, but have been made available

since the DLL either uses them, or the probability is great that a VB program would need them.

Word Related Functions
Word related functions are used to parse strings of words, locate words and count words in strings.
Note that Word related functions are one-based. This makes it easier to use with Visual Basic
functions like Mid$() etc. Token related functions, however, use zero-based character indexes.

GetWordAt()
LocateWord()
ParseStr()
ParseUntil()
WordCount()

GetWordAt()
A word related function that returns the idx-th word using a programmer supplied set of delimiters.

Visual Basic Declaration:
Declare Function GetWordAt Lib "VBossAPI.DLL" (ByVal idx As Integer, ByVal
st As String, ByVal delims As String) As String
Parameters:
· idx as Integer

Word index. If idx = 3 and st = "Hello there, world and delims = " ," then GetWordAt() would
return "world".

· st as String
String of words to parse for the idx-th word.

· delims as String
String of delimiters used to delimit words in the st.

Returns:
· String

The idx-th word in st is returned. If idx is greater than the number of words in the string, then a
null string is returned.

LocateWord()
WordCount()
Example:
' This example will print "golly"
Print GetWordAt(2, "Good golly, Miss Molly!", " ,!")

LocateWord()
A word related function used to locate the character position of the idx-th word using a programmer
defined set of delimiters.

Visual Basic Declaration:
Declare Function LocateWord Lib "VBossAPI.DLL" (ByVal idx As Integer,
ByVal st As String, ByVal delims As String) As Integer
Parameters:
· idx as Integer

Word index. If idx = 3 and st = "Hello there, world" and delims = " ," then LocateWord() would
return 14.

· st as String
String of words to parse.

· delims as String
String of delimiters used to delimit words in the st.

Returns:
· Integer

The character index of the first character of the idx-th word in st.

Comments:
Word related functions, like this one, return one (1) based indexes. This makes it easier to use Mid$
() etc in Visual Basic using the index returned. Token based functions, however, are zero-based.

GetWordAt()
WordCount()
Example:
' This example will print 6.
Print LocateWord(2, "Good golly, Miss Molly!", " ,!")

WordCount()
A word related function used to count the number of words in a string based on a programmer
provided set of delimiters.

Visual Basic Declaration:
Declare Function WordCount Lib "VBossAPI.DLL" (ByVal st As String, ByVal
delims As String) As Integer
Parameters:
· st as String

String of words to parse.
· delims as String

String of delimiters used to delimit words in the st.

Returns:
· Integer

Returns the number of words delimited by <delims>.

Example:
' This example will print 6.
Print WordCount("Paradox exists only in belief systems.", " .")

ParseStr()
A word related function used to return the first or next word in a string based on a set of programmer
provided delimiters.

Visual Basic Declaration:
Declare Function ParseStr Lib "VBossAPI.DLL" (start As Integer, ByVal st
As String, ByVal delims As String) As String
Parameters:
· start as Integer Variable

Character index of first character in string to start parsing. If start = 0 or 1 then ParseStr() will
begin at the first character.

· st as String
String of words to parse.

· delims as String
String of delimiters used to delimit words in the st.

Returns:
· Integer (start)

After parsing the string, start will contain either the index to the next word in the string or -1 to
indicate that no more words are available (EOL).

· String
Returns the word located starting at character <start>, delimited by <delims> in string <st> or null
string if no more words (EOL).

Example:
' This example will print:
'
' My
' mother
' the
' car

st = "My mother, the car."
start = 0
Word$ = ParseStr(start, st, " ,.")

While start > -1

 Print Word$
 Word$ = ParseStr(start, st, " ,.")

Wend

ParseUntil()
A word related function used to return every character from the current character until a delimiter
character is found.

Visual Basic Declaration:
Declare Function ParseUntil Lib "VBossAPI.DLL" (start As Integer, ByVal st
As String, ByVal cset As String) As String
Parameters:
· start as Integer Variable

Character index of first character in string to start parsing. If start = 0 then ParseStr() will begin at
the first character.

· st as String
String of words to parse.

· cset as String
String of delimiters used to delimit words in the st.

Returns:
· Integer (start)

After parsing the string, start will contain either the index to the next word in the string. Unlike
ParseStr(), this function does not return -1 if at end of the string. Instead, the character index
returned is invalid.

· String

Returns the string copied from the current location (start) until a character in cset was located.

ParseStr()

Token Related Functions
Token related functions are used to define keywords and their tokens, variables and their types,
access the token and variable lists and implement syntax parsing functions. Unlike Word related
functions, token related functions use zero-based character indexes.

Token and Keyword Functions:
Definition Functions:
AddKeyword()
GetKeyword()
GetKeywordToken()
GetTokenKeyword()
List Functions:
KeywordCount()
LoadKeywords()
SaveKeywords()
ZapKeywords
Parsing Functions:
EvalErrorString()
EvalExpression()
NextToken()
PeekNextToken()
TestNumExpr()
Support Functions:
DefTokenDelims()
NT_CodeString()
NT_Operators()

Variable Functions:
AddVariable()
GetVariable()
SetVariable()
VariableCount()
ZapVariables

AddKeyword()
A token related function used to add keywords and tokens to the keyword list.

Visual Basic Declaration:
Declare Function AddKeyword Lib "VBossAPI.DLL" (ByVal kw As String, ByVal
kc As Integer) As Integer
Parameters:
· kw as String

Keyword string. The length of this string can be no greater then AKW_MAX_KEYWORD_LEN.

This string MUST be unique. You cannot define a token that allready exists; that includes
operators (which are predefined). All tokens are converted to uppercase before storage.

· kc as Integer
Integer token value (keyword code).

There are some limitations on what values you may use as tokens. No token value can be
negative, and MUST be greater or equal to MAX_OPERATORS. Operator codes reserve the first
set of tokens and negative values are used internally and represent error return codes..

Returns:
· Integer

If successful, a positive number >= MAX_OPERATORS is returned (this number represents the
slot in the Keyword List where this token is stored.) Otherwise a negative error code is returned.
See Constants() for error codes.

Constants()
Limitations
Example:
rc = AddKeyword("begin", 100)
rc = AddKeyword("end", 101)
rc = AddKeyword("print", 102)
rc = AddKeyword("input", 103)

Print ""
Print "Keyword Count is " & KeywordCount()
Print "Keywords:"

For ii = 1 To KeywordCount()

 Print GetKeyword(ii)

Next

Limitations
The current implementation of VBossAPI.DLL imposes the following limitations:

Internal Definitions:
· 256 Keyword/Token entries.
· 128 Variables of type VTSTRING.
· Numeric variables limited only by available local memory.
· Arrays are not implemented.
 This is due to the use of internal tables for Keyword/Tokens and Variables. This greatly enhances
the execution of the parsing engine. It also allows the library to access larger amounts of memory as
well as simplifying the handling of resources. VBossAPI will complain if more than one program
attempts to use it.

· String variables are limited to 255 characters.
· VTFLOAT type variables are internally limited to eight decimal places.

GetKeyword()
A token related function that returns the keyword string for the keyword located as the idx-th entry in
the list.

Visual Basic Declaration:
Declare Function GetKeyword Lib "VBossAPI.DLL" (ByVal idx As Integer) As
String
Parameters:
· idx as Integer

The index into the keyword list. The first keyword in the list is 1 (one). The last keyword in the list
is KeywordCount(). If KeywordCount() = 0 then the list is empty.

Returns:
· String

The text Keyword if the value of idx is valid, otherwise a null string is returned.

Example:
' list all stored keywords and their token values
if KeywordCount() > 0 then

 for idx% = 1 to KeywordCount()

 kw$ = GetKeyword(idx%)
 Print kw$ & " = " & GetKeywordToken(kw$)

 next idx%

endif

GetKeywordToken()
A token related function used to return the integer token value of the character string previously
added to the keyword list with AddKeyword().

Visual Basic Declaration:
Declare Function GetKeywordToken Lib "VBossAPI.DLL" (ByVal kw As String)
As Integer
Parameters:
· kw as String

The keyword to locate.

Returns:
· Integer

If successful, the token value assigned to this keyword, otherwise a negative value (-1) is
returned.

Comments:
GetKeywordToken() is provided to allow the programmer to access the Keyword list stored internally
by VBossAPI. It can also be used to test for the existence of a keyword. If the token returned is -1,
then the keyword does not exist. Use AddKeyword() to add a keyword to the list.

AddKeyword()
GetTokenKeyword()
Example:
' dynamic keyword definition example

if GetKeywordToken("BEGIN") = -1 then

 rc% = AddKeyword("BEGIN",101)

endif

GetTokenKeyword()
A token related function used to return the text keyword referred to by the integer token value
previously stored with AddKeyword().

Visual Basic Declaration:
Declare Function GetTokenKeyword Lib "VBossAPI.DLL" (ByVal token As
Integer) As String
Parameters:
· token as Integer

The token previously assigned by AddKeyword() to a keyword.

Returns:
· String

The keyword assigned to this token.

If unsuccessful, a null string is returned.

Comments:
This function is provided the allow the programmer to decode a token. This may be used to provide
debugging capabilities during development. It can also be used to test whether a given token has
already been assigned.

AddKeyword()
GetKeywordToken()
Example:
' Locate first free token value
' In this simplistic example, the do while..loop
' would continue until a free token was found.
ii = 1
do while Len(GetTokenKeyword(ii)) > 0

 ii = ii + 1

loop

KeywordCount()
A token related function which returns the number of keywords currently stored in the keyword list.

Visual Basic Declaration:
Declare Function KeywordCount% Lib "VBossAPI.DLL" ()
Parameters:
· None

Returns:
· Integer

The number of keywords in the keyword list. Does NOT include the internally defined operators.

AddKeyword()

LoadKeywords()
A token related function used to load a list of keywords and tokens previously saved with the
SaveKeywords() function.

Visual Basic Declaration:
Declare Function LoadKeywords Lib "VBossAPI.DLL" (ByVal filename As
String) As Integer
Parameters:
· filename as String

Name of the file to load the keyword list from.

Returns:
· Integer

Returns 0 if successful, -1 otherwise.

Comments:
Provided to help implement alternate language keywords for the same set of tokens.

AddKeyword()
SaveKeywords()

SaveKeywords()
A token related function used to save the current contents of the keyword list.

Visual Basic Declaration:
Declare Function SaveKeywords Lib "VBossAPI.DLL" (ByVal filename As
String) As Integer
Parameters:
· filename as String

Name of the file to save the keyword list.

Returns:
· Integer

Returns 0 if successful, -1 if not.

Comments:
Saves the entire keyword list structure to a file. Included primarily to help implement alternate
language keywords while retaining the same tokens.

AddKeyword()
LoadKeywords()

ZapKeywords and ZapVariables
Token related functions used to completely erase the contents of the keyword list or variable list.

Visual Basic Declarations:
Declare Sub ZapKeywords Lib "VBossAPI.DLL" ()
Declare Sub ZapVariables Lib "VBossAPI.DLL" ()
Parameters:
· None

Returns:
· Nothing

Comments:
Erases ALL Keywords or Variables.

EvalErrorString()
An expression evaluation function used to return the error code and descriptive text for the last
evaluation error in EvalExpression()

Visual Basic Declaration:
Declare Function EvalErrorString Lib "VBossAPI.DLL" (errcode As Integer)
As String
Parameters:
· errcode as Integer (variable)

EvalErrorString() returns the numeric code for the last evaluation error. This parameter must be a
variable.

Returns:
· Integer (errcode)

See errcode above.
Constants()
· String

The single-line text description of the last error found while evaluating an expression with
EvalExpression()

EvalExpression()
TestNumExpr()
Example:
'
' An example use of EvalErrorString
'
answer$ = EvalExpression("Test = ABC", rc%)

If Not rc% Then

 Print EvalErrorString(rc%) & " [Error#" & rc% & "]"

End If

EvalExpression()
A token related function used to evaluate infix notation numeric expressions.

Visual Basic Declaration:
Declare Function EvalExpression Lib "VBossAPI.DLL" (ByVal ExprStr As
String, rc As Integer) As String
Parameters:
· ExprStr as String
· rc as Integer (variable)

Returns:
· rc as Integer

True if successful, otherwise false.

· String
The string representation of the results of the calculation.

EvalExpression will return a null string if the calculation was unsuccessful, otherwise the string
returned can be used as a parameter to the Val() function if it's numeric value is required.

Comments:
The expression evaluator is a very important part of any set of language tools. The evaluator is
linked closely with the variable definition table created and maintained by VBossAPI. In fact, the
evaluator is capable of defining and returning variables and their values. It works much like Visual
Basic does. This version of the evaluator is designed for integer and real variables only.

You may predefine variables (and in fact should, to ensure that string variables are properly
allocated) using the AddVariable() function, or let the evaluator define the variable. The evaluator
defaults it self-defined variables as reals. It will convert integers and reals on-the-fly to insure that
calculations are successful. The example given below should give you some idea of how you can
use the evaluator.

EvalExpression() comes with built-in functions available (in an up-comming version, you will be able
to define the actions of your own functions):

 PI, ABS, ARCTAN, COS, EXP, LN, SQR and SQRT are available. Each, of course, return a value
of type VTFLOAT (real).

Constants()
EvalErrorString()
TestNumExpr()
Example:

'
' This example demonstrates how EvalExpression can evaluate expressions
' including variables and functions.
'
' In the following example, the variables Radius and Area are created
' automatically. They are accessible by either EvalExpression or
' GetVariable()
'
Dim rc As Integer
Dim VarType As Integer

If EvalExpression("Radius = 1.24", rc) <> "" Then

 If EvalExpression("Area = Pi * Sqr(Radius)", rc) <> "" Then

 Print "The area of a circle with a radius of ";

 ' return the value of Radius using EvalExpression

 Print EvalExpression("Radius", rc);

 ' return the value of Area using GetVariable()

 Print " is equal to " & GetVariable("Area", VarType)

 End If

End If

TestNumExpr()
Token related function used to evaluate the truth of a numerical expression.

Visual Basic Declaration:
Declare Function TestNumExpr Lib "VBOSSAPI.DLL" (ByVal LExpr As String,
ByVal Op As String, ByVal RExpr As String, Success As Integer) As Integer
Parameters:
· LExpr as String

A valid numeric expression. May include numeric variables, functions and constants.
· Op as String

A test operator. The only tests supported are =, <, >, <=, >=, <>. If your script language
requires !=, !, # , == etc, then you must translate the operator before calling this function.

· RExpr as String
A valid numeric expression. May include numeric variables, functions and constants.

Returns:
· Success as Integer (True/False)
· Integer (True/False)

True if the expression is true.

Comments:
This function is provided to simplify the implementation of control constructs such as if ... then,
while ... wend, do ... until etc.

EvalErrorString()
EvalExpression()
Example:
'
' This example demonstrates the use of TestNumExpr()
'
Dim Success As Integer
Dim Result As Integer
Result = TestNumExpr("1+2*3", "=", "7", Success)

If Not Success then

 Print "Error in Expression"

ElseIf Result then

 Print "Expression is TRUE"

Else

 Print "Expression is FALSE"

End If

NextToken() and PeekNextToken()
Token related functions used to begin or continue parsing defined tokens.

NextToken() and PeekNextToken() differ only in that PeekNextToken() does not update the character
index variable (start). PeekNextToken() allows you to peek at what the next token is without
updating the character index.

Visual Basic Declaration:
Declare Function NextToken Lib "VBossAPI.DLL" (start As Integer, ByVal st
As String, token As Integer) As String
Declare Function PeekNextToken Lib "VBossAPI.DLL" (ByVal start As Integer,
ByVal st As String, token As Integer) As String
Parameters:
· start as Integer Variable

Character index of first character in string to start parsing. If start = 0 or 1 then NextToken() will
begin at the first character of the string.

This parameter is a variable. NextToken() will return the updated value of start, indicating the
character location of the next word to parse.

· st as String
String of characters to parse for the next token.

· token as Integer Variable
The token value, if any, of the currently parsed word.

If an error occured during parsing, the error code will be returned in <token>.

Returns:
· start as Integer Variable

Updated to the next character start position in the string.
· token as Integer Variable

Contains the token for the current word, or an error code.
· String

The word parsed. If the token value is positive, then this is a keyword. If the token value is
negative, then either the word is not a keyword, or an error has occured.

Comments:
NextToken() and PeekNextToken() are the core functions of VBossAPI. Once you have defined the
working parameters for your language, you then use these functions to parse lines of script text. By
placing NextToken() in your main processing loop, you can use Select..Case..End Select statements
to implement the language.

Constants()
Example:

' Simple parsing example
'
' This example is intentionally kept simple, and
' should be concidered pseudo-code. A guide to how
' you might implement the main loop of a script
' interpreter.
'
' In the example calls for DIM, PRINT and INPUT you
' will notice the use of ii% as a parameter. This is
' because, in all likelyhood, the implementation
' of these keywords will require the parsing index
' value (ii%) to continue parsing st$ for
' parameters they require.
'
' Assume the variable st$ contains the following text:
'
' Dim A$
' Begin
' A = "Hello"
' Input A
' Print A
' End
'
rc% = AddKeyword("BEGIN", 100)
rc% = AddKeyword("END",999)
rc% = AddKeyword("INPUT", 201)
rc% = AddKeyword("PRINT", 202)
rc% = AddKeyword("DIM",203)

ii% = 0
running = True
token = 0

Do While running

 keyword$ = NextToken(ii%, st$, token)

 Select Case token

 Case 100
 DoBegin() ' your call to implement BEGIN

 Case 999, NT_PAST_EOL
 DoEnd() ' your call to implement END
 running = False

 Case 201
 DoInput(ii%) ' your call to implement INPUT

 Case 202
 DoPrint(ii%) ' your call to implement PRINT

 Case 203
 ' your call to implement variable
 ' creation (see AddVariable())
 If Not DimVariable(ii%) then

 running = False
 End If

 Case NT_VARIABLE_FOUND
 ' your variable equating code
 ' (see SetVariable())
 DoSetVariable(ii,Keyword)

 Case NT_TOKEN_NOTFOUND
 DoSyntaxError() ' your syntax error code
 running = False

 Case Else
 DoOtherError() ' your other error code
 running = False

 End Select

Loop

DefTokenDelims()
A token related support function that returns a string containing the default set of token delimiters.

Visual Basic Declaration:
Declare Function DefTokenDelims Lib "VBassAPI.DLL" () As String
Parameters:
· None

Returns:
· String

Returns a string containing the default token parsing delimiters. This string can be used in other
functions that require a delimiter string, if desired.

Example:
' Sample using Word function WordCount()
Print WordCount("Here, in this box, is the answer.", DefTokenDelims()+".")

NT_CodeString()
A token related function used to return a context-class statement based on the value of the integer
token provided.

Visual Basic Declaration:
Declare Function NT_CodeString Lib "VBossAPI.DLL" (ByVal token As Integer)
As String
Parameters:
· token as Integer

Normally the token value returned by NextToken() or PeekNextToken().

Returns:
· String

A context statement describing the class of token represented by the value of token.

Comments:
This function is provided for the programmer for debugging purposes. It returns a short statement
that describes the class of the token based on the NT_* result codes.

NextToken()

NT_Operators()
A token related function used to return the string of pre-defined operators.

Visual Basic Declaration:
Declare Function NT_Operators Lib "VBossAPI.DLL" () As String
Parameters:
· None

Returns
· String

Containing the string of operators defined by VBossAPI

Comments:
The first character of the string contains the first operator. This means that the token code for the
first operator is equal to 1.

DefTokenDelims()
Example:
' Determining the token for a given operator.
' This example returns a token value of 3.

token% = Instr(NT_Operators(), "*")

AddVariable()
A token related function used to add variable declarations to the variable list.

Visual Basic Declaration:
Declare Function AddVariable Lib "VBossAPI.DLL" (ByVal vname As String,
ByVal vtype As Integer, ByVal vdata As String) As Integer
Parameters:
· vname as String

Name of the variable to add. Can not be longer than AKW_MAX_KEYWORD_LEN. Must be
unique.

· vtype as Integer
The variable type.

· vdata as String
The variable data.

All data is copied to VBossAPI as a string. The value of vdata is determined by the value of
vtype. Type checking is done internally to verifiy the type. For example: If vtype =
VTINTEGER, then vdata could contain "125", but would be a type mismatch is it contained "one
hundred and twenty five."

Returns:
· Integer

Returns the enumerated variable type if successful. Otherwise returns an error code.

Constants()
Limitations
Variable Data Types
Example:
' Variable handling example.

rc% = AddVariable("Balance", VTFLOAT, "324.94")
if rc% > -1 then

 amt = Val(GetVariable("Balance", rc%)) + 10.32
 rc% = SetVariable("Balance", Str(amt))

 if rc% > -1 then

 Print GetVariable("Balance", rc%)

 else

 Print "SetVariable failed with error code " & rc%

 endif

else

 Print "AddVariable failed with error code " & rc%

endif

Variable Types
VBossAPI Variable Table Data Types:
Undefined VTNONE
String VTSTRING
Integer VTINTEGER
Float VTFLOAT
Procedure VTPROCEDURE
Function VTFUNCTION
Label VTLABEL
Constants

GetVariable()
A token related function used to return the string representation of the value currently stored for the
variable keyword. The variable type is also returned. The variable must have been stored with the
AddVariable() function.

Visual Basic Declaration:
Declare Function GetVariable Lib "VBossAPI.DLL" (ByVal vname As String,
vtype As Integer) As String
Parameters:
· vname as String

The name of the variable to be retrieved.
· vtype as Integer Variable

This parameter should be provided as an Integer variable, not a constant. Its original contents
are ignored and overwritten.

Returns:
· vtype as Integer Variable

The variable type or error code is returned in this variable.

If successful: Contains the variable type of the Variable vname.
If unsuccessful: Contains the returned error code.

· String
Returns the variables contents as a string.
If unsuccessful returns a null string.

Variable Data Types
AddVariable()
GetKeyword()
SetVariable()
Example:

' Variable handling example.

rc% = AddVariable("Balance", VTFLOAT, "324.94")
if rc% > -1 then

 amt = Val(GetVariable("Balance", rc%)) + 10.32
 rc% = SetVariable("Balance", Str(amt))

 if rc% > -1 then

 Print GetVariable("Balance", rc%)

 else

 Print "SetVariable failed with error code " & rc%

 endif

else

 Print "AddVariable failed with error code " & rc%

endif

SetVariable()
A token related function used to modify the variable contents of a previously defined variable.

Visual Basic Declaration:
Declare Function SetVariable Lib "VBossAPI.DLL" (ByVal vname As String,
ByVal vdata As String) As Integer
Parameters:
· vname as String

The text name of the variable to set. Limited in length to AKW_MAX_KEYWORD_LEN.
· vdata as String

The string representation of the data to store with this variable. Limited in length to
OSS_MAX_WORD_LEN.

Returns:
· Integer

Success returns a positive number representing the data type of the variable, otherwise a
negative error code is returned. (See AddVariable() for error codes.)

AddVariable()
GetVariable()

VariableCount()
A token related function that returns the number of variables in the variable database.

Visual Basic Declaration:
Declare Function VariableCount Lib "VBossAPI.DLL" () As Integer
Parameters:
· None

Returns
· Integer

Number of declared variables in the variable database.

Support and Utility Functions
Utility functions provided to assist the programmer with implementation issues involving filenames,
strings and .DLL accessing.

Filename Related Functions:
DirOnly()
ExtOnly()
FullPath()
NameOnly()
ReplacePath()

String Related Functions:
PackSpaces()

DLL Access Related Functions:
LPGetVBStr()
VBStrGetLP()

DirOnly()
A general purpose function that returns only the path (directory) part only for the qualified filename
given.

Visual Basic Declaration:
Declare Function DirOnly Lib "VBossAPI.DLL" (ByVal fn As String) As String
Parameters:
· fn as String

The filename.

Returns:
· String

The Directory part of the filename. (Includes the trailing "\")

ExtOnly()
FullPath()
NameOnly()
ReplacePath()
Example:
'
' This example prints "C:\DATA\"
'
Print DirOnly("C:\DATA\BOOK.ONE")

ExtOnly()
A general purpose function that returns only the extension part of a qualified filename.

Visual Basic Declaration:
Declare Function ExtOnly Lib "VBossAPI.DLL" (ByVal fn As String) As String
Parameters:
· fn as String

Valid partial or full filename.

Returns:
· String

Only the extension (with preceeding ".") for the filename.

DirOnly()
FullPath()
NameOnly()
ReplacePath()
Example:
'
' prints ".DAT"
'
Print ExtOnly("D:\Editor\Config.Dat")
'
' prints ""
'
Print ExtOnly("D:\Editor\DataFile")

FullPath()
A general purpose function used to expand a filename into a completely qualified filename.

Visual Basic Declaration:
Declare Function FullPath Lib "VBossAPI.DLL" (ByVal fn As String) As
String
Parameters:
· fn as String

Valid partial or full filename.

Returns:
· String

Fully qualified path for this file. Uses the current drive and directory if necessary.

ExtOnly()
DirOnly()
NameOnly()
ReplacePath()
Example:
'
' If the current directory is C:\ACCOUNTS
' then the following code would set fp$ = "C:\ACCOUNTS\AUDIT.TXT

fp$ = FullPath("audit.txt")

NameOnly()
A general purpose function used to return only the name part of a qualified filename.

Visual Basic Declaration:
Declare Function NameOnly Lib "VBossAPI.DLL" (ByVal fn As String) As
String
Parameters:
· fn as String

Valid partial or full filename.

Returns:
· String

Only the file name part of the filename.

DirOnly()
ExtOnly()
FullPath()
ReplacePath()
Example:
'
' This code will print "README"
'
Print NameOnly("C:\Windows\ReadMe.Txt")

ReplacePath()
A general purpose function used to replace the path part of a filename with a new path. The string
containing the new path may be a completely qualified filename.

Visual Basic Declaration:
Declare Function ReplacePath Lib "VBossAPI.DLL" (ByVal fn As String, ByVal
np As String) As String
Parameters:
· fn as String

Source filename.
· np as String

New path filename. May be a completely qualified filename. Only the (valid) path part of the
filename will be used.

Returns:
· String

The newly created filename with the path replaced by the path part of <np>.

DirOnly()
ExtOnly()
FullPath()
NameOnly()
Example:
'
' This code will print F:\DATA\SMITH.TXT
'
path1$ = "C:\ACCOUNT\SMITH.TXT
path2$ = "F:\DATA\SOURCE.DAT"

Print ReplacePath(path1$, path2$)

'
' This example will print "C:\MESSAGE.EXE"
'
Print ReplacePath("F:\BACKUP\MESSAGE.EXE","C:\")

PackSpaces()
A general purpose function provided to pack multiple spaces and tabs within a string. Leading and
trailing spaces are preserved, but packed to a single space.

Visual Basic Declaration:
Declare Function PackSpaces Lib "VBossAPI.DLL" (ByVal st As String) As
String
Parameters:
· st as String

Contains the string to be packed.

Returns:
· String

All multiple spaces and tabs are compressed into a single space. This compresses the string to
the minimum size required for simple parsing.

Example:
' This example will print "This is a test."
Dim st As String

 st = "This is a test."
 Print PackSpaces(st)

LPGetVBStr()
A general purpose function provided to return a Visual Basic String from a zero-terminated string.

Visual Basic Declaration:
Declare Function LPGetVBStr Lib "VBossAPI" (ByVal pStr As Long) As String
Parameters:
· pStr as Long

Pointer to a zero terminated string (lpsz).

Returns:
· String

Returns a Visual Basic String created from the string pointer.

Comments:
This function is provided to allow VB programmers to collect a string from a pointer returned by a
Windows .DLL library call.

VBStrGetLP()

VBStrGetLP()
A general purpose function provided to return a pointer to the zero-terminated string within a Visual
Basic String.

Visual Basic Declaration:
Declare Function VBStrGetLP Lib "VBossAPI" (ByVal pStr As String) As Long
Parameters:
· pStr as String

Visual Basic String passed by value.

Returns:
· Long

Returns a pointer to the lpsz portion of the VB String.

Comments:
Some .DLL library functions require a pointer to a zero terminated string. This function allows the
VB programmer to pass the address of a declared and sized string as a parameter. Strictly speaking,
however, this function is not often required, since the VB ByVal modifier will pass the address of the
string. It is included, none the less, for completeness as it may be useful in some circumstances.

LPGetVBStr()
Example:
' Passing a string to a .DLL library call.
' This example uses a Windows .DLL function call to
' convert a string to ANSI uppercase.
'
' THIS IS A LOWERCASE STRING will be printed.

Dim szBuffer As String * 128

 szBuffer = "this is a lowercase string."
 AnsiUpperBuff(VBStrGetLP(szBuffer), 128)

 Print szBuffer

Registration
To register VBossAPI.DLL, you must obtain a registration key from the author. The registration key
is then used by your program to register the DLL. This will disable the shareware registration dialog
that appears whenever the DLL is loaded or used by your program. You will also receive the latest
version of the library. This key will work on all subsequent bug-fix and minor revision releases until a
new version is released.

Obtaining a Registration Key
To obtain a registration key you must send the registration amount to:

Greg Truesdell
Suite 308
633 North Road
Coquitlam, BC
CANADA
V3J 1P3
Registration Fee Options:
· CompuServe SWREG ID# 4362: US$19.95

The registration key will be sent to you via CompuServe E-Mail within 24 hours of receipt. You
will also receive a ZIP archive containing the distribution files.

· Mail: US$23.95

The registration key will be sent to you via return mail. You will also recieve a 3½ disk
containing the distribution files. The package will be mailed to you within 24 hours after receiving
your payment. With this option you MUST send a MONEY ORDER made out to GREG
TRUESDELL.

Registration Form:
Note: All registration information is held in the strictest of confidence.

--

 VBossAPI Function Library (DLL) v1.0 Registration Form
--

 Mail this registration form to:

Greg Truesdell
Suite 308
633 North Road
Coquitlam, BC
CANADA
V3J 1P3

 or E-Mail to:

CIS User ID :74131,2175
Internet :74131.2175@compuserve.com

--

Registered User Name: [
]

{ will be used as the UserID for RegisterVBossAPI() }

Company Name: [
]

Address: [
]
 [
]
 [
]

City: []
State/Prov.: []
Zip/Postal Code: []

Tel: [() -]

E-Mail or CIS User ID: []

Fee Option: [] E-Mail (US$19.95) [] Regular Mail (US$23.95)

--

 REMEMBER: PAYMENT MUST BE MADE BY MONEY ORDER made payable to GREG
TRUESDELL.
 Checks will not be accepted unless you are a resident of
 BRITISH COLUMBIA, CANADA.
--

Using the Registration Key
RegisterVBossAPI()
You should include the RegisterVBossAPI() call before ANY other VBossAPI.DLL function.

RegisterVBossAPI()
This function is used to register the shareware version of the library. If successful it will disable any
and all shareware related nag screens etc.

Visual Basic Declaration:
Declare Function RegisterVBossAPI Lib "VBossAPI.DLL" (ByVal UserID As
String, ByVal RegID As String) As Integer
Parameters:
· UserID as String

This is the Registered User ID exactly as you provided it in the registration form. Case is
significant!

· RegID as String

This is the Registration ID (key) sent to you after you sent your payment and registered the
library.

Results:
· Integer

Returns 0 if successful, otherwise -1.

Registration
Comments:
Once you have purchased the Registration Key you can use this function to inhibit the shareware
nag dialog(s).

Example:
'
' assuming your Registration User ID was "J. Smith" and
' the registration key sent to you was "123456789"
'
If RegisterVBossAPI("J. Smith", "123456789") = -1 Then

 MsgBox "Invalid Registration Key for J. Smith"

End If

Glossary

A
AKW_DUPLICATE_KEYWORD
AKW_INVALID_CHAR
AKW_INVALID_TOKEN
AKW_KEYWORD_TOO_LONG
AKW_MAX_KEYWORD_LEN
AKW_MAX_KEYWORDS
AKW_NO_MORE_ROOM
AKW_OVERFLOW
AKW_TYPE_MISMATCH
API

D
Default token parsing delimiters
Delimiters

DLL

K
Keyword Lists
Keyword

L
lpsz

M
MAX_OPERATORS.

N
NT_FUNCTION
NT_LABEL_FOUND
NT_MAX_OPERATORS
NT_NO_FREE_MEMORY
NT_NO_KEYWORDS
NT_PAST_EOL
NT_PROCEDURE
NT_TOKEN_NOTFOUND
NT_VARIABLE_FOUND
Null String

O
Operators
OSS_MAX_WORD_LEN
OSS_MAX_WORD_LEN.

P
Parsing

Q
Qualified Filename

T
Token

V
Variable Lists
VTFLOAT
VTFUNCTION
VTINTEGER
VTLABEL

VTNONE
VTPROCEDURE
VTSTRING

W
Word

Index

A
AddKeyword
AddVariable

C
Constants
Copyright

D
DefTokenDelims
DirOnly

E
EvalErrorString
EvalExpression
ExtOnly

F
FullPath

G
GetKeyword
GetKeywordToken
Getting Started
GetTokenKeyword
GetVariable
GetWordAt
Glossary

H
History of Changes

I
Index
Introduction

K
KeywordCount

L
Limitations
LoadKeywords
LocateWord
LPGetVBStr

N
NameOnly
NextToken
NT_CodeString
NT_Operators

P
PackSpaces
ParseStr
ParseUntil

R
Register
RegisterVBossAPI
ReplacePath

S
SaveKeywords
SetVariable
Support Functions

T
TestNumExpr
Token Related Functions

V

VariableCount
VarTypes
VBossAPI Reference Manual
VBStrGetLP

W
Word Related Functions
WordCount

Z
Zap

AKW_DUPLICATE_KEYWORD
AKW_DUPLICATE_KEYWORD = -3

An attempt was made to add a duplicate keyword or variable.

AKW_INVALID_CHAR
AKW_INVALID_CHAR = -2

An invalid character was passed in a keyword or variable name.

AKW_INVALID_TOKEN
AKW_INVALID_TOKEN = -5

An invalid token value was passed in AddKeyword(). Tokens are only legal as integers from
MAX_OPERATORS to 32768.

AKW_KEYWORD_TOO_LONG
AKW_KEYWORD_TOO_LONG = -4

The keyword or variable name passed was greater in length than AKW_MAX_KEYWORD_LEN.

AKW_MAX_KEYWORD_LEN
AKW_MAX_KEYWORD_LEN = 16

AKW_MAX_KEYWORDS
AKW_MAX_KEYWORDS = 256

The maximum number of keywords that the keyword list can hold.

AKW_NO_MORE_ROOM
AKW_NO_MORE_ROOM = -1

Not enough memory to allocate another keyword or variable record.

AKW_OVERFLOW
AKW_OVERFLOW = -7

String length greater than 255 characters or an attempt to set a variable to a value larger than the
defined data type. This error occurs in calls to AddVariable().

AKW_TYPE_MISMATCH
AKW_TYPE_MISMATCH = -6

The data passed in AddVariable() or SetVariable() is incompatable with the defined data type.

API
Application Programming Interface

Default token parsing delimiters
Internally set by VBossAPI for token parsing routines. It is a character set containing all control
characters [chr(1) to chr(31)], the space and the comma.

Delimiters
A string of one or more characters used to delimit words in a string of characters. For example: "This is
a String" contains four words delimited by spaces.

DLL
Dynamic Link Library

Keyword Lists
An internally maintained database of Keywords including the token representing the keyword. This list
is used when parsing a string using the NextToken() and PeekNextToken() functions.

Keyword
The string of characters (word) you wish to assign a token value to. VBossAPI restricts the length of
keywords to MAX_KEYWORD_LEN characters.

lpsz
Long Pointer to String Zero-terminated.

MAX_OPERATORS.
MAX_OPERATORS = 32

NT_FUNCTION
NT_FUNCTION = -7

Token is a variable of type VTFUNCTION

NT_LABEL_FOUND
NT_LABEL_FOUND = -6

Token is a variable of type VTLABEL

NT_MAX_OPERATORS
NT_MAX_OPERATORS = 32

Internally, VBossAPI reserves 32 characters for operators.
User-defined tokens are >= NT_MAX_OPERATORS with a maximum value of 32768.

NT_NO_FREE_MEMORY
NT_NO_FREE_MEMORY = -4

Not enough free memory to allocate the parsing buffer.
NT_CodeString returns "NO MEMORY" for this code.

NT_NO_KEYWORDS
NT_NO_KEYWORDS = -2

There are no keywords in the keyword list.
NT_CodeString returns "NO KEYWORDS" for this code.

NT_PAST_EOL
NT_PAST_EOL = -1

Parsed past the end of line or file. NextToken() and PeekNextToken() return a null string if EOL is
encountered.

NT_CodeString returns "PAST EOF" for this code.

NT_PROCEDURE
NT_PROCEDURE = -8

Token is a variable of type VTPROCEDURE.

NT_TOKEN_NOTFOUND
NT_TOKEN_NOTFOUND = -3

Word parsed was not a keyword. Not a tokenized word.
NT_CodeString returns "NOT A TOKEN" for this code.

NT_VARIABLE_FOUND
NT_VARIABLE_FOUND = -5

Keyword found was a Variable name. No token value.
NT_CodeString returns "VARIABLE" for this code.

Null String
An empty string containing no characters (length = 0).

Operators
An operator is a special character used to represent a function. Normally operators are used to define
arithmetic and string evaluation functions. (ie: MyVal = 2 * (Amount))
The operators in the above example are =, *, (and).

Internally, the operators are set to +-*/"';:[]{}()!@#$%^&=<>

OSS_MAX_WORD_LEN
OSS_MAX_WORD_LEN = 255

Maximum number of characters allowed in a text fragment.

OSS_MAX_WORD_LEN.
OSS_MAX_WORD_LEN = 255

Maximum length of string data stored in VBossAPI variables. Some functions will truncate strings.

Parsing
Parse (pars,parz) : To dissect (a sentance) according to the grammatical functions of its parts.

Qualified Filename
A filename containing all components required to uniquely identifiy a file.

[DRIVE:][PATH\][NAME][.EXT]

Token
Defined as a coded representation of a given set of characters (or Keyword). By referencing an integer
value for a command, it is possible to create a script execution module independent of the language or
spelling of a Keyword.

Variable Lists
A list of variable declaration Keywords, their data type and current value.

VTFLOAT
VTFLOAT = 3

A floating point number.

VTFUNCTION
VTFUNCTION = 5

This variable type is provided for completeness. Internally to VBossAPI it is stored as a String
(VTSTRING).

VTINTEGER
VTINTEGER = 2

A two byte integer having values of -32767 to +32768.

VTLABEL
VTLABEL = 6

This variable type is provided for completeness. Internally to VBossAPI it is stored as a String
(VTSTRING).

VTNONE
VTNONE = 0

Variable is un-assigned.

VTPROCEDURE
VTPROCEDURE = 4

This variable type is provided for completeness. Internally to VBossAPI it is stored as a String
(VTSTRING).

VTSTRING
VTSTRING = 1

A string variable.
Strings are limited to 255 characters in length.

Word
Defined as a set of contigious characters delimited by a non-inclusive set of characters. In other words,
a block of characters separated by one or more differing characters.

