
Msub 1.2 manual

by Anders Munch

Last revised May 18, 1995

Contents

1 Introduction 2

2 How To Avoid Reading This Manual 2

3 How To Read This Manual 3

4 The Basics 4

4.1 Invoking Msub : 4

4.2 Query replace : 4

4.3 Script �le format : 6

4.4 Regular expression format : 7

5 Bee�ng up the search text 9

5.1 Parallel and sequential substitution : : : : : : : : : : : : : : : : : 9

5.2 Letter case : 9

5.3 Abbreviations : 10

5.4 Context sensitive expressions : 10

5.5 Equality test : 11

6 Bee�ng up the replacement text 12

6.1 Selections : 12

6.2 Converting letter case : 13

7 Files 14

7.1 Extracting : 14

7.2 Binary and ascii �les : 14

7.3 Line separators : 14

7.4 Ctrl-Z : 15

7.5 Backup : 16

7.6 Restoring backup �les : 16

7.7 Options for updating : 17

1

7.8 Script �le search directories : 17

8 Script structuring options 18

8.1 Iteration : 18

8.2 Nested scripts : 18

8.3 Named subscripts : 18

8.4 Include �les : 19

9 Caveats and bugs 20

10 Regular expression primer 24

11 Registration 25

11.1 \What's in it for me?" : 25

11.2 How to register : 25

11.3 Future enhancements : 25

12 Closing argument 26

2

1 Introduction

The basic functionality of Msub is the same as your text editor's search-replace

function. Of course it is unneededly complicated to quit your editor, run Msub

and restart your editor, in order to do a simple search-replace. So why Msub?

This is why:

� Multi-�le operation. For when you need to change the same thing(s) in

several �les.

� Speed. Msub is several times faster than an editor.

� Expressive power. Regular expressions and context sensitivity allow you to

pinpoint exactly what you are searching for.

� Versatility. You can do extensive text manipulation with Msub that would

otherwise require you to write a program in C/BASIC/Awk/Perl. You can

do such things as reformat records in an ascii �le, reorder �elds, change

�eld separator, remove or duplicate parts of the text.

� Scripting. Changes that you do often could be automated with an Msub

script. E.g. you could have a script to correct common spelling errors or

typos, to replace abbreviations with the full form, just to name a few.

� Safety. Sometimes a search-replace operation changes something that you

didn't expect to change nor wanted to. Few editors have undo commands

that will undo a global substitution. Msub does.

Before you spend too much time reading this manual, consider registering

�rst. That will get you the much nicer looking and more readable original (L

A

T

E

X)

document. See about registering in section 11 below and in the accompanying

�le REGISTER.DOC.

2 How To Avoid Reading This Manual

If you know about script �les and regular expressions, take a look at the example

scripts INTRO??.MS and in no time you will be writing your own Msub scripts and

getting the job done.

You still need to read speci�c sections of this manual, though:

� Section 4.1 and 4.2 on how to run Msub.

� Section 4.4 on how Msub regular expressions di�er from the regular expres-

sions you met elsewhere.

3

� New features, that are not (yet) covered by tutorial script, including abbre-

viations in 5.3 and �le search directories 7.8.

When you have found out how useful Msub can be in your daily work, then

register to get the printed manual and read the rest of it.

3 How To Read This Manual

Sections 4{8.4 below is the complete reference manual as well as an instructive

tutorial with lots of examples.

Read it from linearly from top to bottom, or use it as a reference, skipping to

speci�c sections of interest. It is intended for both.

If you are new to regular expressions you can read the introduction to regular

expressions in section 10 below.

Be sure to look at the sample Msub scripts in the EXAMPLES subdirectory. (The

.MS �les.)

4

4 The Basics

4.1 Invoking Msub

Msub can be invoked in two ways. With a script �le:

msub [-ask] [options] scriptfile [options] files: : :

{ or what to search for can be given on the command line:

msub [-ask] -search=sth -replace=sth [options] files: : :

If the files are omitted, the script�le is just checked for syntactic correctness.

You can use that to get the error and warning messages for a script without

actually changing any data.

If files are a \-" character then Msub works as a �lter: Input is read from

the standard input and the modi�ed output is written to the standard output.

The -search/-replace variant allows you to replace one thing only, and is

basically provided as a shortcut for when you don't want to bother with creating

a �le. As a third possibility you can enter a script �le directly from the keyboard,

by using \-" as the script �le name. Msub will then read the script �le from the

standard input, until you end it by typing !end or ctrl-z on a line by itself.

Quoting with ' and " is a little tricky on the command line, see section 9 for

details.

-search and -replace are actually the options searchfor and replacewith,

and everything that applies to options in general apply to them too: You can

abbreviate them, use a space instead of \=", use \/" instead of \-" and rearrange

the order:

msub [options] /repl sth /searchfor sth files: : :

A little terminology: text �les or input text refer to the �les you want some-

thing changed in. They are the ones simply termed \files" in the command

lines above. The input text refers to the unchanged original contents of these

�les. (This is slightly misleading, as the text �les may be binary �les, and script

�les are text �les, too.)

4.2 Query replace

By default Msub makes all the requested changes without asking. And if some-

thing is changed that shouldn't have been, you can recover the backup �le.

The -ask option tells Msub to prompt you before a change. If you answer `y'

for `yes', this occurrence is changed. Answer `n' for `no' and it is left unchanged.

Table 1 is a table over the replies and their meaning.

If you type a `a' for `always' before the `y' or `n', then your answer will apply

to all following changes, and Msub will stop prompting you completely (if you are

5

Figure 1: Query replies

You type Msub does

`y' Changes this occurrence

`n' Skips this occurrence

`c' Cancel (entire `f'ile or `a'll �les)

`i' Input an alternative replacement text (not implemented)

`f' Pre�x: All this �le answer: : :

`a' Pre�x: Always, all �les answer: : :

`t' Pre�x: For this search-replace pair answer: : :

changing several �les, then this will also apply to any subsequent �les). I.e. after

`ay' all the rest of the changes will be done quietly, and after `an' nothing more

will be changed.

Typing `f' for `�le' is similar to `a', except that it only applies to the current

input �le.

Typing `t' for `this' is also similar to `a', but applies to this search-replace pair

only. That is, every time something matches that very same search expression,

then the answer (`y' or `n') you give after `t' will apply, but no other search-

replace pairs are a�ected.

A simple `c' for `cancel' will leave this change undone, just like `n'. But `c'

is di�erent when used in conjunction with `a' or `f': `fc' will cancel all changes

to the current �le, even those that you have already answered `y' to. And `ac'

will cancel not only the current �le, but also any following �les. That is, `ac' will

e�ectively abort Msub execution. Alas, this doesn't cancel any �les previous to

the current. If you want all your changes undone, it might be easier to answer

`an' and then recover the backup �les using UNBAK (see section 7.6).

Hopefully, when you try this the prompt will be discretely colorized. If instead

the text is riddled with strange codes, then you need to install the ANSI.SYS

driver which comes with DOS. Add something like this to your CONFIG.SYS:

DEVICE=C:nDOSnANSI.SYS

Finally there is a shell escape option (that doesn't show on the menu). Type `!'

to shell to DOS, and then `exit' to return to Msub. While shelling, you must not

edit the current �le, but any other input �les and even current script �le are fair

game (script �le changes here won't a�ect the current run).

6

4.3 Script �le format

Script �les are read a line at a time. Leading and trailing spaces are ignored.

Lines that end with a \n" character are continued onto the next line.

Search-replace pairs

The basic script �le format is very simple: Put the text you want to search for

on one line (the search expression), and the text you want to replace it with on

the next line (the replacement text). I call two such lines a search-replace pair .

If you want to search for more things, just write another search-replace pair,

and put a blank line between them.

Options and directives

A line that begins with a \!" character is an option or directive. The options

available in the script are the same as those that are available at the command

line|except a few can be used only at the command line (-search and -replace)

or only in a script (e.g. !include).

Options may simply be a single word. To avoid unnecessary messages:

!quiet

They may be quali�ed by a selector. To ignore case in search text:

!case=ignore

They may have string arguments. To read another script �le:

!include=somefile.ext

They may have numeric arguments. To re-run the script 10 times:

!iterate=10

Instead of \=", you may use a space:

!case ignore

Option names may be abbreviated as much or as little as you like, as long as

they do not become ambiguous. The �rst two characters of the option are always

enough to avoid ambiguity. The same goes for selectors, they abbreviate all the

way down to just the �rst character. The examples above abbreviated as much

as possible:

!q

!ca=i

!it=10

!in=somefile.ext

7

Comments

Lines that begin with \#" are comment lines and are ignored. The commentmust

be on a line by itself (not following any option, regular expression or the alike).

4.4 Regular expression format

In this section I assume some familiarity with regular expressions, as they are

found e.g. in the grep program. If you don't know regular expressions, there is

an introduction in section 10 below.

Msub supports all the most common regular expression constructs:

expr* Repeat expr 0 or more times. (closure)

expr+ Repeat expr 1 or more times. (positive closure)

expr? expr is optional (repeat 0 or 1 times)

exp

1

jexp

2

j : : : jexp

n

Match any one of exp

1�n

. (union)

(expr) Parentheses may be used freely.

[c

1

c

2

: : : c

n

] Set: Matches any of the characters c

1

{c

n

. (union)

[: : : c

1

� c

2

: : :] Set: Matches any of the characters which lie between c

1

and c

2

in

ascii, including c

1

and c

2

. E.g. [A-Za-z] matches any Latin letter.

[^ : : :] Set: Matches any characters except those in the set. (To match any single

character use [^], but be ware: [^]* is `dangerous'.)

ndigits The character with decimal ascii code digits. (C hackers read my lips:

No more octal.)

nc A literal character.

expr

1

expr

2

One thing after the other, expr

1

followed by expr

2

. (product)

": : :" or ': : : ' Literal text: Otherwise special characters such as *+?n have no

special meaning within quotes. To produce a literal ' character, enclose it

within " quotes, and to produce a literal " character, enclose it within '

quotes.

$ The end-of-line character (carriage-return/cr)

^ Then beginning-of-line character (linefeed/lf)

. Matches any single character except cr and lf (i.e. same as [^$^]).

8

This may look very familiar, but there are some points where the regular

expressions of Msub di�er from those of the unix regex package. These di�erences

are mostly to favor safety: Remember, unlike grep, this program will modify your

data.

The di�erences are:

Line separators $ and ^ are actual characters. They are simply shorthand for

cr and lf, ascii 13 and ascii 10. You can use them in the middle of a regular

expression, thus searching across line boundaries. A regular expression in

Msub can easily match an entire �le.

To match a plain dollar sign or caret, $ or ^ need quoting (unlike other

programs where only a leading ^ and a trailing $ have special meaning).

Quoting Quoting, i.e. depriving special characters of any meta meaning, can

be done with ' and ", as well as the traditional n escape. Quoting works

the same inside sets as outside. You are discouraged (warnings) from using

any special characters unquoted, even if they don't have any meta-meaning.

(Yet, that is! Msub syntax may be extended in the future.)

Note that "Jill"* repeats the whole word, same as ("Jill")*; and unlike

Jill*, where only the trailing \l" is repeated.

Ranges To get a \{" character in a set, you must quote it. Placing it next to

the \[" or \]" doesn't work. The same goes for \^" and \$".

9

5 Bee�ng up the search text

5.1 Parallel and sequential substitution

When you write a series of search-replace pairs in a script, they are executed in

parallel. This means that the inserted replacement text of one replacement is not

scanned for further changes. Example:

"W. Henderson"

"William Henderson"

"William"

"Bill"

This will not change \W. Henderson" into \Bill Henderson".

If you want search-replace pairs to execute in sequence instead of in parallel,

such that later search-replace pairs work on the result of the previous search-

replace pairs, use the !newpass directive:

"W."

"William"

!newpass

"William"

"Bill"

This script has two passes. In the �rst pass, all \W."s are changed to

\William", and the second pass \William" is changed to \Bill". This script

will change \W." to \Bill".

Each pass may contain multiple search-replace pairs, that are replaced in

parallel.

5.2 Letter case

All text is case sensitive by default. This can be changed with the case option.

The option

!case=ignore

will cause Msub to ignore case in the search expressions. When you write "and"

it will be interpreted the same as [Aa][Nn][Dd], thus ignoring case. This only

happens to plain, literal letters. Letters that are speci�ed with a \n" escape

sequence will still be case signi�cant. E.g. n65"nd" will only match the word

And if the \A" is uppercase. Also, case is always signi�cant in sets. Another way

to make sure the \A" is capital would be to write [A]nd.

10

5.3 Abbreviations

Common regular expressions have abbreviations. These abbreviations consist of a

`:' followed by a single, lowercase letter, making up to 26 di�erent abbreviations

possible. E.g. :d is the abbreviation of a digit, as it has the value [0-9].

Anywhere you would have written [0-9], you may just write :d instead.

The good part is that you can de�ne your own abbreviations. De�nitions are

on the form \!:c=de�nition text". This makes \:c" short for \de�nition text".

The de�nition text may itself contain other abbreviations. E.g. you could de�ne

:i to match a positive integer number with

!:i=:d+

(Read: An integer is one or more decimal digits.)

Some abbreviations come prede�ned. Here is a list:

Abbrev Description De�nition

:d Single digit [0-9]

:i Integer :d+

:n Number ('+'|'-')?:i('.':i)?((e|E)('+'|'-')?:i)?

:l Letter [a-zA-Zn128-n255n]

:t Text (letters) :l+

:w Whitespace [n9$^n11n12]+

:b to Begin-line ^.*

:e to End-line .*$

:a begin-�le n26^

:z end-�le $n26

You may change (override) any of these de�nitions. Note that if you, say,

changed the de�nition of :d, that would also e�ect the de�nition of :i, because

the :i de�nition refers to :d. E.g. you could de�ne

!:d=[0-9a-fA-F]

and :i, de�ned as :d+, would suddenly match hexadecimal numbers.

Abbreviations can be used within sets; i.e. if you had !:d=0-9 then you could

write a hexadecimal digit as [:da-fA-F]. If the de�nition itself is a set, it is

treated specially: The set brackets are ignored. This means that !:d=[0-9] will

work just as well with the hexadecimal digit expression above. This makes it easy

to negate an abbreviation: [^:d] means any non-digit character. In a de�nition

such as the de�nition for :w, the trailing operator (*, + or ?, in this case +) is

also ignored, and [^:w] is any non-whitespace character.

5.4 Context sensitive expressions

Suppose you want to replace \he" with \she", but you don't want to change the

\he" if it is part of a word, such as \when" or \heart". Then you could write:

11

[^A-Za-z]/he/[^A-Za-z]

she

The parts before the �rst \/" and after the last \/" describe the context . Msub

searches for the entire expression, but sets marks to remember where the \/"

positions were. Only the part between the two \/" is replaced.

Even if you don't specify both preceding and trailing context, you still must

write both \/" markers; even if one of the context parts is empty.

If the context is the same for all search-replace pairs, then you could specify

it once and for all:

!precontext=[^A-Za-z]

!postcontext=[^A-Za-z]

he

she

This search-replace pair, and any others following it, will have the !precontext

as preceding context and the !postcontext as trailing context. So this search-

replace pair is actually identical to the one above with explicit context.

5.5 Equality test

Regular expressions are powerful, but not always powerful enough. The nequal

condition is there to remedy that a little, by providing a means to compare two

strings for equality.

Conditions are written just to the right of the search expression, without any

intervening whitespace. Begin with a backslash, write the condition name equal

and then the two arguments each enclosed in parentheses. Each argument may

contain the same things that the replacement text consists of. Example:

~1:l+~1[:w]+~2:l+~2nequal(~1)(~2)

~1" (note: duplicate removed)"

This expression matches two words on the condition that the marked regions

(ie. the two words) are identical. If they are, then everything proceeds as usual,

and the net e�ect will be removing the duplicate and making a note of it. If the

words are not identical, then the expression doesn't match.

The comparison is case sensitive. If you want case insensitive comparison,

combine with the toupper or tolower function, like this:

nequal(ntoupper(~1))(ntoupper(~2))

Note that if the longest match for the regular expression doesn't satisfy the

equality condition, then a shorter match may be chosen that does satisfy the

condition. If the above example is run on \an anecdote", then although the

entire string doesn't satisfy the condition, the pre�x \an an" does, will match,

and be replaced.

12

6 Bee�ng up the replacement text

The replacement text is not just a literal string. If you need it to be a literal string

you can quote it, just as with the search expressions, using 'single quotes' and

"double quotes". And the nascii form also works here, so you can use n12 to

produce the form-feed character.

6.1 Selections

You can in the replacement text refer to parts of the search text. Use the back-

quote character ` to refer to the entire text that is being replaced:

(Jones|Jackson|Johnson)

"Mr. "`

This will e�ectively pre�x these names with \Mr. ". There may be more than

one backquote character, thus duplicating the found text:

Bond

`". James "`"."

You can mark a selection of the search text (using that same backquote char-

acter), to indicate that only part of it should be copied to the replacement text:

My name is `Bond`

My name is `"." James `

More than one part of the search text can be copied from, using the additional

markers ~0,~1,: : : ,~9:

My name is ~1James~1 ~2Bond~2"."

My name is ~2"." ~1 ~2"."

The examples above don't achieve much, as the search text selection is a

piece of literal text. It is when the selection is some kind of wildcard, that these

constructs are useful:

My name is ~1[A-Za-z]+~1 ~2[A-Za-z]+~2"."

My name is ~2"." ~1 ~2"."

Marks may not appear within parenthesis. Neither ~0{~9, backquote (`) or

the context marker \/" may appear within parenthesis. This is not legal:

(Sean ~1Connery~1|Roger ~1Moore~1|Timothy ~1Dalton~1)

James Bond '('~1')'

13

6.2 Converting letter case

Conversion to upper or lower case can be done by writing ntoupper(: : :) or

ntolower(: : :) in the replacement text. Instead of \: : :", put whatever it is that

you want to convert to upper or lower case. Example:

"I am from "~1:l+~1

ntoupper(~1)" is where I come from"

On the input \I am from Denmark" this will produce \DENMARK is where I come from".

For another example, see the PASBEAU.MS script, which (among other

things) converts Pascal keywords to lower case.

14

7 Files

7.1 Extracting

There is a directive you can use to extract speci�ed parts of your input text that

you want to keep and throw everything else away:

!clip

This directive tells Msub to keep only the replacement text. This means that

anything that is not matched by a search expression is thrown away.

You can use this in conjunction with the !screen option to create a grep-like

e�ect. To print all device statements in your con�g.sys:

msub -clip -scr -case=i -se=^device.*$ -re=` nconfig.sys

7.2 Binary and ascii �les

By default Msub considers input �les to be ascii �les, as speci�ed by the option

!text

(Used to be named !ascii.) In ascii mode, before any substitutions take

place, input is converted to an internal format. In the internal format it is easier

to manage beginning and ending of lines, and it also makes it possible to search

to or from the beginning or end of the entire �le.

You can specify binary mode with

!binary

In binary mode, no such conversions take place.

The internal format looks like this:

ctrl-z lf : : :first line: : : cr

lf : : :intermediate lines: : : cr

lf : : :last line: : : cr ctrl-z

7.3 Line separators

All lines begin with a line feed character, which you can search for using \^",

and ends with a carriage return character, which you can search for using \$".

To search across lines, you'll need both: First line$^Following line.

Line separator options:

!lineseparator=binary

15

No conversions take place.

!lineseparator=crlfwrite

The default. File is converted to internal format.

!lineseparator=lfwrite

File is converted to internal format, and at the end of processing, cr/lf (DOS

style) line separators are changed to just lf (UNIX style).

!lineseparator=default

Same as !lineseparator=crlfwrite. In a UNIX version of Msub, this would be

the same as !lineseparator=lfwrite.

7.4 Ctrl-Z

The �le begins and ends with the DOS eof marker, ctrl-z. This means you can

search for something at the beginning of the �le with n26^First line text. Or

at the end of �le with Last line text$n26.

The extraneous ctrl-z characters are removed after your substitutions have

taken place, and if the original �le ended with ctrl-z (within the last 10 char-

acters) that ending is restored.

There are four di�erent options for handling ctrl-z:

!ctrlz=copy

The default, as described above.

!ctrlz=ignore

ctrl-z is treated like any other character, and nothing is added at the beginning

or end of �le.

!ctrlz=remove

As copy, except doesn't restore original ending.

!ctrlz=add

As copy, except instead of restoring the original ending, a standard ctrl-z �le

ending is added, which consists of a single ctrl-z character on a line by itself.

16

7.5 Backup

Msub creates backup �les. The backup �les are named with a di�erent extension

from the original, and are placed in the same directory as the original.

There is no �xed backup �le extension such as .BAK. (This is to avoid that �les

such as README.DOC and README.1ST get the same backup �le name README.BAK.)

Instead the backup �le extension is created from the original extension by insert-

ing a \~" character as the �rst character. E.g. SRCFILE.C is backed up to

SRCFILE.~C. If the original extension is a full three letter extension, the middle

character will be omitted. E.g. AUTOEXEC.BAT is backed up to AUTOEXEC.~BT.

This may seem confusing, but really all you need to know is that

del *.~*

will delete all backup �les, and use the UNBAK utility (see below) to restore backup

�les.

You have an option to use conventional .BAK backup extension:

!backup=bak

You can turn o� backup �le creation completely:

!backup=no

7.6 Restoring backup �les

Backup �les can of course be restored manually using dos commands such as del,

rename and copy.

However the UNBAK utility provides a much more convenient way to do this.

Suppose you just did this:

msub myscript file1.txt *.doc

If you want this undone, simply go

unbak file1.txt *.doc

The UNBAK program will, for each �le named on the command line, locate the

corresponding backup �le, and swap these two �les. So your backed up data is

restored under the proper name, and the modi�ed data is still there, only under

the backup �le name.

To undo an UNBAK command, just do it again with the same arguments, and

your �les will be swapped right back where they came from.

The UNBAK program knows about both Msub tilde-style backups as well as

conventional .BAK backup �les. If there is both a tilde-style backup �le and

a .BAK backup �le, UNBAK doesn't choose between them but instead prints a

diagnostic.

17

7.7 Options for updating

If you don't want to actually change a �le but need to look at the changed

contents, use

!update=screen

or simply

!screen

This will prevent any �les from being changed, and instead print the changed

text on the standard output. You could redirect this output if you wanted to,

e.g. like this:

msub -screen myscript.ms original.fil > changed.fil

For safety, Msub never deletes the original �le, until a new version has been

written to disk. If you don't have enough space on your harddrive for this, you

can (besides setting !backup=no) instruct Msub to overwrite the original directly,

using

!update=overwrite

Finally, you can prevent Msub from changing any �les at all:

!update=no

You probably never want to do this, as it doesn't seem to achieve much. (I use

it for testing.)

7.8 Script �le search directories

Msub searches for script �les (that are named without a path component e.g.

MYSCRIPT.MS but not C:nMSSCRIPTSnMYSCRIPT) in the following places:

� The current directory.

� The directory in which the Msub program executable (MSUB.EXE) resides.

� Each directory in the DOS search path, i.e. the PATH environment variable.

� An !included �le is also searched for in the directory of the script that it

was included from. (include �les are described in section 8.4 below)

18

8 Script structuring options

8.1 Iteration

The directive

!iterate

tells Msub to repeat the script. When the substitutions in the script have been

performed, Msub restarts from the beginning of the text �le|repeating for as

long as there is something to do.

To limit the repetitions to at most n times, use the form

!iterate=n

where n is a positive integer.

To repeat only a speci�c section of the script, use the !begin/!end constructs

described below.

8.2 Nested scripts

A nested script is a part of a script which is enclosed between directives !begin

and !end.

The nested script is treated like a pass of its own: First the substitutions above

the nested script are performed, then the substitutions of the nested script, and

�nally the substitutions below the script.

What sets a nested script apart from a pass is locality of options. All options

written within a nested script pertain to the nested script only. When !end is

reached, all options de�ned in the nested script cease to take e�ect. This applies

to options for letter case and context, but not to options that are inherently

global: !backup, !update, !screen, !lineseparator, !ctrlz, !binary and

!text. Notably !ask is not on this list, and may vary locally.

A nested script may itself contains nested scripts.

An !iterate directive within a nested script repeats only the nested script.

!end alone (not preceded by !begin) can be used to signify end of input. Any

text following !end is ignored.

8.3 Named subscripts

Named subscripts are de�ned much like nested scripts. They are opened with

!sub subroutinename instead of !begin, and end with !end just like nested

scripts.

They are not executed, however, just by stating the de�nition. Instead they

are stored under the speci�ed name (subroutinename), later to be used in re-

placement text.

19

To use (call) a named subscript you write its name preceded by a n (backslash)

and an argument enclosed in parentheses. The subscript will then, when inserting

the replacement text with the call, �rst execute the named subscript on the text

in the argument. Example:

!sub capwords

~1:l~1~2:l+~2

ntoupper(~1)ntolower(~2)

!end

This script capitalizes words, converting the �rst letter to uppercase the rest

to lower. Having de�ned the script, you can now use it in replacement text:

"My name is "`:l+([:w]+:l+)*`"."

"Remember to capitalize names, like this: "ncapwords(`)"."

Named subscripts are parsed and checked for errors when de�ned, but not

compiled (the time- and space-consuming part) unless actually used.

8.4 Include �les

From within a script �le, another script �le can be included with

!include=filename

This works almost the same as inserting the text of �lename at the point of the

!include, except the �le �lename must be a well-formed script.

An included �le is not a nested script. Sometimes you want the included �le

to act like a nested script, to avoid options in the included �le to change options

in the �le it was included from. In this case just put the directives !begin and

!end at the beginning and end of the include-�le.

Including �les nest, i.e. you may include another �le from within a �le that is

being included.

20

9 Caveats and bugs

No bugs described here: Known bugs get �xed!!

But there are some things that you should be ware of; shortcomings of the Msub

way of doing things.

Memory

Msub is very memory hungry. Firstly, two copies of any �le being worked on

are kept in memory concurrently. Secondly, the regular expressions are compiled

internally to some big tables. If your script is very complex or your �les are very

big, Msub may run out of memory or become very slow (due to virtual memory

thrashing).

If a script is simple enough, Msub will only need to store one copy of the

input �le. This is the case for scripts, that are not multi-pass (no !newpass and

no !begin/!end), and that have the !binary
ag set. A complex script can

probably be split into several simple scripts that each have these properties.

Command-line quoting

To use spaces in a regular expression on the command line, you must enclose it

within " quotes. However, you cannot enclose part of a coherent option in quotes.

This doesn't work:

msub -search="one thing" -replace="sth else" somefile **wrong**

Instead, enclose the entire option in quotes like this:

msub "-search=one thing" "-replace=sth else" somefile

or use space instead of the `=' character:'

msub -search "one thing" -replace "sth else" somefile

These quotes only a�ect reading the command line. They do not make the

arguments into literal strings. To make special characters literal you need addi-

tional quoting, this time using the ' single quote or \n". As in

msub -search "'$2 + $2'" -re=n$4

Misplaced marks

You may get the warning

Warning: ... marker may become misplaced (program limitation)

(Instead of \..." it will say \Last ~1", \First /" or something like that.)

21

(Until you actually get that warning, there is no need to read this.)

This happens because Msub is implemented using a technique called �nite-

state automata, which is very fast but not quite powerful enough to handle the

full Msub scripting language. When you write a script that Msub cannot handle,

it prints this diagnostic but continues anyway.

The problem arises when the regular expressions on each side of a marker

`overlap', as in this script:

/a*/ab

""

If there were no restrictions on what could follow a*, then it could match the a

in ab. When this script is run on the input text aab, this should be divisioned

as /a/ab, but the a* is too `greedy' and this is (incorrectly) divisioned /aa/b.

A more realistic example: Suppose you want to delete comments in a �le,

and the \%" character makes the rest of the line a comment. So you think: A

comment is a \%" character followed by anything ([^] means any character) till

the end of line, and you write the script:

/"%"[^]*/$

""

This doesn't work quite as you expected, because the [^]* parts gets too

`greedy': The line-end character $ gets accidentally included in the \/" selection.

To correct this, write:

/"%"[^$]*/$

""

It is possible that you get this warning even though there are no problems.

That is why it's just a warning.

Ambiguity: Begins-earliest and longest-match

If the exact same piece of text might be matched by two di�erent regular expres-

sions in the same pass, this is an ambiguity that isn't allowed; Msub stops with

an error message.

If di�erent, but overlapping pieces of the input text might be matched by dif-

ferent regular expressions in the same pass, this is not an error and the ambiguity

is resolved in one of two ways:

� The �rst match found, scanning left-to-right, is always preferred. E.g. with

the search expressions text and extend, if it says \textend" in your text,

then text will be found but not extend.

22

� If the two matches start at the same character, but they are of di�erent

lengths, the longer one is chosen. This is the longest-match strategy.

This goes not only for `competing' regular expressions, but also `within' a

single regular expression. E.g. [A-Za-z]+ will match an entire word, even

though it could make do with just the �rst character. To make this explicit,

you could write/[A-Za-z]+/[^A-Za-z].

All this applies to the entire expression, including context (i.e. not just the

part between \/" delimiters). Except a new match may start in the trailing

context of the previous match. For example, if the input text is abcde, and the

b has just been matched by /b/c, then the c can be matched by /c/ but not by

b/c/, nor will /bc/ match.

\Unchanged" �les may have changed

Even if Msub prints (unchanged) after a processed �le name, the �le is neverthe-

less rewritten. Although no substitutions have taken place, the !lineseparator

and !ctrlz options are still in e�ect. With the default settings this means that

any lf line endings will be changed to cr/lf line endings.

The date stamp is never changed with �les that are `(unchanged)'.

File attributes are not conserved. Instead the backup �le will have the original

attributes. If your original �le was read-only, this means that Msub will fail the

second time around, unable to delete the old backup �le.

In�nite loops

If a search expression matches the empty string, and there is no preceeding

context, then Msub will keep matching the position until it crashes with an

Out of memory message. (If the empty string is replaced with empty string,

then it will loop until you cancel it with `ctrl-break'.) If the preceeding context

is non-empty, there is no problem, and there is no problem using that to insert

text:

yes//

" or no"

If an abbreviation refers to itself, directly or indirectly, then using it will cause

Msub to enter an in�nite loop, and keep on looping until Msub runs out of memory

or stack space.

Finally a script �le that includes itself, directly or indirectly, will loop until

there are too many �les open, and Msub quits saying Unable to open include file.

23

You!

Writing regular expressions is a kind of programming. One of the basic tenets of

programming is that mistakes are made. Never trust a complex regular expression

until you have actually seen it generate the desired output.

24

10 Regular expression primer

A regular expression is a way of describing set of text strings. Just like DOS

wildcards describes a set of �lenames using special characters *" and \?". Full

regular expressions, however, have di�erent and more special characters.

The simplest regular expression is the literal string. E.g. the regular expression

\joe" matches the string \joe".

The \j" in \joe" matches only a lowercase j. Suppose you need to match

both lower- and uppercase j's. Then you can use the \|" character as in \J|j"

to indicate that you don't care if it's one or the other. To do that in \joe" you

need to use parenthesis like this: \(J|j)oe". That will match both \joe" and

\Joe". Whereas \J|joe" would match \J" and \joe".

Next suppose you want to search for \joe", but you don't want \Joel" to show

up. So you want to �nd \joe" only if the next character is a space or a punc-

tuation character. That would be \joe(' '|','|'.'|';')". Notice the use of

'quotes' around special characters \,.;" just in case they have a special meaning

in regular expressions (the way we have seen \(", \)" and \|" have).

There is a short form for this: \joe[' ,.;']". A list of characters between

[brackets] means match any of these characters.

Instead of describing what character may follow \joe", it might be easier to

say what may not. If the �rst character within brackets is \^", the bracketed ex-

pression matches not the characters within the brackets, but rather any character

which is not within the brackets. Thus you write \joe[^abcdefghijklmnopqrstuvwxyz]"

to match \joe" followed by anything but a lowercase character. You don't need

to type all 26 characters, it can be abbreviated \joe[^a-z]". Of course you want

to avoid uppercase characters too, which makes it \joe[^a-zA-Z]".

Similarly \[0-9]" will match any single digit. To match an entire (integer) num-

ber, use the \+" operator, like this: \[0-9]+". The \+" operator repeats one or

more times that which comes just before it. Therefore \[0-9]+" matches one

or more subsequent digits, i.e. any integer number. The operator works only

on the last character or parenthesized/bracketed expression. This means that

\and +" won't match repeated instances of the word and: the \+" only repeats

the space that it immediately follows, and the expression will match the word

\and" followed by one or more spaces.

The *" operator is just like \+", except it repeats 0 or more times. That is

it may also match the empty string, e.g. \ab*c" will match \ac", \abc", \abbc"

and so on.

The \?" operator indicates that something may be omitted. E.g. \a (useful)? operator"

will match both \a operator" and \a useful operator".

By now you should be ready for the terse descriptions back in section 4.4.

25

11 Registration

This program is shareware. Which means that if you put this program to good

use without sending me a contribution, then you are basically ripping me o�.

Because I have put a lot of working hours into this.

You'll �nd the accurate wording of the copyright and licensing conditions in

the accompanying �le REGISTER.DOC. That �le must be included if you in any

way distribute Msub or this document.

Registration is $25 or the equivalent in any convertible currency. If you have

Internet access you can save $5 o� that price by having programs and documents

sent by e-mail. Otherwise you will receive a diskette and a printed manual by

surface mail.

11.1 \What's in it for me?"

Registration bene�ts:

� You get a copy of the latest version available.

� This copy does not have the 3 second startup delay that the shareware

version does.

� Your registration covers all versions 1.x, and if you have an Internet address

you will get an e-mail notice with each release.

� You can get the source code of Msub. You can recompile this on other

platforms such as OS/2 or unix, provided you have a (reasonably standards-

conforming) C++ compiler.

� Anymoney you send mewill help me pay for an optimizing compiler. Which

may double the speed of Msub.

11.2 How to register

See REGISTER.DOC for details.

11.3 Future enhancements

Here follows a list of coming improvements to Msub:

Wordprocessor documents A future version of Msubwill understand the word-

processor �le formats of WordPerfect, Word and others, making it easy to

manage nested codes and steer around them if necessary.

You can help me with this: If you have any information on a word processor

�le format, please send it to me. This is also the may to make sure that

26

Msub will support your favorite FooWord or BarWrite format: If I don't

know the speci�cs of format, I can't support it. And unfortunately buying

specs from the sources (WordPerfect Corporation and such) is way beyond

the �nancial range of Msub. The others are too expensive, and Msub is too

cheap!

: : : hm : : : this list used to be a lot longer, but I seem to have implemented it

all

^

�

��

12 Closing argument

You can reach the author with questions and comments on the Internet as

juul@diku.dk.

Enjoy

^

�

��

27

